super.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350
  1. /*
  2. * fs/f2fs/super.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/fs.h>
  14. #include <linux/statfs.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/kthread.h>
  18. #include <linux/parser.h>
  19. #include <linux/mount.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/proc_fs.h>
  22. #include <linux/random.h>
  23. #include <linux/exportfs.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/f2fs_fs.h>
  26. #include <linux/sysfs.h>
  27. #include "f2fs.h"
  28. #include "node.h"
  29. #include "segment.h"
  30. #include "xattr.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #define CREATE_TRACE_POINTS
  34. #include <trace/events/f2fs.h>
  35. static struct proc_dir_entry *f2fs_proc_root;
  36. static struct kmem_cache *f2fs_inode_cachep;
  37. static struct kset *f2fs_kset;
  38. enum {
  39. Opt_gc_background,
  40. Opt_disable_roll_forward,
  41. Opt_norecovery,
  42. Opt_discard,
  43. Opt_noheap,
  44. Opt_user_xattr,
  45. Opt_nouser_xattr,
  46. Opt_acl,
  47. Opt_noacl,
  48. Opt_active_logs,
  49. Opt_disable_ext_identify,
  50. Opt_inline_xattr,
  51. Opt_inline_data,
  52. Opt_inline_dentry,
  53. Opt_flush_merge,
  54. Opt_nobarrier,
  55. Opt_fastboot,
  56. Opt_extent_cache,
  57. Opt_noinline_data,
  58. Opt_err,
  59. };
  60. static match_table_t f2fs_tokens = {
  61. {Opt_gc_background, "background_gc=%s"},
  62. {Opt_disable_roll_forward, "disable_roll_forward"},
  63. {Opt_norecovery, "norecovery"},
  64. {Opt_discard, "discard"},
  65. {Opt_noheap, "no_heap"},
  66. {Opt_user_xattr, "user_xattr"},
  67. {Opt_nouser_xattr, "nouser_xattr"},
  68. {Opt_acl, "acl"},
  69. {Opt_noacl, "noacl"},
  70. {Opt_active_logs, "active_logs=%u"},
  71. {Opt_disable_ext_identify, "disable_ext_identify"},
  72. {Opt_inline_xattr, "inline_xattr"},
  73. {Opt_inline_data, "inline_data"},
  74. {Opt_inline_dentry, "inline_dentry"},
  75. {Opt_flush_merge, "flush_merge"},
  76. {Opt_nobarrier, "nobarrier"},
  77. {Opt_fastboot, "fastboot"},
  78. {Opt_extent_cache, "extent_cache"},
  79. {Opt_noinline_data, "noinline_data"},
  80. {Opt_err, NULL},
  81. };
  82. /* Sysfs support for f2fs */
  83. enum {
  84. GC_THREAD, /* struct f2fs_gc_thread */
  85. SM_INFO, /* struct f2fs_sm_info */
  86. NM_INFO, /* struct f2fs_nm_info */
  87. F2FS_SBI, /* struct f2fs_sb_info */
  88. };
  89. struct f2fs_attr {
  90. struct attribute attr;
  91. ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
  92. ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
  93. const char *, size_t);
  94. int struct_type;
  95. int offset;
  96. };
  97. static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
  98. {
  99. if (struct_type == GC_THREAD)
  100. return (unsigned char *)sbi->gc_thread;
  101. else if (struct_type == SM_INFO)
  102. return (unsigned char *)SM_I(sbi);
  103. else if (struct_type == NM_INFO)
  104. return (unsigned char *)NM_I(sbi);
  105. else if (struct_type == F2FS_SBI)
  106. return (unsigned char *)sbi;
  107. return NULL;
  108. }
  109. static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
  110. struct f2fs_sb_info *sbi, char *buf)
  111. {
  112. unsigned char *ptr = NULL;
  113. unsigned int *ui;
  114. ptr = __struct_ptr(sbi, a->struct_type);
  115. if (!ptr)
  116. return -EINVAL;
  117. ui = (unsigned int *)(ptr + a->offset);
  118. return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
  119. }
  120. static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
  121. struct f2fs_sb_info *sbi,
  122. const char *buf, size_t count)
  123. {
  124. unsigned char *ptr;
  125. unsigned long t;
  126. unsigned int *ui;
  127. ssize_t ret;
  128. ptr = __struct_ptr(sbi, a->struct_type);
  129. if (!ptr)
  130. return -EINVAL;
  131. ui = (unsigned int *)(ptr + a->offset);
  132. ret = kstrtoul(skip_spaces(buf), 0, &t);
  133. if (ret < 0)
  134. return ret;
  135. *ui = t;
  136. return count;
  137. }
  138. static ssize_t f2fs_attr_show(struct kobject *kobj,
  139. struct attribute *attr, char *buf)
  140. {
  141. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  142. s_kobj);
  143. struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
  144. return a->show ? a->show(a, sbi, buf) : 0;
  145. }
  146. static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
  147. const char *buf, size_t len)
  148. {
  149. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  150. s_kobj);
  151. struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
  152. return a->store ? a->store(a, sbi, buf, len) : 0;
  153. }
  154. static void f2fs_sb_release(struct kobject *kobj)
  155. {
  156. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  157. s_kobj);
  158. complete(&sbi->s_kobj_unregister);
  159. }
  160. #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
  161. static struct f2fs_attr f2fs_attr_##_name = { \
  162. .attr = {.name = __stringify(_name), .mode = _mode }, \
  163. .show = _show, \
  164. .store = _store, \
  165. .struct_type = _struct_type, \
  166. .offset = _offset \
  167. }
  168. #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
  169. F2FS_ATTR_OFFSET(struct_type, name, 0644, \
  170. f2fs_sbi_show, f2fs_sbi_store, \
  171. offsetof(struct struct_name, elname))
  172. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
  173. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
  174. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
  175. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
  176. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
  177. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
  178. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
  179. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
  180. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
  181. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
  182. F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
  183. F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
  184. F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
  185. #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
  186. static struct attribute *f2fs_attrs[] = {
  187. ATTR_LIST(gc_min_sleep_time),
  188. ATTR_LIST(gc_max_sleep_time),
  189. ATTR_LIST(gc_no_gc_sleep_time),
  190. ATTR_LIST(gc_idle),
  191. ATTR_LIST(reclaim_segments),
  192. ATTR_LIST(max_small_discards),
  193. ATTR_LIST(batched_trim_sections),
  194. ATTR_LIST(ipu_policy),
  195. ATTR_LIST(min_ipu_util),
  196. ATTR_LIST(min_fsync_blocks),
  197. ATTR_LIST(max_victim_search),
  198. ATTR_LIST(dir_level),
  199. ATTR_LIST(ram_thresh),
  200. NULL,
  201. };
  202. static const struct sysfs_ops f2fs_attr_ops = {
  203. .show = f2fs_attr_show,
  204. .store = f2fs_attr_store,
  205. };
  206. static struct kobj_type f2fs_ktype = {
  207. .default_attrs = f2fs_attrs,
  208. .sysfs_ops = &f2fs_attr_ops,
  209. .release = f2fs_sb_release,
  210. };
  211. void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
  212. {
  213. struct va_format vaf;
  214. va_list args;
  215. va_start(args, fmt);
  216. vaf.fmt = fmt;
  217. vaf.va = &args;
  218. printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
  219. va_end(args);
  220. }
  221. static void init_once(void *foo)
  222. {
  223. struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
  224. inode_init_once(&fi->vfs_inode);
  225. }
  226. static int parse_options(struct super_block *sb, char *options)
  227. {
  228. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  229. substring_t args[MAX_OPT_ARGS];
  230. char *p, *name;
  231. int arg = 0;
  232. if (!options)
  233. return 0;
  234. while ((p = strsep(&options, ",")) != NULL) {
  235. int token;
  236. if (!*p)
  237. continue;
  238. /*
  239. * Initialize args struct so we know whether arg was
  240. * found; some options take optional arguments.
  241. */
  242. args[0].to = args[0].from = NULL;
  243. token = match_token(p, f2fs_tokens, args);
  244. switch (token) {
  245. case Opt_gc_background:
  246. name = match_strdup(&args[0]);
  247. if (!name)
  248. return -ENOMEM;
  249. if (strlen(name) == 2 && !strncmp(name, "on", 2))
  250. set_opt(sbi, BG_GC);
  251. else if (strlen(name) == 3 && !strncmp(name, "off", 3))
  252. clear_opt(sbi, BG_GC);
  253. else {
  254. kfree(name);
  255. return -EINVAL;
  256. }
  257. kfree(name);
  258. break;
  259. case Opt_disable_roll_forward:
  260. set_opt(sbi, DISABLE_ROLL_FORWARD);
  261. break;
  262. case Opt_norecovery:
  263. /* this option mounts f2fs with ro */
  264. set_opt(sbi, DISABLE_ROLL_FORWARD);
  265. if (!f2fs_readonly(sb))
  266. return -EINVAL;
  267. break;
  268. case Opt_discard:
  269. set_opt(sbi, DISCARD);
  270. break;
  271. case Opt_noheap:
  272. set_opt(sbi, NOHEAP);
  273. break;
  274. #ifdef CONFIG_F2FS_FS_XATTR
  275. case Opt_user_xattr:
  276. set_opt(sbi, XATTR_USER);
  277. break;
  278. case Opt_nouser_xattr:
  279. clear_opt(sbi, XATTR_USER);
  280. break;
  281. case Opt_inline_xattr:
  282. set_opt(sbi, INLINE_XATTR);
  283. break;
  284. #else
  285. case Opt_user_xattr:
  286. f2fs_msg(sb, KERN_INFO,
  287. "user_xattr options not supported");
  288. break;
  289. case Opt_nouser_xattr:
  290. f2fs_msg(sb, KERN_INFO,
  291. "nouser_xattr options not supported");
  292. break;
  293. case Opt_inline_xattr:
  294. f2fs_msg(sb, KERN_INFO,
  295. "inline_xattr options not supported");
  296. break;
  297. #endif
  298. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  299. case Opt_acl:
  300. set_opt(sbi, POSIX_ACL);
  301. break;
  302. case Opt_noacl:
  303. clear_opt(sbi, POSIX_ACL);
  304. break;
  305. #else
  306. case Opt_acl:
  307. f2fs_msg(sb, KERN_INFO, "acl options not supported");
  308. break;
  309. case Opt_noacl:
  310. f2fs_msg(sb, KERN_INFO, "noacl options not supported");
  311. break;
  312. #endif
  313. case Opt_active_logs:
  314. if (args->from && match_int(args, &arg))
  315. return -EINVAL;
  316. if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
  317. return -EINVAL;
  318. sbi->active_logs = arg;
  319. break;
  320. case Opt_disable_ext_identify:
  321. set_opt(sbi, DISABLE_EXT_IDENTIFY);
  322. break;
  323. case Opt_inline_data:
  324. set_opt(sbi, INLINE_DATA);
  325. break;
  326. case Opt_inline_dentry:
  327. set_opt(sbi, INLINE_DENTRY);
  328. break;
  329. case Opt_flush_merge:
  330. set_opt(sbi, FLUSH_MERGE);
  331. break;
  332. case Opt_nobarrier:
  333. set_opt(sbi, NOBARRIER);
  334. break;
  335. case Opt_fastboot:
  336. set_opt(sbi, FASTBOOT);
  337. break;
  338. case Opt_extent_cache:
  339. set_opt(sbi, EXTENT_CACHE);
  340. break;
  341. case Opt_noinline_data:
  342. clear_opt(sbi, INLINE_DATA);
  343. break;
  344. default:
  345. f2fs_msg(sb, KERN_ERR,
  346. "Unrecognized mount option \"%s\" or missing value",
  347. p);
  348. return -EINVAL;
  349. }
  350. }
  351. return 0;
  352. }
  353. static struct inode *f2fs_alloc_inode(struct super_block *sb)
  354. {
  355. struct f2fs_inode_info *fi;
  356. fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
  357. if (!fi)
  358. return NULL;
  359. init_once((void *) fi);
  360. /* Initialize f2fs-specific inode info */
  361. fi->vfs_inode.i_version = 1;
  362. atomic_set(&fi->dirty_pages, 0);
  363. fi->i_current_depth = 1;
  364. fi->i_advise = 0;
  365. rwlock_init(&fi->ext_lock);
  366. init_rwsem(&fi->i_sem);
  367. INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
  368. INIT_LIST_HEAD(&fi->inmem_pages);
  369. mutex_init(&fi->inmem_lock);
  370. set_inode_flag(fi, FI_NEW_INODE);
  371. if (test_opt(F2FS_SB(sb), INLINE_XATTR))
  372. set_inode_flag(fi, FI_INLINE_XATTR);
  373. /* Will be used by directory only */
  374. fi->i_dir_level = F2FS_SB(sb)->dir_level;
  375. return &fi->vfs_inode;
  376. }
  377. static int f2fs_drop_inode(struct inode *inode)
  378. {
  379. /*
  380. * This is to avoid a deadlock condition like below.
  381. * writeback_single_inode(inode)
  382. * - f2fs_write_data_page
  383. * - f2fs_gc -> iput -> evict
  384. * - inode_wait_for_writeback(inode)
  385. */
  386. if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
  387. return 0;
  388. return generic_drop_inode(inode);
  389. }
  390. /*
  391. * f2fs_dirty_inode() is called from __mark_inode_dirty()
  392. *
  393. * We should call set_dirty_inode to write the dirty inode through write_inode.
  394. */
  395. static void f2fs_dirty_inode(struct inode *inode, int flags)
  396. {
  397. set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  398. }
  399. static void f2fs_i_callback(struct rcu_head *head)
  400. {
  401. struct inode *inode = container_of(head, struct inode, i_rcu);
  402. kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
  403. }
  404. static void f2fs_destroy_inode(struct inode *inode)
  405. {
  406. call_rcu(&inode->i_rcu, f2fs_i_callback);
  407. }
  408. static void f2fs_put_super(struct super_block *sb)
  409. {
  410. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  411. if (sbi->s_proc) {
  412. remove_proc_entry("segment_info", sbi->s_proc);
  413. remove_proc_entry(sb->s_id, f2fs_proc_root);
  414. }
  415. kobject_del(&sbi->s_kobj);
  416. f2fs_destroy_stats(sbi);
  417. stop_gc_thread(sbi);
  418. /*
  419. * We don't need to do checkpoint when superblock is clean.
  420. * But, the previous checkpoint was not done by umount, it needs to do
  421. * clean checkpoint again.
  422. */
  423. if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
  424. !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
  425. struct cp_control cpc = {
  426. .reason = CP_UMOUNT,
  427. };
  428. write_checkpoint(sbi, &cpc);
  429. }
  430. /*
  431. * normally superblock is clean, so we need to release this.
  432. * In addition, EIO will skip do checkpoint, we need this as well.
  433. */
  434. release_dirty_inode(sbi);
  435. release_discard_addrs(sbi);
  436. iput(sbi->node_inode);
  437. iput(sbi->meta_inode);
  438. /* destroy f2fs internal modules */
  439. destroy_node_manager(sbi);
  440. destroy_segment_manager(sbi);
  441. kfree(sbi->ckpt);
  442. kobject_put(&sbi->s_kobj);
  443. wait_for_completion(&sbi->s_kobj_unregister);
  444. sb->s_fs_info = NULL;
  445. brelse(sbi->raw_super_buf);
  446. kfree(sbi);
  447. }
  448. int f2fs_sync_fs(struct super_block *sb, int sync)
  449. {
  450. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  451. trace_f2fs_sync_fs(sb, sync);
  452. if (sync) {
  453. struct cp_control cpc;
  454. cpc.reason = __get_cp_reason(sbi);
  455. mutex_lock(&sbi->gc_mutex);
  456. write_checkpoint(sbi, &cpc);
  457. mutex_unlock(&sbi->gc_mutex);
  458. } else {
  459. f2fs_balance_fs(sbi);
  460. }
  461. f2fs_trace_ios(NULL, NULL, 1);
  462. return 0;
  463. }
  464. static int f2fs_freeze(struct super_block *sb)
  465. {
  466. int err;
  467. if (f2fs_readonly(sb))
  468. return 0;
  469. err = f2fs_sync_fs(sb, 1);
  470. return err;
  471. }
  472. static int f2fs_unfreeze(struct super_block *sb)
  473. {
  474. return 0;
  475. }
  476. static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
  477. {
  478. struct super_block *sb = dentry->d_sb;
  479. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  480. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  481. block_t total_count, user_block_count, start_count, ovp_count;
  482. total_count = le64_to_cpu(sbi->raw_super->block_count);
  483. user_block_count = sbi->user_block_count;
  484. start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
  485. ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
  486. buf->f_type = F2FS_SUPER_MAGIC;
  487. buf->f_bsize = sbi->blocksize;
  488. buf->f_blocks = total_count - start_count;
  489. buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
  490. buf->f_bavail = user_block_count - valid_user_blocks(sbi);
  491. buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
  492. buf->f_ffree = buf->f_files - valid_inode_count(sbi);
  493. buf->f_namelen = F2FS_NAME_LEN;
  494. buf->f_fsid.val[0] = (u32)id;
  495. buf->f_fsid.val[1] = (u32)(id >> 32);
  496. return 0;
  497. }
  498. static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
  499. {
  500. struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
  501. if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
  502. seq_printf(seq, ",background_gc=%s", "on");
  503. else
  504. seq_printf(seq, ",background_gc=%s", "off");
  505. if (test_opt(sbi, DISABLE_ROLL_FORWARD))
  506. seq_puts(seq, ",disable_roll_forward");
  507. if (test_opt(sbi, DISCARD))
  508. seq_puts(seq, ",discard");
  509. if (test_opt(sbi, NOHEAP))
  510. seq_puts(seq, ",no_heap_alloc");
  511. #ifdef CONFIG_F2FS_FS_XATTR
  512. if (test_opt(sbi, XATTR_USER))
  513. seq_puts(seq, ",user_xattr");
  514. else
  515. seq_puts(seq, ",nouser_xattr");
  516. if (test_opt(sbi, INLINE_XATTR))
  517. seq_puts(seq, ",inline_xattr");
  518. #endif
  519. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  520. if (test_opt(sbi, POSIX_ACL))
  521. seq_puts(seq, ",acl");
  522. else
  523. seq_puts(seq, ",noacl");
  524. #endif
  525. if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
  526. seq_puts(seq, ",disable_ext_identify");
  527. if (test_opt(sbi, INLINE_DATA))
  528. seq_puts(seq, ",inline_data");
  529. else
  530. seq_puts(seq, ",noinline_data");
  531. if (test_opt(sbi, INLINE_DENTRY))
  532. seq_puts(seq, ",inline_dentry");
  533. if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
  534. seq_puts(seq, ",flush_merge");
  535. if (test_opt(sbi, NOBARRIER))
  536. seq_puts(seq, ",nobarrier");
  537. if (test_opt(sbi, FASTBOOT))
  538. seq_puts(seq, ",fastboot");
  539. if (test_opt(sbi, EXTENT_CACHE))
  540. seq_puts(seq, ",extent_cache");
  541. seq_printf(seq, ",active_logs=%u", sbi->active_logs);
  542. return 0;
  543. }
  544. static int segment_info_seq_show(struct seq_file *seq, void *offset)
  545. {
  546. struct super_block *sb = seq->private;
  547. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  548. unsigned int total_segs =
  549. le32_to_cpu(sbi->raw_super->segment_count_main);
  550. int i;
  551. seq_puts(seq, "format: segment_type|valid_blocks\n"
  552. "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
  553. for (i = 0; i < total_segs; i++) {
  554. struct seg_entry *se = get_seg_entry(sbi, i);
  555. if ((i % 10) == 0)
  556. seq_printf(seq, "%-5d", i);
  557. seq_printf(seq, "%d|%-3u", se->type,
  558. get_valid_blocks(sbi, i, 1));
  559. if ((i % 10) == 9 || i == (total_segs - 1))
  560. seq_putc(seq, '\n');
  561. else
  562. seq_putc(seq, ' ');
  563. }
  564. return 0;
  565. }
  566. static int segment_info_open_fs(struct inode *inode, struct file *file)
  567. {
  568. return single_open(file, segment_info_seq_show, PDE_DATA(inode));
  569. }
  570. static const struct file_operations f2fs_seq_segment_info_fops = {
  571. .owner = THIS_MODULE,
  572. .open = segment_info_open_fs,
  573. .read = seq_read,
  574. .llseek = seq_lseek,
  575. .release = single_release,
  576. };
  577. static int f2fs_remount(struct super_block *sb, int *flags, char *data)
  578. {
  579. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  580. struct f2fs_mount_info org_mount_opt;
  581. int err, active_logs;
  582. bool need_restart_gc = false;
  583. bool need_stop_gc = false;
  584. sync_filesystem(sb);
  585. /*
  586. * Save the old mount options in case we
  587. * need to restore them.
  588. */
  589. org_mount_opt = sbi->mount_opt;
  590. active_logs = sbi->active_logs;
  591. sbi->mount_opt.opt = 0;
  592. sbi->active_logs = NR_CURSEG_TYPE;
  593. /* parse mount options */
  594. err = parse_options(sb, data);
  595. if (err)
  596. goto restore_opts;
  597. /*
  598. * Previous and new state of filesystem is RO,
  599. * so skip checking GC and FLUSH_MERGE conditions.
  600. */
  601. if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
  602. goto skip;
  603. /*
  604. * We stop the GC thread if FS is mounted as RO
  605. * or if background_gc = off is passed in mount
  606. * option. Also sync the filesystem.
  607. */
  608. if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
  609. if (sbi->gc_thread) {
  610. stop_gc_thread(sbi);
  611. f2fs_sync_fs(sb, 1);
  612. need_restart_gc = true;
  613. }
  614. } else if (!sbi->gc_thread) {
  615. err = start_gc_thread(sbi);
  616. if (err)
  617. goto restore_opts;
  618. need_stop_gc = true;
  619. }
  620. /*
  621. * We stop issue flush thread if FS is mounted as RO
  622. * or if flush_merge is not passed in mount option.
  623. */
  624. if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
  625. destroy_flush_cmd_control(sbi);
  626. } else if (!SM_I(sbi)->cmd_control_info) {
  627. err = create_flush_cmd_control(sbi);
  628. if (err)
  629. goto restore_gc;
  630. }
  631. skip:
  632. /* Update the POSIXACL Flag */
  633. sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
  634. (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
  635. return 0;
  636. restore_gc:
  637. if (need_restart_gc) {
  638. if (start_gc_thread(sbi))
  639. f2fs_msg(sbi->sb, KERN_WARNING,
  640. "background gc thread has stopped");
  641. } else if (need_stop_gc) {
  642. stop_gc_thread(sbi);
  643. }
  644. restore_opts:
  645. sbi->mount_opt = org_mount_opt;
  646. sbi->active_logs = active_logs;
  647. return err;
  648. }
  649. static struct super_operations f2fs_sops = {
  650. .alloc_inode = f2fs_alloc_inode,
  651. .drop_inode = f2fs_drop_inode,
  652. .destroy_inode = f2fs_destroy_inode,
  653. .write_inode = f2fs_write_inode,
  654. .dirty_inode = f2fs_dirty_inode,
  655. .show_options = f2fs_show_options,
  656. .evict_inode = f2fs_evict_inode,
  657. .put_super = f2fs_put_super,
  658. .sync_fs = f2fs_sync_fs,
  659. .freeze_fs = f2fs_freeze,
  660. .unfreeze_fs = f2fs_unfreeze,
  661. .statfs = f2fs_statfs,
  662. .remount_fs = f2fs_remount,
  663. };
  664. static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
  665. u64 ino, u32 generation)
  666. {
  667. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  668. struct inode *inode;
  669. if (check_nid_range(sbi, ino))
  670. return ERR_PTR(-ESTALE);
  671. /*
  672. * f2fs_iget isn't quite right if the inode is currently unallocated!
  673. * However f2fs_iget currently does appropriate checks to handle stale
  674. * inodes so everything is OK.
  675. */
  676. inode = f2fs_iget(sb, ino);
  677. if (IS_ERR(inode))
  678. return ERR_CAST(inode);
  679. if (unlikely(generation && inode->i_generation != generation)) {
  680. /* we didn't find the right inode.. */
  681. iput(inode);
  682. return ERR_PTR(-ESTALE);
  683. }
  684. return inode;
  685. }
  686. static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
  687. int fh_len, int fh_type)
  688. {
  689. return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
  690. f2fs_nfs_get_inode);
  691. }
  692. static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
  693. int fh_len, int fh_type)
  694. {
  695. return generic_fh_to_parent(sb, fid, fh_len, fh_type,
  696. f2fs_nfs_get_inode);
  697. }
  698. static const struct export_operations f2fs_export_ops = {
  699. .fh_to_dentry = f2fs_fh_to_dentry,
  700. .fh_to_parent = f2fs_fh_to_parent,
  701. .get_parent = f2fs_get_parent,
  702. };
  703. static loff_t max_file_size(unsigned bits)
  704. {
  705. loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
  706. loff_t leaf_count = ADDRS_PER_BLOCK;
  707. /* two direct node blocks */
  708. result += (leaf_count * 2);
  709. /* two indirect node blocks */
  710. leaf_count *= NIDS_PER_BLOCK;
  711. result += (leaf_count * 2);
  712. /* one double indirect node block */
  713. leaf_count *= NIDS_PER_BLOCK;
  714. result += leaf_count;
  715. result <<= bits;
  716. return result;
  717. }
  718. static int sanity_check_raw_super(struct super_block *sb,
  719. struct f2fs_super_block *raw_super)
  720. {
  721. unsigned int blocksize;
  722. if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
  723. f2fs_msg(sb, KERN_INFO,
  724. "Magic Mismatch, valid(0x%x) - read(0x%x)",
  725. F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
  726. return 1;
  727. }
  728. /* Currently, support only 4KB page cache size */
  729. if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
  730. f2fs_msg(sb, KERN_INFO,
  731. "Invalid page_cache_size (%lu), supports only 4KB\n",
  732. PAGE_CACHE_SIZE);
  733. return 1;
  734. }
  735. /* Currently, support only 4KB block size */
  736. blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
  737. if (blocksize != F2FS_BLKSIZE) {
  738. f2fs_msg(sb, KERN_INFO,
  739. "Invalid blocksize (%u), supports only 4KB\n",
  740. blocksize);
  741. return 1;
  742. }
  743. /* Currently, support 512/1024/2048/4096 bytes sector size */
  744. if (le32_to_cpu(raw_super->log_sectorsize) >
  745. F2FS_MAX_LOG_SECTOR_SIZE ||
  746. le32_to_cpu(raw_super->log_sectorsize) <
  747. F2FS_MIN_LOG_SECTOR_SIZE) {
  748. f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
  749. le32_to_cpu(raw_super->log_sectorsize));
  750. return 1;
  751. }
  752. if (le32_to_cpu(raw_super->log_sectors_per_block) +
  753. le32_to_cpu(raw_super->log_sectorsize) !=
  754. F2FS_MAX_LOG_SECTOR_SIZE) {
  755. f2fs_msg(sb, KERN_INFO,
  756. "Invalid log sectors per block(%u) log sectorsize(%u)",
  757. le32_to_cpu(raw_super->log_sectors_per_block),
  758. le32_to_cpu(raw_super->log_sectorsize));
  759. return 1;
  760. }
  761. return 0;
  762. }
  763. static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
  764. {
  765. unsigned int total, fsmeta;
  766. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  767. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  768. total = le32_to_cpu(raw_super->segment_count);
  769. fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
  770. fsmeta += le32_to_cpu(raw_super->segment_count_sit);
  771. fsmeta += le32_to_cpu(raw_super->segment_count_nat);
  772. fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
  773. fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
  774. if (unlikely(fsmeta >= total))
  775. return 1;
  776. if (unlikely(f2fs_cp_error(sbi))) {
  777. f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
  778. return 1;
  779. }
  780. return 0;
  781. }
  782. static void init_sb_info(struct f2fs_sb_info *sbi)
  783. {
  784. struct f2fs_super_block *raw_super = sbi->raw_super;
  785. int i;
  786. sbi->log_sectors_per_block =
  787. le32_to_cpu(raw_super->log_sectors_per_block);
  788. sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
  789. sbi->blocksize = 1 << sbi->log_blocksize;
  790. sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
  791. sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
  792. sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
  793. sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
  794. sbi->total_sections = le32_to_cpu(raw_super->section_count);
  795. sbi->total_node_count =
  796. (le32_to_cpu(raw_super->segment_count_nat) / 2)
  797. * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
  798. sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
  799. sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
  800. sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
  801. sbi->cur_victim_sec = NULL_SECNO;
  802. sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
  803. for (i = 0; i < NR_COUNT_TYPE; i++)
  804. atomic_set(&sbi->nr_pages[i], 0);
  805. sbi->dir_level = DEF_DIR_LEVEL;
  806. clear_sbi_flag(sbi, SBI_NEED_FSCK);
  807. }
  808. /*
  809. * Read f2fs raw super block.
  810. * Because we have two copies of super block, so read the first one at first,
  811. * if the first one is invalid, move to read the second one.
  812. */
  813. static int read_raw_super_block(struct super_block *sb,
  814. struct f2fs_super_block **raw_super,
  815. struct buffer_head **raw_super_buf)
  816. {
  817. int block = 0;
  818. retry:
  819. *raw_super_buf = sb_bread(sb, block);
  820. if (!*raw_super_buf) {
  821. f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
  822. block + 1);
  823. if (block == 0) {
  824. block++;
  825. goto retry;
  826. } else {
  827. return -EIO;
  828. }
  829. }
  830. *raw_super = (struct f2fs_super_block *)
  831. ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
  832. /* sanity checking of raw super */
  833. if (sanity_check_raw_super(sb, *raw_super)) {
  834. brelse(*raw_super_buf);
  835. f2fs_msg(sb, KERN_ERR,
  836. "Can't find valid F2FS filesystem in %dth superblock",
  837. block + 1);
  838. if (block == 0) {
  839. block++;
  840. goto retry;
  841. } else {
  842. return -EINVAL;
  843. }
  844. }
  845. return 0;
  846. }
  847. static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
  848. {
  849. struct f2fs_sb_info *sbi;
  850. struct f2fs_super_block *raw_super = NULL;
  851. struct buffer_head *raw_super_buf;
  852. struct inode *root;
  853. long err = -EINVAL;
  854. bool retry = true, need_fsck = false;
  855. char *options = NULL;
  856. int i;
  857. try_onemore:
  858. /* allocate memory for f2fs-specific super block info */
  859. sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
  860. if (!sbi)
  861. return -ENOMEM;
  862. /* set a block size */
  863. if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
  864. f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
  865. goto free_sbi;
  866. }
  867. err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
  868. if (err)
  869. goto free_sbi;
  870. sb->s_fs_info = sbi;
  871. /* init some FS parameters */
  872. sbi->active_logs = NR_CURSEG_TYPE;
  873. set_opt(sbi, BG_GC);
  874. set_opt(sbi, INLINE_DATA);
  875. #ifdef CONFIG_F2FS_FS_XATTR
  876. set_opt(sbi, XATTR_USER);
  877. #endif
  878. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  879. set_opt(sbi, POSIX_ACL);
  880. #endif
  881. /* parse mount options */
  882. options = kstrdup((const char *)data, GFP_KERNEL);
  883. if (data && !options) {
  884. err = -ENOMEM;
  885. goto free_sb_buf;
  886. }
  887. err = parse_options(sb, options);
  888. if (err)
  889. goto free_options;
  890. sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
  891. sb->s_max_links = F2FS_LINK_MAX;
  892. get_random_bytes(&sbi->s_next_generation, sizeof(u32));
  893. sb->s_op = &f2fs_sops;
  894. sb->s_xattr = f2fs_xattr_handlers;
  895. sb->s_export_op = &f2fs_export_ops;
  896. sb->s_magic = F2FS_SUPER_MAGIC;
  897. sb->s_time_gran = 1;
  898. sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
  899. (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
  900. memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
  901. /* init f2fs-specific super block info */
  902. sbi->sb = sb;
  903. sbi->raw_super = raw_super;
  904. sbi->raw_super_buf = raw_super_buf;
  905. mutex_init(&sbi->gc_mutex);
  906. mutex_init(&sbi->writepages);
  907. mutex_init(&sbi->cp_mutex);
  908. init_rwsem(&sbi->node_write);
  909. clear_sbi_flag(sbi, SBI_POR_DOING);
  910. spin_lock_init(&sbi->stat_lock);
  911. init_rwsem(&sbi->read_io.io_rwsem);
  912. sbi->read_io.sbi = sbi;
  913. sbi->read_io.bio = NULL;
  914. for (i = 0; i < NR_PAGE_TYPE; i++) {
  915. init_rwsem(&sbi->write_io[i].io_rwsem);
  916. sbi->write_io[i].sbi = sbi;
  917. sbi->write_io[i].bio = NULL;
  918. }
  919. init_rwsem(&sbi->cp_rwsem);
  920. init_waitqueue_head(&sbi->cp_wait);
  921. init_sb_info(sbi);
  922. /* get an inode for meta space */
  923. sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
  924. if (IS_ERR(sbi->meta_inode)) {
  925. f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
  926. err = PTR_ERR(sbi->meta_inode);
  927. goto free_options;
  928. }
  929. err = get_valid_checkpoint(sbi);
  930. if (err) {
  931. f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
  932. goto free_meta_inode;
  933. }
  934. /* sanity checking of checkpoint */
  935. err = -EINVAL;
  936. if (sanity_check_ckpt(sbi)) {
  937. f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
  938. goto free_cp;
  939. }
  940. sbi->total_valid_node_count =
  941. le32_to_cpu(sbi->ckpt->valid_node_count);
  942. sbi->total_valid_inode_count =
  943. le32_to_cpu(sbi->ckpt->valid_inode_count);
  944. sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
  945. sbi->total_valid_block_count =
  946. le64_to_cpu(sbi->ckpt->valid_block_count);
  947. sbi->last_valid_block_count = sbi->total_valid_block_count;
  948. sbi->alloc_valid_block_count = 0;
  949. INIT_LIST_HEAD(&sbi->dir_inode_list);
  950. spin_lock_init(&sbi->dir_inode_lock);
  951. init_extent_cache_info(sbi);
  952. init_ino_entry_info(sbi);
  953. /* setup f2fs internal modules */
  954. err = build_segment_manager(sbi);
  955. if (err) {
  956. f2fs_msg(sb, KERN_ERR,
  957. "Failed to initialize F2FS segment manager");
  958. goto free_sm;
  959. }
  960. err = build_node_manager(sbi);
  961. if (err) {
  962. f2fs_msg(sb, KERN_ERR,
  963. "Failed to initialize F2FS node manager");
  964. goto free_nm;
  965. }
  966. build_gc_manager(sbi);
  967. /* get an inode for node space */
  968. sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
  969. if (IS_ERR(sbi->node_inode)) {
  970. f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
  971. err = PTR_ERR(sbi->node_inode);
  972. goto free_nm;
  973. }
  974. /* if there are nt orphan nodes free them */
  975. recover_orphan_inodes(sbi);
  976. /* read root inode and dentry */
  977. root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
  978. if (IS_ERR(root)) {
  979. f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
  980. err = PTR_ERR(root);
  981. goto free_node_inode;
  982. }
  983. if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
  984. iput(root);
  985. err = -EINVAL;
  986. goto free_node_inode;
  987. }
  988. sb->s_root = d_make_root(root); /* allocate root dentry */
  989. if (!sb->s_root) {
  990. err = -ENOMEM;
  991. goto free_root_inode;
  992. }
  993. err = f2fs_build_stats(sbi);
  994. if (err)
  995. goto free_root_inode;
  996. if (f2fs_proc_root)
  997. sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
  998. if (sbi->s_proc)
  999. proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
  1000. &f2fs_seq_segment_info_fops, sb);
  1001. if (test_opt(sbi, DISCARD)) {
  1002. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1003. if (!blk_queue_discard(q))
  1004. f2fs_msg(sb, KERN_WARNING,
  1005. "mounting with \"discard\" option, but "
  1006. "the device does not support discard");
  1007. }
  1008. sbi->s_kobj.kset = f2fs_kset;
  1009. init_completion(&sbi->s_kobj_unregister);
  1010. err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
  1011. "%s", sb->s_id);
  1012. if (err)
  1013. goto free_proc;
  1014. /* recover fsynced data */
  1015. if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
  1016. /*
  1017. * mount should be failed, when device has readonly mode, and
  1018. * previous checkpoint was not done by clean system shutdown.
  1019. */
  1020. if (bdev_read_only(sb->s_bdev) &&
  1021. !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
  1022. err = -EROFS;
  1023. goto free_kobj;
  1024. }
  1025. if (need_fsck)
  1026. set_sbi_flag(sbi, SBI_NEED_FSCK);
  1027. err = recover_fsync_data(sbi);
  1028. if (err) {
  1029. need_fsck = true;
  1030. f2fs_msg(sb, KERN_ERR,
  1031. "Cannot recover all fsync data errno=%ld", err);
  1032. goto free_kobj;
  1033. }
  1034. }
  1035. /*
  1036. * If filesystem is not mounted as read-only then
  1037. * do start the gc_thread.
  1038. */
  1039. if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
  1040. /* After POR, we can run background GC thread.*/
  1041. err = start_gc_thread(sbi);
  1042. if (err)
  1043. goto free_kobj;
  1044. }
  1045. kfree(options);
  1046. return 0;
  1047. free_kobj:
  1048. kobject_del(&sbi->s_kobj);
  1049. free_proc:
  1050. if (sbi->s_proc) {
  1051. remove_proc_entry("segment_info", sbi->s_proc);
  1052. remove_proc_entry(sb->s_id, f2fs_proc_root);
  1053. }
  1054. f2fs_destroy_stats(sbi);
  1055. free_root_inode:
  1056. dput(sb->s_root);
  1057. sb->s_root = NULL;
  1058. free_node_inode:
  1059. iput(sbi->node_inode);
  1060. free_nm:
  1061. destroy_node_manager(sbi);
  1062. free_sm:
  1063. destroy_segment_manager(sbi);
  1064. free_cp:
  1065. kfree(sbi->ckpt);
  1066. free_meta_inode:
  1067. make_bad_inode(sbi->meta_inode);
  1068. iput(sbi->meta_inode);
  1069. free_options:
  1070. kfree(options);
  1071. free_sb_buf:
  1072. brelse(raw_super_buf);
  1073. free_sbi:
  1074. kfree(sbi);
  1075. /* give only one another chance */
  1076. if (retry) {
  1077. retry = false;
  1078. shrink_dcache_sb(sb);
  1079. goto try_onemore;
  1080. }
  1081. return err;
  1082. }
  1083. static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
  1084. const char *dev_name, void *data)
  1085. {
  1086. return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
  1087. }
  1088. static void kill_f2fs_super(struct super_block *sb)
  1089. {
  1090. if (sb->s_root)
  1091. set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
  1092. kill_block_super(sb);
  1093. }
  1094. static struct file_system_type f2fs_fs_type = {
  1095. .owner = THIS_MODULE,
  1096. .name = "f2fs",
  1097. .mount = f2fs_mount,
  1098. .kill_sb = kill_f2fs_super,
  1099. .fs_flags = FS_REQUIRES_DEV,
  1100. };
  1101. MODULE_ALIAS_FS("f2fs");
  1102. static int __init init_inodecache(void)
  1103. {
  1104. f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
  1105. sizeof(struct f2fs_inode_info));
  1106. if (!f2fs_inode_cachep)
  1107. return -ENOMEM;
  1108. return 0;
  1109. }
  1110. static void destroy_inodecache(void)
  1111. {
  1112. /*
  1113. * Make sure all delayed rcu free inodes are flushed before we
  1114. * destroy cache.
  1115. */
  1116. rcu_barrier();
  1117. kmem_cache_destroy(f2fs_inode_cachep);
  1118. }
  1119. static int __init init_f2fs_fs(void)
  1120. {
  1121. int err;
  1122. f2fs_build_trace_ios();
  1123. err = init_inodecache();
  1124. if (err)
  1125. goto fail;
  1126. err = create_node_manager_caches();
  1127. if (err)
  1128. goto free_inodecache;
  1129. err = create_segment_manager_caches();
  1130. if (err)
  1131. goto free_node_manager_caches;
  1132. err = create_checkpoint_caches();
  1133. if (err)
  1134. goto free_segment_manager_caches;
  1135. err = create_extent_cache();
  1136. if (err)
  1137. goto free_checkpoint_caches;
  1138. f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
  1139. if (!f2fs_kset) {
  1140. err = -ENOMEM;
  1141. goto free_extent_cache;
  1142. }
  1143. err = register_filesystem(&f2fs_fs_type);
  1144. if (err)
  1145. goto free_kset;
  1146. f2fs_create_root_stats();
  1147. f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
  1148. return 0;
  1149. free_kset:
  1150. kset_unregister(f2fs_kset);
  1151. free_extent_cache:
  1152. destroy_extent_cache();
  1153. free_checkpoint_caches:
  1154. destroy_checkpoint_caches();
  1155. free_segment_manager_caches:
  1156. destroy_segment_manager_caches();
  1157. free_node_manager_caches:
  1158. destroy_node_manager_caches();
  1159. free_inodecache:
  1160. destroy_inodecache();
  1161. fail:
  1162. return err;
  1163. }
  1164. static void __exit exit_f2fs_fs(void)
  1165. {
  1166. remove_proc_entry("fs/f2fs", NULL);
  1167. f2fs_destroy_root_stats();
  1168. unregister_filesystem(&f2fs_fs_type);
  1169. destroy_extent_cache();
  1170. destroy_checkpoint_caches();
  1171. destroy_segment_manager_caches();
  1172. destroy_node_manager_caches();
  1173. destroy_inodecache();
  1174. kset_unregister(f2fs_kset);
  1175. f2fs_destroy_trace_ios();
  1176. }
  1177. module_init(init_f2fs_fs)
  1178. module_exit(exit_f2fs_fs)
  1179. MODULE_AUTHOR("Samsung Electronics's Praesto Team");
  1180. MODULE_DESCRIPTION("Flash Friendly File System");
  1181. MODULE_LICENSE("GPL");