segment.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. /*
  2. * fs/f2fs/segment.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/blkdev.h>
  12. /* constant macro */
  13. #define NULL_SEGNO ((unsigned int)(~0))
  14. #define NULL_SECNO ((unsigned int)(~0))
  15. #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
  16. /* L: Logical segment # in volume, R: Relative segment # in main area */
  17. #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
  18. #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
  19. #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
  20. #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
  21. #define IS_CURSEG(sbi, seg) \
  22. ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
  23. (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
  24. (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
  25. (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
  26. (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
  27. (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  28. #define IS_CURSEC(sbi, secno) \
  29. ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
  30. sbi->segs_per_sec) || \
  31. (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
  32. sbi->segs_per_sec) || \
  33. (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
  34. sbi->segs_per_sec) || \
  35. (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
  36. sbi->segs_per_sec) || \
  37. (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
  38. sbi->segs_per_sec) || \
  39. (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
  40. sbi->segs_per_sec)) \
  41. #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
  42. #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
  43. #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
  44. #define MAIN_SECS(sbi) (sbi->total_sections)
  45. #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
  46. #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
  47. #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
  48. #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
  49. sbi->log_blocks_per_seg))
  50. #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
  51. (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  52. #define NEXT_FREE_BLKADDR(sbi, curseg) \
  53. (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  54. #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
  55. #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
  56. (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  57. #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
  58. (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
  59. #define GET_SEGNO(sbi, blk_addr) \
  60. (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
  61. NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
  62. GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  63. #define GET_SECNO(sbi, segno) \
  64. ((segno) / sbi->segs_per_sec)
  65. #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
  66. ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  67. #define GET_SUM_BLOCK(sbi, segno) \
  68. ((sbi->sm_info->ssa_blkaddr) + segno)
  69. #define GET_SUM_TYPE(footer) ((footer)->entry_type)
  70. #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  71. #define SIT_ENTRY_OFFSET(sit_i, segno) \
  72. (segno % sit_i->sents_per_block)
  73. #define SIT_BLOCK_OFFSET(segno) \
  74. (segno / SIT_ENTRY_PER_BLOCK)
  75. #define START_SEGNO(segno) \
  76. (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
  77. #define SIT_BLK_CNT(sbi) \
  78. ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
  79. #define f2fs_bitmap_size(nr) \
  80. (BITS_TO_LONGS(nr) * sizeof(unsigned long))
  81. #define SECTOR_FROM_BLOCK(blk_addr) \
  82. (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
  83. #define SECTOR_TO_BLOCK(sectors) \
  84. (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
  85. #define MAX_BIO_BLOCKS(sbi) \
  86. ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
  87. /*
  88. * indicate a block allocation direction: RIGHT and LEFT.
  89. * RIGHT means allocating new sections towards the end of volume.
  90. * LEFT means the opposite direction.
  91. */
  92. enum {
  93. ALLOC_RIGHT = 0,
  94. ALLOC_LEFT
  95. };
  96. /*
  97. * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
  98. * LFS writes data sequentially with cleaning operations.
  99. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
  100. */
  101. enum {
  102. LFS = 0,
  103. SSR
  104. };
  105. /*
  106. * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
  107. * GC_CB is based on cost-benefit algorithm.
  108. * GC_GREEDY is based on greedy algorithm.
  109. */
  110. enum {
  111. GC_CB = 0,
  112. GC_GREEDY
  113. };
  114. /*
  115. * BG_GC means the background cleaning job.
  116. * FG_GC means the on-demand cleaning job.
  117. */
  118. enum {
  119. BG_GC = 0,
  120. FG_GC
  121. };
  122. /* for a function parameter to select a victim segment */
  123. struct victim_sel_policy {
  124. int alloc_mode; /* LFS or SSR */
  125. int gc_mode; /* GC_CB or GC_GREEDY */
  126. unsigned long *dirty_segmap; /* dirty segment bitmap */
  127. unsigned int max_search; /* maximum # of segments to search */
  128. unsigned int offset; /* last scanned bitmap offset */
  129. unsigned int ofs_unit; /* bitmap search unit */
  130. unsigned int min_cost; /* minimum cost */
  131. unsigned int min_segno; /* segment # having min. cost */
  132. };
  133. struct seg_entry {
  134. unsigned short valid_blocks; /* # of valid blocks */
  135. unsigned char *cur_valid_map; /* validity bitmap of blocks */
  136. /*
  137. * # of valid blocks and the validity bitmap stored in the the last
  138. * checkpoint pack. This information is used by the SSR mode.
  139. */
  140. unsigned short ckpt_valid_blocks;
  141. unsigned char *ckpt_valid_map;
  142. unsigned char type; /* segment type like CURSEG_XXX_TYPE */
  143. unsigned long long mtime; /* modification time of the segment */
  144. };
  145. struct sec_entry {
  146. unsigned int valid_blocks; /* # of valid blocks in a section */
  147. };
  148. struct segment_allocation {
  149. void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
  150. };
  151. struct inmem_pages {
  152. struct list_head list;
  153. struct page *page;
  154. };
  155. struct sit_info {
  156. const struct segment_allocation *s_ops;
  157. block_t sit_base_addr; /* start block address of SIT area */
  158. block_t sit_blocks; /* # of blocks used by SIT area */
  159. block_t written_valid_blocks; /* # of valid blocks in main area */
  160. char *sit_bitmap; /* SIT bitmap pointer */
  161. unsigned int bitmap_size; /* SIT bitmap size */
  162. unsigned long *tmp_map; /* bitmap for temporal use */
  163. unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
  164. unsigned int dirty_sentries; /* # of dirty sentries */
  165. unsigned int sents_per_block; /* # of SIT entries per block */
  166. struct mutex sentry_lock; /* to protect SIT cache */
  167. struct seg_entry *sentries; /* SIT segment-level cache */
  168. struct sec_entry *sec_entries; /* SIT section-level cache */
  169. /* for cost-benefit algorithm in cleaning procedure */
  170. unsigned long long elapsed_time; /* elapsed time after mount */
  171. unsigned long long mounted_time; /* mount time */
  172. unsigned long long min_mtime; /* min. modification time */
  173. unsigned long long max_mtime; /* max. modification time */
  174. };
  175. struct free_segmap_info {
  176. unsigned int start_segno; /* start segment number logically */
  177. unsigned int free_segments; /* # of free segments */
  178. unsigned int free_sections; /* # of free sections */
  179. spinlock_t segmap_lock; /* free segmap lock */
  180. unsigned long *free_segmap; /* free segment bitmap */
  181. unsigned long *free_secmap; /* free section bitmap */
  182. };
  183. /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
  184. enum dirty_type {
  185. DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
  186. DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
  187. DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
  188. DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
  189. DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
  190. DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
  191. DIRTY, /* to count # of dirty segments */
  192. PRE, /* to count # of entirely obsolete segments */
  193. NR_DIRTY_TYPE
  194. };
  195. struct dirty_seglist_info {
  196. const struct victim_selection *v_ops; /* victim selction operation */
  197. unsigned long *dirty_segmap[NR_DIRTY_TYPE];
  198. struct mutex seglist_lock; /* lock for segment bitmaps */
  199. int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
  200. unsigned long *victim_secmap; /* background GC victims */
  201. };
  202. /* victim selection function for cleaning and SSR */
  203. struct victim_selection {
  204. int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
  205. int, int, char);
  206. };
  207. /* for active log information */
  208. struct curseg_info {
  209. struct mutex curseg_mutex; /* lock for consistency */
  210. struct f2fs_summary_block *sum_blk; /* cached summary block */
  211. unsigned char alloc_type; /* current allocation type */
  212. unsigned int segno; /* current segment number */
  213. unsigned short next_blkoff; /* next block offset to write */
  214. unsigned int zone; /* current zone number */
  215. unsigned int next_segno; /* preallocated segment */
  216. };
  217. struct sit_entry_set {
  218. struct list_head set_list; /* link with all sit sets */
  219. unsigned int start_segno; /* start segno of sits in set */
  220. unsigned int entry_cnt; /* the # of sit entries in set */
  221. };
  222. /*
  223. * inline functions
  224. */
  225. static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
  226. {
  227. return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
  228. }
  229. static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
  230. unsigned int segno)
  231. {
  232. struct sit_info *sit_i = SIT_I(sbi);
  233. return &sit_i->sentries[segno];
  234. }
  235. static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
  236. unsigned int segno)
  237. {
  238. struct sit_info *sit_i = SIT_I(sbi);
  239. return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
  240. }
  241. static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
  242. unsigned int segno, int section)
  243. {
  244. /*
  245. * In order to get # of valid blocks in a section instantly from many
  246. * segments, f2fs manages two counting structures separately.
  247. */
  248. if (section > 1)
  249. return get_sec_entry(sbi, segno)->valid_blocks;
  250. else
  251. return get_seg_entry(sbi, segno)->valid_blocks;
  252. }
  253. static inline void seg_info_from_raw_sit(struct seg_entry *se,
  254. struct f2fs_sit_entry *rs)
  255. {
  256. se->valid_blocks = GET_SIT_VBLOCKS(rs);
  257. se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
  258. memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  259. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  260. se->type = GET_SIT_TYPE(rs);
  261. se->mtime = le64_to_cpu(rs->mtime);
  262. }
  263. static inline void seg_info_to_raw_sit(struct seg_entry *se,
  264. struct f2fs_sit_entry *rs)
  265. {
  266. unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
  267. se->valid_blocks;
  268. rs->vblocks = cpu_to_le16(raw_vblocks);
  269. memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
  270. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  271. se->ckpt_valid_blocks = se->valid_blocks;
  272. rs->mtime = cpu_to_le64(se->mtime);
  273. }
  274. static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
  275. unsigned int max, unsigned int segno)
  276. {
  277. unsigned int ret;
  278. spin_lock(&free_i->segmap_lock);
  279. ret = find_next_bit(free_i->free_segmap, max, segno);
  280. spin_unlock(&free_i->segmap_lock);
  281. return ret;
  282. }
  283. static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
  284. {
  285. struct free_segmap_info *free_i = FREE_I(sbi);
  286. unsigned int secno = segno / sbi->segs_per_sec;
  287. unsigned int start_segno = secno * sbi->segs_per_sec;
  288. unsigned int next;
  289. spin_lock(&free_i->segmap_lock);
  290. clear_bit(segno, free_i->free_segmap);
  291. free_i->free_segments++;
  292. next = find_next_bit(free_i->free_segmap,
  293. start_segno + sbi->segs_per_sec, start_segno);
  294. if (next >= start_segno + sbi->segs_per_sec) {
  295. clear_bit(secno, free_i->free_secmap);
  296. free_i->free_sections++;
  297. }
  298. spin_unlock(&free_i->segmap_lock);
  299. }
  300. static inline void __set_inuse(struct f2fs_sb_info *sbi,
  301. unsigned int segno)
  302. {
  303. struct free_segmap_info *free_i = FREE_I(sbi);
  304. unsigned int secno = segno / sbi->segs_per_sec;
  305. set_bit(segno, free_i->free_segmap);
  306. free_i->free_segments--;
  307. if (!test_and_set_bit(secno, free_i->free_secmap))
  308. free_i->free_sections--;
  309. }
  310. static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
  311. unsigned int segno)
  312. {
  313. struct free_segmap_info *free_i = FREE_I(sbi);
  314. unsigned int secno = segno / sbi->segs_per_sec;
  315. unsigned int start_segno = secno * sbi->segs_per_sec;
  316. unsigned int next;
  317. spin_lock(&free_i->segmap_lock);
  318. if (test_and_clear_bit(segno, free_i->free_segmap)) {
  319. free_i->free_segments++;
  320. next = find_next_bit(free_i->free_segmap,
  321. start_segno + sbi->segs_per_sec, start_segno);
  322. if (next >= start_segno + sbi->segs_per_sec) {
  323. if (test_and_clear_bit(secno, free_i->free_secmap))
  324. free_i->free_sections++;
  325. }
  326. }
  327. spin_unlock(&free_i->segmap_lock);
  328. }
  329. static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
  330. unsigned int segno)
  331. {
  332. struct free_segmap_info *free_i = FREE_I(sbi);
  333. unsigned int secno = segno / sbi->segs_per_sec;
  334. spin_lock(&free_i->segmap_lock);
  335. if (!test_and_set_bit(segno, free_i->free_segmap)) {
  336. free_i->free_segments--;
  337. if (!test_and_set_bit(secno, free_i->free_secmap))
  338. free_i->free_sections--;
  339. }
  340. spin_unlock(&free_i->segmap_lock);
  341. }
  342. static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
  343. void *dst_addr)
  344. {
  345. struct sit_info *sit_i = SIT_I(sbi);
  346. memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
  347. }
  348. static inline block_t written_block_count(struct f2fs_sb_info *sbi)
  349. {
  350. return SIT_I(sbi)->written_valid_blocks;
  351. }
  352. static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
  353. {
  354. return FREE_I(sbi)->free_segments;
  355. }
  356. static inline int reserved_segments(struct f2fs_sb_info *sbi)
  357. {
  358. return SM_I(sbi)->reserved_segments;
  359. }
  360. static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
  361. {
  362. return FREE_I(sbi)->free_sections;
  363. }
  364. static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
  365. {
  366. return DIRTY_I(sbi)->nr_dirty[PRE];
  367. }
  368. static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
  369. {
  370. return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
  371. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
  372. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
  373. DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
  374. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
  375. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
  376. }
  377. static inline int overprovision_segments(struct f2fs_sb_info *sbi)
  378. {
  379. return SM_I(sbi)->ovp_segments;
  380. }
  381. static inline int overprovision_sections(struct f2fs_sb_info *sbi)
  382. {
  383. return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
  384. }
  385. static inline int reserved_sections(struct f2fs_sb_info *sbi)
  386. {
  387. return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
  388. }
  389. static inline bool need_SSR(struct f2fs_sb_info *sbi)
  390. {
  391. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  392. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  393. return free_sections(sbi) <= (node_secs + 2 * dent_secs +
  394. reserved_sections(sbi) + 1);
  395. }
  396. static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
  397. {
  398. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  399. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  400. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  401. return false;
  402. return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
  403. reserved_sections(sbi));
  404. }
  405. static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
  406. {
  407. return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
  408. }
  409. static inline int utilization(struct f2fs_sb_info *sbi)
  410. {
  411. return div_u64((u64)valid_user_blocks(sbi) * 100,
  412. sbi->user_block_count);
  413. }
  414. /*
  415. * Sometimes f2fs may be better to drop out-of-place update policy.
  416. * And, users can control the policy through sysfs entries.
  417. * There are five policies with triggering conditions as follows.
  418. * F2FS_IPU_FORCE - all the time,
  419. * F2FS_IPU_SSR - if SSR mode is activated,
  420. * F2FS_IPU_UTIL - if FS utilization is over threashold,
  421. * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
  422. * threashold,
  423. * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
  424. * storages. IPU will be triggered only if the # of dirty
  425. * pages over min_fsync_blocks.
  426. * F2FS_IPUT_DISABLE - disable IPU. (=default option)
  427. */
  428. #define DEF_MIN_IPU_UTIL 70
  429. #define DEF_MIN_FSYNC_BLOCKS 8
  430. enum {
  431. F2FS_IPU_FORCE,
  432. F2FS_IPU_SSR,
  433. F2FS_IPU_UTIL,
  434. F2FS_IPU_SSR_UTIL,
  435. F2FS_IPU_FSYNC,
  436. };
  437. static inline bool need_inplace_update(struct inode *inode)
  438. {
  439. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  440. unsigned int policy = SM_I(sbi)->ipu_policy;
  441. /* IPU can be done only for the user data */
  442. if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
  443. return false;
  444. if (policy & (0x1 << F2FS_IPU_FORCE))
  445. return true;
  446. if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
  447. return true;
  448. if (policy & (0x1 << F2FS_IPU_UTIL) &&
  449. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  450. return true;
  451. if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
  452. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  453. return true;
  454. /* this is only set during fdatasync */
  455. if (policy & (0x1 << F2FS_IPU_FSYNC) &&
  456. is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
  457. return true;
  458. return false;
  459. }
  460. static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
  461. int type)
  462. {
  463. struct curseg_info *curseg = CURSEG_I(sbi, type);
  464. return curseg->segno;
  465. }
  466. static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
  467. int type)
  468. {
  469. struct curseg_info *curseg = CURSEG_I(sbi, type);
  470. return curseg->alloc_type;
  471. }
  472. static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
  473. {
  474. struct curseg_info *curseg = CURSEG_I(sbi, type);
  475. return curseg->next_blkoff;
  476. }
  477. #ifdef CONFIG_F2FS_CHECK_FS
  478. static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
  479. {
  480. BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
  481. }
  482. static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
  483. {
  484. BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
  485. BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
  486. }
  487. /*
  488. * Summary block is always treated as an invalid block
  489. */
  490. static inline void check_block_count(struct f2fs_sb_info *sbi,
  491. int segno, struct f2fs_sit_entry *raw_sit)
  492. {
  493. bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
  494. int valid_blocks = 0;
  495. int cur_pos = 0, next_pos;
  496. /* check segment usage */
  497. BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
  498. /* check boundary of a given segment number */
  499. BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
  500. /* check bitmap with valid block count */
  501. do {
  502. if (is_valid) {
  503. next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
  504. sbi->blocks_per_seg,
  505. cur_pos);
  506. valid_blocks += next_pos - cur_pos;
  507. } else
  508. next_pos = find_next_bit_le(&raw_sit->valid_map,
  509. sbi->blocks_per_seg,
  510. cur_pos);
  511. cur_pos = next_pos;
  512. is_valid = !is_valid;
  513. } while (cur_pos < sbi->blocks_per_seg);
  514. BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
  515. }
  516. #else
  517. static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
  518. {
  519. if (segno > TOTAL_SEGS(sbi) - 1)
  520. set_sbi_flag(sbi, SBI_NEED_FSCK);
  521. }
  522. static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
  523. {
  524. if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
  525. set_sbi_flag(sbi, SBI_NEED_FSCK);
  526. }
  527. /*
  528. * Summary block is always treated as an invalid block
  529. */
  530. static inline void check_block_count(struct f2fs_sb_info *sbi,
  531. int segno, struct f2fs_sit_entry *raw_sit)
  532. {
  533. /* check segment usage */
  534. if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
  535. set_sbi_flag(sbi, SBI_NEED_FSCK);
  536. /* check boundary of a given segment number */
  537. if (segno > TOTAL_SEGS(sbi) - 1)
  538. set_sbi_flag(sbi, SBI_NEED_FSCK);
  539. }
  540. #endif
  541. static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
  542. unsigned int start)
  543. {
  544. struct sit_info *sit_i = SIT_I(sbi);
  545. unsigned int offset = SIT_BLOCK_OFFSET(start);
  546. block_t blk_addr = sit_i->sit_base_addr + offset;
  547. check_seg_range(sbi, start);
  548. /* calculate sit block address */
  549. if (f2fs_test_bit(offset, sit_i->sit_bitmap))
  550. blk_addr += sit_i->sit_blocks;
  551. return blk_addr;
  552. }
  553. static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
  554. pgoff_t block_addr)
  555. {
  556. struct sit_info *sit_i = SIT_I(sbi);
  557. block_addr -= sit_i->sit_base_addr;
  558. if (block_addr < sit_i->sit_blocks)
  559. block_addr += sit_i->sit_blocks;
  560. else
  561. block_addr -= sit_i->sit_blocks;
  562. return block_addr + sit_i->sit_base_addr;
  563. }
  564. static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
  565. {
  566. unsigned int block_off = SIT_BLOCK_OFFSET(start);
  567. f2fs_change_bit(block_off, sit_i->sit_bitmap);
  568. }
  569. static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
  570. {
  571. struct sit_info *sit_i = SIT_I(sbi);
  572. return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
  573. sit_i->mounted_time;
  574. }
  575. static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
  576. unsigned int ofs_in_node, unsigned char version)
  577. {
  578. sum->nid = cpu_to_le32(nid);
  579. sum->ofs_in_node = cpu_to_le16(ofs_in_node);
  580. sum->version = version;
  581. }
  582. static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
  583. {
  584. return __start_cp_addr(sbi) +
  585. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
  586. }
  587. static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
  588. {
  589. return __start_cp_addr(sbi) +
  590. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
  591. - (base + 1) + type;
  592. }
  593. static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
  594. {
  595. if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
  596. return true;
  597. return false;
  598. }
  599. static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
  600. {
  601. struct block_device *bdev = sbi->sb->s_bdev;
  602. struct request_queue *q = bdev_get_queue(bdev);
  603. return SECTOR_TO_BLOCK(queue_max_sectors(q));
  604. }
  605. /*
  606. * It is very important to gather dirty pages and write at once, so that we can
  607. * submit a big bio without interfering other data writes.
  608. * By default, 512 pages for directory data,
  609. * 512 pages (2MB) * 3 for three types of nodes, and
  610. * max_bio_blocks for meta are set.
  611. */
  612. static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
  613. {
  614. if (sbi->sb->s_bdi->dirty_exceeded)
  615. return 0;
  616. if (type == DATA)
  617. return sbi->blocks_per_seg;
  618. else if (type == NODE)
  619. return 3 * sbi->blocks_per_seg;
  620. else if (type == META)
  621. return MAX_BIO_BLOCKS(sbi);
  622. else
  623. return 0;
  624. }
  625. /*
  626. * When writing pages, it'd better align nr_to_write for segment size.
  627. */
  628. static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
  629. struct writeback_control *wbc)
  630. {
  631. long nr_to_write, desired;
  632. if (wbc->sync_mode != WB_SYNC_NONE)
  633. return 0;
  634. nr_to_write = wbc->nr_to_write;
  635. if (type == DATA)
  636. desired = 4096;
  637. else if (type == NODE)
  638. desired = 3 * max_hw_blocks(sbi);
  639. else
  640. desired = MAX_BIO_BLOCKS(sbi);
  641. wbc->nr_to_write = desired;
  642. return desired - nr_to_write;
  643. }