recovery.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. /*
  17. * Roll forward recovery scenarios.
  18. *
  19. * [Term] F: fsync_mark, D: dentry_mark
  20. *
  21. * 1. inode(x) | CP | inode(x) | dnode(F)
  22. * -> Update the latest inode(x).
  23. *
  24. * 2. inode(x) | CP | inode(F) | dnode(F)
  25. * -> No problem.
  26. *
  27. * 3. inode(x) | CP | dnode(F) | inode(x)
  28. * -> Recover to the latest dnode(F), and drop the last inode(x)
  29. *
  30. * 4. inode(x) | CP | dnode(F) | inode(F)
  31. * -> No problem.
  32. *
  33. * 5. CP | inode(x) | dnode(F)
  34. * -> The inode(DF) was missing. Should drop this dnode(F).
  35. *
  36. * 6. CP | inode(DF) | dnode(F)
  37. * -> No problem.
  38. *
  39. * 7. CP | dnode(F) | inode(DF)
  40. * -> If f2fs_iget fails, then goto next to find inode(DF).
  41. *
  42. * 8. CP | dnode(F) | inode(x)
  43. * -> If f2fs_iget fails, then goto next to find inode(DF).
  44. * But it will fail due to no inode(DF).
  45. */
  46. static struct kmem_cache *fsync_entry_slab;
  47. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  48. {
  49. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  50. > sbi->user_block_count)
  51. return false;
  52. return true;
  53. }
  54. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  55. nid_t ino)
  56. {
  57. struct fsync_inode_entry *entry;
  58. list_for_each_entry(entry, head, list)
  59. if (entry->inode->i_ino == ino)
  60. return entry;
  61. return NULL;
  62. }
  63. static int recover_dentry(struct inode *inode, struct page *ipage)
  64. {
  65. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  66. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  67. struct f2fs_dir_entry *de;
  68. struct qstr name;
  69. struct page *page;
  70. struct inode *dir, *einode;
  71. int err = 0;
  72. dir = f2fs_iget(inode->i_sb, pino);
  73. if (IS_ERR(dir)) {
  74. err = PTR_ERR(dir);
  75. goto out;
  76. }
  77. name.len = le32_to_cpu(raw_inode->i_namelen);
  78. name.name = raw_inode->i_name;
  79. if (unlikely(name.len > F2FS_NAME_LEN)) {
  80. WARN_ON(1);
  81. err = -ENAMETOOLONG;
  82. goto out_err;
  83. }
  84. retry:
  85. de = f2fs_find_entry(dir, &name, &page);
  86. if (de && inode->i_ino == le32_to_cpu(de->ino))
  87. goto out_unmap_put;
  88. if (de) {
  89. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  90. if (IS_ERR(einode)) {
  91. WARN_ON(1);
  92. err = PTR_ERR(einode);
  93. if (err == -ENOENT)
  94. err = -EEXIST;
  95. goto out_unmap_put;
  96. }
  97. err = acquire_orphan_inode(F2FS_I_SB(inode));
  98. if (err) {
  99. iput(einode);
  100. goto out_unmap_put;
  101. }
  102. f2fs_delete_entry(de, page, dir, einode);
  103. iput(einode);
  104. goto retry;
  105. }
  106. err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
  107. if (err)
  108. goto out_err;
  109. if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
  110. iput(dir);
  111. } else {
  112. add_dirty_dir_inode(dir);
  113. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  114. }
  115. goto out;
  116. out_unmap_put:
  117. f2fs_dentry_kunmap(dir, page);
  118. f2fs_put_page(page, 0);
  119. out_err:
  120. iput(dir);
  121. out:
  122. f2fs_msg(inode->i_sb, KERN_NOTICE,
  123. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  124. __func__, ino_of_node(ipage), raw_inode->i_name,
  125. IS_ERR(dir) ? 0 : dir->i_ino, err);
  126. return err;
  127. }
  128. static void recover_inode(struct inode *inode, struct page *page)
  129. {
  130. struct f2fs_inode *raw = F2FS_INODE(page);
  131. inode->i_mode = le16_to_cpu(raw->i_mode);
  132. i_size_write(inode, le64_to_cpu(raw->i_size));
  133. inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
  134. inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
  135. inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
  136. inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  137. inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
  138. inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  139. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  140. ino_of_node(page), F2FS_INODE(page)->i_name);
  141. }
  142. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  143. {
  144. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  145. struct curseg_info *curseg;
  146. struct page *page = NULL;
  147. block_t blkaddr;
  148. int err = 0;
  149. /* get node pages in the current segment */
  150. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  151. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  152. ra_meta_pages(sbi, blkaddr, 1, META_POR);
  153. while (1) {
  154. struct fsync_inode_entry *entry;
  155. if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
  156. return 0;
  157. page = get_meta_page(sbi, blkaddr);
  158. if (cp_ver != cpver_of_node(page))
  159. break;
  160. if (!is_fsync_dnode(page))
  161. goto next;
  162. entry = get_fsync_inode(head, ino_of_node(page));
  163. if (!entry) {
  164. if (IS_INODE(page) && is_dent_dnode(page)) {
  165. err = recover_inode_page(sbi, page);
  166. if (err)
  167. break;
  168. }
  169. /* add this fsync inode to the list */
  170. entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
  171. if (!entry) {
  172. err = -ENOMEM;
  173. break;
  174. }
  175. /*
  176. * CP | dnode(F) | inode(DF)
  177. * For this case, we should not give up now.
  178. */
  179. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  180. if (IS_ERR(entry->inode)) {
  181. err = PTR_ERR(entry->inode);
  182. kmem_cache_free(fsync_entry_slab, entry);
  183. if (err == -ENOENT) {
  184. err = 0;
  185. goto next;
  186. }
  187. break;
  188. }
  189. list_add_tail(&entry->list, head);
  190. }
  191. entry->blkaddr = blkaddr;
  192. if (IS_INODE(page)) {
  193. entry->last_inode = blkaddr;
  194. if (is_dent_dnode(page))
  195. entry->last_dentry = blkaddr;
  196. }
  197. next:
  198. /* check next segment */
  199. blkaddr = next_blkaddr_of_node(page);
  200. f2fs_put_page(page, 1);
  201. ra_meta_pages_cond(sbi, blkaddr);
  202. }
  203. f2fs_put_page(page, 1);
  204. return err;
  205. }
  206. static void destroy_fsync_dnodes(struct list_head *head)
  207. {
  208. struct fsync_inode_entry *entry, *tmp;
  209. list_for_each_entry_safe(entry, tmp, head, list) {
  210. iput(entry->inode);
  211. list_del(&entry->list);
  212. kmem_cache_free(fsync_entry_slab, entry);
  213. }
  214. }
  215. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  216. block_t blkaddr, struct dnode_of_data *dn)
  217. {
  218. struct seg_entry *sentry;
  219. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  220. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  221. struct f2fs_summary_block *sum_node;
  222. struct f2fs_summary sum;
  223. struct page *sum_page, *node_page;
  224. struct dnode_of_data tdn = *dn;
  225. nid_t ino, nid;
  226. struct inode *inode;
  227. unsigned int offset;
  228. block_t bidx;
  229. int i;
  230. sentry = get_seg_entry(sbi, segno);
  231. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  232. return 0;
  233. /* Get the previous summary */
  234. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  235. struct curseg_info *curseg = CURSEG_I(sbi, i);
  236. if (curseg->segno == segno) {
  237. sum = curseg->sum_blk->entries[blkoff];
  238. goto got_it;
  239. }
  240. }
  241. sum_page = get_sum_page(sbi, segno);
  242. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  243. sum = sum_node->entries[blkoff];
  244. f2fs_put_page(sum_page, 1);
  245. got_it:
  246. /* Use the locked dnode page and inode */
  247. nid = le32_to_cpu(sum.nid);
  248. if (dn->inode->i_ino == nid) {
  249. tdn.nid = nid;
  250. if (!dn->inode_page_locked)
  251. lock_page(dn->inode_page);
  252. tdn.node_page = dn->inode_page;
  253. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  254. goto truncate_out;
  255. } else if (dn->nid == nid) {
  256. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  257. goto truncate_out;
  258. }
  259. /* Get the node page */
  260. node_page = get_node_page(sbi, nid);
  261. if (IS_ERR(node_page))
  262. return PTR_ERR(node_page);
  263. offset = ofs_of_node(node_page);
  264. ino = ino_of_node(node_page);
  265. f2fs_put_page(node_page, 1);
  266. if (ino != dn->inode->i_ino) {
  267. /* Deallocate previous index in the node page */
  268. inode = f2fs_iget(sbi->sb, ino);
  269. if (IS_ERR(inode))
  270. return PTR_ERR(inode);
  271. } else {
  272. inode = dn->inode;
  273. }
  274. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  275. le16_to_cpu(sum.ofs_in_node);
  276. /*
  277. * if inode page is locked, unlock temporarily, but its reference
  278. * count keeps alive.
  279. */
  280. if (ino == dn->inode->i_ino && dn->inode_page_locked)
  281. unlock_page(dn->inode_page);
  282. set_new_dnode(&tdn, inode, NULL, NULL, 0);
  283. if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
  284. goto out;
  285. if (tdn.data_blkaddr == blkaddr)
  286. truncate_data_blocks_range(&tdn, 1);
  287. f2fs_put_dnode(&tdn);
  288. out:
  289. if (ino != dn->inode->i_ino)
  290. iput(inode);
  291. else if (dn->inode_page_locked)
  292. lock_page(dn->inode_page);
  293. return 0;
  294. truncate_out:
  295. if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
  296. truncate_data_blocks_range(&tdn, 1);
  297. if (dn->inode->i_ino == nid && !dn->inode_page_locked)
  298. unlock_page(dn->inode_page);
  299. return 0;
  300. }
  301. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  302. struct page *page, block_t blkaddr)
  303. {
  304. struct f2fs_inode_info *fi = F2FS_I(inode);
  305. unsigned int start, end;
  306. struct dnode_of_data dn;
  307. struct f2fs_summary sum;
  308. struct node_info ni;
  309. int err = 0, recovered = 0;
  310. /* step 1: recover xattr */
  311. if (IS_INODE(page)) {
  312. recover_inline_xattr(inode, page);
  313. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  314. /*
  315. * Deprecated; xattr blocks should be found from cold log.
  316. * But, we should remain this for backward compatibility.
  317. */
  318. recover_xattr_data(inode, page, blkaddr);
  319. goto out;
  320. }
  321. /* step 2: recover inline data */
  322. if (recover_inline_data(inode, page))
  323. goto out;
  324. /* step 3: recover data indices */
  325. start = start_bidx_of_node(ofs_of_node(page), fi);
  326. end = start + ADDRS_PER_PAGE(page, fi);
  327. f2fs_lock_op(sbi);
  328. set_new_dnode(&dn, inode, NULL, NULL, 0);
  329. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  330. if (err) {
  331. f2fs_unlock_op(sbi);
  332. goto out;
  333. }
  334. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  335. get_node_info(sbi, dn.nid, &ni);
  336. f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
  337. f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
  338. for (; start < end; start++) {
  339. block_t src, dest;
  340. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  341. dest = datablock_addr(page, dn.ofs_in_node);
  342. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR &&
  343. dest >= MAIN_BLKADDR(sbi) && dest < MAX_BLKADDR(sbi)) {
  344. if (src == NULL_ADDR) {
  345. err = reserve_new_block(&dn);
  346. /* We should not get -ENOSPC */
  347. f2fs_bug_on(sbi, err);
  348. }
  349. /* Check the previous node page having this index */
  350. err = check_index_in_prev_nodes(sbi, dest, &dn);
  351. if (err)
  352. goto err;
  353. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  354. /* write dummy data page */
  355. recover_data_page(sbi, NULL, &sum, src, dest);
  356. dn.data_blkaddr = dest;
  357. set_data_blkaddr(&dn);
  358. f2fs_update_extent_cache(&dn);
  359. recovered++;
  360. }
  361. dn.ofs_in_node++;
  362. }
  363. if (IS_INODE(dn.node_page))
  364. sync_inode_page(&dn);
  365. copy_node_footer(dn.node_page, page);
  366. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  367. ofs_of_node(page), false);
  368. set_page_dirty(dn.node_page);
  369. err:
  370. f2fs_put_dnode(&dn);
  371. f2fs_unlock_op(sbi);
  372. out:
  373. f2fs_msg(sbi->sb, KERN_NOTICE,
  374. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  375. inode->i_ino, recovered, err);
  376. return err;
  377. }
  378. static int recover_data(struct f2fs_sb_info *sbi,
  379. struct list_head *head, int type)
  380. {
  381. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  382. struct curseg_info *curseg;
  383. struct page *page = NULL;
  384. int err = 0;
  385. block_t blkaddr;
  386. /* get node pages in the current segment */
  387. curseg = CURSEG_I(sbi, type);
  388. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  389. while (1) {
  390. struct fsync_inode_entry *entry;
  391. if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
  392. break;
  393. ra_meta_pages_cond(sbi, blkaddr);
  394. page = get_meta_page(sbi, blkaddr);
  395. if (cp_ver != cpver_of_node(page)) {
  396. f2fs_put_page(page, 1);
  397. break;
  398. }
  399. entry = get_fsync_inode(head, ino_of_node(page));
  400. if (!entry)
  401. goto next;
  402. /*
  403. * inode(x) | CP | inode(x) | dnode(F)
  404. * In this case, we can lose the latest inode(x).
  405. * So, call recover_inode for the inode update.
  406. */
  407. if (entry->last_inode == blkaddr)
  408. recover_inode(entry->inode, page);
  409. if (entry->last_dentry == blkaddr) {
  410. err = recover_dentry(entry->inode, page);
  411. if (err) {
  412. f2fs_put_page(page, 1);
  413. break;
  414. }
  415. }
  416. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  417. if (err) {
  418. f2fs_put_page(page, 1);
  419. break;
  420. }
  421. if (entry->blkaddr == blkaddr) {
  422. iput(entry->inode);
  423. list_del(&entry->list);
  424. kmem_cache_free(fsync_entry_slab, entry);
  425. }
  426. next:
  427. /* check next segment */
  428. blkaddr = next_blkaddr_of_node(page);
  429. f2fs_put_page(page, 1);
  430. }
  431. if (!err)
  432. allocate_new_segments(sbi);
  433. return err;
  434. }
  435. int recover_fsync_data(struct f2fs_sb_info *sbi)
  436. {
  437. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  438. struct list_head inode_list;
  439. block_t blkaddr;
  440. int err;
  441. bool need_writecp = false;
  442. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  443. sizeof(struct fsync_inode_entry));
  444. if (!fsync_entry_slab)
  445. return -ENOMEM;
  446. INIT_LIST_HEAD(&inode_list);
  447. /* step #1: find fsynced inode numbers */
  448. set_sbi_flag(sbi, SBI_POR_DOING);
  449. /* prevent checkpoint */
  450. mutex_lock(&sbi->cp_mutex);
  451. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  452. err = find_fsync_dnodes(sbi, &inode_list);
  453. if (err)
  454. goto out;
  455. if (list_empty(&inode_list))
  456. goto out;
  457. need_writecp = true;
  458. /* step #2: recover data */
  459. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  460. if (!err)
  461. f2fs_bug_on(sbi, !list_empty(&inode_list));
  462. out:
  463. destroy_fsync_dnodes(&inode_list);
  464. kmem_cache_destroy(fsync_entry_slab);
  465. /* truncate meta pages to be used by the recovery */
  466. truncate_inode_pages_range(META_MAPPING(sbi),
  467. MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
  468. if (err) {
  469. truncate_inode_pages_final(NODE_MAPPING(sbi));
  470. truncate_inode_pages_final(META_MAPPING(sbi));
  471. }
  472. clear_sbi_flag(sbi, SBI_POR_DOING);
  473. if (err) {
  474. discard_next_dnode(sbi, blkaddr);
  475. /* Flush all the NAT/SIT pages */
  476. while (get_pages(sbi, F2FS_DIRTY_META))
  477. sync_meta_pages(sbi, META, LONG_MAX);
  478. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  479. mutex_unlock(&sbi->cp_mutex);
  480. } else if (need_writecp) {
  481. struct cp_control cpc = {
  482. .reason = CP_RECOVERY,
  483. };
  484. mutex_unlock(&sbi->cp_mutex);
  485. write_checkpoint(sbi, &cpc);
  486. } else {
  487. mutex_unlock(&sbi->cp_mutex);
  488. }
  489. return err;
  490. }