node.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "trace.h"
  22. #include <trace/events/f2fs.h>
  23. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  24. static struct kmem_cache *nat_entry_slab;
  25. static struct kmem_cache *free_nid_slab;
  26. static struct kmem_cache *nat_entry_set_slab;
  27. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  28. {
  29. struct f2fs_nm_info *nm_i = NM_I(sbi);
  30. struct sysinfo val;
  31. unsigned long avail_ram;
  32. unsigned long mem_size = 0;
  33. bool res = false;
  34. si_meminfo(&val);
  35. /* only uses low memory */
  36. avail_ram = val.totalram - val.totalhigh;
  37. /*
  38. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  39. */
  40. if (type == FREE_NIDS) {
  41. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  42. PAGE_CACHE_SHIFT;
  43. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  44. } else if (type == NAT_ENTRIES) {
  45. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  46. PAGE_CACHE_SHIFT;
  47. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  48. } else if (type == DIRTY_DENTS) {
  49. if (sbi->sb->s_bdi->dirty_exceeded)
  50. return false;
  51. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  52. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  53. } else if (type == INO_ENTRIES) {
  54. int i;
  55. for (i = 0; i <= UPDATE_INO; i++)
  56. mem_size += (sbi->im[i].ino_num *
  57. sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  58. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  59. } else if (type == EXTENT_CACHE) {
  60. mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
  61. atomic_read(&sbi->total_ext_node) *
  62. sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
  63. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  64. } else {
  65. if (sbi->sb->s_bdi->dirty_exceeded)
  66. return false;
  67. }
  68. return res;
  69. }
  70. static void clear_node_page_dirty(struct page *page)
  71. {
  72. struct address_space *mapping = page->mapping;
  73. unsigned int long flags;
  74. if (PageDirty(page)) {
  75. spin_lock_irqsave(&mapping->tree_lock, flags);
  76. radix_tree_tag_clear(&mapping->page_tree,
  77. page_index(page),
  78. PAGECACHE_TAG_DIRTY);
  79. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  80. clear_page_dirty_for_io(page);
  81. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  82. }
  83. ClearPageUptodate(page);
  84. }
  85. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  86. {
  87. pgoff_t index = current_nat_addr(sbi, nid);
  88. return get_meta_page(sbi, index);
  89. }
  90. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  91. {
  92. struct page *src_page;
  93. struct page *dst_page;
  94. pgoff_t src_off;
  95. pgoff_t dst_off;
  96. void *src_addr;
  97. void *dst_addr;
  98. struct f2fs_nm_info *nm_i = NM_I(sbi);
  99. src_off = current_nat_addr(sbi, nid);
  100. dst_off = next_nat_addr(sbi, src_off);
  101. /* get current nat block page with lock */
  102. src_page = get_meta_page(sbi, src_off);
  103. dst_page = grab_meta_page(sbi, dst_off);
  104. f2fs_bug_on(sbi, PageDirty(src_page));
  105. src_addr = page_address(src_page);
  106. dst_addr = page_address(dst_page);
  107. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  108. set_page_dirty(dst_page);
  109. f2fs_put_page(src_page, 1);
  110. set_to_next_nat(nm_i, nid);
  111. return dst_page;
  112. }
  113. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  114. {
  115. return radix_tree_lookup(&nm_i->nat_root, n);
  116. }
  117. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  118. nid_t start, unsigned int nr, struct nat_entry **ep)
  119. {
  120. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  121. }
  122. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  123. {
  124. list_del(&e->list);
  125. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  126. nm_i->nat_cnt--;
  127. kmem_cache_free(nat_entry_slab, e);
  128. }
  129. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  130. struct nat_entry *ne)
  131. {
  132. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  133. struct nat_entry_set *head;
  134. if (get_nat_flag(ne, IS_DIRTY))
  135. return;
  136. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  137. if (!head) {
  138. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
  139. INIT_LIST_HEAD(&head->entry_list);
  140. INIT_LIST_HEAD(&head->set_list);
  141. head->set = set;
  142. head->entry_cnt = 0;
  143. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  144. }
  145. list_move_tail(&ne->list, &head->entry_list);
  146. nm_i->dirty_nat_cnt++;
  147. head->entry_cnt++;
  148. set_nat_flag(ne, IS_DIRTY, true);
  149. }
  150. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  151. struct nat_entry *ne)
  152. {
  153. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  154. struct nat_entry_set *head;
  155. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  156. if (head) {
  157. list_move_tail(&ne->list, &nm_i->nat_entries);
  158. set_nat_flag(ne, IS_DIRTY, false);
  159. head->entry_cnt--;
  160. nm_i->dirty_nat_cnt--;
  161. }
  162. }
  163. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  164. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  165. {
  166. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  167. start, nr);
  168. }
  169. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  170. {
  171. struct f2fs_nm_info *nm_i = NM_I(sbi);
  172. struct nat_entry *e;
  173. bool is_cp = true;
  174. down_read(&nm_i->nat_tree_lock);
  175. e = __lookup_nat_cache(nm_i, nid);
  176. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  177. is_cp = false;
  178. up_read(&nm_i->nat_tree_lock);
  179. return is_cp;
  180. }
  181. bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
  182. {
  183. struct f2fs_nm_info *nm_i = NM_I(sbi);
  184. struct nat_entry *e;
  185. bool fsynced = false;
  186. down_read(&nm_i->nat_tree_lock);
  187. e = __lookup_nat_cache(nm_i, ino);
  188. if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
  189. fsynced = true;
  190. up_read(&nm_i->nat_tree_lock);
  191. return fsynced;
  192. }
  193. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  194. {
  195. struct f2fs_nm_info *nm_i = NM_I(sbi);
  196. struct nat_entry *e;
  197. bool need_update = true;
  198. down_read(&nm_i->nat_tree_lock);
  199. e = __lookup_nat_cache(nm_i, ino);
  200. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  201. (get_nat_flag(e, IS_CHECKPOINTED) ||
  202. get_nat_flag(e, HAS_FSYNCED_INODE)))
  203. need_update = false;
  204. up_read(&nm_i->nat_tree_lock);
  205. return need_update;
  206. }
  207. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  208. {
  209. struct nat_entry *new;
  210. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  211. f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
  212. memset(new, 0, sizeof(struct nat_entry));
  213. nat_set_nid(new, nid);
  214. nat_reset_flag(new);
  215. list_add_tail(&new->list, &nm_i->nat_entries);
  216. nm_i->nat_cnt++;
  217. return new;
  218. }
  219. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  220. struct f2fs_nat_entry *ne)
  221. {
  222. struct nat_entry *e;
  223. down_write(&nm_i->nat_tree_lock);
  224. e = __lookup_nat_cache(nm_i, nid);
  225. if (!e) {
  226. e = grab_nat_entry(nm_i, nid);
  227. node_info_from_raw_nat(&e->ni, ne);
  228. }
  229. up_write(&nm_i->nat_tree_lock);
  230. }
  231. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  232. block_t new_blkaddr, bool fsync_done)
  233. {
  234. struct f2fs_nm_info *nm_i = NM_I(sbi);
  235. struct nat_entry *e;
  236. down_write(&nm_i->nat_tree_lock);
  237. e = __lookup_nat_cache(nm_i, ni->nid);
  238. if (!e) {
  239. e = grab_nat_entry(nm_i, ni->nid);
  240. copy_node_info(&e->ni, ni);
  241. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  242. } else if (new_blkaddr == NEW_ADDR) {
  243. /*
  244. * when nid is reallocated,
  245. * previous nat entry can be remained in nat cache.
  246. * So, reinitialize it with new information.
  247. */
  248. copy_node_info(&e->ni, ni);
  249. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  250. }
  251. /* sanity check */
  252. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  253. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  254. new_blkaddr == NULL_ADDR);
  255. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  256. new_blkaddr == NEW_ADDR);
  257. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  258. nat_get_blkaddr(e) != NULL_ADDR &&
  259. new_blkaddr == NEW_ADDR);
  260. /* increment version no as node is removed */
  261. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  262. unsigned char version = nat_get_version(e);
  263. nat_set_version(e, inc_node_version(version));
  264. }
  265. /* change address */
  266. nat_set_blkaddr(e, new_blkaddr);
  267. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  268. set_nat_flag(e, IS_CHECKPOINTED, false);
  269. __set_nat_cache_dirty(nm_i, e);
  270. /* update fsync_mark if its inode nat entry is still alive */
  271. e = __lookup_nat_cache(nm_i, ni->ino);
  272. if (e) {
  273. if (fsync_done && ni->nid == ni->ino)
  274. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  275. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  276. }
  277. up_write(&nm_i->nat_tree_lock);
  278. }
  279. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  280. {
  281. struct f2fs_nm_info *nm_i = NM_I(sbi);
  282. if (available_free_memory(sbi, NAT_ENTRIES))
  283. return 0;
  284. down_write(&nm_i->nat_tree_lock);
  285. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  286. struct nat_entry *ne;
  287. ne = list_first_entry(&nm_i->nat_entries,
  288. struct nat_entry, list);
  289. __del_from_nat_cache(nm_i, ne);
  290. nr_shrink--;
  291. }
  292. up_write(&nm_i->nat_tree_lock);
  293. return nr_shrink;
  294. }
  295. /*
  296. * This function always returns success
  297. */
  298. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  299. {
  300. struct f2fs_nm_info *nm_i = NM_I(sbi);
  301. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  302. struct f2fs_summary_block *sum = curseg->sum_blk;
  303. nid_t start_nid = START_NID(nid);
  304. struct f2fs_nat_block *nat_blk;
  305. struct page *page = NULL;
  306. struct f2fs_nat_entry ne;
  307. struct nat_entry *e;
  308. int i;
  309. ni->nid = nid;
  310. /* Check nat cache */
  311. down_read(&nm_i->nat_tree_lock);
  312. e = __lookup_nat_cache(nm_i, nid);
  313. if (e) {
  314. ni->ino = nat_get_ino(e);
  315. ni->blk_addr = nat_get_blkaddr(e);
  316. ni->version = nat_get_version(e);
  317. }
  318. up_read(&nm_i->nat_tree_lock);
  319. if (e)
  320. return;
  321. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  322. /* Check current segment summary */
  323. mutex_lock(&curseg->curseg_mutex);
  324. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  325. if (i >= 0) {
  326. ne = nat_in_journal(sum, i);
  327. node_info_from_raw_nat(ni, &ne);
  328. }
  329. mutex_unlock(&curseg->curseg_mutex);
  330. if (i >= 0)
  331. goto cache;
  332. /* Fill node_info from nat page */
  333. page = get_current_nat_page(sbi, start_nid);
  334. nat_blk = (struct f2fs_nat_block *)page_address(page);
  335. ne = nat_blk->entries[nid - start_nid];
  336. node_info_from_raw_nat(ni, &ne);
  337. f2fs_put_page(page, 1);
  338. cache:
  339. /* cache nat entry */
  340. cache_nat_entry(NM_I(sbi), nid, &ne);
  341. }
  342. /*
  343. * The maximum depth is four.
  344. * Offset[0] will have raw inode offset.
  345. */
  346. static int get_node_path(struct f2fs_inode_info *fi, long block,
  347. int offset[4], unsigned int noffset[4])
  348. {
  349. const long direct_index = ADDRS_PER_INODE(fi);
  350. const long direct_blks = ADDRS_PER_BLOCK;
  351. const long dptrs_per_blk = NIDS_PER_BLOCK;
  352. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  353. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  354. int n = 0;
  355. int level = 0;
  356. noffset[0] = 0;
  357. if (block < direct_index) {
  358. offset[n] = block;
  359. goto got;
  360. }
  361. block -= direct_index;
  362. if (block < direct_blks) {
  363. offset[n++] = NODE_DIR1_BLOCK;
  364. noffset[n] = 1;
  365. offset[n] = block;
  366. level = 1;
  367. goto got;
  368. }
  369. block -= direct_blks;
  370. if (block < direct_blks) {
  371. offset[n++] = NODE_DIR2_BLOCK;
  372. noffset[n] = 2;
  373. offset[n] = block;
  374. level = 1;
  375. goto got;
  376. }
  377. block -= direct_blks;
  378. if (block < indirect_blks) {
  379. offset[n++] = NODE_IND1_BLOCK;
  380. noffset[n] = 3;
  381. offset[n++] = block / direct_blks;
  382. noffset[n] = 4 + offset[n - 1];
  383. offset[n] = block % direct_blks;
  384. level = 2;
  385. goto got;
  386. }
  387. block -= indirect_blks;
  388. if (block < indirect_blks) {
  389. offset[n++] = NODE_IND2_BLOCK;
  390. noffset[n] = 4 + dptrs_per_blk;
  391. offset[n++] = block / direct_blks;
  392. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  393. offset[n] = block % direct_blks;
  394. level = 2;
  395. goto got;
  396. }
  397. block -= indirect_blks;
  398. if (block < dindirect_blks) {
  399. offset[n++] = NODE_DIND_BLOCK;
  400. noffset[n] = 5 + (dptrs_per_blk * 2);
  401. offset[n++] = block / indirect_blks;
  402. noffset[n] = 6 + (dptrs_per_blk * 2) +
  403. offset[n - 1] * (dptrs_per_blk + 1);
  404. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  405. noffset[n] = 7 + (dptrs_per_blk * 2) +
  406. offset[n - 2] * (dptrs_per_blk + 1) +
  407. offset[n - 1];
  408. offset[n] = block % direct_blks;
  409. level = 3;
  410. goto got;
  411. } else {
  412. BUG();
  413. }
  414. got:
  415. return level;
  416. }
  417. /*
  418. * Caller should call f2fs_put_dnode(dn).
  419. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  420. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  421. * In the case of RDONLY_NODE, we don't need to care about mutex.
  422. */
  423. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  424. {
  425. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  426. struct page *npage[4];
  427. struct page *parent = NULL;
  428. int offset[4];
  429. unsigned int noffset[4];
  430. nid_t nids[4];
  431. int level, i;
  432. int err = 0;
  433. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  434. nids[0] = dn->inode->i_ino;
  435. npage[0] = dn->inode_page;
  436. if (!npage[0]) {
  437. npage[0] = get_node_page(sbi, nids[0]);
  438. if (IS_ERR(npage[0]))
  439. return PTR_ERR(npage[0]);
  440. }
  441. /* if inline_data is set, should not report any block indices */
  442. if (f2fs_has_inline_data(dn->inode) && index) {
  443. err = -ENOENT;
  444. f2fs_put_page(npage[0], 1);
  445. goto release_out;
  446. }
  447. parent = npage[0];
  448. if (level != 0)
  449. nids[1] = get_nid(parent, offset[0], true);
  450. dn->inode_page = npage[0];
  451. dn->inode_page_locked = true;
  452. /* get indirect or direct nodes */
  453. for (i = 1; i <= level; i++) {
  454. bool done = false;
  455. if (!nids[i] && mode == ALLOC_NODE) {
  456. /* alloc new node */
  457. if (!alloc_nid(sbi, &(nids[i]))) {
  458. err = -ENOSPC;
  459. goto release_pages;
  460. }
  461. dn->nid = nids[i];
  462. npage[i] = new_node_page(dn, noffset[i], NULL);
  463. if (IS_ERR(npage[i])) {
  464. alloc_nid_failed(sbi, nids[i]);
  465. err = PTR_ERR(npage[i]);
  466. goto release_pages;
  467. }
  468. set_nid(parent, offset[i - 1], nids[i], i == 1);
  469. alloc_nid_done(sbi, nids[i]);
  470. done = true;
  471. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  472. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  473. if (IS_ERR(npage[i])) {
  474. err = PTR_ERR(npage[i]);
  475. goto release_pages;
  476. }
  477. done = true;
  478. }
  479. if (i == 1) {
  480. dn->inode_page_locked = false;
  481. unlock_page(parent);
  482. } else {
  483. f2fs_put_page(parent, 1);
  484. }
  485. if (!done) {
  486. npage[i] = get_node_page(sbi, nids[i]);
  487. if (IS_ERR(npage[i])) {
  488. err = PTR_ERR(npage[i]);
  489. f2fs_put_page(npage[0], 0);
  490. goto release_out;
  491. }
  492. }
  493. if (i < level) {
  494. parent = npage[i];
  495. nids[i + 1] = get_nid(parent, offset[i], false);
  496. }
  497. }
  498. dn->nid = nids[level];
  499. dn->ofs_in_node = offset[level];
  500. dn->node_page = npage[level];
  501. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  502. return 0;
  503. release_pages:
  504. f2fs_put_page(parent, 1);
  505. if (i > 1)
  506. f2fs_put_page(npage[0], 0);
  507. release_out:
  508. dn->inode_page = NULL;
  509. dn->node_page = NULL;
  510. return err;
  511. }
  512. static void truncate_node(struct dnode_of_data *dn)
  513. {
  514. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  515. struct node_info ni;
  516. get_node_info(sbi, dn->nid, &ni);
  517. if (dn->inode->i_blocks == 0) {
  518. f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
  519. goto invalidate;
  520. }
  521. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  522. /* Deallocate node address */
  523. invalidate_blocks(sbi, ni.blk_addr);
  524. dec_valid_node_count(sbi, dn->inode);
  525. set_node_addr(sbi, &ni, NULL_ADDR, false);
  526. if (dn->nid == dn->inode->i_ino) {
  527. remove_orphan_inode(sbi, dn->nid);
  528. dec_valid_inode_count(sbi);
  529. } else {
  530. sync_inode_page(dn);
  531. }
  532. invalidate:
  533. clear_node_page_dirty(dn->node_page);
  534. set_sbi_flag(sbi, SBI_IS_DIRTY);
  535. f2fs_put_page(dn->node_page, 1);
  536. invalidate_mapping_pages(NODE_MAPPING(sbi),
  537. dn->node_page->index, dn->node_page->index);
  538. dn->node_page = NULL;
  539. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  540. }
  541. static int truncate_dnode(struct dnode_of_data *dn)
  542. {
  543. struct page *page;
  544. if (dn->nid == 0)
  545. return 1;
  546. /* get direct node */
  547. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  548. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  549. return 1;
  550. else if (IS_ERR(page))
  551. return PTR_ERR(page);
  552. /* Make dnode_of_data for parameter */
  553. dn->node_page = page;
  554. dn->ofs_in_node = 0;
  555. truncate_data_blocks(dn);
  556. truncate_node(dn);
  557. return 1;
  558. }
  559. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  560. int ofs, int depth)
  561. {
  562. struct dnode_of_data rdn = *dn;
  563. struct page *page;
  564. struct f2fs_node *rn;
  565. nid_t child_nid;
  566. unsigned int child_nofs;
  567. int freed = 0;
  568. int i, ret;
  569. if (dn->nid == 0)
  570. return NIDS_PER_BLOCK + 1;
  571. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  572. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  573. if (IS_ERR(page)) {
  574. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  575. return PTR_ERR(page);
  576. }
  577. rn = F2FS_NODE(page);
  578. if (depth < 3) {
  579. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  580. child_nid = le32_to_cpu(rn->in.nid[i]);
  581. if (child_nid == 0)
  582. continue;
  583. rdn.nid = child_nid;
  584. ret = truncate_dnode(&rdn);
  585. if (ret < 0)
  586. goto out_err;
  587. set_nid(page, i, 0, false);
  588. }
  589. } else {
  590. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  591. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  592. child_nid = le32_to_cpu(rn->in.nid[i]);
  593. if (child_nid == 0) {
  594. child_nofs += NIDS_PER_BLOCK + 1;
  595. continue;
  596. }
  597. rdn.nid = child_nid;
  598. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  599. if (ret == (NIDS_PER_BLOCK + 1)) {
  600. set_nid(page, i, 0, false);
  601. child_nofs += ret;
  602. } else if (ret < 0 && ret != -ENOENT) {
  603. goto out_err;
  604. }
  605. }
  606. freed = child_nofs;
  607. }
  608. if (!ofs) {
  609. /* remove current indirect node */
  610. dn->node_page = page;
  611. truncate_node(dn);
  612. freed++;
  613. } else {
  614. f2fs_put_page(page, 1);
  615. }
  616. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  617. return freed;
  618. out_err:
  619. f2fs_put_page(page, 1);
  620. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  621. return ret;
  622. }
  623. static int truncate_partial_nodes(struct dnode_of_data *dn,
  624. struct f2fs_inode *ri, int *offset, int depth)
  625. {
  626. struct page *pages[2];
  627. nid_t nid[3];
  628. nid_t child_nid;
  629. int err = 0;
  630. int i;
  631. int idx = depth - 2;
  632. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  633. if (!nid[0])
  634. return 0;
  635. /* get indirect nodes in the path */
  636. for (i = 0; i < idx + 1; i++) {
  637. /* reference count'll be increased */
  638. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  639. if (IS_ERR(pages[i])) {
  640. err = PTR_ERR(pages[i]);
  641. idx = i - 1;
  642. goto fail;
  643. }
  644. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  645. }
  646. /* free direct nodes linked to a partial indirect node */
  647. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  648. child_nid = get_nid(pages[idx], i, false);
  649. if (!child_nid)
  650. continue;
  651. dn->nid = child_nid;
  652. err = truncate_dnode(dn);
  653. if (err < 0)
  654. goto fail;
  655. set_nid(pages[idx], i, 0, false);
  656. }
  657. if (offset[idx + 1] == 0) {
  658. dn->node_page = pages[idx];
  659. dn->nid = nid[idx];
  660. truncate_node(dn);
  661. } else {
  662. f2fs_put_page(pages[idx], 1);
  663. }
  664. offset[idx]++;
  665. offset[idx + 1] = 0;
  666. idx--;
  667. fail:
  668. for (i = idx; i >= 0; i--)
  669. f2fs_put_page(pages[i], 1);
  670. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  671. return err;
  672. }
  673. /*
  674. * All the block addresses of data and nodes should be nullified.
  675. */
  676. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  677. {
  678. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  679. int err = 0, cont = 1;
  680. int level, offset[4], noffset[4];
  681. unsigned int nofs = 0;
  682. struct f2fs_inode *ri;
  683. struct dnode_of_data dn;
  684. struct page *page;
  685. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  686. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  687. restart:
  688. page = get_node_page(sbi, inode->i_ino);
  689. if (IS_ERR(page)) {
  690. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  691. return PTR_ERR(page);
  692. }
  693. set_new_dnode(&dn, inode, page, NULL, 0);
  694. unlock_page(page);
  695. ri = F2FS_INODE(page);
  696. switch (level) {
  697. case 0:
  698. case 1:
  699. nofs = noffset[1];
  700. break;
  701. case 2:
  702. nofs = noffset[1];
  703. if (!offset[level - 1])
  704. goto skip_partial;
  705. err = truncate_partial_nodes(&dn, ri, offset, level);
  706. if (err < 0 && err != -ENOENT)
  707. goto fail;
  708. nofs += 1 + NIDS_PER_BLOCK;
  709. break;
  710. case 3:
  711. nofs = 5 + 2 * NIDS_PER_BLOCK;
  712. if (!offset[level - 1])
  713. goto skip_partial;
  714. err = truncate_partial_nodes(&dn, ri, offset, level);
  715. if (err < 0 && err != -ENOENT)
  716. goto fail;
  717. break;
  718. default:
  719. BUG();
  720. }
  721. skip_partial:
  722. while (cont) {
  723. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  724. switch (offset[0]) {
  725. case NODE_DIR1_BLOCK:
  726. case NODE_DIR2_BLOCK:
  727. err = truncate_dnode(&dn);
  728. break;
  729. case NODE_IND1_BLOCK:
  730. case NODE_IND2_BLOCK:
  731. err = truncate_nodes(&dn, nofs, offset[1], 2);
  732. break;
  733. case NODE_DIND_BLOCK:
  734. err = truncate_nodes(&dn, nofs, offset[1], 3);
  735. cont = 0;
  736. break;
  737. default:
  738. BUG();
  739. }
  740. if (err < 0 && err != -ENOENT)
  741. goto fail;
  742. if (offset[1] == 0 &&
  743. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  744. lock_page(page);
  745. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  746. f2fs_put_page(page, 1);
  747. goto restart;
  748. }
  749. f2fs_wait_on_page_writeback(page, NODE);
  750. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  751. set_page_dirty(page);
  752. unlock_page(page);
  753. }
  754. offset[1] = 0;
  755. offset[0]++;
  756. nofs += err;
  757. }
  758. fail:
  759. f2fs_put_page(page, 0);
  760. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  761. return err > 0 ? 0 : err;
  762. }
  763. int truncate_xattr_node(struct inode *inode, struct page *page)
  764. {
  765. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  766. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  767. struct dnode_of_data dn;
  768. struct page *npage;
  769. if (!nid)
  770. return 0;
  771. npage = get_node_page(sbi, nid);
  772. if (IS_ERR(npage))
  773. return PTR_ERR(npage);
  774. F2FS_I(inode)->i_xattr_nid = 0;
  775. /* need to do checkpoint during fsync */
  776. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  777. set_new_dnode(&dn, inode, page, npage, nid);
  778. if (page)
  779. dn.inode_page_locked = true;
  780. truncate_node(&dn);
  781. return 0;
  782. }
  783. /*
  784. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  785. * f2fs_unlock_op().
  786. */
  787. void remove_inode_page(struct inode *inode)
  788. {
  789. struct dnode_of_data dn;
  790. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  791. if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
  792. return;
  793. if (truncate_xattr_node(inode, dn.inode_page)) {
  794. f2fs_put_dnode(&dn);
  795. return;
  796. }
  797. /* remove potential inline_data blocks */
  798. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  799. S_ISLNK(inode->i_mode))
  800. truncate_data_blocks_range(&dn, 1);
  801. /* 0 is possible, after f2fs_new_inode() has failed */
  802. f2fs_bug_on(F2FS_I_SB(inode),
  803. inode->i_blocks != 0 && inode->i_blocks != 1);
  804. /* will put inode & node pages */
  805. truncate_node(&dn);
  806. }
  807. struct page *new_inode_page(struct inode *inode)
  808. {
  809. struct dnode_of_data dn;
  810. /* allocate inode page for new inode */
  811. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  812. /* caller should f2fs_put_page(page, 1); */
  813. return new_node_page(&dn, 0, NULL);
  814. }
  815. struct page *new_node_page(struct dnode_of_data *dn,
  816. unsigned int ofs, struct page *ipage)
  817. {
  818. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  819. struct node_info old_ni, new_ni;
  820. struct page *page;
  821. int err;
  822. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  823. return ERR_PTR(-EPERM);
  824. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  825. if (!page)
  826. return ERR_PTR(-ENOMEM);
  827. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  828. err = -ENOSPC;
  829. goto fail;
  830. }
  831. get_node_info(sbi, dn->nid, &old_ni);
  832. /* Reinitialize old_ni with new node page */
  833. f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
  834. new_ni = old_ni;
  835. new_ni.ino = dn->inode->i_ino;
  836. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  837. f2fs_wait_on_page_writeback(page, NODE);
  838. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  839. set_cold_node(dn->inode, page);
  840. SetPageUptodate(page);
  841. set_page_dirty(page);
  842. if (f2fs_has_xattr_block(ofs))
  843. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  844. dn->node_page = page;
  845. if (ipage)
  846. update_inode(dn->inode, ipage);
  847. else
  848. sync_inode_page(dn);
  849. if (ofs == 0)
  850. inc_valid_inode_count(sbi);
  851. return page;
  852. fail:
  853. clear_node_page_dirty(page);
  854. f2fs_put_page(page, 1);
  855. return ERR_PTR(err);
  856. }
  857. /*
  858. * Caller should do after getting the following values.
  859. * 0: f2fs_put_page(page, 0)
  860. * LOCKED_PAGE: f2fs_put_page(page, 1)
  861. * error: nothing
  862. */
  863. static int read_node_page(struct page *page, int rw)
  864. {
  865. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  866. struct node_info ni;
  867. struct f2fs_io_info fio = {
  868. .type = NODE,
  869. .rw = rw,
  870. };
  871. get_node_info(sbi, page->index, &ni);
  872. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  873. ClearPageUptodate(page);
  874. f2fs_put_page(page, 1);
  875. return -ENOENT;
  876. }
  877. if (PageUptodate(page))
  878. return LOCKED_PAGE;
  879. fio.blk_addr = ni.blk_addr;
  880. return f2fs_submit_page_bio(sbi, page, &fio);
  881. }
  882. /*
  883. * Readahead a node page
  884. */
  885. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  886. {
  887. struct page *apage;
  888. int err;
  889. apage = find_get_page(NODE_MAPPING(sbi), nid);
  890. if (apage && PageUptodate(apage)) {
  891. f2fs_put_page(apage, 0);
  892. return;
  893. }
  894. f2fs_put_page(apage, 0);
  895. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  896. if (!apage)
  897. return;
  898. err = read_node_page(apage, READA);
  899. if (err == 0)
  900. f2fs_put_page(apage, 0);
  901. else if (err == LOCKED_PAGE)
  902. f2fs_put_page(apage, 1);
  903. }
  904. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  905. {
  906. struct page *page;
  907. int err;
  908. repeat:
  909. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  910. if (!page)
  911. return ERR_PTR(-ENOMEM);
  912. err = read_node_page(page, READ_SYNC);
  913. if (err < 0)
  914. return ERR_PTR(err);
  915. else if (err != LOCKED_PAGE)
  916. lock_page(page);
  917. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  918. ClearPageUptodate(page);
  919. f2fs_put_page(page, 1);
  920. return ERR_PTR(-EIO);
  921. }
  922. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  923. f2fs_put_page(page, 1);
  924. goto repeat;
  925. }
  926. return page;
  927. }
  928. /*
  929. * Return a locked page for the desired node page.
  930. * And, readahead MAX_RA_NODE number of node pages.
  931. */
  932. struct page *get_node_page_ra(struct page *parent, int start)
  933. {
  934. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  935. struct blk_plug plug;
  936. struct page *page;
  937. int err, i, end;
  938. nid_t nid;
  939. /* First, try getting the desired direct node. */
  940. nid = get_nid(parent, start, false);
  941. if (!nid)
  942. return ERR_PTR(-ENOENT);
  943. repeat:
  944. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  945. if (!page)
  946. return ERR_PTR(-ENOMEM);
  947. err = read_node_page(page, READ_SYNC);
  948. if (err < 0)
  949. return ERR_PTR(err);
  950. else if (err == LOCKED_PAGE)
  951. goto page_hit;
  952. blk_start_plug(&plug);
  953. /* Then, try readahead for siblings of the desired node */
  954. end = start + MAX_RA_NODE;
  955. end = min(end, NIDS_PER_BLOCK);
  956. for (i = start + 1; i < end; i++) {
  957. nid = get_nid(parent, i, false);
  958. if (!nid)
  959. continue;
  960. ra_node_page(sbi, nid);
  961. }
  962. blk_finish_plug(&plug);
  963. lock_page(page);
  964. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  965. f2fs_put_page(page, 1);
  966. goto repeat;
  967. }
  968. page_hit:
  969. if (unlikely(!PageUptodate(page))) {
  970. f2fs_put_page(page, 1);
  971. return ERR_PTR(-EIO);
  972. }
  973. return page;
  974. }
  975. void sync_inode_page(struct dnode_of_data *dn)
  976. {
  977. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  978. update_inode(dn->inode, dn->node_page);
  979. } else if (dn->inode_page) {
  980. if (!dn->inode_page_locked)
  981. lock_page(dn->inode_page);
  982. update_inode(dn->inode, dn->inode_page);
  983. if (!dn->inode_page_locked)
  984. unlock_page(dn->inode_page);
  985. } else {
  986. update_inode_page(dn->inode);
  987. }
  988. }
  989. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  990. struct writeback_control *wbc)
  991. {
  992. pgoff_t index, end;
  993. struct pagevec pvec;
  994. int step = ino ? 2 : 0;
  995. int nwritten = 0, wrote = 0;
  996. pagevec_init(&pvec, 0);
  997. next_step:
  998. index = 0;
  999. end = LONG_MAX;
  1000. while (index <= end) {
  1001. int i, nr_pages;
  1002. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1003. PAGECACHE_TAG_DIRTY,
  1004. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1005. if (nr_pages == 0)
  1006. break;
  1007. for (i = 0; i < nr_pages; i++) {
  1008. struct page *page = pvec.pages[i];
  1009. /*
  1010. * flushing sequence with step:
  1011. * 0. indirect nodes
  1012. * 1. dentry dnodes
  1013. * 2. file dnodes
  1014. */
  1015. if (step == 0 && IS_DNODE(page))
  1016. continue;
  1017. if (step == 1 && (!IS_DNODE(page) ||
  1018. is_cold_node(page)))
  1019. continue;
  1020. if (step == 2 && (!IS_DNODE(page) ||
  1021. !is_cold_node(page)))
  1022. continue;
  1023. /*
  1024. * If an fsync mode,
  1025. * we should not skip writing node pages.
  1026. */
  1027. if (ino && ino_of_node(page) == ino)
  1028. lock_page(page);
  1029. else if (!trylock_page(page))
  1030. continue;
  1031. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1032. continue_unlock:
  1033. unlock_page(page);
  1034. continue;
  1035. }
  1036. if (ino && ino_of_node(page) != ino)
  1037. goto continue_unlock;
  1038. if (!PageDirty(page)) {
  1039. /* someone wrote it for us */
  1040. goto continue_unlock;
  1041. }
  1042. if (!clear_page_dirty_for_io(page))
  1043. goto continue_unlock;
  1044. /* called by fsync() */
  1045. if (ino && IS_DNODE(page)) {
  1046. set_fsync_mark(page, 1);
  1047. if (IS_INODE(page)) {
  1048. if (!is_checkpointed_node(sbi, ino) &&
  1049. !has_fsynced_inode(sbi, ino))
  1050. set_dentry_mark(page, 1);
  1051. else
  1052. set_dentry_mark(page, 0);
  1053. }
  1054. nwritten++;
  1055. } else {
  1056. set_fsync_mark(page, 0);
  1057. set_dentry_mark(page, 0);
  1058. }
  1059. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  1060. unlock_page(page);
  1061. else
  1062. wrote++;
  1063. if (--wbc->nr_to_write == 0)
  1064. break;
  1065. }
  1066. pagevec_release(&pvec);
  1067. cond_resched();
  1068. if (wbc->nr_to_write == 0) {
  1069. step = 2;
  1070. break;
  1071. }
  1072. }
  1073. if (step < 2) {
  1074. step++;
  1075. goto next_step;
  1076. }
  1077. if (wrote)
  1078. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1079. return nwritten;
  1080. }
  1081. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1082. {
  1083. pgoff_t index = 0, end = LONG_MAX;
  1084. struct pagevec pvec;
  1085. int ret2 = 0, ret = 0;
  1086. pagevec_init(&pvec, 0);
  1087. while (index <= end) {
  1088. int i, nr_pages;
  1089. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1090. PAGECACHE_TAG_WRITEBACK,
  1091. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1092. if (nr_pages == 0)
  1093. break;
  1094. for (i = 0; i < nr_pages; i++) {
  1095. struct page *page = pvec.pages[i];
  1096. /* until radix tree lookup accepts end_index */
  1097. if (unlikely(page->index > end))
  1098. continue;
  1099. if (ino && ino_of_node(page) == ino) {
  1100. f2fs_wait_on_page_writeback(page, NODE);
  1101. if (TestClearPageError(page))
  1102. ret = -EIO;
  1103. }
  1104. }
  1105. pagevec_release(&pvec);
  1106. cond_resched();
  1107. }
  1108. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1109. ret2 = -ENOSPC;
  1110. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1111. ret2 = -EIO;
  1112. if (!ret)
  1113. ret = ret2;
  1114. return ret;
  1115. }
  1116. static int f2fs_write_node_page(struct page *page,
  1117. struct writeback_control *wbc)
  1118. {
  1119. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1120. nid_t nid;
  1121. struct node_info ni;
  1122. struct f2fs_io_info fio = {
  1123. .type = NODE,
  1124. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1125. };
  1126. trace_f2fs_writepage(page, NODE);
  1127. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1128. goto redirty_out;
  1129. if (unlikely(f2fs_cp_error(sbi)))
  1130. goto redirty_out;
  1131. f2fs_wait_on_page_writeback(page, NODE);
  1132. /* get old block addr of this node page */
  1133. nid = nid_of_node(page);
  1134. f2fs_bug_on(sbi, page->index != nid);
  1135. get_node_info(sbi, nid, &ni);
  1136. /* This page is already truncated */
  1137. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1138. ClearPageUptodate(page);
  1139. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1140. unlock_page(page);
  1141. return 0;
  1142. }
  1143. if (wbc->for_reclaim) {
  1144. if (!down_read_trylock(&sbi->node_write))
  1145. goto redirty_out;
  1146. } else {
  1147. down_read(&sbi->node_write);
  1148. }
  1149. set_page_writeback(page);
  1150. fio.blk_addr = ni.blk_addr;
  1151. write_node_page(sbi, page, nid, &fio);
  1152. set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
  1153. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1154. up_read(&sbi->node_write);
  1155. unlock_page(page);
  1156. if (wbc->for_reclaim)
  1157. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1158. return 0;
  1159. redirty_out:
  1160. redirty_page_for_writepage(wbc, page);
  1161. return AOP_WRITEPAGE_ACTIVATE;
  1162. }
  1163. static int f2fs_write_node_pages(struct address_space *mapping,
  1164. struct writeback_control *wbc)
  1165. {
  1166. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1167. long diff;
  1168. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1169. /* balancing f2fs's metadata in background */
  1170. f2fs_balance_fs_bg(sbi);
  1171. /* collect a number of dirty node pages and write together */
  1172. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1173. goto skip_write;
  1174. diff = nr_pages_to_write(sbi, NODE, wbc);
  1175. wbc->sync_mode = WB_SYNC_NONE;
  1176. sync_node_pages(sbi, 0, wbc);
  1177. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1178. return 0;
  1179. skip_write:
  1180. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1181. return 0;
  1182. }
  1183. static int f2fs_set_node_page_dirty(struct page *page)
  1184. {
  1185. trace_f2fs_set_page_dirty(page, NODE);
  1186. SetPageUptodate(page);
  1187. if (!PageDirty(page)) {
  1188. __set_page_dirty_nobuffers(page);
  1189. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1190. SetPagePrivate(page);
  1191. f2fs_trace_pid(page);
  1192. return 1;
  1193. }
  1194. return 0;
  1195. }
  1196. /*
  1197. * Structure of the f2fs node operations
  1198. */
  1199. const struct address_space_operations f2fs_node_aops = {
  1200. .writepage = f2fs_write_node_page,
  1201. .writepages = f2fs_write_node_pages,
  1202. .set_page_dirty = f2fs_set_node_page_dirty,
  1203. .invalidatepage = f2fs_invalidate_page,
  1204. .releasepage = f2fs_release_page,
  1205. };
  1206. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1207. nid_t n)
  1208. {
  1209. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1210. }
  1211. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1212. struct free_nid *i)
  1213. {
  1214. list_del(&i->list);
  1215. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1216. }
  1217. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1218. {
  1219. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1220. struct free_nid *i;
  1221. struct nat_entry *ne;
  1222. bool allocated = false;
  1223. if (!available_free_memory(sbi, FREE_NIDS))
  1224. return -1;
  1225. /* 0 nid should not be used */
  1226. if (unlikely(nid == 0))
  1227. return 0;
  1228. if (build) {
  1229. /* do not add allocated nids */
  1230. down_read(&nm_i->nat_tree_lock);
  1231. ne = __lookup_nat_cache(nm_i, nid);
  1232. if (ne &&
  1233. (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1234. nat_get_blkaddr(ne) != NULL_ADDR))
  1235. allocated = true;
  1236. up_read(&nm_i->nat_tree_lock);
  1237. if (allocated)
  1238. return 0;
  1239. }
  1240. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1241. i->nid = nid;
  1242. i->state = NID_NEW;
  1243. if (radix_tree_preload(GFP_NOFS)) {
  1244. kmem_cache_free(free_nid_slab, i);
  1245. return 0;
  1246. }
  1247. spin_lock(&nm_i->free_nid_list_lock);
  1248. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1249. spin_unlock(&nm_i->free_nid_list_lock);
  1250. radix_tree_preload_end();
  1251. kmem_cache_free(free_nid_slab, i);
  1252. return 0;
  1253. }
  1254. list_add_tail(&i->list, &nm_i->free_nid_list);
  1255. nm_i->fcnt++;
  1256. spin_unlock(&nm_i->free_nid_list_lock);
  1257. radix_tree_preload_end();
  1258. return 1;
  1259. }
  1260. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1261. {
  1262. struct free_nid *i;
  1263. bool need_free = false;
  1264. spin_lock(&nm_i->free_nid_list_lock);
  1265. i = __lookup_free_nid_list(nm_i, nid);
  1266. if (i && i->state == NID_NEW) {
  1267. __del_from_free_nid_list(nm_i, i);
  1268. nm_i->fcnt--;
  1269. need_free = true;
  1270. }
  1271. spin_unlock(&nm_i->free_nid_list_lock);
  1272. if (need_free)
  1273. kmem_cache_free(free_nid_slab, i);
  1274. }
  1275. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1276. struct page *nat_page, nid_t start_nid)
  1277. {
  1278. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1279. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1280. block_t blk_addr;
  1281. int i;
  1282. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1283. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1284. if (unlikely(start_nid >= nm_i->max_nid))
  1285. break;
  1286. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1287. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1288. if (blk_addr == NULL_ADDR) {
  1289. if (add_free_nid(sbi, start_nid, true) < 0)
  1290. break;
  1291. }
  1292. }
  1293. }
  1294. static void build_free_nids(struct f2fs_sb_info *sbi)
  1295. {
  1296. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1297. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1298. struct f2fs_summary_block *sum = curseg->sum_blk;
  1299. int i = 0;
  1300. nid_t nid = nm_i->next_scan_nid;
  1301. /* Enough entries */
  1302. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1303. return;
  1304. /* readahead nat pages to be scanned */
  1305. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1306. while (1) {
  1307. struct page *page = get_current_nat_page(sbi, nid);
  1308. scan_nat_page(sbi, page, nid);
  1309. f2fs_put_page(page, 1);
  1310. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1311. if (unlikely(nid >= nm_i->max_nid))
  1312. nid = 0;
  1313. if (i++ == FREE_NID_PAGES)
  1314. break;
  1315. }
  1316. /* go to the next free nat pages to find free nids abundantly */
  1317. nm_i->next_scan_nid = nid;
  1318. /* find free nids from current sum_pages */
  1319. mutex_lock(&curseg->curseg_mutex);
  1320. for (i = 0; i < nats_in_cursum(sum); i++) {
  1321. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1322. nid = le32_to_cpu(nid_in_journal(sum, i));
  1323. if (addr == NULL_ADDR)
  1324. add_free_nid(sbi, nid, true);
  1325. else
  1326. remove_free_nid(nm_i, nid);
  1327. }
  1328. mutex_unlock(&curseg->curseg_mutex);
  1329. }
  1330. /*
  1331. * If this function returns success, caller can obtain a new nid
  1332. * from second parameter of this function.
  1333. * The returned nid could be used ino as well as nid when inode is created.
  1334. */
  1335. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1336. {
  1337. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1338. struct free_nid *i = NULL;
  1339. retry:
  1340. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1341. return false;
  1342. spin_lock(&nm_i->free_nid_list_lock);
  1343. /* We should not use stale free nids created by build_free_nids */
  1344. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1345. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1346. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1347. if (i->state == NID_NEW)
  1348. break;
  1349. f2fs_bug_on(sbi, i->state != NID_NEW);
  1350. *nid = i->nid;
  1351. i->state = NID_ALLOC;
  1352. nm_i->fcnt--;
  1353. spin_unlock(&nm_i->free_nid_list_lock);
  1354. return true;
  1355. }
  1356. spin_unlock(&nm_i->free_nid_list_lock);
  1357. /* Let's scan nat pages and its caches to get free nids */
  1358. mutex_lock(&nm_i->build_lock);
  1359. build_free_nids(sbi);
  1360. mutex_unlock(&nm_i->build_lock);
  1361. goto retry;
  1362. }
  1363. /*
  1364. * alloc_nid() should be called prior to this function.
  1365. */
  1366. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1367. {
  1368. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1369. struct free_nid *i;
  1370. spin_lock(&nm_i->free_nid_list_lock);
  1371. i = __lookup_free_nid_list(nm_i, nid);
  1372. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1373. __del_from_free_nid_list(nm_i, i);
  1374. spin_unlock(&nm_i->free_nid_list_lock);
  1375. kmem_cache_free(free_nid_slab, i);
  1376. }
  1377. /*
  1378. * alloc_nid() should be called prior to this function.
  1379. */
  1380. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1381. {
  1382. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1383. struct free_nid *i;
  1384. bool need_free = false;
  1385. if (!nid)
  1386. return;
  1387. spin_lock(&nm_i->free_nid_list_lock);
  1388. i = __lookup_free_nid_list(nm_i, nid);
  1389. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1390. if (!available_free_memory(sbi, FREE_NIDS)) {
  1391. __del_from_free_nid_list(nm_i, i);
  1392. need_free = true;
  1393. } else {
  1394. i->state = NID_NEW;
  1395. nm_i->fcnt++;
  1396. }
  1397. spin_unlock(&nm_i->free_nid_list_lock);
  1398. if (need_free)
  1399. kmem_cache_free(free_nid_slab, i);
  1400. }
  1401. void recover_inline_xattr(struct inode *inode, struct page *page)
  1402. {
  1403. void *src_addr, *dst_addr;
  1404. size_t inline_size;
  1405. struct page *ipage;
  1406. struct f2fs_inode *ri;
  1407. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1408. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1409. ri = F2FS_INODE(page);
  1410. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1411. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1412. goto update_inode;
  1413. }
  1414. dst_addr = inline_xattr_addr(ipage);
  1415. src_addr = inline_xattr_addr(page);
  1416. inline_size = inline_xattr_size(inode);
  1417. f2fs_wait_on_page_writeback(ipage, NODE);
  1418. memcpy(dst_addr, src_addr, inline_size);
  1419. update_inode:
  1420. update_inode(inode, ipage);
  1421. f2fs_put_page(ipage, 1);
  1422. }
  1423. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1424. {
  1425. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1426. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1427. nid_t new_xnid = nid_of_node(page);
  1428. struct node_info ni;
  1429. /* 1: invalidate the previous xattr nid */
  1430. if (!prev_xnid)
  1431. goto recover_xnid;
  1432. /* Deallocate node address */
  1433. get_node_info(sbi, prev_xnid, &ni);
  1434. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1435. invalidate_blocks(sbi, ni.blk_addr);
  1436. dec_valid_node_count(sbi, inode);
  1437. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1438. recover_xnid:
  1439. /* 2: allocate new xattr nid */
  1440. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1441. f2fs_bug_on(sbi, 1);
  1442. remove_free_nid(NM_I(sbi), new_xnid);
  1443. get_node_info(sbi, new_xnid, &ni);
  1444. ni.ino = inode->i_ino;
  1445. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1446. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1447. /* 3: update xattr blkaddr */
  1448. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1449. set_node_addr(sbi, &ni, blkaddr, false);
  1450. update_inode_page(inode);
  1451. }
  1452. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1453. {
  1454. struct f2fs_inode *src, *dst;
  1455. nid_t ino = ino_of_node(page);
  1456. struct node_info old_ni, new_ni;
  1457. struct page *ipage;
  1458. get_node_info(sbi, ino, &old_ni);
  1459. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1460. return -EINVAL;
  1461. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1462. if (!ipage)
  1463. return -ENOMEM;
  1464. /* Should not use this inode from free nid list */
  1465. remove_free_nid(NM_I(sbi), ino);
  1466. SetPageUptodate(ipage);
  1467. fill_node_footer(ipage, ino, ino, 0, true);
  1468. src = F2FS_INODE(page);
  1469. dst = F2FS_INODE(ipage);
  1470. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1471. dst->i_size = 0;
  1472. dst->i_blocks = cpu_to_le64(1);
  1473. dst->i_links = cpu_to_le32(1);
  1474. dst->i_xattr_nid = 0;
  1475. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1476. new_ni = old_ni;
  1477. new_ni.ino = ino;
  1478. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1479. WARN_ON(1);
  1480. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1481. inc_valid_inode_count(sbi);
  1482. set_page_dirty(ipage);
  1483. f2fs_put_page(ipage, 1);
  1484. return 0;
  1485. }
  1486. int restore_node_summary(struct f2fs_sb_info *sbi,
  1487. unsigned int segno, struct f2fs_summary_block *sum)
  1488. {
  1489. struct f2fs_node *rn;
  1490. struct f2fs_summary *sum_entry;
  1491. block_t addr;
  1492. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  1493. int i, idx, last_offset, nrpages;
  1494. /* scan the node segment */
  1495. last_offset = sbi->blocks_per_seg;
  1496. addr = START_BLOCK(sbi, segno);
  1497. sum_entry = &sum->entries[0];
  1498. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  1499. nrpages = min(last_offset - i, bio_blocks);
  1500. /* readahead node pages */
  1501. ra_meta_pages(sbi, addr, nrpages, META_POR);
  1502. for (idx = addr; idx < addr + nrpages; idx++) {
  1503. struct page *page = get_meta_page(sbi, idx);
  1504. rn = F2FS_NODE(page);
  1505. sum_entry->nid = rn->footer.nid;
  1506. sum_entry->version = 0;
  1507. sum_entry->ofs_in_node = 0;
  1508. sum_entry++;
  1509. f2fs_put_page(page, 1);
  1510. }
  1511. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  1512. addr + nrpages);
  1513. }
  1514. return 0;
  1515. }
  1516. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1517. {
  1518. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1519. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1520. struct f2fs_summary_block *sum = curseg->sum_blk;
  1521. int i;
  1522. mutex_lock(&curseg->curseg_mutex);
  1523. for (i = 0; i < nats_in_cursum(sum); i++) {
  1524. struct nat_entry *ne;
  1525. struct f2fs_nat_entry raw_ne;
  1526. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1527. raw_ne = nat_in_journal(sum, i);
  1528. down_write(&nm_i->nat_tree_lock);
  1529. ne = __lookup_nat_cache(nm_i, nid);
  1530. if (!ne) {
  1531. ne = grab_nat_entry(nm_i, nid);
  1532. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1533. }
  1534. __set_nat_cache_dirty(nm_i, ne);
  1535. up_write(&nm_i->nat_tree_lock);
  1536. }
  1537. update_nats_in_cursum(sum, -i);
  1538. mutex_unlock(&curseg->curseg_mutex);
  1539. }
  1540. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  1541. struct list_head *head, int max)
  1542. {
  1543. struct nat_entry_set *cur;
  1544. if (nes->entry_cnt >= max)
  1545. goto add_out;
  1546. list_for_each_entry(cur, head, set_list) {
  1547. if (cur->entry_cnt >= nes->entry_cnt) {
  1548. list_add(&nes->set_list, cur->set_list.prev);
  1549. return;
  1550. }
  1551. }
  1552. add_out:
  1553. list_add_tail(&nes->set_list, head);
  1554. }
  1555. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  1556. struct nat_entry_set *set)
  1557. {
  1558. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1559. struct f2fs_summary_block *sum = curseg->sum_blk;
  1560. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  1561. bool to_journal = true;
  1562. struct f2fs_nat_block *nat_blk;
  1563. struct nat_entry *ne, *cur;
  1564. struct page *page = NULL;
  1565. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1566. /*
  1567. * there are two steps to flush nat entries:
  1568. * #1, flush nat entries to journal in current hot data summary block.
  1569. * #2, flush nat entries to nat page.
  1570. */
  1571. if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
  1572. to_journal = false;
  1573. if (to_journal) {
  1574. mutex_lock(&curseg->curseg_mutex);
  1575. } else {
  1576. page = get_next_nat_page(sbi, start_nid);
  1577. nat_blk = page_address(page);
  1578. f2fs_bug_on(sbi, !nat_blk);
  1579. }
  1580. /* flush dirty nats in nat entry set */
  1581. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  1582. struct f2fs_nat_entry *raw_ne;
  1583. nid_t nid = nat_get_nid(ne);
  1584. int offset;
  1585. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1586. continue;
  1587. if (to_journal) {
  1588. offset = lookup_journal_in_cursum(sum,
  1589. NAT_JOURNAL, nid, 1);
  1590. f2fs_bug_on(sbi, offset < 0);
  1591. raw_ne = &nat_in_journal(sum, offset);
  1592. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1593. } else {
  1594. raw_ne = &nat_blk->entries[nid - start_nid];
  1595. }
  1596. raw_nat_from_node_info(raw_ne, &ne->ni);
  1597. down_write(&NM_I(sbi)->nat_tree_lock);
  1598. nat_reset_flag(ne);
  1599. __clear_nat_cache_dirty(NM_I(sbi), ne);
  1600. up_write(&NM_I(sbi)->nat_tree_lock);
  1601. if (nat_get_blkaddr(ne) == NULL_ADDR)
  1602. add_free_nid(sbi, nid, false);
  1603. }
  1604. if (to_journal)
  1605. mutex_unlock(&curseg->curseg_mutex);
  1606. else
  1607. f2fs_put_page(page, 1);
  1608. f2fs_bug_on(sbi, set->entry_cnt);
  1609. down_write(&nm_i->nat_tree_lock);
  1610. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  1611. up_write(&nm_i->nat_tree_lock);
  1612. kmem_cache_free(nat_entry_set_slab, set);
  1613. }
  1614. /*
  1615. * This function is called during the checkpointing process.
  1616. */
  1617. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1618. {
  1619. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1620. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1621. struct f2fs_summary_block *sum = curseg->sum_blk;
  1622. struct nat_entry_set *setvec[SETVEC_SIZE];
  1623. struct nat_entry_set *set, *tmp;
  1624. unsigned int found;
  1625. nid_t set_idx = 0;
  1626. LIST_HEAD(sets);
  1627. if (!nm_i->dirty_nat_cnt)
  1628. return;
  1629. /*
  1630. * if there are no enough space in journal to store dirty nat
  1631. * entries, remove all entries from journal and merge them
  1632. * into nat entry set.
  1633. */
  1634. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  1635. remove_nats_in_journal(sbi);
  1636. down_write(&nm_i->nat_tree_lock);
  1637. while ((found = __gang_lookup_nat_set(nm_i,
  1638. set_idx, SETVEC_SIZE, setvec))) {
  1639. unsigned idx;
  1640. set_idx = setvec[found - 1]->set + 1;
  1641. for (idx = 0; idx < found; idx++)
  1642. __adjust_nat_entry_set(setvec[idx], &sets,
  1643. MAX_NAT_JENTRIES(sum));
  1644. }
  1645. up_write(&nm_i->nat_tree_lock);
  1646. /* flush dirty nats in nat entry set */
  1647. list_for_each_entry_safe(set, tmp, &sets, set_list)
  1648. __flush_nat_entry_set(sbi, set);
  1649. f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
  1650. }
  1651. static int init_node_manager(struct f2fs_sb_info *sbi)
  1652. {
  1653. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1654. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1655. unsigned char *version_bitmap;
  1656. unsigned int nat_segs, nat_blocks;
  1657. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1658. /* segment_count_nat includes pair segment so divide to 2. */
  1659. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1660. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1661. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1662. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1663. nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
  1664. nm_i->fcnt = 0;
  1665. nm_i->nat_cnt = 0;
  1666. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1667. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1668. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1669. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  1670. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  1671. INIT_LIST_HEAD(&nm_i->nat_entries);
  1672. mutex_init(&nm_i->build_lock);
  1673. spin_lock_init(&nm_i->free_nid_list_lock);
  1674. init_rwsem(&nm_i->nat_tree_lock);
  1675. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1676. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1677. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1678. if (!version_bitmap)
  1679. return -EFAULT;
  1680. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1681. GFP_KERNEL);
  1682. if (!nm_i->nat_bitmap)
  1683. return -ENOMEM;
  1684. return 0;
  1685. }
  1686. int build_node_manager(struct f2fs_sb_info *sbi)
  1687. {
  1688. int err;
  1689. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1690. if (!sbi->nm_info)
  1691. return -ENOMEM;
  1692. err = init_node_manager(sbi);
  1693. if (err)
  1694. return err;
  1695. build_free_nids(sbi);
  1696. return 0;
  1697. }
  1698. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1699. {
  1700. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1701. struct free_nid *i, *next_i;
  1702. struct nat_entry *natvec[NATVEC_SIZE];
  1703. struct nat_entry_set *setvec[SETVEC_SIZE];
  1704. nid_t nid = 0;
  1705. unsigned int found;
  1706. if (!nm_i)
  1707. return;
  1708. /* destroy free nid list */
  1709. spin_lock(&nm_i->free_nid_list_lock);
  1710. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1711. f2fs_bug_on(sbi, i->state == NID_ALLOC);
  1712. __del_from_free_nid_list(nm_i, i);
  1713. nm_i->fcnt--;
  1714. spin_unlock(&nm_i->free_nid_list_lock);
  1715. kmem_cache_free(free_nid_slab, i);
  1716. spin_lock(&nm_i->free_nid_list_lock);
  1717. }
  1718. f2fs_bug_on(sbi, nm_i->fcnt);
  1719. spin_unlock(&nm_i->free_nid_list_lock);
  1720. /* destroy nat cache */
  1721. down_write(&nm_i->nat_tree_lock);
  1722. while ((found = __gang_lookup_nat_cache(nm_i,
  1723. nid, NATVEC_SIZE, natvec))) {
  1724. unsigned idx;
  1725. nid = nat_get_nid(natvec[found - 1]) + 1;
  1726. for (idx = 0; idx < found; idx++)
  1727. __del_from_nat_cache(nm_i, natvec[idx]);
  1728. }
  1729. f2fs_bug_on(sbi, nm_i->nat_cnt);
  1730. /* destroy nat set cache */
  1731. nid = 0;
  1732. while ((found = __gang_lookup_nat_set(nm_i,
  1733. nid, SETVEC_SIZE, setvec))) {
  1734. unsigned idx;
  1735. nid = setvec[found - 1]->set + 1;
  1736. for (idx = 0; idx < found; idx++) {
  1737. /* entry_cnt is not zero, when cp_error was occurred */
  1738. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  1739. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  1740. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  1741. }
  1742. }
  1743. up_write(&nm_i->nat_tree_lock);
  1744. kfree(nm_i->nat_bitmap);
  1745. sbi->nm_info = NULL;
  1746. kfree(nm_i);
  1747. }
  1748. int __init create_node_manager_caches(void)
  1749. {
  1750. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1751. sizeof(struct nat_entry));
  1752. if (!nat_entry_slab)
  1753. goto fail;
  1754. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1755. sizeof(struct free_nid));
  1756. if (!free_nid_slab)
  1757. goto destroy_nat_entry;
  1758. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1759. sizeof(struct nat_entry_set));
  1760. if (!nat_entry_set_slab)
  1761. goto destroy_free_nid;
  1762. return 0;
  1763. destroy_free_nid:
  1764. kmem_cache_destroy(free_nid_slab);
  1765. destroy_nat_entry:
  1766. kmem_cache_destroy(nat_entry_slab);
  1767. fail:
  1768. return -ENOMEM;
  1769. }
  1770. void destroy_node_manager_caches(void)
  1771. {
  1772. kmem_cache_destroy(nat_entry_set_slab);
  1773. kmem_cache_destroy(free_nid_slab);
  1774. kmem_cache_destroy(nat_entry_slab);
  1775. }