inline.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. bool f2fs_may_inline(struct inode *inode)
  14. {
  15. if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
  16. return false;
  17. if (f2fs_is_atomic_file(inode))
  18. return false;
  19. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  20. return false;
  21. if (i_size_read(inode) > MAX_INLINE_DATA)
  22. return false;
  23. return true;
  24. }
  25. void read_inline_data(struct page *page, struct page *ipage)
  26. {
  27. void *src_addr, *dst_addr;
  28. if (PageUptodate(page))
  29. return;
  30. f2fs_bug_on(F2FS_P_SB(page), page->index);
  31. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  32. /* Copy the whole inline data block */
  33. src_addr = inline_data_addr(ipage);
  34. dst_addr = kmap_atomic(page);
  35. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  36. flush_dcache_page(page);
  37. kunmap_atomic(dst_addr);
  38. SetPageUptodate(page);
  39. }
  40. bool truncate_inline_inode(struct page *ipage, u64 from)
  41. {
  42. void *addr;
  43. if (from >= MAX_INLINE_DATA)
  44. return false;
  45. addr = inline_data_addr(ipage);
  46. f2fs_wait_on_page_writeback(ipage, NODE);
  47. memset(addr + from, 0, MAX_INLINE_DATA - from);
  48. return true;
  49. }
  50. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  51. {
  52. struct page *ipage;
  53. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  54. if (IS_ERR(ipage)) {
  55. unlock_page(page);
  56. return PTR_ERR(ipage);
  57. }
  58. if (!f2fs_has_inline_data(inode)) {
  59. f2fs_put_page(ipage, 1);
  60. return -EAGAIN;
  61. }
  62. if (page->index)
  63. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  64. else
  65. read_inline_data(page, ipage);
  66. SetPageUptodate(page);
  67. f2fs_put_page(ipage, 1);
  68. unlock_page(page);
  69. return 0;
  70. }
  71. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  72. {
  73. void *src_addr, *dst_addr;
  74. struct f2fs_io_info fio = {
  75. .type = DATA,
  76. .rw = WRITE_SYNC | REQ_PRIO,
  77. };
  78. int dirty, err;
  79. f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
  80. if (!f2fs_exist_data(dn->inode))
  81. goto clear_out;
  82. err = f2fs_reserve_block(dn, 0);
  83. if (err)
  84. return err;
  85. f2fs_wait_on_page_writeback(page, DATA);
  86. if (PageUptodate(page))
  87. goto no_update;
  88. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  89. /* Copy the whole inline data block */
  90. src_addr = inline_data_addr(dn->inode_page);
  91. dst_addr = kmap_atomic(page);
  92. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  93. flush_dcache_page(page);
  94. kunmap_atomic(dst_addr);
  95. SetPageUptodate(page);
  96. no_update:
  97. /* clear dirty state */
  98. dirty = clear_page_dirty_for_io(page);
  99. /* write data page to try to make data consistent */
  100. set_page_writeback(page);
  101. fio.blk_addr = dn->data_blkaddr;
  102. write_data_page(page, dn, &fio);
  103. set_data_blkaddr(dn);
  104. f2fs_update_extent_cache(dn);
  105. f2fs_wait_on_page_writeback(page, DATA);
  106. if (dirty)
  107. inode_dec_dirty_pages(dn->inode);
  108. /* this converted inline_data should be recovered. */
  109. set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
  110. /* clear inline data and flag after data writeback */
  111. truncate_inline_inode(dn->inode_page, 0);
  112. clear_out:
  113. stat_dec_inline_inode(dn->inode);
  114. f2fs_clear_inline_inode(dn->inode);
  115. sync_inode_page(dn);
  116. f2fs_put_dnode(dn);
  117. return 0;
  118. }
  119. int f2fs_convert_inline_inode(struct inode *inode)
  120. {
  121. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  122. struct dnode_of_data dn;
  123. struct page *ipage, *page;
  124. int err = 0;
  125. page = grab_cache_page(inode->i_mapping, 0);
  126. if (!page)
  127. return -ENOMEM;
  128. f2fs_lock_op(sbi);
  129. ipage = get_node_page(sbi, inode->i_ino);
  130. if (IS_ERR(ipage)) {
  131. err = PTR_ERR(ipage);
  132. goto out;
  133. }
  134. set_new_dnode(&dn, inode, ipage, ipage, 0);
  135. if (f2fs_has_inline_data(inode))
  136. err = f2fs_convert_inline_page(&dn, page);
  137. f2fs_put_dnode(&dn);
  138. out:
  139. f2fs_unlock_op(sbi);
  140. f2fs_put_page(page, 1);
  141. return err;
  142. }
  143. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  144. {
  145. void *src_addr, *dst_addr;
  146. struct dnode_of_data dn;
  147. int err;
  148. set_new_dnode(&dn, inode, NULL, NULL, 0);
  149. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  150. if (err)
  151. return err;
  152. if (!f2fs_has_inline_data(inode)) {
  153. f2fs_put_dnode(&dn);
  154. return -EAGAIN;
  155. }
  156. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  157. f2fs_wait_on_page_writeback(dn.inode_page, NODE);
  158. src_addr = kmap_atomic(page);
  159. dst_addr = inline_data_addr(dn.inode_page);
  160. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  161. kunmap_atomic(src_addr);
  162. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  163. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  164. sync_inode_page(&dn);
  165. f2fs_put_dnode(&dn);
  166. return 0;
  167. }
  168. bool recover_inline_data(struct inode *inode, struct page *npage)
  169. {
  170. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  171. struct f2fs_inode *ri = NULL;
  172. void *src_addr, *dst_addr;
  173. struct page *ipage;
  174. /*
  175. * The inline_data recovery policy is as follows.
  176. * [prev.] [next] of inline_data flag
  177. * o o -> recover inline_data
  178. * o x -> remove inline_data, and then recover data blocks
  179. * x o -> remove inline_data, and then recover inline_data
  180. * x x -> recover data blocks
  181. */
  182. if (IS_INODE(npage))
  183. ri = F2FS_INODE(npage);
  184. if (f2fs_has_inline_data(inode) &&
  185. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  186. process_inline:
  187. ipage = get_node_page(sbi, inode->i_ino);
  188. f2fs_bug_on(sbi, IS_ERR(ipage));
  189. f2fs_wait_on_page_writeback(ipage, NODE);
  190. src_addr = inline_data_addr(npage);
  191. dst_addr = inline_data_addr(ipage);
  192. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  193. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  194. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  195. update_inode(inode, ipage);
  196. f2fs_put_page(ipage, 1);
  197. return true;
  198. }
  199. if (f2fs_has_inline_data(inode)) {
  200. ipage = get_node_page(sbi, inode->i_ino);
  201. f2fs_bug_on(sbi, IS_ERR(ipage));
  202. truncate_inline_inode(ipage, 0);
  203. f2fs_clear_inline_inode(inode);
  204. update_inode(inode, ipage);
  205. f2fs_put_page(ipage, 1);
  206. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  207. truncate_blocks(inode, 0, false);
  208. goto process_inline;
  209. }
  210. return false;
  211. }
  212. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  213. struct qstr *name, struct page **res_page)
  214. {
  215. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  216. struct f2fs_inline_dentry *inline_dentry;
  217. struct f2fs_dir_entry *de;
  218. struct f2fs_dentry_ptr d;
  219. struct page *ipage;
  220. ipage = get_node_page(sbi, dir->i_ino);
  221. if (IS_ERR(ipage))
  222. return NULL;
  223. inline_dentry = inline_data_addr(ipage);
  224. make_dentry_ptr(&d, (void *)inline_dentry, 2);
  225. de = find_target_dentry(name, NULL, &d);
  226. unlock_page(ipage);
  227. if (de)
  228. *res_page = ipage;
  229. else
  230. f2fs_put_page(ipage, 0);
  231. /*
  232. * For the most part, it should be a bug when name_len is zero.
  233. * We stop here for figuring out where the bugs has occurred.
  234. */
  235. f2fs_bug_on(sbi, d.max < 0);
  236. return de;
  237. }
  238. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  239. struct page **p)
  240. {
  241. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  242. struct page *ipage;
  243. struct f2fs_dir_entry *de;
  244. struct f2fs_inline_dentry *dentry_blk;
  245. ipage = get_node_page(sbi, dir->i_ino);
  246. if (IS_ERR(ipage))
  247. return NULL;
  248. dentry_blk = inline_data_addr(ipage);
  249. de = &dentry_blk->dentry[1];
  250. *p = ipage;
  251. unlock_page(ipage);
  252. return de;
  253. }
  254. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  255. struct page *ipage)
  256. {
  257. struct f2fs_inline_dentry *dentry_blk;
  258. struct f2fs_dentry_ptr d;
  259. dentry_blk = inline_data_addr(ipage);
  260. make_dentry_ptr(&d, (void *)dentry_blk, 2);
  261. do_make_empty_dir(inode, parent, &d);
  262. set_page_dirty(ipage);
  263. /* update i_size to MAX_INLINE_DATA */
  264. if (i_size_read(inode) < MAX_INLINE_DATA) {
  265. i_size_write(inode, MAX_INLINE_DATA);
  266. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  267. }
  268. return 0;
  269. }
  270. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  271. struct f2fs_inline_dentry *inline_dentry)
  272. {
  273. struct page *page;
  274. struct dnode_of_data dn;
  275. struct f2fs_dentry_block *dentry_blk;
  276. int err;
  277. page = grab_cache_page(dir->i_mapping, 0);
  278. if (!page)
  279. return -ENOMEM;
  280. set_new_dnode(&dn, dir, ipage, NULL, 0);
  281. err = f2fs_reserve_block(&dn, 0);
  282. if (err)
  283. goto out;
  284. f2fs_wait_on_page_writeback(page, DATA);
  285. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  286. dentry_blk = kmap_atomic(page);
  287. /* copy data from inline dentry block to new dentry block */
  288. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  289. INLINE_DENTRY_BITMAP_SIZE);
  290. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  291. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  292. memcpy(dentry_blk->filename, inline_dentry->filename,
  293. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  294. kunmap_atomic(dentry_blk);
  295. SetPageUptodate(page);
  296. set_page_dirty(page);
  297. /* clear inline dir and flag after data writeback */
  298. truncate_inline_inode(ipage, 0);
  299. stat_dec_inline_dir(dir);
  300. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  301. if (i_size_read(dir) < PAGE_CACHE_SIZE) {
  302. i_size_write(dir, PAGE_CACHE_SIZE);
  303. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  304. }
  305. sync_inode_page(&dn);
  306. out:
  307. f2fs_put_page(page, 1);
  308. return err;
  309. }
  310. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  311. struct inode *inode, nid_t ino, umode_t mode)
  312. {
  313. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  314. struct page *ipage;
  315. unsigned int bit_pos;
  316. f2fs_hash_t name_hash;
  317. size_t namelen = name->len;
  318. struct f2fs_inline_dentry *dentry_blk = NULL;
  319. struct f2fs_dentry_ptr d;
  320. int slots = GET_DENTRY_SLOTS(namelen);
  321. struct page *page = NULL;
  322. int err = 0;
  323. ipage = get_node_page(sbi, dir->i_ino);
  324. if (IS_ERR(ipage))
  325. return PTR_ERR(ipage);
  326. dentry_blk = inline_data_addr(ipage);
  327. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  328. slots, NR_INLINE_DENTRY);
  329. if (bit_pos >= NR_INLINE_DENTRY) {
  330. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  331. if (!err)
  332. err = -EAGAIN;
  333. goto out;
  334. }
  335. if (inode) {
  336. down_write(&F2FS_I(inode)->i_sem);
  337. page = init_inode_metadata(inode, dir, name, ipage);
  338. if (IS_ERR(page)) {
  339. err = PTR_ERR(page);
  340. goto fail;
  341. }
  342. }
  343. f2fs_wait_on_page_writeback(ipage, NODE);
  344. name_hash = f2fs_dentry_hash(name);
  345. make_dentry_ptr(&d, (void *)dentry_blk, 2);
  346. f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
  347. set_page_dirty(ipage);
  348. /* we don't need to mark_inode_dirty now */
  349. if (inode) {
  350. F2FS_I(inode)->i_pino = dir->i_ino;
  351. update_inode(inode, page);
  352. f2fs_put_page(page, 1);
  353. }
  354. update_parent_metadata(dir, inode, 0);
  355. fail:
  356. if (inode)
  357. up_write(&F2FS_I(inode)->i_sem);
  358. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  359. update_inode(dir, ipage);
  360. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  361. }
  362. out:
  363. f2fs_put_page(ipage, 1);
  364. return err;
  365. }
  366. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  367. struct inode *dir, struct inode *inode)
  368. {
  369. struct f2fs_inline_dentry *inline_dentry;
  370. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  371. unsigned int bit_pos;
  372. int i;
  373. lock_page(page);
  374. f2fs_wait_on_page_writeback(page, NODE);
  375. inline_dentry = inline_data_addr(page);
  376. bit_pos = dentry - inline_dentry->dentry;
  377. for (i = 0; i < slots; i++)
  378. test_and_clear_bit_le(bit_pos + i,
  379. &inline_dentry->dentry_bitmap);
  380. set_page_dirty(page);
  381. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  382. if (inode)
  383. f2fs_drop_nlink(dir, inode, page);
  384. f2fs_put_page(page, 1);
  385. }
  386. bool f2fs_empty_inline_dir(struct inode *dir)
  387. {
  388. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  389. struct page *ipage;
  390. unsigned int bit_pos = 2;
  391. struct f2fs_inline_dentry *dentry_blk;
  392. ipage = get_node_page(sbi, dir->i_ino);
  393. if (IS_ERR(ipage))
  394. return false;
  395. dentry_blk = inline_data_addr(ipage);
  396. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  397. NR_INLINE_DENTRY,
  398. bit_pos);
  399. f2fs_put_page(ipage, 1);
  400. if (bit_pos < NR_INLINE_DENTRY)
  401. return false;
  402. return true;
  403. }
  404. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
  405. {
  406. struct inode *inode = file_inode(file);
  407. struct f2fs_inline_dentry *inline_dentry = NULL;
  408. struct page *ipage = NULL;
  409. struct f2fs_dentry_ptr d;
  410. if (ctx->pos == NR_INLINE_DENTRY)
  411. return 0;
  412. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  413. if (IS_ERR(ipage))
  414. return PTR_ERR(ipage);
  415. inline_dentry = inline_data_addr(ipage);
  416. make_dentry_ptr(&d, (void *)inline_dentry, 2);
  417. if (!f2fs_fill_dentries(ctx, &d, 0))
  418. ctx->pos = NR_INLINE_DENTRY;
  419. f2fs_put_page(ipage, 1);
  420. return 0;
  421. }