file.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include "trace.h"
  29. #include <trace/events/f2fs.h>
  30. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  31. struct vm_fault *vmf)
  32. {
  33. struct page *page = vmf->page;
  34. struct inode *inode = file_inode(vma->vm_file);
  35. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  36. struct dnode_of_data dn;
  37. int err;
  38. f2fs_balance_fs(sbi);
  39. sb_start_pagefault(inode->i_sb);
  40. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  41. /* block allocation */
  42. f2fs_lock_op(sbi);
  43. set_new_dnode(&dn, inode, NULL, NULL, 0);
  44. err = f2fs_reserve_block(&dn, page->index);
  45. if (err) {
  46. f2fs_unlock_op(sbi);
  47. goto out;
  48. }
  49. f2fs_put_dnode(&dn);
  50. f2fs_unlock_op(sbi);
  51. file_update_time(vma->vm_file);
  52. lock_page(page);
  53. if (unlikely(page->mapping != inode->i_mapping ||
  54. page_offset(page) > i_size_read(inode) ||
  55. !PageUptodate(page))) {
  56. unlock_page(page);
  57. err = -EFAULT;
  58. goto out;
  59. }
  60. /*
  61. * check to see if the page is mapped already (no holes)
  62. */
  63. if (PageMappedToDisk(page))
  64. goto mapped;
  65. /* page is wholly or partially inside EOF */
  66. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  67. unsigned offset;
  68. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  69. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  70. }
  71. set_page_dirty(page);
  72. SetPageUptodate(page);
  73. trace_f2fs_vm_page_mkwrite(page, DATA);
  74. mapped:
  75. /* fill the page */
  76. f2fs_wait_on_page_writeback(page, DATA);
  77. out:
  78. sb_end_pagefault(inode->i_sb);
  79. return block_page_mkwrite_return(err);
  80. }
  81. static const struct vm_operations_struct f2fs_file_vm_ops = {
  82. .fault = filemap_fault,
  83. .map_pages = filemap_map_pages,
  84. .page_mkwrite = f2fs_vm_page_mkwrite,
  85. };
  86. static int get_parent_ino(struct inode *inode, nid_t *pino)
  87. {
  88. struct dentry *dentry;
  89. inode = igrab(inode);
  90. dentry = d_find_any_alias(inode);
  91. iput(inode);
  92. if (!dentry)
  93. return 0;
  94. if (update_dent_inode(inode, &dentry->d_name)) {
  95. dput(dentry);
  96. return 0;
  97. }
  98. *pino = parent_ino(dentry);
  99. dput(dentry);
  100. return 1;
  101. }
  102. static inline bool need_do_checkpoint(struct inode *inode)
  103. {
  104. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  105. bool need_cp = false;
  106. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  107. need_cp = true;
  108. else if (file_wrong_pino(inode))
  109. need_cp = true;
  110. else if (!space_for_roll_forward(sbi))
  111. need_cp = true;
  112. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  113. need_cp = true;
  114. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  115. need_cp = true;
  116. else if (test_opt(sbi, FASTBOOT))
  117. need_cp = true;
  118. else if (sbi->active_logs == 2)
  119. need_cp = true;
  120. return need_cp;
  121. }
  122. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  123. {
  124. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  125. bool ret = false;
  126. /* But we need to avoid that there are some inode updates */
  127. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  128. ret = true;
  129. f2fs_put_page(i, 0);
  130. return ret;
  131. }
  132. static void try_to_fix_pino(struct inode *inode)
  133. {
  134. struct f2fs_inode_info *fi = F2FS_I(inode);
  135. nid_t pino;
  136. down_write(&fi->i_sem);
  137. fi->xattr_ver = 0;
  138. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  139. get_parent_ino(inode, &pino)) {
  140. fi->i_pino = pino;
  141. file_got_pino(inode);
  142. up_write(&fi->i_sem);
  143. mark_inode_dirty_sync(inode);
  144. f2fs_write_inode(inode, NULL);
  145. } else {
  146. up_write(&fi->i_sem);
  147. }
  148. }
  149. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  150. {
  151. struct inode *inode = file->f_mapping->host;
  152. struct f2fs_inode_info *fi = F2FS_I(inode);
  153. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  154. nid_t ino = inode->i_ino;
  155. int ret = 0;
  156. bool need_cp = false;
  157. struct writeback_control wbc = {
  158. .sync_mode = WB_SYNC_ALL,
  159. .nr_to_write = LONG_MAX,
  160. .for_reclaim = 0,
  161. };
  162. if (unlikely(f2fs_readonly(inode->i_sb)))
  163. return 0;
  164. trace_f2fs_sync_file_enter(inode);
  165. /* if fdatasync is triggered, let's do in-place-update */
  166. if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  167. set_inode_flag(fi, FI_NEED_IPU);
  168. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  169. clear_inode_flag(fi, FI_NEED_IPU);
  170. if (ret) {
  171. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  172. return ret;
  173. }
  174. /* if the inode is dirty, let's recover all the time */
  175. if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
  176. update_inode_page(inode);
  177. goto go_write;
  178. }
  179. /*
  180. * if there is no written data, don't waste time to write recovery info.
  181. */
  182. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  183. !exist_written_data(sbi, ino, APPEND_INO)) {
  184. /* it may call write_inode just prior to fsync */
  185. if (need_inode_page_update(sbi, ino))
  186. goto go_write;
  187. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  188. exist_written_data(sbi, ino, UPDATE_INO))
  189. goto flush_out;
  190. goto out;
  191. }
  192. go_write:
  193. /* guarantee free sections for fsync */
  194. f2fs_balance_fs(sbi);
  195. /*
  196. * Both of fdatasync() and fsync() are able to be recovered from
  197. * sudden-power-off.
  198. */
  199. down_read(&fi->i_sem);
  200. need_cp = need_do_checkpoint(inode);
  201. up_read(&fi->i_sem);
  202. if (need_cp) {
  203. /* all the dirty node pages should be flushed for POR */
  204. ret = f2fs_sync_fs(inode->i_sb, 1);
  205. /*
  206. * We've secured consistency through sync_fs. Following pino
  207. * will be used only for fsynced inodes after checkpoint.
  208. */
  209. try_to_fix_pino(inode);
  210. clear_inode_flag(fi, FI_APPEND_WRITE);
  211. clear_inode_flag(fi, FI_UPDATE_WRITE);
  212. goto out;
  213. }
  214. sync_nodes:
  215. sync_node_pages(sbi, ino, &wbc);
  216. /* if cp_error was enabled, we should avoid infinite loop */
  217. if (unlikely(f2fs_cp_error(sbi)))
  218. goto out;
  219. if (need_inode_block_update(sbi, ino)) {
  220. mark_inode_dirty_sync(inode);
  221. f2fs_write_inode(inode, NULL);
  222. goto sync_nodes;
  223. }
  224. ret = wait_on_node_pages_writeback(sbi, ino);
  225. if (ret)
  226. goto out;
  227. /* once recovery info is written, don't need to tack this */
  228. remove_dirty_inode(sbi, ino, APPEND_INO);
  229. clear_inode_flag(fi, FI_APPEND_WRITE);
  230. flush_out:
  231. remove_dirty_inode(sbi, ino, UPDATE_INO);
  232. clear_inode_flag(fi, FI_UPDATE_WRITE);
  233. ret = f2fs_issue_flush(sbi);
  234. out:
  235. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  236. f2fs_trace_ios(NULL, NULL, 1);
  237. return ret;
  238. }
  239. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  240. pgoff_t pgofs, int whence)
  241. {
  242. struct pagevec pvec;
  243. int nr_pages;
  244. if (whence != SEEK_DATA)
  245. return 0;
  246. /* find first dirty page index */
  247. pagevec_init(&pvec, 0);
  248. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  249. PAGECACHE_TAG_DIRTY, 1);
  250. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  251. pagevec_release(&pvec);
  252. return pgofs;
  253. }
  254. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  255. int whence)
  256. {
  257. switch (whence) {
  258. case SEEK_DATA:
  259. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  260. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  261. return true;
  262. break;
  263. case SEEK_HOLE:
  264. if (blkaddr == NULL_ADDR)
  265. return true;
  266. break;
  267. }
  268. return false;
  269. }
  270. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  271. {
  272. struct inode *inode = file->f_mapping->host;
  273. loff_t maxbytes = inode->i_sb->s_maxbytes;
  274. struct dnode_of_data dn;
  275. pgoff_t pgofs, end_offset, dirty;
  276. loff_t data_ofs = offset;
  277. loff_t isize;
  278. int err = 0;
  279. mutex_lock(&inode->i_mutex);
  280. isize = i_size_read(inode);
  281. if (offset >= isize)
  282. goto fail;
  283. /* handle inline data case */
  284. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  285. if (whence == SEEK_HOLE)
  286. data_ofs = isize;
  287. goto found;
  288. }
  289. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  290. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  291. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  292. set_new_dnode(&dn, inode, NULL, NULL, 0);
  293. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  294. if (err && err != -ENOENT) {
  295. goto fail;
  296. } else if (err == -ENOENT) {
  297. /* direct node does not exists */
  298. if (whence == SEEK_DATA) {
  299. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  300. F2FS_I(inode));
  301. continue;
  302. } else {
  303. goto found;
  304. }
  305. }
  306. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  307. /* find data/hole in dnode block */
  308. for (; dn.ofs_in_node < end_offset;
  309. dn.ofs_in_node++, pgofs++,
  310. data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
  311. block_t blkaddr;
  312. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  313. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  314. f2fs_put_dnode(&dn);
  315. goto found;
  316. }
  317. }
  318. f2fs_put_dnode(&dn);
  319. }
  320. if (whence == SEEK_DATA)
  321. goto fail;
  322. found:
  323. if (whence == SEEK_HOLE && data_ofs > isize)
  324. data_ofs = isize;
  325. mutex_unlock(&inode->i_mutex);
  326. return vfs_setpos(file, data_ofs, maxbytes);
  327. fail:
  328. mutex_unlock(&inode->i_mutex);
  329. return -ENXIO;
  330. }
  331. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  332. {
  333. struct inode *inode = file->f_mapping->host;
  334. loff_t maxbytes = inode->i_sb->s_maxbytes;
  335. switch (whence) {
  336. case SEEK_SET:
  337. case SEEK_CUR:
  338. case SEEK_END:
  339. return generic_file_llseek_size(file, offset, whence,
  340. maxbytes, i_size_read(inode));
  341. case SEEK_DATA:
  342. case SEEK_HOLE:
  343. if (offset < 0)
  344. return -ENXIO;
  345. return f2fs_seek_block(file, offset, whence);
  346. }
  347. return -EINVAL;
  348. }
  349. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  350. {
  351. struct inode *inode = file_inode(file);
  352. /* we don't need to use inline_data strictly */
  353. if (f2fs_has_inline_data(inode)) {
  354. int err = f2fs_convert_inline_inode(inode);
  355. if (err)
  356. return err;
  357. }
  358. file_accessed(file);
  359. vma->vm_ops = &f2fs_file_vm_ops;
  360. return 0;
  361. }
  362. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  363. {
  364. int nr_free = 0, ofs = dn->ofs_in_node;
  365. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  366. struct f2fs_node *raw_node;
  367. __le32 *addr;
  368. raw_node = F2FS_NODE(dn->node_page);
  369. addr = blkaddr_in_node(raw_node) + ofs;
  370. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  371. block_t blkaddr = le32_to_cpu(*addr);
  372. if (blkaddr == NULL_ADDR)
  373. continue;
  374. dn->data_blkaddr = NULL_ADDR;
  375. set_data_blkaddr(dn);
  376. f2fs_update_extent_cache(dn);
  377. invalidate_blocks(sbi, blkaddr);
  378. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  379. clear_inode_flag(F2FS_I(dn->inode),
  380. FI_FIRST_BLOCK_WRITTEN);
  381. nr_free++;
  382. }
  383. if (nr_free) {
  384. dec_valid_block_count(sbi, dn->inode, nr_free);
  385. set_page_dirty(dn->node_page);
  386. sync_inode_page(dn);
  387. }
  388. dn->ofs_in_node = ofs;
  389. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  390. dn->ofs_in_node, nr_free);
  391. return nr_free;
  392. }
  393. void truncate_data_blocks(struct dnode_of_data *dn)
  394. {
  395. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  396. }
  397. static int truncate_partial_data_page(struct inode *inode, u64 from,
  398. bool force)
  399. {
  400. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  401. struct page *page;
  402. if (!offset && !force)
  403. return 0;
  404. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, force);
  405. if (IS_ERR(page))
  406. return 0;
  407. lock_page(page);
  408. if (unlikely(!PageUptodate(page) ||
  409. page->mapping != inode->i_mapping))
  410. goto out;
  411. f2fs_wait_on_page_writeback(page, DATA);
  412. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  413. if (!force)
  414. set_page_dirty(page);
  415. out:
  416. f2fs_put_page(page, 1);
  417. return 0;
  418. }
  419. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  420. {
  421. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  422. unsigned int blocksize = inode->i_sb->s_blocksize;
  423. struct dnode_of_data dn;
  424. pgoff_t free_from;
  425. int count = 0, err = 0;
  426. struct page *ipage;
  427. bool truncate_page = false;
  428. trace_f2fs_truncate_blocks_enter(inode, from);
  429. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  430. if (lock)
  431. f2fs_lock_op(sbi);
  432. ipage = get_node_page(sbi, inode->i_ino);
  433. if (IS_ERR(ipage)) {
  434. err = PTR_ERR(ipage);
  435. goto out;
  436. }
  437. if (f2fs_has_inline_data(inode)) {
  438. if (truncate_inline_inode(ipage, from))
  439. set_page_dirty(ipage);
  440. f2fs_put_page(ipage, 1);
  441. truncate_page = true;
  442. goto out;
  443. }
  444. set_new_dnode(&dn, inode, ipage, NULL, 0);
  445. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  446. if (err) {
  447. if (err == -ENOENT)
  448. goto free_next;
  449. goto out;
  450. }
  451. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  452. count -= dn.ofs_in_node;
  453. f2fs_bug_on(sbi, count < 0);
  454. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  455. truncate_data_blocks_range(&dn, count);
  456. free_from += count;
  457. }
  458. f2fs_put_dnode(&dn);
  459. free_next:
  460. err = truncate_inode_blocks(inode, free_from);
  461. out:
  462. if (lock)
  463. f2fs_unlock_op(sbi);
  464. /* lastly zero out the first data page */
  465. if (!err)
  466. err = truncate_partial_data_page(inode, from, truncate_page);
  467. trace_f2fs_truncate_blocks_exit(inode, err);
  468. return err;
  469. }
  470. void f2fs_truncate(struct inode *inode)
  471. {
  472. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  473. S_ISLNK(inode->i_mode)))
  474. return;
  475. trace_f2fs_truncate(inode);
  476. /* we should check inline_data size */
  477. if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) {
  478. if (f2fs_convert_inline_inode(inode))
  479. return;
  480. }
  481. if (!truncate_blocks(inode, i_size_read(inode), true)) {
  482. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  483. mark_inode_dirty(inode);
  484. }
  485. }
  486. int f2fs_getattr(struct vfsmount *mnt,
  487. struct dentry *dentry, struct kstat *stat)
  488. {
  489. struct inode *inode = d_inode(dentry);
  490. generic_fillattr(inode, stat);
  491. stat->blocks <<= 3;
  492. return 0;
  493. }
  494. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  495. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  496. {
  497. struct f2fs_inode_info *fi = F2FS_I(inode);
  498. unsigned int ia_valid = attr->ia_valid;
  499. if (ia_valid & ATTR_UID)
  500. inode->i_uid = attr->ia_uid;
  501. if (ia_valid & ATTR_GID)
  502. inode->i_gid = attr->ia_gid;
  503. if (ia_valid & ATTR_ATIME)
  504. inode->i_atime = timespec_trunc(attr->ia_atime,
  505. inode->i_sb->s_time_gran);
  506. if (ia_valid & ATTR_MTIME)
  507. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  508. inode->i_sb->s_time_gran);
  509. if (ia_valid & ATTR_CTIME)
  510. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  511. inode->i_sb->s_time_gran);
  512. if (ia_valid & ATTR_MODE) {
  513. umode_t mode = attr->ia_mode;
  514. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  515. mode &= ~S_ISGID;
  516. set_acl_inode(fi, mode);
  517. }
  518. }
  519. #else
  520. #define __setattr_copy setattr_copy
  521. #endif
  522. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  523. {
  524. struct inode *inode = d_inode(dentry);
  525. struct f2fs_inode_info *fi = F2FS_I(inode);
  526. int err;
  527. err = inode_change_ok(inode, attr);
  528. if (err)
  529. return err;
  530. if (attr->ia_valid & ATTR_SIZE) {
  531. if (attr->ia_size != i_size_read(inode)) {
  532. truncate_setsize(inode, attr->ia_size);
  533. f2fs_truncate(inode);
  534. f2fs_balance_fs(F2FS_I_SB(inode));
  535. } else {
  536. /*
  537. * giving a chance to truncate blocks past EOF which
  538. * are fallocated with FALLOC_FL_KEEP_SIZE.
  539. */
  540. f2fs_truncate(inode);
  541. }
  542. }
  543. __setattr_copy(inode, attr);
  544. if (attr->ia_valid & ATTR_MODE) {
  545. err = posix_acl_chmod(inode, get_inode_mode(inode));
  546. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  547. inode->i_mode = fi->i_acl_mode;
  548. clear_inode_flag(fi, FI_ACL_MODE);
  549. }
  550. }
  551. mark_inode_dirty(inode);
  552. return err;
  553. }
  554. const struct inode_operations f2fs_file_inode_operations = {
  555. .getattr = f2fs_getattr,
  556. .setattr = f2fs_setattr,
  557. .get_acl = f2fs_get_acl,
  558. .set_acl = f2fs_set_acl,
  559. #ifdef CONFIG_F2FS_FS_XATTR
  560. .setxattr = generic_setxattr,
  561. .getxattr = generic_getxattr,
  562. .listxattr = f2fs_listxattr,
  563. .removexattr = generic_removexattr,
  564. #endif
  565. .fiemap = f2fs_fiemap,
  566. };
  567. static void fill_zero(struct inode *inode, pgoff_t index,
  568. loff_t start, loff_t len)
  569. {
  570. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  571. struct page *page;
  572. if (!len)
  573. return;
  574. f2fs_balance_fs(sbi);
  575. f2fs_lock_op(sbi);
  576. page = get_new_data_page(inode, NULL, index, false);
  577. f2fs_unlock_op(sbi);
  578. if (!IS_ERR(page)) {
  579. f2fs_wait_on_page_writeback(page, DATA);
  580. zero_user(page, start, len);
  581. set_page_dirty(page);
  582. f2fs_put_page(page, 1);
  583. }
  584. }
  585. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  586. {
  587. pgoff_t index;
  588. int err;
  589. for (index = pg_start; index < pg_end; index++) {
  590. struct dnode_of_data dn;
  591. set_new_dnode(&dn, inode, NULL, NULL, 0);
  592. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  593. if (err) {
  594. if (err == -ENOENT)
  595. continue;
  596. return err;
  597. }
  598. if (dn.data_blkaddr != NULL_ADDR)
  599. truncate_data_blocks_range(&dn, 1);
  600. f2fs_put_dnode(&dn);
  601. }
  602. return 0;
  603. }
  604. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  605. {
  606. pgoff_t pg_start, pg_end;
  607. loff_t off_start, off_end;
  608. int ret = 0;
  609. if (!S_ISREG(inode->i_mode))
  610. return -EOPNOTSUPP;
  611. /* skip punching hole beyond i_size */
  612. if (offset >= inode->i_size)
  613. return ret;
  614. if (f2fs_has_inline_data(inode)) {
  615. ret = f2fs_convert_inline_inode(inode);
  616. if (ret)
  617. return ret;
  618. }
  619. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  620. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  621. off_start = offset & (PAGE_CACHE_SIZE - 1);
  622. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  623. if (pg_start == pg_end) {
  624. fill_zero(inode, pg_start, off_start,
  625. off_end - off_start);
  626. } else {
  627. if (off_start)
  628. fill_zero(inode, pg_start++, off_start,
  629. PAGE_CACHE_SIZE - off_start);
  630. if (off_end)
  631. fill_zero(inode, pg_end, 0, off_end);
  632. if (pg_start < pg_end) {
  633. struct address_space *mapping = inode->i_mapping;
  634. loff_t blk_start, blk_end;
  635. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  636. f2fs_balance_fs(sbi);
  637. blk_start = pg_start << PAGE_CACHE_SHIFT;
  638. blk_end = pg_end << PAGE_CACHE_SHIFT;
  639. truncate_inode_pages_range(mapping, blk_start,
  640. blk_end - 1);
  641. f2fs_lock_op(sbi);
  642. ret = truncate_hole(inode, pg_start, pg_end);
  643. f2fs_unlock_op(sbi);
  644. }
  645. }
  646. return ret;
  647. }
  648. static int expand_inode_data(struct inode *inode, loff_t offset,
  649. loff_t len, int mode)
  650. {
  651. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  652. pgoff_t index, pg_start, pg_end;
  653. loff_t new_size = i_size_read(inode);
  654. loff_t off_start, off_end;
  655. int ret = 0;
  656. f2fs_balance_fs(sbi);
  657. ret = inode_newsize_ok(inode, (len + offset));
  658. if (ret)
  659. return ret;
  660. if (f2fs_has_inline_data(inode)) {
  661. ret = f2fs_convert_inline_inode(inode);
  662. if (ret)
  663. return ret;
  664. }
  665. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  666. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  667. off_start = offset & (PAGE_CACHE_SIZE - 1);
  668. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  669. f2fs_lock_op(sbi);
  670. for (index = pg_start; index <= pg_end; index++) {
  671. struct dnode_of_data dn;
  672. if (index == pg_end && !off_end)
  673. goto noalloc;
  674. set_new_dnode(&dn, inode, NULL, NULL, 0);
  675. ret = f2fs_reserve_block(&dn, index);
  676. if (ret)
  677. break;
  678. noalloc:
  679. if (pg_start == pg_end)
  680. new_size = offset + len;
  681. else if (index == pg_start && off_start)
  682. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  683. else if (index == pg_end)
  684. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  685. else
  686. new_size += PAGE_CACHE_SIZE;
  687. }
  688. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  689. i_size_read(inode) < new_size) {
  690. i_size_write(inode, new_size);
  691. mark_inode_dirty(inode);
  692. update_inode_page(inode);
  693. }
  694. f2fs_unlock_op(sbi);
  695. return ret;
  696. }
  697. static long f2fs_fallocate(struct file *file, int mode,
  698. loff_t offset, loff_t len)
  699. {
  700. struct inode *inode = file_inode(file);
  701. long ret;
  702. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  703. return -EOPNOTSUPP;
  704. mutex_lock(&inode->i_mutex);
  705. if (mode & FALLOC_FL_PUNCH_HOLE)
  706. ret = punch_hole(inode, offset, len);
  707. else
  708. ret = expand_inode_data(inode, offset, len, mode);
  709. if (!ret) {
  710. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  711. mark_inode_dirty(inode);
  712. }
  713. mutex_unlock(&inode->i_mutex);
  714. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  715. return ret;
  716. }
  717. static int f2fs_release_file(struct inode *inode, struct file *filp)
  718. {
  719. /* some remained atomic pages should discarded */
  720. if (f2fs_is_atomic_file(inode))
  721. commit_inmem_pages(inode, true);
  722. if (f2fs_is_volatile_file(inode)) {
  723. set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  724. filemap_fdatawrite(inode->i_mapping);
  725. clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  726. }
  727. return 0;
  728. }
  729. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  730. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  731. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  732. {
  733. if (S_ISDIR(mode))
  734. return flags;
  735. else if (S_ISREG(mode))
  736. return flags & F2FS_REG_FLMASK;
  737. else
  738. return flags & F2FS_OTHER_FLMASK;
  739. }
  740. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  741. {
  742. struct inode *inode = file_inode(filp);
  743. struct f2fs_inode_info *fi = F2FS_I(inode);
  744. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  745. return put_user(flags, (int __user *)arg);
  746. }
  747. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  748. {
  749. struct inode *inode = file_inode(filp);
  750. struct f2fs_inode_info *fi = F2FS_I(inode);
  751. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  752. unsigned int oldflags;
  753. int ret;
  754. ret = mnt_want_write_file(filp);
  755. if (ret)
  756. return ret;
  757. if (!inode_owner_or_capable(inode)) {
  758. ret = -EACCES;
  759. goto out;
  760. }
  761. if (get_user(flags, (int __user *)arg)) {
  762. ret = -EFAULT;
  763. goto out;
  764. }
  765. flags = f2fs_mask_flags(inode->i_mode, flags);
  766. mutex_lock(&inode->i_mutex);
  767. oldflags = fi->i_flags;
  768. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  769. if (!capable(CAP_LINUX_IMMUTABLE)) {
  770. mutex_unlock(&inode->i_mutex);
  771. ret = -EPERM;
  772. goto out;
  773. }
  774. }
  775. flags = flags & FS_FL_USER_MODIFIABLE;
  776. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  777. fi->i_flags = flags;
  778. mutex_unlock(&inode->i_mutex);
  779. f2fs_set_inode_flags(inode);
  780. inode->i_ctime = CURRENT_TIME;
  781. mark_inode_dirty(inode);
  782. out:
  783. mnt_drop_write_file(filp);
  784. return ret;
  785. }
  786. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  787. {
  788. struct inode *inode = file_inode(filp);
  789. return put_user(inode->i_generation, (int __user *)arg);
  790. }
  791. static int f2fs_ioc_start_atomic_write(struct file *filp)
  792. {
  793. struct inode *inode = file_inode(filp);
  794. if (!inode_owner_or_capable(inode))
  795. return -EACCES;
  796. f2fs_balance_fs(F2FS_I_SB(inode));
  797. if (f2fs_is_atomic_file(inode))
  798. return 0;
  799. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  800. return f2fs_convert_inline_inode(inode);
  801. }
  802. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  803. {
  804. struct inode *inode = file_inode(filp);
  805. int ret;
  806. if (!inode_owner_or_capable(inode))
  807. return -EACCES;
  808. if (f2fs_is_volatile_file(inode))
  809. return 0;
  810. ret = mnt_want_write_file(filp);
  811. if (ret)
  812. return ret;
  813. if (f2fs_is_atomic_file(inode))
  814. commit_inmem_pages(inode, false);
  815. ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
  816. mnt_drop_write_file(filp);
  817. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  818. return ret;
  819. }
  820. static int f2fs_ioc_start_volatile_write(struct file *filp)
  821. {
  822. struct inode *inode = file_inode(filp);
  823. if (!inode_owner_or_capable(inode))
  824. return -EACCES;
  825. if (f2fs_is_volatile_file(inode))
  826. return 0;
  827. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  828. return f2fs_convert_inline_inode(inode);
  829. }
  830. static int f2fs_ioc_release_volatile_write(struct file *filp)
  831. {
  832. struct inode *inode = file_inode(filp);
  833. if (!inode_owner_or_capable(inode))
  834. return -EACCES;
  835. if (!f2fs_is_volatile_file(inode))
  836. return 0;
  837. if (!f2fs_is_first_block_written(inode))
  838. return truncate_partial_data_page(inode, 0, true);
  839. punch_hole(inode, 0, F2FS_BLKSIZE);
  840. return 0;
  841. }
  842. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  843. {
  844. struct inode *inode = file_inode(filp);
  845. int ret;
  846. if (!inode_owner_or_capable(inode))
  847. return -EACCES;
  848. ret = mnt_want_write_file(filp);
  849. if (ret)
  850. return ret;
  851. f2fs_balance_fs(F2FS_I_SB(inode));
  852. if (f2fs_is_atomic_file(inode)) {
  853. commit_inmem_pages(inode, false);
  854. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  855. }
  856. if (f2fs_is_volatile_file(inode)) {
  857. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  858. filemap_fdatawrite(inode->i_mapping);
  859. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  860. }
  861. mnt_drop_write_file(filp);
  862. return ret;
  863. }
  864. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  865. {
  866. struct inode *inode = file_inode(filp);
  867. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  868. struct super_block *sb = sbi->sb;
  869. __u32 in;
  870. if (!capable(CAP_SYS_ADMIN))
  871. return -EPERM;
  872. if (get_user(in, (__u32 __user *)arg))
  873. return -EFAULT;
  874. switch (in) {
  875. case F2FS_GOING_DOWN_FULLSYNC:
  876. sb = freeze_bdev(sb->s_bdev);
  877. if (sb && !IS_ERR(sb)) {
  878. f2fs_stop_checkpoint(sbi);
  879. thaw_bdev(sb->s_bdev, sb);
  880. }
  881. break;
  882. case F2FS_GOING_DOWN_METASYNC:
  883. /* do checkpoint only */
  884. f2fs_sync_fs(sb, 1);
  885. f2fs_stop_checkpoint(sbi);
  886. break;
  887. case F2FS_GOING_DOWN_NOSYNC:
  888. f2fs_stop_checkpoint(sbi);
  889. break;
  890. default:
  891. return -EINVAL;
  892. }
  893. return 0;
  894. }
  895. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  896. {
  897. struct inode *inode = file_inode(filp);
  898. struct super_block *sb = inode->i_sb;
  899. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  900. struct fstrim_range range;
  901. int ret;
  902. if (!capable(CAP_SYS_ADMIN))
  903. return -EPERM;
  904. if (!blk_queue_discard(q))
  905. return -EOPNOTSUPP;
  906. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  907. sizeof(range)))
  908. return -EFAULT;
  909. range.minlen = max((unsigned int)range.minlen,
  910. q->limits.discard_granularity);
  911. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  912. if (ret < 0)
  913. return ret;
  914. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  915. sizeof(range)))
  916. return -EFAULT;
  917. return 0;
  918. }
  919. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  920. {
  921. switch (cmd) {
  922. case F2FS_IOC_GETFLAGS:
  923. return f2fs_ioc_getflags(filp, arg);
  924. case F2FS_IOC_SETFLAGS:
  925. return f2fs_ioc_setflags(filp, arg);
  926. case F2FS_IOC_GETVERSION:
  927. return f2fs_ioc_getversion(filp, arg);
  928. case F2FS_IOC_START_ATOMIC_WRITE:
  929. return f2fs_ioc_start_atomic_write(filp);
  930. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  931. return f2fs_ioc_commit_atomic_write(filp);
  932. case F2FS_IOC_START_VOLATILE_WRITE:
  933. return f2fs_ioc_start_volatile_write(filp);
  934. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  935. return f2fs_ioc_release_volatile_write(filp);
  936. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  937. return f2fs_ioc_abort_volatile_write(filp);
  938. case F2FS_IOC_SHUTDOWN:
  939. return f2fs_ioc_shutdown(filp, arg);
  940. case FITRIM:
  941. return f2fs_ioc_fitrim(filp, arg);
  942. default:
  943. return -ENOTTY;
  944. }
  945. }
  946. #ifdef CONFIG_COMPAT
  947. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  948. {
  949. switch (cmd) {
  950. case F2FS_IOC32_GETFLAGS:
  951. cmd = F2FS_IOC_GETFLAGS;
  952. break;
  953. case F2FS_IOC32_SETFLAGS:
  954. cmd = F2FS_IOC_SETFLAGS;
  955. break;
  956. default:
  957. return -ENOIOCTLCMD;
  958. }
  959. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  960. }
  961. #endif
  962. const struct file_operations f2fs_file_operations = {
  963. .llseek = f2fs_llseek,
  964. .read_iter = generic_file_read_iter,
  965. .write_iter = generic_file_write_iter,
  966. .open = generic_file_open,
  967. .release = f2fs_release_file,
  968. .mmap = f2fs_file_mmap,
  969. .fsync = f2fs_sync_file,
  970. .fallocate = f2fs_fallocate,
  971. .unlocked_ioctl = f2fs_ioctl,
  972. #ifdef CONFIG_COMPAT
  973. .compat_ioctl = f2fs_compat_ioctl,
  974. #endif
  975. .splice_read = generic_file_splice_read,
  976. .splice_write = iter_file_splice_write,
  977. };