data.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/bio.h>
  19. #include <linux/prefetch.h>
  20. #include <linux/uio.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include "trace.h"
  25. #include <trace/events/f2fs.h>
  26. static struct kmem_cache *extent_tree_slab;
  27. static struct kmem_cache *extent_node_slab;
  28. static void f2fs_read_end_io(struct bio *bio, int err)
  29. {
  30. struct bio_vec *bvec;
  31. int i;
  32. bio_for_each_segment_all(bvec, bio, i) {
  33. struct page *page = bvec->bv_page;
  34. if (!err) {
  35. SetPageUptodate(page);
  36. } else {
  37. ClearPageUptodate(page);
  38. SetPageError(page);
  39. }
  40. unlock_page(page);
  41. }
  42. bio_put(bio);
  43. }
  44. static void f2fs_write_end_io(struct bio *bio, int err)
  45. {
  46. struct f2fs_sb_info *sbi = bio->bi_private;
  47. struct bio_vec *bvec;
  48. int i;
  49. bio_for_each_segment_all(bvec, bio, i) {
  50. struct page *page = bvec->bv_page;
  51. if (unlikely(err)) {
  52. set_page_dirty(page);
  53. set_bit(AS_EIO, &page->mapping->flags);
  54. f2fs_stop_checkpoint(sbi);
  55. }
  56. end_page_writeback(page);
  57. dec_page_count(sbi, F2FS_WRITEBACK);
  58. }
  59. if (!get_pages(sbi, F2FS_WRITEBACK) &&
  60. !list_empty(&sbi->cp_wait.task_list))
  61. wake_up(&sbi->cp_wait);
  62. bio_put(bio);
  63. }
  64. /*
  65. * Low-level block read/write IO operations.
  66. */
  67. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  68. int npages, bool is_read)
  69. {
  70. struct bio *bio;
  71. /* No failure on bio allocation */
  72. bio = bio_alloc(GFP_NOIO, npages);
  73. bio->bi_bdev = sbi->sb->s_bdev;
  74. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  75. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  76. bio->bi_private = sbi;
  77. return bio;
  78. }
  79. static void __submit_merged_bio(struct f2fs_bio_info *io)
  80. {
  81. struct f2fs_io_info *fio = &io->fio;
  82. if (!io->bio)
  83. return;
  84. if (is_read_io(fio->rw))
  85. trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
  86. else
  87. trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
  88. submit_bio(fio->rw, io->bio);
  89. io->bio = NULL;
  90. }
  91. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  92. enum page_type type, int rw)
  93. {
  94. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  95. struct f2fs_bio_info *io;
  96. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  97. down_write(&io->io_rwsem);
  98. /* change META to META_FLUSH in the checkpoint procedure */
  99. if (type >= META_FLUSH) {
  100. io->fio.type = META_FLUSH;
  101. if (test_opt(sbi, NOBARRIER))
  102. io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
  103. else
  104. io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
  105. }
  106. __submit_merged_bio(io);
  107. up_write(&io->io_rwsem);
  108. }
  109. /*
  110. * Fill the locked page with data located in the block address.
  111. * Return unlocked page.
  112. */
  113. int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
  114. struct f2fs_io_info *fio)
  115. {
  116. struct bio *bio;
  117. trace_f2fs_submit_page_bio(page, fio);
  118. f2fs_trace_ios(page, fio, 0);
  119. /* Allocate a new bio */
  120. bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
  121. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  122. bio_put(bio);
  123. f2fs_put_page(page, 1);
  124. return -EFAULT;
  125. }
  126. submit_bio(fio->rw, bio);
  127. return 0;
  128. }
  129. void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
  130. struct f2fs_io_info *fio)
  131. {
  132. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  133. struct f2fs_bio_info *io;
  134. bool is_read = is_read_io(fio->rw);
  135. io = is_read ? &sbi->read_io : &sbi->write_io[btype];
  136. verify_block_addr(sbi, fio->blk_addr);
  137. down_write(&io->io_rwsem);
  138. if (!is_read)
  139. inc_page_count(sbi, F2FS_WRITEBACK);
  140. if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
  141. io->fio.rw != fio->rw))
  142. __submit_merged_bio(io);
  143. alloc_new:
  144. if (io->bio == NULL) {
  145. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  146. io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
  147. io->fio = *fio;
  148. }
  149. if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
  150. PAGE_CACHE_SIZE) {
  151. __submit_merged_bio(io);
  152. goto alloc_new;
  153. }
  154. io->last_block_in_bio = fio->blk_addr;
  155. f2fs_trace_ios(page, fio, 0);
  156. up_write(&io->io_rwsem);
  157. trace_f2fs_submit_page_mbio(page, fio);
  158. }
  159. /*
  160. * Lock ordering for the change of data block address:
  161. * ->data_page
  162. * ->node_page
  163. * update block addresses in the node page
  164. */
  165. void set_data_blkaddr(struct dnode_of_data *dn)
  166. {
  167. struct f2fs_node *rn;
  168. __le32 *addr_array;
  169. struct page *node_page = dn->node_page;
  170. unsigned int ofs_in_node = dn->ofs_in_node;
  171. f2fs_wait_on_page_writeback(node_page, NODE);
  172. rn = F2FS_NODE(node_page);
  173. /* Get physical address of data block */
  174. addr_array = blkaddr_in_node(rn);
  175. addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  176. set_page_dirty(node_page);
  177. }
  178. int reserve_new_block(struct dnode_of_data *dn)
  179. {
  180. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  181. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  182. return -EPERM;
  183. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  184. return -ENOSPC;
  185. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  186. dn->data_blkaddr = NEW_ADDR;
  187. set_data_blkaddr(dn);
  188. mark_inode_dirty(dn->inode);
  189. sync_inode_page(dn);
  190. return 0;
  191. }
  192. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  193. {
  194. bool need_put = dn->inode_page ? false : true;
  195. int err;
  196. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  197. if (err)
  198. return err;
  199. if (dn->data_blkaddr == NULL_ADDR)
  200. err = reserve_new_block(dn);
  201. if (err || need_put)
  202. f2fs_put_dnode(dn);
  203. return err;
  204. }
  205. static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
  206. struct extent_info *ei, struct buffer_head *bh_result)
  207. {
  208. unsigned int blkbits = sb->s_blocksize_bits;
  209. size_t max_size = bh_result->b_size;
  210. size_t mapped_size;
  211. clear_buffer_new(bh_result);
  212. map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
  213. mapped_size = (ei->fofs + ei->len - pgofs) << blkbits;
  214. bh_result->b_size = min(max_size, mapped_size);
  215. }
  216. static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
  217. struct extent_info *ei)
  218. {
  219. struct f2fs_inode_info *fi = F2FS_I(inode);
  220. pgoff_t start_fofs, end_fofs;
  221. block_t start_blkaddr;
  222. read_lock(&fi->ext_lock);
  223. if (fi->ext.len == 0) {
  224. read_unlock(&fi->ext_lock);
  225. return false;
  226. }
  227. stat_inc_total_hit(inode->i_sb);
  228. start_fofs = fi->ext.fofs;
  229. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  230. start_blkaddr = fi->ext.blk;
  231. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  232. *ei = fi->ext;
  233. stat_inc_read_hit(inode->i_sb);
  234. read_unlock(&fi->ext_lock);
  235. return true;
  236. }
  237. read_unlock(&fi->ext_lock);
  238. return false;
  239. }
  240. static bool update_extent_info(struct inode *inode, pgoff_t fofs,
  241. block_t blkaddr)
  242. {
  243. struct f2fs_inode_info *fi = F2FS_I(inode);
  244. pgoff_t start_fofs, end_fofs;
  245. block_t start_blkaddr, end_blkaddr;
  246. int need_update = true;
  247. write_lock(&fi->ext_lock);
  248. start_fofs = fi->ext.fofs;
  249. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  250. start_blkaddr = fi->ext.blk;
  251. end_blkaddr = fi->ext.blk + fi->ext.len - 1;
  252. /* Drop and initialize the matched extent */
  253. if (fi->ext.len == 1 && fofs == start_fofs)
  254. fi->ext.len = 0;
  255. /* Initial extent */
  256. if (fi->ext.len == 0) {
  257. if (blkaddr != NULL_ADDR) {
  258. fi->ext.fofs = fofs;
  259. fi->ext.blk = blkaddr;
  260. fi->ext.len = 1;
  261. }
  262. goto end_update;
  263. }
  264. /* Front merge */
  265. if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
  266. fi->ext.fofs--;
  267. fi->ext.blk--;
  268. fi->ext.len++;
  269. goto end_update;
  270. }
  271. /* Back merge */
  272. if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
  273. fi->ext.len++;
  274. goto end_update;
  275. }
  276. /* Split the existing extent */
  277. if (fi->ext.len > 1 &&
  278. fofs >= start_fofs && fofs <= end_fofs) {
  279. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  280. fi->ext.len = fofs - start_fofs;
  281. } else {
  282. fi->ext.fofs = fofs + 1;
  283. fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
  284. fi->ext.len -= fofs - start_fofs + 1;
  285. }
  286. } else {
  287. need_update = false;
  288. }
  289. /* Finally, if the extent is very fragmented, let's drop the cache. */
  290. if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
  291. fi->ext.len = 0;
  292. set_inode_flag(fi, FI_NO_EXTENT);
  293. need_update = true;
  294. }
  295. end_update:
  296. write_unlock(&fi->ext_lock);
  297. return need_update;
  298. }
  299. static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
  300. struct extent_tree *et, struct extent_info *ei,
  301. struct rb_node *parent, struct rb_node **p)
  302. {
  303. struct extent_node *en;
  304. en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
  305. if (!en)
  306. return NULL;
  307. en->ei = *ei;
  308. INIT_LIST_HEAD(&en->list);
  309. rb_link_node(&en->rb_node, parent, p);
  310. rb_insert_color(&en->rb_node, &et->root);
  311. et->count++;
  312. atomic_inc(&sbi->total_ext_node);
  313. return en;
  314. }
  315. static void __detach_extent_node(struct f2fs_sb_info *sbi,
  316. struct extent_tree *et, struct extent_node *en)
  317. {
  318. rb_erase(&en->rb_node, &et->root);
  319. et->count--;
  320. atomic_dec(&sbi->total_ext_node);
  321. if (et->cached_en == en)
  322. et->cached_en = NULL;
  323. }
  324. static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
  325. nid_t ino)
  326. {
  327. struct extent_tree *et;
  328. down_read(&sbi->extent_tree_lock);
  329. et = radix_tree_lookup(&sbi->extent_tree_root, ino);
  330. if (!et) {
  331. up_read(&sbi->extent_tree_lock);
  332. return NULL;
  333. }
  334. atomic_inc(&et->refcount);
  335. up_read(&sbi->extent_tree_lock);
  336. return et;
  337. }
  338. static struct extent_tree *__grab_extent_tree(struct inode *inode)
  339. {
  340. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  341. struct extent_tree *et;
  342. nid_t ino = inode->i_ino;
  343. down_write(&sbi->extent_tree_lock);
  344. et = radix_tree_lookup(&sbi->extent_tree_root, ino);
  345. if (!et) {
  346. et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
  347. f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
  348. memset(et, 0, sizeof(struct extent_tree));
  349. et->ino = ino;
  350. et->root = RB_ROOT;
  351. et->cached_en = NULL;
  352. rwlock_init(&et->lock);
  353. atomic_set(&et->refcount, 0);
  354. et->count = 0;
  355. sbi->total_ext_tree++;
  356. }
  357. atomic_inc(&et->refcount);
  358. up_write(&sbi->extent_tree_lock);
  359. return et;
  360. }
  361. static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
  362. unsigned int fofs)
  363. {
  364. struct rb_node *node = et->root.rb_node;
  365. struct extent_node *en;
  366. if (et->cached_en) {
  367. struct extent_info *cei = &et->cached_en->ei;
  368. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
  369. return et->cached_en;
  370. }
  371. while (node) {
  372. en = rb_entry(node, struct extent_node, rb_node);
  373. if (fofs < en->ei.fofs) {
  374. node = node->rb_left;
  375. } else if (fofs >= en->ei.fofs + en->ei.len) {
  376. node = node->rb_right;
  377. } else {
  378. et->cached_en = en;
  379. return en;
  380. }
  381. }
  382. return NULL;
  383. }
  384. static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
  385. struct extent_tree *et, struct extent_node *en)
  386. {
  387. struct extent_node *prev;
  388. struct rb_node *node;
  389. node = rb_prev(&en->rb_node);
  390. if (!node)
  391. return NULL;
  392. prev = rb_entry(node, struct extent_node, rb_node);
  393. if (__is_back_mergeable(&en->ei, &prev->ei)) {
  394. en->ei.fofs = prev->ei.fofs;
  395. en->ei.blk = prev->ei.blk;
  396. en->ei.len += prev->ei.len;
  397. __detach_extent_node(sbi, et, prev);
  398. return prev;
  399. }
  400. return NULL;
  401. }
  402. static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
  403. struct extent_tree *et, struct extent_node *en)
  404. {
  405. struct extent_node *next;
  406. struct rb_node *node;
  407. node = rb_next(&en->rb_node);
  408. if (!node)
  409. return NULL;
  410. next = rb_entry(node, struct extent_node, rb_node);
  411. if (__is_front_mergeable(&en->ei, &next->ei)) {
  412. en->ei.len += next->ei.len;
  413. __detach_extent_node(sbi, et, next);
  414. return next;
  415. }
  416. return NULL;
  417. }
  418. static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
  419. struct extent_tree *et, struct extent_info *ei,
  420. struct extent_node **den)
  421. {
  422. struct rb_node **p = &et->root.rb_node;
  423. struct rb_node *parent = NULL;
  424. struct extent_node *en;
  425. while (*p) {
  426. parent = *p;
  427. en = rb_entry(parent, struct extent_node, rb_node);
  428. if (ei->fofs < en->ei.fofs) {
  429. if (__is_front_mergeable(ei, &en->ei)) {
  430. f2fs_bug_on(sbi, !den);
  431. en->ei.fofs = ei->fofs;
  432. en->ei.blk = ei->blk;
  433. en->ei.len += ei->len;
  434. *den = __try_back_merge(sbi, et, en);
  435. return en;
  436. }
  437. p = &(*p)->rb_left;
  438. } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
  439. if (__is_back_mergeable(ei, &en->ei)) {
  440. f2fs_bug_on(sbi, !den);
  441. en->ei.len += ei->len;
  442. *den = __try_front_merge(sbi, et, en);
  443. return en;
  444. }
  445. p = &(*p)->rb_right;
  446. } else {
  447. f2fs_bug_on(sbi, 1);
  448. }
  449. }
  450. return __attach_extent_node(sbi, et, ei, parent, p);
  451. }
  452. static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
  453. struct extent_tree *et, bool free_all)
  454. {
  455. struct rb_node *node, *next;
  456. struct extent_node *en;
  457. unsigned int count = et->count;
  458. node = rb_first(&et->root);
  459. while (node) {
  460. next = rb_next(node);
  461. en = rb_entry(node, struct extent_node, rb_node);
  462. if (free_all) {
  463. spin_lock(&sbi->extent_lock);
  464. if (!list_empty(&en->list))
  465. list_del_init(&en->list);
  466. spin_unlock(&sbi->extent_lock);
  467. }
  468. if (free_all || list_empty(&en->list)) {
  469. __detach_extent_node(sbi, et, en);
  470. kmem_cache_free(extent_node_slab, en);
  471. }
  472. node = next;
  473. }
  474. return count - et->count;
  475. }
  476. static void f2fs_init_extent_tree(struct inode *inode,
  477. struct f2fs_extent *i_ext)
  478. {
  479. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  480. struct extent_tree *et;
  481. struct extent_node *en;
  482. struct extent_info ei;
  483. if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
  484. return;
  485. et = __grab_extent_tree(inode);
  486. write_lock(&et->lock);
  487. if (et->count)
  488. goto out;
  489. set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
  490. le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
  491. en = __insert_extent_tree(sbi, et, &ei, NULL);
  492. if (en) {
  493. et->cached_en = en;
  494. spin_lock(&sbi->extent_lock);
  495. list_add_tail(&en->list, &sbi->extent_list);
  496. spin_unlock(&sbi->extent_lock);
  497. }
  498. out:
  499. write_unlock(&et->lock);
  500. atomic_dec(&et->refcount);
  501. }
  502. static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
  503. struct extent_info *ei)
  504. {
  505. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  506. struct extent_tree *et;
  507. struct extent_node *en;
  508. trace_f2fs_lookup_extent_tree_start(inode, pgofs);
  509. et = __find_extent_tree(sbi, inode->i_ino);
  510. if (!et)
  511. return false;
  512. read_lock(&et->lock);
  513. en = __lookup_extent_tree(et, pgofs);
  514. if (en) {
  515. *ei = en->ei;
  516. spin_lock(&sbi->extent_lock);
  517. if (!list_empty(&en->list))
  518. list_move_tail(&en->list, &sbi->extent_list);
  519. spin_unlock(&sbi->extent_lock);
  520. stat_inc_read_hit(sbi->sb);
  521. }
  522. stat_inc_total_hit(sbi->sb);
  523. read_unlock(&et->lock);
  524. trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
  525. atomic_dec(&et->refcount);
  526. return en ? true : false;
  527. }
  528. static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
  529. block_t blkaddr)
  530. {
  531. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  532. struct extent_tree *et;
  533. struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
  534. struct extent_node *den = NULL;
  535. struct extent_info ei, dei;
  536. unsigned int endofs;
  537. trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
  538. et = __grab_extent_tree(inode);
  539. write_lock(&et->lock);
  540. /* 1. lookup and remove existing extent info in cache */
  541. en = __lookup_extent_tree(et, fofs);
  542. if (!en)
  543. goto update_extent;
  544. dei = en->ei;
  545. __detach_extent_node(sbi, et, en);
  546. /* 2. if extent can be split more, split and insert the left part */
  547. if (dei.len > 1) {
  548. /* insert left part of split extent into cache */
  549. if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
  550. set_extent_info(&ei, dei.fofs, dei.blk,
  551. fofs - dei.fofs);
  552. en1 = __insert_extent_tree(sbi, et, &ei, NULL);
  553. }
  554. /* insert right part of split extent into cache */
  555. endofs = dei.fofs + dei.len - 1;
  556. if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
  557. set_extent_info(&ei, fofs + 1,
  558. fofs - dei.fofs + dei.blk, endofs - fofs);
  559. en2 = __insert_extent_tree(sbi, et, &ei, NULL);
  560. }
  561. }
  562. update_extent:
  563. /* 3. update extent in extent cache */
  564. if (blkaddr) {
  565. set_extent_info(&ei, fofs, blkaddr, 1);
  566. en3 = __insert_extent_tree(sbi, et, &ei, &den);
  567. }
  568. /* 4. update in global extent list */
  569. spin_lock(&sbi->extent_lock);
  570. if (en && !list_empty(&en->list))
  571. list_del(&en->list);
  572. /*
  573. * en1 and en2 split from en, they will become more and more smaller
  574. * fragments after splitting several times. So if the length is smaller
  575. * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
  576. */
  577. if (en1)
  578. list_add_tail(&en1->list, &sbi->extent_list);
  579. if (en2)
  580. list_add_tail(&en2->list, &sbi->extent_list);
  581. if (en3) {
  582. if (list_empty(&en3->list))
  583. list_add_tail(&en3->list, &sbi->extent_list);
  584. else
  585. list_move_tail(&en3->list, &sbi->extent_list);
  586. }
  587. if (den && !list_empty(&den->list))
  588. list_del(&den->list);
  589. spin_unlock(&sbi->extent_lock);
  590. /* 5. release extent node */
  591. if (en)
  592. kmem_cache_free(extent_node_slab, en);
  593. if (den)
  594. kmem_cache_free(extent_node_slab, den);
  595. write_unlock(&et->lock);
  596. atomic_dec(&et->refcount);
  597. }
  598. void f2fs_preserve_extent_tree(struct inode *inode)
  599. {
  600. struct extent_tree *et;
  601. struct extent_info *ext = &F2FS_I(inode)->ext;
  602. bool sync = false;
  603. if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
  604. return;
  605. et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
  606. if (!et) {
  607. if (ext->len) {
  608. ext->len = 0;
  609. update_inode_page(inode);
  610. }
  611. return;
  612. }
  613. read_lock(&et->lock);
  614. if (et->count) {
  615. struct extent_node *en;
  616. if (et->cached_en) {
  617. en = et->cached_en;
  618. } else {
  619. struct rb_node *node = rb_first(&et->root);
  620. if (!node)
  621. node = rb_last(&et->root);
  622. en = rb_entry(node, struct extent_node, rb_node);
  623. }
  624. if (__is_extent_same(ext, &en->ei))
  625. goto out;
  626. *ext = en->ei;
  627. sync = true;
  628. } else if (ext->len) {
  629. ext->len = 0;
  630. sync = true;
  631. }
  632. out:
  633. read_unlock(&et->lock);
  634. atomic_dec(&et->refcount);
  635. if (sync)
  636. update_inode_page(inode);
  637. }
  638. void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
  639. {
  640. struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
  641. struct extent_node *en, *tmp;
  642. unsigned long ino = F2FS_ROOT_INO(sbi);
  643. struct radix_tree_iter iter;
  644. void **slot;
  645. unsigned int found;
  646. unsigned int node_cnt = 0, tree_cnt = 0;
  647. if (!test_opt(sbi, EXTENT_CACHE))
  648. return;
  649. if (available_free_memory(sbi, EXTENT_CACHE))
  650. return;
  651. spin_lock(&sbi->extent_lock);
  652. list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
  653. if (!nr_shrink--)
  654. break;
  655. list_del_init(&en->list);
  656. }
  657. spin_unlock(&sbi->extent_lock);
  658. down_read(&sbi->extent_tree_lock);
  659. while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
  660. (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
  661. unsigned i;
  662. ino = treevec[found - 1]->ino + 1;
  663. for (i = 0; i < found; i++) {
  664. struct extent_tree *et = treevec[i];
  665. atomic_inc(&et->refcount);
  666. write_lock(&et->lock);
  667. node_cnt += __free_extent_tree(sbi, et, false);
  668. write_unlock(&et->lock);
  669. atomic_dec(&et->refcount);
  670. }
  671. }
  672. up_read(&sbi->extent_tree_lock);
  673. down_write(&sbi->extent_tree_lock);
  674. radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
  675. F2FS_ROOT_INO(sbi)) {
  676. struct extent_tree *et = (struct extent_tree *)*slot;
  677. if (!atomic_read(&et->refcount) && !et->count) {
  678. radix_tree_delete(&sbi->extent_tree_root, et->ino);
  679. kmem_cache_free(extent_tree_slab, et);
  680. sbi->total_ext_tree--;
  681. tree_cnt++;
  682. }
  683. }
  684. up_write(&sbi->extent_tree_lock);
  685. trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
  686. }
  687. void f2fs_destroy_extent_tree(struct inode *inode)
  688. {
  689. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  690. struct extent_tree *et;
  691. unsigned int node_cnt = 0;
  692. if (!test_opt(sbi, EXTENT_CACHE))
  693. return;
  694. et = __find_extent_tree(sbi, inode->i_ino);
  695. if (!et)
  696. goto out;
  697. /* free all extent info belong to this extent tree */
  698. write_lock(&et->lock);
  699. node_cnt = __free_extent_tree(sbi, et, true);
  700. write_unlock(&et->lock);
  701. atomic_dec(&et->refcount);
  702. /* try to find and delete extent tree entry in radix tree */
  703. down_write(&sbi->extent_tree_lock);
  704. et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
  705. if (!et) {
  706. up_write(&sbi->extent_tree_lock);
  707. goto out;
  708. }
  709. f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
  710. radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
  711. kmem_cache_free(extent_tree_slab, et);
  712. sbi->total_ext_tree--;
  713. up_write(&sbi->extent_tree_lock);
  714. out:
  715. trace_f2fs_destroy_extent_tree(inode, node_cnt);
  716. return;
  717. }
  718. void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
  719. {
  720. if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
  721. f2fs_init_extent_tree(inode, i_ext);
  722. write_lock(&F2FS_I(inode)->ext_lock);
  723. get_extent_info(&F2FS_I(inode)->ext, *i_ext);
  724. write_unlock(&F2FS_I(inode)->ext_lock);
  725. }
  726. static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
  727. struct extent_info *ei)
  728. {
  729. if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
  730. return false;
  731. if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
  732. return f2fs_lookup_extent_tree(inode, pgofs, ei);
  733. return lookup_extent_info(inode, pgofs, ei);
  734. }
  735. void f2fs_update_extent_cache(struct dnode_of_data *dn)
  736. {
  737. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  738. pgoff_t fofs;
  739. f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
  740. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  741. return;
  742. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  743. dn->ofs_in_node;
  744. if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
  745. return f2fs_update_extent_tree(dn->inode, fofs,
  746. dn->data_blkaddr);
  747. if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
  748. sync_inode_page(dn);
  749. }
  750. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  751. {
  752. struct address_space *mapping = inode->i_mapping;
  753. struct dnode_of_data dn;
  754. struct page *page;
  755. struct extent_info ei;
  756. int err;
  757. struct f2fs_io_info fio = {
  758. .type = DATA,
  759. .rw = sync ? READ_SYNC : READA,
  760. };
  761. /*
  762. * If sync is false, it needs to check its block allocation.
  763. * This is need and triggered by two flows:
  764. * gc and truncate_partial_data_page.
  765. */
  766. if (!sync)
  767. goto search;
  768. page = find_get_page(mapping, index);
  769. if (page && PageUptodate(page))
  770. return page;
  771. f2fs_put_page(page, 0);
  772. search:
  773. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  774. dn.data_blkaddr = ei.blk + index - ei.fofs;
  775. goto got_it;
  776. }
  777. set_new_dnode(&dn, inode, NULL, NULL, 0);
  778. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  779. if (err)
  780. return ERR_PTR(err);
  781. f2fs_put_dnode(&dn);
  782. if (dn.data_blkaddr == NULL_ADDR)
  783. return ERR_PTR(-ENOENT);
  784. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  785. if (unlikely(dn.data_blkaddr == NEW_ADDR))
  786. return ERR_PTR(-EINVAL);
  787. got_it:
  788. page = grab_cache_page(mapping, index);
  789. if (!page)
  790. return ERR_PTR(-ENOMEM);
  791. if (PageUptodate(page)) {
  792. unlock_page(page);
  793. return page;
  794. }
  795. fio.blk_addr = dn.data_blkaddr;
  796. err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
  797. if (err)
  798. return ERR_PTR(err);
  799. if (sync) {
  800. wait_on_page_locked(page);
  801. if (unlikely(!PageUptodate(page))) {
  802. f2fs_put_page(page, 0);
  803. return ERR_PTR(-EIO);
  804. }
  805. }
  806. return page;
  807. }
  808. /*
  809. * If it tries to access a hole, return an error.
  810. * Because, the callers, functions in dir.c and GC, should be able to know
  811. * whether this page exists or not.
  812. */
  813. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  814. {
  815. struct address_space *mapping = inode->i_mapping;
  816. struct dnode_of_data dn;
  817. struct page *page;
  818. struct extent_info ei;
  819. int err;
  820. struct f2fs_io_info fio = {
  821. .type = DATA,
  822. .rw = READ_SYNC,
  823. };
  824. repeat:
  825. page = grab_cache_page(mapping, index);
  826. if (!page)
  827. return ERR_PTR(-ENOMEM);
  828. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  829. dn.data_blkaddr = ei.blk + index - ei.fofs;
  830. goto got_it;
  831. }
  832. set_new_dnode(&dn, inode, NULL, NULL, 0);
  833. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  834. if (err) {
  835. f2fs_put_page(page, 1);
  836. return ERR_PTR(err);
  837. }
  838. f2fs_put_dnode(&dn);
  839. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  840. f2fs_put_page(page, 1);
  841. return ERR_PTR(-ENOENT);
  842. }
  843. got_it:
  844. if (PageUptodate(page))
  845. return page;
  846. /*
  847. * A new dentry page is allocated but not able to be written, since its
  848. * new inode page couldn't be allocated due to -ENOSPC.
  849. * In such the case, its blkaddr can be remained as NEW_ADDR.
  850. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  851. */
  852. if (dn.data_blkaddr == NEW_ADDR) {
  853. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  854. SetPageUptodate(page);
  855. return page;
  856. }
  857. fio.blk_addr = dn.data_blkaddr;
  858. err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
  859. if (err)
  860. return ERR_PTR(err);
  861. lock_page(page);
  862. if (unlikely(!PageUptodate(page))) {
  863. f2fs_put_page(page, 1);
  864. return ERR_PTR(-EIO);
  865. }
  866. if (unlikely(page->mapping != mapping)) {
  867. f2fs_put_page(page, 1);
  868. goto repeat;
  869. }
  870. return page;
  871. }
  872. /*
  873. * Caller ensures that this data page is never allocated.
  874. * A new zero-filled data page is allocated in the page cache.
  875. *
  876. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  877. * f2fs_unlock_op().
  878. * Note that, ipage is set only by make_empty_dir.
  879. */
  880. struct page *get_new_data_page(struct inode *inode,
  881. struct page *ipage, pgoff_t index, bool new_i_size)
  882. {
  883. struct address_space *mapping = inode->i_mapping;
  884. struct page *page;
  885. struct dnode_of_data dn;
  886. int err;
  887. set_new_dnode(&dn, inode, ipage, NULL, 0);
  888. err = f2fs_reserve_block(&dn, index);
  889. if (err)
  890. return ERR_PTR(err);
  891. repeat:
  892. page = grab_cache_page(mapping, index);
  893. if (!page) {
  894. err = -ENOMEM;
  895. goto put_err;
  896. }
  897. if (PageUptodate(page))
  898. return page;
  899. if (dn.data_blkaddr == NEW_ADDR) {
  900. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  901. SetPageUptodate(page);
  902. } else {
  903. struct f2fs_io_info fio = {
  904. .type = DATA,
  905. .rw = READ_SYNC,
  906. .blk_addr = dn.data_blkaddr,
  907. };
  908. err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
  909. if (err)
  910. goto put_err;
  911. lock_page(page);
  912. if (unlikely(!PageUptodate(page))) {
  913. f2fs_put_page(page, 1);
  914. err = -EIO;
  915. goto put_err;
  916. }
  917. if (unlikely(page->mapping != mapping)) {
  918. f2fs_put_page(page, 1);
  919. goto repeat;
  920. }
  921. }
  922. if (new_i_size &&
  923. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  924. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  925. /* Only the directory inode sets new_i_size */
  926. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  927. }
  928. return page;
  929. put_err:
  930. f2fs_put_dnode(&dn);
  931. return ERR_PTR(err);
  932. }
  933. static int __allocate_data_block(struct dnode_of_data *dn)
  934. {
  935. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  936. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  937. struct f2fs_summary sum;
  938. struct node_info ni;
  939. int seg = CURSEG_WARM_DATA;
  940. pgoff_t fofs;
  941. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  942. return -EPERM;
  943. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  944. if (dn->data_blkaddr == NEW_ADDR)
  945. goto alloc;
  946. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  947. return -ENOSPC;
  948. alloc:
  949. get_node_info(sbi, dn->nid, &ni);
  950. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  951. if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
  952. seg = CURSEG_DIRECT_IO;
  953. allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  954. &sum, seg);
  955. /* direct IO doesn't use extent cache to maximize the performance */
  956. set_data_blkaddr(dn);
  957. /* update i_size */
  958. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  959. dn->ofs_in_node;
  960. if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
  961. i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
  962. return 0;
  963. }
  964. static void __allocate_data_blocks(struct inode *inode, loff_t offset,
  965. size_t count)
  966. {
  967. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  968. struct dnode_of_data dn;
  969. u64 start = F2FS_BYTES_TO_BLK(offset);
  970. u64 len = F2FS_BYTES_TO_BLK(count);
  971. bool allocated;
  972. u64 end_offset;
  973. while (len) {
  974. f2fs_balance_fs(sbi);
  975. f2fs_lock_op(sbi);
  976. /* When reading holes, we need its node page */
  977. set_new_dnode(&dn, inode, NULL, NULL, 0);
  978. if (get_dnode_of_data(&dn, start, ALLOC_NODE))
  979. goto out;
  980. allocated = false;
  981. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  982. while (dn.ofs_in_node < end_offset && len) {
  983. block_t blkaddr;
  984. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  985. if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
  986. if (__allocate_data_block(&dn))
  987. goto sync_out;
  988. allocated = true;
  989. }
  990. len--;
  991. start++;
  992. dn.ofs_in_node++;
  993. }
  994. if (allocated)
  995. sync_inode_page(&dn);
  996. f2fs_put_dnode(&dn);
  997. f2fs_unlock_op(sbi);
  998. }
  999. return;
  1000. sync_out:
  1001. if (allocated)
  1002. sync_inode_page(&dn);
  1003. f2fs_put_dnode(&dn);
  1004. out:
  1005. f2fs_unlock_op(sbi);
  1006. return;
  1007. }
  1008. /*
  1009. * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
  1010. * If original data blocks are allocated, then give them to blockdev.
  1011. * Otherwise,
  1012. * a. preallocate requested block addresses
  1013. * b. do not use extent cache for better performance
  1014. * c. give the block addresses to blockdev
  1015. */
  1016. static int __get_data_block(struct inode *inode, sector_t iblock,
  1017. struct buffer_head *bh_result, int create, bool fiemap)
  1018. {
  1019. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  1020. unsigned maxblocks = bh_result->b_size >> blkbits;
  1021. struct dnode_of_data dn;
  1022. int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
  1023. pgoff_t pgofs, end_offset;
  1024. int err = 0, ofs = 1;
  1025. struct extent_info ei;
  1026. bool allocated = false;
  1027. /* Get the page offset from the block offset(iblock) */
  1028. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  1029. if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  1030. f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
  1031. goto out;
  1032. }
  1033. if (create)
  1034. f2fs_lock_op(F2FS_I_SB(inode));
  1035. /* When reading holes, we need its node page */
  1036. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1037. err = get_dnode_of_data(&dn, pgofs, mode);
  1038. if (err) {
  1039. if (err == -ENOENT)
  1040. err = 0;
  1041. goto unlock_out;
  1042. }
  1043. if (dn.data_blkaddr == NEW_ADDR && !fiemap)
  1044. goto put_out;
  1045. if (dn.data_blkaddr != NULL_ADDR) {
  1046. clear_buffer_new(bh_result);
  1047. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  1048. } else if (create) {
  1049. err = __allocate_data_block(&dn);
  1050. if (err)
  1051. goto put_out;
  1052. allocated = true;
  1053. set_buffer_new(bh_result);
  1054. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  1055. } else {
  1056. goto put_out;
  1057. }
  1058. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  1059. bh_result->b_size = (((size_t)1) << blkbits);
  1060. dn.ofs_in_node++;
  1061. pgofs++;
  1062. get_next:
  1063. if (dn.ofs_in_node >= end_offset) {
  1064. if (allocated)
  1065. sync_inode_page(&dn);
  1066. allocated = false;
  1067. f2fs_put_dnode(&dn);
  1068. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1069. err = get_dnode_of_data(&dn, pgofs, mode);
  1070. if (err) {
  1071. if (err == -ENOENT)
  1072. err = 0;
  1073. goto unlock_out;
  1074. }
  1075. if (dn.data_blkaddr == NEW_ADDR && !fiemap)
  1076. goto put_out;
  1077. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  1078. }
  1079. if (maxblocks > (bh_result->b_size >> blkbits)) {
  1080. block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  1081. if (blkaddr == NULL_ADDR && create) {
  1082. err = __allocate_data_block(&dn);
  1083. if (err)
  1084. goto sync_out;
  1085. allocated = true;
  1086. set_buffer_new(bh_result);
  1087. blkaddr = dn.data_blkaddr;
  1088. }
  1089. /* Give more consecutive addresses for the readahead */
  1090. if (blkaddr == (bh_result->b_blocknr + ofs)) {
  1091. ofs++;
  1092. dn.ofs_in_node++;
  1093. pgofs++;
  1094. bh_result->b_size += (((size_t)1) << blkbits);
  1095. goto get_next;
  1096. }
  1097. }
  1098. sync_out:
  1099. if (allocated)
  1100. sync_inode_page(&dn);
  1101. put_out:
  1102. f2fs_put_dnode(&dn);
  1103. unlock_out:
  1104. if (create)
  1105. f2fs_unlock_op(F2FS_I_SB(inode));
  1106. out:
  1107. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  1108. return err;
  1109. }
  1110. static int get_data_block(struct inode *inode, sector_t iblock,
  1111. struct buffer_head *bh_result, int create)
  1112. {
  1113. return __get_data_block(inode, iblock, bh_result, create, false);
  1114. }
  1115. static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
  1116. struct buffer_head *bh_result, int create)
  1117. {
  1118. return __get_data_block(inode, iblock, bh_result, create, true);
  1119. }
  1120. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  1121. u64 start, u64 len)
  1122. {
  1123. return generic_block_fiemap(inode, fieinfo,
  1124. start, len, get_data_block_fiemap);
  1125. }
  1126. static int f2fs_read_data_page(struct file *file, struct page *page)
  1127. {
  1128. struct inode *inode = page->mapping->host;
  1129. int ret = -EAGAIN;
  1130. trace_f2fs_readpage(page, DATA);
  1131. /* If the file has inline data, try to read it directly */
  1132. if (f2fs_has_inline_data(inode))
  1133. ret = f2fs_read_inline_data(inode, page);
  1134. if (ret == -EAGAIN)
  1135. ret = mpage_readpage(page, get_data_block);
  1136. return ret;
  1137. }
  1138. static int f2fs_read_data_pages(struct file *file,
  1139. struct address_space *mapping,
  1140. struct list_head *pages, unsigned nr_pages)
  1141. {
  1142. struct inode *inode = file->f_mapping->host;
  1143. /* If the file has inline data, skip readpages */
  1144. if (f2fs_has_inline_data(inode))
  1145. return 0;
  1146. return mpage_readpages(mapping, pages, nr_pages, get_data_block);
  1147. }
  1148. int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
  1149. {
  1150. struct inode *inode = page->mapping->host;
  1151. struct dnode_of_data dn;
  1152. int err = 0;
  1153. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1154. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  1155. if (err)
  1156. return err;
  1157. fio->blk_addr = dn.data_blkaddr;
  1158. /* This page is already truncated */
  1159. if (fio->blk_addr == NULL_ADDR) {
  1160. ClearPageUptodate(page);
  1161. goto out_writepage;
  1162. }
  1163. set_page_writeback(page);
  1164. /*
  1165. * If current allocation needs SSR,
  1166. * it had better in-place writes for updated data.
  1167. */
  1168. if (unlikely(fio->blk_addr != NEW_ADDR &&
  1169. !is_cold_data(page) &&
  1170. need_inplace_update(inode))) {
  1171. rewrite_data_page(page, fio);
  1172. set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
  1173. trace_f2fs_do_write_data_page(page, IPU);
  1174. } else {
  1175. write_data_page(page, &dn, fio);
  1176. set_data_blkaddr(&dn);
  1177. f2fs_update_extent_cache(&dn);
  1178. trace_f2fs_do_write_data_page(page, OPU);
  1179. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  1180. if (page->index == 0)
  1181. set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
  1182. }
  1183. out_writepage:
  1184. f2fs_put_dnode(&dn);
  1185. return err;
  1186. }
  1187. static int f2fs_write_data_page(struct page *page,
  1188. struct writeback_control *wbc)
  1189. {
  1190. struct inode *inode = page->mapping->host;
  1191. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1192. loff_t i_size = i_size_read(inode);
  1193. const pgoff_t end_index = ((unsigned long long) i_size)
  1194. >> PAGE_CACHE_SHIFT;
  1195. unsigned offset = 0;
  1196. bool need_balance_fs = false;
  1197. int err = 0;
  1198. struct f2fs_io_info fio = {
  1199. .type = DATA,
  1200. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1201. };
  1202. trace_f2fs_writepage(page, DATA);
  1203. if (page->index < end_index)
  1204. goto write;
  1205. /*
  1206. * If the offset is out-of-range of file size,
  1207. * this page does not have to be written to disk.
  1208. */
  1209. offset = i_size & (PAGE_CACHE_SIZE - 1);
  1210. if ((page->index >= end_index + 1) || !offset)
  1211. goto out;
  1212. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  1213. write:
  1214. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1215. goto redirty_out;
  1216. if (f2fs_is_drop_cache(inode))
  1217. goto out;
  1218. if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
  1219. available_free_memory(sbi, BASE_CHECK))
  1220. goto redirty_out;
  1221. /* Dentry blocks are controlled by checkpoint */
  1222. if (S_ISDIR(inode->i_mode)) {
  1223. if (unlikely(f2fs_cp_error(sbi)))
  1224. goto redirty_out;
  1225. err = do_write_data_page(page, &fio);
  1226. goto done;
  1227. }
  1228. /* we should bypass data pages to proceed the kworkder jobs */
  1229. if (unlikely(f2fs_cp_error(sbi))) {
  1230. SetPageError(page);
  1231. goto out;
  1232. }
  1233. if (!wbc->for_reclaim)
  1234. need_balance_fs = true;
  1235. else if (has_not_enough_free_secs(sbi, 0))
  1236. goto redirty_out;
  1237. err = -EAGAIN;
  1238. f2fs_lock_op(sbi);
  1239. if (f2fs_has_inline_data(inode))
  1240. err = f2fs_write_inline_data(inode, page);
  1241. if (err == -EAGAIN)
  1242. err = do_write_data_page(page, &fio);
  1243. f2fs_unlock_op(sbi);
  1244. done:
  1245. if (err && err != -ENOENT)
  1246. goto redirty_out;
  1247. clear_cold_data(page);
  1248. out:
  1249. inode_dec_dirty_pages(inode);
  1250. if (err)
  1251. ClearPageUptodate(page);
  1252. unlock_page(page);
  1253. if (need_balance_fs)
  1254. f2fs_balance_fs(sbi);
  1255. if (wbc->for_reclaim)
  1256. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  1257. return 0;
  1258. redirty_out:
  1259. redirty_page_for_writepage(wbc, page);
  1260. return AOP_WRITEPAGE_ACTIVATE;
  1261. }
  1262. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  1263. void *data)
  1264. {
  1265. struct address_space *mapping = data;
  1266. int ret = mapping->a_ops->writepage(page, wbc);
  1267. mapping_set_error(mapping, ret);
  1268. return ret;
  1269. }
  1270. static int f2fs_write_data_pages(struct address_space *mapping,
  1271. struct writeback_control *wbc)
  1272. {
  1273. struct inode *inode = mapping->host;
  1274. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1275. bool locked = false;
  1276. int ret;
  1277. long diff;
  1278. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1279. /* deal with chardevs and other special file */
  1280. if (!mapping->a_ops->writepage)
  1281. return 0;
  1282. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1283. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1284. available_free_memory(sbi, DIRTY_DENTS))
  1285. goto skip_write;
  1286. /* during POR, we don't need to trigger writepage at all. */
  1287. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1288. goto skip_write;
  1289. diff = nr_pages_to_write(sbi, DATA, wbc);
  1290. if (!S_ISDIR(inode->i_mode)) {
  1291. mutex_lock(&sbi->writepages);
  1292. locked = true;
  1293. }
  1294. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  1295. if (locked)
  1296. mutex_unlock(&sbi->writepages);
  1297. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  1298. remove_dirty_dir_inode(inode);
  1299. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1300. return ret;
  1301. skip_write:
  1302. wbc->pages_skipped += get_dirty_pages(inode);
  1303. return 0;
  1304. }
  1305. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1306. {
  1307. struct inode *inode = mapping->host;
  1308. if (to > inode->i_size) {
  1309. truncate_pagecache(inode, inode->i_size);
  1310. truncate_blocks(inode, inode->i_size, true);
  1311. }
  1312. }
  1313. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1314. loff_t pos, unsigned len, unsigned flags,
  1315. struct page **pagep, void **fsdata)
  1316. {
  1317. struct inode *inode = mapping->host;
  1318. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1319. struct page *page, *ipage;
  1320. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  1321. struct dnode_of_data dn;
  1322. int err = 0;
  1323. trace_f2fs_write_begin(inode, pos, len, flags);
  1324. f2fs_balance_fs(sbi);
  1325. /*
  1326. * We should check this at this moment to avoid deadlock on inode page
  1327. * and #0 page. The locking rule for inline_data conversion should be:
  1328. * lock_page(page #0) -> lock_page(inode_page)
  1329. */
  1330. if (index != 0) {
  1331. err = f2fs_convert_inline_inode(inode);
  1332. if (err)
  1333. goto fail;
  1334. }
  1335. repeat:
  1336. page = grab_cache_page_write_begin(mapping, index, flags);
  1337. if (!page) {
  1338. err = -ENOMEM;
  1339. goto fail;
  1340. }
  1341. *pagep = page;
  1342. f2fs_lock_op(sbi);
  1343. /* check inline_data */
  1344. ipage = get_node_page(sbi, inode->i_ino);
  1345. if (IS_ERR(ipage)) {
  1346. err = PTR_ERR(ipage);
  1347. goto unlock_fail;
  1348. }
  1349. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1350. if (f2fs_has_inline_data(inode)) {
  1351. if (pos + len <= MAX_INLINE_DATA) {
  1352. read_inline_data(page, ipage);
  1353. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  1354. sync_inode_page(&dn);
  1355. goto put_next;
  1356. }
  1357. err = f2fs_convert_inline_page(&dn, page);
  1358. if (err)
  1359. goto put_fail;
  1360. }
  1361. err = f2fs_reserve_block(&dn, index);
  1362. if (err)
  1363. goto put_fail;
  1364. put_next:
  1365. f2fs_put_dnode(&dn);
  1366. f2fs_unlock_op(sbi);
  1367. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  1368. return 0;
  1369. f2fs_wait_on_page_writeback(page, DATA);
  1370. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  1371. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  1372. unsigned end = start + len;
  1373. /* Reading beyond i_size is simple: memset to zero */
  1374. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  1375. goto out;
  1376. }
  1377. if (dn.data_blkaddr == NEW_ADDR) {
  1378. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  1379. } else {
  1380. struct f2fs_io_info fio = {
  1381. .type = DATA,
  1382. .rw = READ_SYNC,
  1383. .blk_addr = dn.data_blkaddr,
  1384. };
  1385. err = f2fs_submit_page_bio(sbi, page, &fio);
  1386. if (err)
  1387. goto fail;
  1388. lock_page(page);
  1389. if (unlikely(!PageUptodate(page))) {
  1390. f2fs_put_page(page, 1);
  1391. err = -EIO;
  1392. goto fail;
  1393. }
  1394. if (unlikely(page->mapping != mapping)) {
  1395. f2fs_put_page(page, 1);
  1396. goto repeat;
  1397. }
  1398. }
  1399. out:
  1400. SetPageUptodate(page);
  1401. clear_cold_data(page);
  1402. return 0;
  1403. put_fail:
  1404. f2fs_put_dnode(&dn);
  1405. unlock_fail:
  1406. f2fs_unlock_op(sbi);
  1407. f2fs_put_page(page, 1);
  1408. fail:
  1409. f2fs_write_failed(mapping, pos + len);
  1410. return err;
  1411. }
  1412. static int f2fs_write_end(struct file *file,
  1413. struct address_space *mapping,
  1414. loff_t pos, unsigned len, unsigned copied,
  1415. struct page *page, void *fsdata)
  1416. {
  1417. struct inode *inode = page->mapping->host;
  1418. trace_f2fs_write_end(inode, pos, len, copied);
  1419. set_page_dirty(page);
  1420. if (pos + copied > i_size_read(inode)) {
  1421. i_size_write(inode, pos + copied);
  1422. mark_inode_dirty(inode);
  1423. update_inode_page(inode);
  1424. }
  1425. f2fs_put_page(page, 1);
  1426. return copied;
  1427. }
  1428. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  1429. loff_t offset)
  1430. {
  1431. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  1432. if (iov_iter_rw(iter) == READ)
  1433. return 0;
  1434. if (offset & blocksize_mask)
  1435. return -EINVAL;
  1436. if (iov_iter_alignment(iter) & blocksize_mask)
  1437. return -EINVAL;
  1438. return 0;
  1439. }
  1440. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
  1441. loff_t offset)
  1442. {
  1443. struct file *file = iocb->ki_filp;
  1444. struct address_space *mapping = file->f_mapping;
  1445. struct inode *inode = mapping->host;
  1446. size_t count = iov_iter_count(iter);
  1447. int err;
  1448. /* we don't need to use inline_data strictly */
  1449. if (f2fs_has_inline_data(inode)) {
  1450. err = f2fs_convert_inline_inode(inode);
  1451. if (err)
  1452. return err;
  1453. }
  1454. if (check_direct_IO(inode, iter, offset))
  1455. return 0;
  1456. trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
  1457. if (iov_iter_rw(iter) == WRITE)
  1458. __allocate_data_blocks(inode, offset, count);
  1459. err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
  1460. if (err < 0 && iov_iter_rw(iter) == WRITE)
  1461. f2fs_write_failed(mapping, offset + count);
  1462. trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
  1463. return err;
  1464. }
  1465. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  1466. unsigned int length)
  1467. {
  1468. struct inode *inode = page->mapping->host;
  1469. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1470. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  1471. (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
  1472. return;
  1473. if (PageDirty(page)) {
  1474. if (inode->i_ino == F2FS_META_INO(sbi))
  1475. dec_page_count(sbi, F2FS_DIRTY_META);
  1476. else if (inode->i_ino == F2FS_NODE_INO(sbi))
  1477. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1478. else
  1479. inode_dec_dirty_pages(inode);
  1480. }
  1481. ClearPagePrivate(page);
  1482. }
  1483. int f2fs_release_page(struct page *page, gfp_t wait)
  1484. {
  1485. /* If this is dirty page, keep PagePrivate */
  1486. if (PageDirty(page))
  1487. return 0;
  1488. ClearPagePrivate(page);
  1489. return 1;
  1490. }
  1491. static int f2fs_set_data_page_dirty(struct page *page)
  1492. {
  1493. struct address_space *mapping = page->mapping;
  1494. struct inode *inode = mapping->host;
  1495. trace_f2fs_set_page_dirty(page, DATA);
  1496. SetPageUptodate(page);
  1497. if (f2fs_is_atomic_file(inode)) {
  1498. register_inmem_page(inode, page);
  1499. return 1;
  1500. }
  1501. mark_inode_dirty(inode);
  1502. if (!PageDirty(page)) {
  1503. __set_page_dirty_nobuffers(page);
  1504. update_dirty_page(inode, page);
  1505. return 1;
  1506. }
  1507. return 0;
  1508. }
  1509. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  1510. {
  1511. struct inode *inode = mapping->host;
  1512. /* we don't need to use inline_data strictly */
  1513. if (f2fs_has_inline_data(inode)) {
  1514. int err = f2fs_convert_inline_inode(inode);
  1515. if (err)
  1516. return err;
  1517. }
  1518. return generic_block_bmap(mapping, block, get_data_block);
  1519. }
  1520. void init_extent_cache_info(struct f2fs_sb_info *sbi)
  1521. {
  1522. INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
  1523. init_rwsem(&sbi->extent_tree_lock);
  1524. INIT_LIST_HEAD(&sbi->extent_list);
  1525. spin_lock_init(&sbi->extent_lock);
  1526. sbi->total_ext_tree = 0;
  1527. atomic_set(&sbi->total_ext_node, 0);
  1528. }
  1529. int __init create_extent_cache(void)
  1530. {
  1531. extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
  1532. sizeof(struct extent_tree));
  1533. if (!extent_tree_slab)
  1534. return -ENOMEM;
  1535. extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
  1536. sizeof(struct extent_node));
  1537. if (!extent_node_slab) {
  1538. kmem_cache_destroy(extent_tree_slab);
  1539. return -ENOMEM;
  1540. }
  1541. return 0;
  1542. }
  1543. void destroy_extent_cache(void)
  1544. {
  1545. kmem_cache_destroy(extent_node_slab);
  1546. kmem_cache_destroy(extent_tree_slab);
  1547. }
  1548. const struct address_space_operations f2fs_dblock_aops = {
  1549. .readpage = f2fs_read_data_page,
  1550. .readpages = f2fs_read_data_pages,
  1551. .writepage = f2fs_write_data_page,
  1552. .writepages = f2fs_write_data_pages,
  1553. .write_begin = f2fs_write_begin,
  1554. .write_end = f2fs_write_end,
  1555. .set_page_dirty = f2fs_set_data_page_dirty,
  1556. .invalidatepage = f2fs_invalidate_page,
  1557. .releasepage = f2fs_release_page,
  1558. .direct_IO = f2fs_direct_IO,
  1559. .bmap = f2fs_bmap,
  1560. };