checkpoint.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. /*
  27. * We guarantee no failure on the returned page.
  28. */
  29. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  30. {
  31. struct address_space *mapping = META_MAPPING(sbi);
  32. struct page *page = NULL;
  33. repeat:
  34. page = grab_cache_page(mapping, index);
  35. if (!page) {
  36. cond_resched();
  37. goto repeat;
  38. }
  39. f2fs_wait_on_page_writeback(page, META);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = META_MAPPING(sbi);
  49. struct page *page;
  50. struct f2fs_io_info fio = {
  51. .type = META,
  52. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  53. .blk_addr = index,
  54. };
  55. repeat:
  56. page = grab_cache_page(mapping, index);
  57. if (!page) {
  58. cond_resched();
  59. goto repeat;
  60. }
  61. if (PageUptodate(page))
  62. goto out;
  63. if (f2fs_submit_page_bio(sbi, page, &fio))
  64. goto repeat;
  65. lock_page(page);
  66. if (unlikely(page->mapping != mapping)) {
  67. f2fs_put_page(page, 1);
  68. goto repeat;
  69. }
  70. out:
  71. return page;
  72. }
  73. static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
  74. block_t blkaddr, int type)
  75. {
  76. switch (type) {
  77. case META_NAT:
  78. break;
  79. case META_SIT:
  80. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  81. return false;
  82. break;
  83. case META_SSA:
  84. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  85. blkaddr < SM_I(sbi)->ssa_blkaddr))
  86. return false;
  87. break;
  88. case META_CP:
  89. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  90. blkaddr < __start_cp_addr(sbi)))
  91. return false;
  92. break;
  93. case META_POR:
  94. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  95. blkaddr < MAIN_BLKADDR(sbi)))
  96. return false;
  97. break;
  98. default:
  99. BUG();
  100. }
  101. return true;
  102. }
  103. /*
  104. * Readahead CP/NAT/SIT/SSA pages
  105. */
  106. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  107. {
  108. block_t prev_blk_addr = 0;
  109. struct page *page;
  110. block_t blkno = start;
  111. struct f2fs_io_info fio = {
  112. .type = META,
  113. .rw = READ_SYNC | REQ_META | REQ_PRIO
  114. };
  115. for (; nrpages-- > 0; blkno++) {
  116. if (!is_valid_blkaddr(sbi, blkno, type))
  117. goto out;
  118. switch (type) {
  119. case META_NAT:
  120. if (unlikely(blkno >=
  121. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  122. blkno = 0;
  123. /* get nat block addr */
  124. fio.blk_addr = current_nat_addr(sbi,
  125. blkno * NAT_ENTRY_PER_BLOCK);
  126. break;
  127. case META_SIT:
  128. /* get sit block addr */
  129. fio.blk_addr = current_sit_addr(sbi,
  130. blkno * SIT_ENTRY_PER_BLOCK);
  131. if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
  132. goto out;
  133. prev_blk_addr = fio.blk_addr;
  134. break;
  135. case META_SSA:
  136. case META_CP:
  137. case META_POR:
  138. fio.blk_addr = blkno;
  139. break;
  140. default:
  141. BUG();
  142. }
  143. page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
  144. if (!page)
  145. continue;
  146. if (PageUptodate(page)) {
  147. f2fs_put_page(page, 1);
  148. continue;
  149. }
  150. f2fs_submit_page_mbio(sbi, page, &fio);
  151. f2fs_put_page(page, 0);
  152. }
  153. out:
  154. f2fs_submit_merged_bio(sbi, META, READ);
  155. return blkno - start;
  156. }
  157. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  158. {
  159. struct page *page;
  160. bool readahead = false;
  161. page = find_get_page(META_MAPPING(sbi), index);
  162. if (!page || (page && !PageUptodate(page)))
  163. readahead = true;
  164. f2fs_put_page(page, 0);
  165. if (readahead)
  166. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  167. }
  168. static int f2fs_write_meta_page(struct page *page,
  169. struct writeback_control *wbc)
  170. {
  171. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  172. trace_f2fs_writepage(page, META);
  173. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  174. goto redirty_out;
  175. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  176. goto redirty_out;
  177. if (unlikely(f2fs_cp_error(sbi)))
  178. goto redirty_out;
  179. f2fs_wait_on_page_writeback(page, META);
  180. write_meta_page(sbi, page);
  181. dec_page_count(sbi, F2FS_DIRTY_META);
  182. unlock_page(page);
  183. if (wbc->for_reclaim)
  184. f2fs_submit_merged_bio(sbi, META, WRITE);
  185. return 0;
  186. redirty_out:
  187. redirty_page_for_writepage(wbc, page);
  188. return AOP_WRITEPAGE_ACTIVATE;
  189. }
  190. static int f2fs_write_meta_pages(struct address_space *mapping,
  191. struct writeback_control *wbc)
  192. {
  193. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  194. long diff, written;
  195. trace_f2fs_writepages(mapping->host, wbc, META);
  196. /* collect a number of dirty meta pages and write together */
  197. if (wbc->for_kupdate ||
  198. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  199. goto skip_write;
  200. /* if mounting is failed, skip writing node pages */
  201. mutex_lock(&sbi->cp_mutex);
  202. diff = nr_pages_to_write(sbi, META, wbc);
  203. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  204. mutex_unlock(&sbi->cp_mutex);
  205. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  206. return 0;
  207. skip_write:
  208. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  209. return 0;
  210. }
  211. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  212. long nr_to_write)
  213. {
  214. struct address_space *mapping = META_MAPPING(sbi);
  215. pgoff_t index = 0, end = LONG_MAX;
  216. struct pagevec pvec;
  217. long nwritten = 0;
  218. struct writeback_control wbc = {
  219. .for_reclaim = 0,
  220. };
  221. pagevec_init(&pvec, 0);
  222. while (index <= end) {
  223. int i, nr_pages;
  224. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  225. PAGECACHE_TAG_DIRTY,
  226. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  227. if (unlikely(nr_pages == 0))
  228. break;
  229. for (i = 0; i < nr_pages; i++) {
  230. struct page *page = pvec.pages[i];
  231. lock_page(page);
  232. if (unlikely(page->mapping != mapping)) {
  233. continue_unlock:
  234. unlock_page(page);
  235. continue;
  236. }
  237. if (!PageDirty(page)) {
  238. /* someone wrote it for us */
  239. goto continue_unlock;
  240. }
  241. if (!clear_page_dirty_for_io(page))
  242. goto continue_unlock;
  243. if (mapping->a_ops->writepage(page, &wbc)) {
  244. unlock_page(page);
  245. break;
  246. }
  247. nwritten++;
  248. if (unlikely(nwritten >= nr_to_write))
  249. break;
  250. }
  251. pagevec_release(&pvec);
  252. cond_resched();
  253. }
  254. if (nwritten)
  255. f2fs_submit_merged_bio(sbi, type, WRITE);
  256. return nwritten;
  257. }
  258. static int f2fs_set_meta_page_dirty(struct page *page)
  259. {
  260. trace_f2fs_set_page_dirty(page, META);
  261. SetPageUptodate(page);
  262. if (!PageDirty(page)) {
  263. __set_page_dirty_nobuffers(page);
  264. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  265. SetPagePrivate(page);
  266. f2fs_trace_pid(page);
  267. return 1;
  268. }
  269. return 0;
  270. }
  271. const struct address_space_operations f2fs_meta_aops = {
  272. .writepage = f2fs_write_meta_page,
  273. .writepages = f2fs_write_meta_pages,
  274. .set_page_dirty = f2fs_set_meta_page_dirty,
  275. .invalidatepage = f2fs_invalidate_page,
  276. .releasepage = f2fs_release_page,
  277. };
  278. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  279. {
  280. struct inode_management *im = &sbi->im[type];
  281. struct ino_entry *e;
  282. retry:
  283. if (radix_tree_preload(GFP_NOFS)) {
  284. cond_resched();
  285. goto retry;
  286. }
  287. spin_lock(&im->ino_lock);
  288. e = radix_tree_lookup(&im->ino_root, ino);
  289. if (!e) {
  290. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  291. if (!e) {
  292. spin_unlock(&im->ino_lock);
  293. radix_tree_preload_end();
  294. goto retry;
  295. }
  296. if (radix_tree_insert(&im->ino_root, ino, e)) {
  297. spin_unlock(&im->ino_lock);
  298. kmem_cache_free(ino_entry_slab, e);
  299. radix_tree_preload_end();
  300. goto retry;
  301. }
  302. memset(e, 0, sizeof(struct ino_entry));
  303. e->ino = ino;
  304. list_add_tail(&e->list, &im->ino_list);
  305. if (type != ORPHAN_INO)
  306. im->ino_num++;
  307. }
  308. spin_unlock(&im->ino_lock);
  309. radix_tree_preload_end();
  310. }
  311. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  312. {
  313. struct inode_management *im = &sbi->im[type];
  314. struct ino_entry *e;
  315. spin_lock(&im->ino_lock);
  316. e = radix_tree_lookup(&im->ino_root, ino);
  317. if (e) {
  318. list_del(&e->list);
  319. radix_tree_delete(&im->ino_root, ino);
  320. im->ino_num--;
  321. spin_unlock(&im->ino_lock);
  322. kmem_cache_free(ino_entry_slab, e);
  323. return;
  324. }
  325. spin_unlock(&im->ino_lock);
  326. }
  327. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  328. {
  329. /* add new dirty ino entry into list */
  330. __add_ino_entry(sbi, ino, type);
  331. }
  332. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  333. {
  334. /* remove dirty ino entry from list */
  335. __remove_ino_entry(sbi, ino, type);
  336. }
  337. /* mode should be APPEND_INO or UPDATE_INO */
  338. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  339. {
  340. struct inode_management *im = &sbi->im[mode];
  341. struct ino_entry *e;
  342. spin_lock(&im->ino_lock);
  343. e = radix_tree_lookup(&im->ino_root, ino);
  344. spin_unlock(&im->ino_lock);
  345. return e ? true : false;
  346. }
  347. void release_dirty_inode(struct f2fs_sb_info *sbi)
  348. {
  349. struct ino_entry *e, *tmp;
  350. int i;
  351. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  352. struct inode_management *im = &sbi->im[i];
  353. spin_lock(&im->ino_lock);
  354. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  355. list_del(&e->list);
  356. radix_tree_delete(&im->ino_root, e->ino);
  357. kmem_cache_free(ino_entry_slab, e);
  358. im->ino_num--;
  359. }
  360. spin_unlock(&im->ino_lock);
  361. }
  362. }
  363. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  364. {
  365. struct inode_management *im = &sbi->im[ORPHAN_INO];
  366. int err = 0;
  367. spin_lock(&im->ino_lock);
  368. if (unlikely(im->ino_num >= sbi->max_orphans))
  369. err = -ENOSPC;
  370. else
  371. im->ino_num++;
  372. spin_unlock(&im->ino_lock);
  373. return err;
  374. }
  375. void release_orphan_inode(struct f2fs_sb_info *sbi)
  376. {
  377. struct inode_management *im = &sbi->im[ORPHAN_INO];
  378. spin_lock(&im->ino_lock);
  379. f2fs_bug_on(sbi, im->ino_num == 0);
  380. im->ino_num--;
  381. spin_unlock(&im->ino_lock);
  382. }
  383. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  384. {
  385. /* add new orphan ino entry into list */
  386. __add_ino_entry(sbi, ino, ORPHAN_INO);
  387. }
  388. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  389. {
  390. /* remove orphan entry from orphan list */
  391. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  392. }
  393. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  394. {
  395. struct inode *inode = f2fs_iget(sbi->sb, ino);
  396. f2fs_bug_on(sbi, IS_ERR(inode));
  397. clear_nlink(inode);
  398. /* truncate all the data during iput */
  399. iput(inode);
  400. }
  401. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  402. {
  403. block_t start_blk, orphan_blocks, i, j;
  404. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  405. return;
  406. set_sbi_flag(sbi, SBI_POR_DOING);
  407. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  408. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  409. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
  410. for (i = 0; i < orphan_blocks; i++) {
  411. struct page *page = get_meta_page(sbi, start_blk + i);
  412. struct f2fs_orphan_block *orphan_blk;
  413. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  414. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  415. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  416. recover_orphan_inode(sbi, ino);
  417. }
  418. f2fs_put_page(page, 1);
  419. }
  420. /* clear Orphan Flag */
  421. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  422. clear_sbi_flag(sbi, SBI_POR_DOING);
  423. return;
  424. }
  425. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  426. {
  427. struct list_head *head;
  428. struct f2fs_orphan_block *orphan_blk = NULL;
  429. unsigned int nentries = 0;
  430. unsigned short index;
  431. unsigned short orphan_blocks;
  432. struct page *page = NULL;
  433. struct ino_entry *orphan = NULL;
  434. struct inode_management *im = &sbi->im[ORPHAN_INO];
  435. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  436. for (index = 0; index < orphan_blocks; index++)
  437. grab_meta_page(sbi, start_blk + index);
  438. index = 1;
  439. spin_lock(&im->ino_lock);
  440. head = &im->ino_list;
  441. /* loop for each orphan inode entry and write them in Jornal block */
  442. list_for_each_entry(orphan, head, list) {
  443. if (!page) {
  444. page = find_get_page(META_MAPPING(sbi), start_blk++);
  445. f2fs_bug_on(sbi, !page);
  446. orphan_blk =
  447. (struct f2fs_orphan_block *)page_address(page);
  448. memset(orphan_blk, 0, sizeof(*orphan_blk));
  449. f2fs_put_page(page, 0);
  450. }
  451. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  452. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  453. /*
  454. * an orphan block is full of 1020 entries,
  455. * then we need to flush current orphan blocks
  456. * and bring another one in memory
  457. */
  458. orphan_blk->blk_addr = cpu_to_le16(index);
  459. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  460. orphan_blk->entry_count = cpu_to_le32(nentries);
  461. set_page_dirty(page);
  462. f2fs_put_page(page, 1);
  463. index++;
  464. nentries = 0;
  465. page = NULL;
  466. }
  467. }
  468. if (page) {
  469. orphan_blk->blk_addr = cpu_to_le16(index);
  470. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  471. orphan_blk->entry_count = cpu_to_le32(nentries);
  472. set_page_dirty(page);
  473. f2fs_put_page(page, 1);
  474. }
  475. spin_unlock(&im->ino_lock);
  476. }
  477. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  478. block_t cp_addr, unsigned long long *version)
  479. {
  480. struct page *cp_page_1, *cp_page_2 = NULL;
  481. unsigned long blk_size = sbi->blocksize;
  482. struct f2fs_checkpoint *cp_block;
  483. unsigned long long cur_version = 0, pre_version = 0;
  484. size_t crc_offset;
  485. __u32 crc = 0;
  486. /* Read the 1st cp block in this CP pack */
  487. cp_page_1 = get_meta_page(sbi, cp_addr);
  488. /* get the version number */
  489. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  490. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  491. if (crc_offset >= blk_size)
  492. goto invalid_cp1;
  493. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  494. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  495. goto invalid_cp1;
  496. pre_version = cur_cp_version(cp_block);
  497. /* Read the 2nd cp block in this CP pack */
  498. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  499. cp_page_2 = get_meta_page(sbi, cp_addr);
  500. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  501. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  502. if (crc_offset >= blk_size)
  503. goto invalid_cp2;
  504. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  505. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  506. goto invalid_cp2;
  507. cur_version = cur_cp_version(cp_block);
  508. if (cur_version == pre_version) {
  509. *version = cur_version;
  510. f2fs_put_page(cp_page_2, 1);
  511. return cp_page_1;
  512. }
  513. invalid_cp2:
  514. f2fs_put_page(cp_page_2, 1);
  515. invalid_cp1:
  516. f2fs_put_page(cp_page_1, 1);
  517. return NULL;
  518. }
  519. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  520. {
  521. struct f2fs_checkpoint *cp_block;
  522. struct f2fs_super_block *fsb = sbi->raw_super;
  523. struct page *cp1, *cp2, *cur_page;
  524. unsigned long blk_size = sbi->blocksize;
  525. unsigned long long cp1_version = 0, cp2_version = 0;
  526. unsigned long long cp_start_blk_no;
  527. unsigned int cp_blks = 1 + __cp_payload(sbi);
  528. block_t cp_blk_no;
  529. int i;
  530. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  531. if (!sbi->ckpt)
  532. return -ENOMEM;
  533. /*
  534. * Finding out valid cp block involves read both
  535. * sets( cp pack1 and cp pack 2)
  536. */
  537. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  538. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  539. /* The second checkpoint pack should start at the next segment */
  540. cp_start_blk_no += ((unsigned long long)1) <<
  541. le32_to_cpu(fsb->log_blocks_per_seg);
  542. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  543. if (cp1 && cp2) {
  544. if (ver_after(cp2_version, cp1_version))
  545. cur_page = cp2;
  546. else
  547. cur_page = cp1;
  548. } else if (cp1) {
  549. cur_page = cp1;
  550. } else if (cp2) {
  551. cur_page = cp2;
  552. } else {
  553. goto fail_no_cp;
  554. }
  555. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  556. memcpy(sbi->ckpt, cp_block, blk_size);
  557. if (cp_blks <= 1)
  558. goto done;
  559. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  560. if (cur_page == cp2)
  561. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  562. for (i = 1; i < cp_blks; i++) {
  563. void *sit_bitmap_ptr;
  564. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  565. cur_page = get_meta_page(sbi, cp_blk_no + i);
  566. sit_bitmap_ptr = page_address(cur_page);
  567. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  568. f2fs_put_page(cur_page, 1);
  569. }
  570. done:
  571. f2fs_put_page(cp1, 1);
  572. f2fs_put_page(cp2, 1);
  573. return 0;
  574. fail_no_cp:
  575. kfree(sbi->ckpt);
  576. return -EINVAL;
  577. }
  578. static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
  579. {
  580. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  581. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  582. return -EEXIST;
  583. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  584. F2FS_I(inode)->dirty_dir = new;
  585. list_add_tail(&new->list, &sbi->dir_inode_list);
  586. stat_inc_dirty_dir(sbi);
  587. return 0;
  588. }
  589. void update_dirty_page(struct inode *inode, struct page *page)
  590. {
  591. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  592. struct inode_entry *new;
  593. int ret = 0;
  594. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
  595. return;
  596. if (!S_ISDIR(inode->i_mode)) {
  597. inode_inc_dirty_pages(inode);
  598. goto out;
  599. }
  600. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  601. new->inode = inode;
  602. INIT_LIST_HEAD(&new->list);
  603. spin_lock(&sbi->dir_inode_lock);
  604. ret = __add_dirty_inode(inode, new);
  605. inode_inc_dirty_pages(inode);
  606. spin_unlock(&sbi->dir_inode_lock);
  607. if (ret)
  608. kmem_cache_free(inode_entry_slab, new);
  609. out:
  610. SetPagePrivate(page);
  611. f2fs_trace_pid(page);
  612. }
  613. void add_dirty_dir_inode(struct inode *inode)
  614. {
  615. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  616. struct inode_entry *new =
  617. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  618. int ret = 0;
  619. new->inode = inode;
  620. INIT_LIST_HEAD(&new->list);
  621. spin_lock(&sbi->dir_inode_lock);
  622. ret = __add_dirty_inode(inode, new);
  623. spin_unlock(&sbi->dir_inode_lock);
  624. if (ret)
  625. kmem_cache_free(inode_entry_slab, new);
  626. }
  627. void remove_dirty_dir_inode(struct inode *inode)
  628. {
  629. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  630. struct inode_entry *entry;
  631. if (!S_ISDIR(inode->i_mode))
  632. return;
  633. spin_lock(&sbi->dir_inode_lock);
  634. if (get_dirty_pages(inode) ||
  635. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  636. spin_unlock(&sbi->dir_inode_lock);
  637. return;
  638. }
  639. entry = F2FS_I(inode)->dirty_dir;
  640. list_del(&entry->list);
  641. F2FS_I(inode)->dirty_dir = NULL;
  642. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  643. stat_dec_dirty_dir(sbi);
  644. spin_unlock(&sbi->dir_inode_lock);
  645. kmem_cache_free(inode_entry_slab, entry);
  646. /* Only from the recovery routine */
  647. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  648. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  649. iput(inode);
  650. }
  651. }
  652. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  653. {
  654. struct list_head *head;
  655. struct inode_entry *entry;
  656. struct inode *inode;
  657. retry:
  658. if (unlikely(f2fs_cp_error(sbi)))
  659. return;
  660. spin_lock(&sbi->dir_inode_lock);
  661. head = &sbi->dir_inode_list;
  662. if (list_empty(head)) {
  663. spin_unlock(&sbi->dir_inode_lock);
  664. return;
  665. }
  666. entry = list_entry(head->next, struct inode_entry, list);
  667. inode = igrab(entry->inode);
  668. spin_unlock(&sbi->dir_inode_lock);
  669. if (inode) {
  670. filemap_fdatawrite(inode->i_mapping);
  671. iput(inode);
  672. } else {
  673. /*
  674. * We should submit bio, since it exists several
  675. * wribacking dentry pages in the freeing inode.
  676. */
  677. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  678. cond_resched();
  679. }
  680. goto retry;
  681. }
  682. /*
  683. * Freeze all the FS-operations for checkpoint.
  684. */
  685. static int block_operations(struct f2fs_sb_info *sbi)
  686. {
  687. struct writeback_control wbc = {
  688. .sync_mode = WB_SYNC_ALL,
  689. .nr_to_write = LONG_MAX,
  690. .for_reclaim = 0,
  691. };
  692. struct blk_plug plug;
  693. int err = 0;
  694. blk_start_plug(&plug);
  695. retry_flush_dents:
  696. f2fs_lock_all(sbi);
  697. /* write all the dirty dentry pages */
  698. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  699. f2fs_unlock_all(sbi);
  700. sync_dirty_dir_inodes(sbi);
  701. if (unlikely(f2fs_cp_error(sbi))) {
  702. err = -EIO;
  703. goto out;
  704. }
  705. goto retry_flush_dents;
  706. }
  707. /*
  708. * POR: we should ensure that there are no dirty node pages
  709. * until finishing nat/sit flush.
  710. */
  711. retry_flush_nodes:
  712. down_write(&sbi->node_write);
  713. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  714. up_write(&sbi->node_write);
  715. sync_node_pages(sbi, 0, &wbc);
  716. if (unlikely(f2fs_cp_error(sbi))) {
  717. f2fs_unlock_all(sbi);
  718. err = -EIO;
  719. goto out;
  720. }
  721. goto retry_flush_nodes;
  722. }
  723. out:
  724. blk_finish_plug(&plug);
  725. return err;
  726. }
  727. static void unblock_operations(struct f2fs_sb_info *sbi)
  728. {
  729. up_write(&sbi->node_write);
  730. f2fs_unlock_all(sbi);
  731. }
  732. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  733. {
  734. DEFINE_WAIT(wait);
  735. for (;;) {
  736. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  737. if (!get_pages(sbi, F2FS_WRITEBACK))
  738. break;
  739. io_schedule();
  740. }
  741. finish_wait(&sbi->cp_wait, &wait);
  742. }
  743. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  744. {
  745. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  746. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  747. struct f2fs_nm_info *nm_i = NM_I(sbi);
  748. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  749. nid_t last_nid = nm_i->next_scan_nid;
  750. block_t start_blk;
  751. struct page *cp_page;
  752. unsigned int data_sum_blocks, orphan_blocks;
  753. __u32 crc32 = 0;
  754. void *kaddr;
  755. int i;
  756. int cp_payload_blks = __cp_payload(sbi);
  757. /*
  758. * This avoids to conduct wrong roll-forward operations and uses
  759. * metapages, so should be called prior to sync_meta_pages below.
  760. */
  761. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  762. /* Flush all the NAT/SIT pages */
  763. while (get_pages(sbi, F2FS_DIRTY_META)) {
  764. sync_meta_pages(sbi, META, LONG_MAX);
  765. if (unlikely(f2fs_cp_error(sbi)))
  766. return;
  767. }
  768. next_free_nid(sbi, &last_nid);
  769. /*
  770. * modify checkpoint
  771. * version number is already updated
  772. */
  773. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  774. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  775. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  776. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  777. ckpt->cur_node_segno[i] =
  778. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  779. ckpt->cur_node_blkoff[i] =
  780. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  781. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  782. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  783. }
  784. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  785. ckpt->cur_data_segno[i] =
  786. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  787. ckpt->cur_data_blkoff[i] =
  788. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  789. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  790. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  791. }
  792. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  793. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  794. ckpt->next_free_nid = cpu_to_le32(last_nid);
  795. /* 2 cp + n data seg summary + orphan inode blocks */
  796. data_sum_blocks = npages_for_summary_flush(sbi, false);
  797. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  798. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  799. else
  800. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  801. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  802. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  803. orphan_blocks);
  804. if (__remain_node_summaries(cpc->reason))
  805. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  806. cp_payload_blks + data_sum_blocks +
  807. orphan_blocks + NR_CURSEG_NODE_TYPE);
  808. else
  809. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  810. cp_payload_blks + data_sum_blocks +
  811. orphan_blocks);
  812. if (cpc->reason == CP_UMOUNT)
  813. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  814. else
  815. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  816. if (cpc->reason == CP_FASTBOOT)
  817. set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  818. else
  819. clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  820. if (orphan_num)
  821. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  822. else
  823. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  824. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  825. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  826. /* update SIT/NAT bitmap */
  827. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  828. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  829. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  830. *((__le32 *)((unsigned char *)ckpt +
  831. le32_to_cpu(ckpt->checksum_offset)))
  832. = cpu_to_le32(crc32);
  833. start_blk = __start_cp_addr(sbi);
  834. /* write out checkpoint buffer at block 0 */
  835. cp_page = grab_meta_page(sbi, start_blk++);
  836. kaddr = page_address(cp_page);
  837. memcpy(kaddr, ckpt, F2FS_BLKSIZE);
  838. set_page_dirty(cp_page);
  839. f2fs_put_page(cp_page, 1);
  840. for (i = 1; i < 1 + cp_payload_blks; i++) {
  841. cp_page = grab_meta_page(sbi, start_blk++);
  842. kaddr = page_address(cp_page);
  843. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, F2FS_BLKSIZE);
  844. set_page_dirty(cp_page);
  845. f2fs_put_page(cp_page, 1);
  846. }
  847. if (orphan_num) {
  848. write_orphan_inodes(sbi, start_blk);
  849. start_blk += orphan_blocks;
  850. }
  851. write_data_summaries(sbi, start_blk);
  852. start_blk += data_sum_blocks;
  853. if (__remain_node_summaries(cpc->reason)) {
  854. write_node_summaries(sbi, start_blk);
  855. start_blk += NR_CURSEG_NODE_TYPE;
  856. }
  857. /* writeout checkpoint block */
  858. cp_page = grab_meta_page(sbi, start_blk);
  859. kaddr = page_address(cp_page);
  860. memcpy(kaddr, ckpt, F2FS_BLKSIZE);
  861. set_page_dirty(cp_page);
  862. f2fs_put_page(cp_page, 1);
  863. /* wait for previous submitted node/meta pages writeback */
  864. wait_on_all_pages_writeback(sbi);
  865. if (unlikely(f2fs_cp_error(sbi)))
  866. return;
  867. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  868. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  869. /* update user_block_counts */
  870. sbi->last_valid_block_count = sbi->total_valid_block_count;
  871. sbi->alloc_valid_block_count = 0;
  872. /* Here, we only have one bio having CP pack */
  873. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  874. /* wait for previous submitted meta pages writeback */
  875. wait_on_all_pages_writeback(sbi);
  876. release_dirty_inode(sbi);
  877. if (unlikely(f2fs_cp_error(sbi)))
  878. return;
  879. clear_prefree_segments(sbi);
  880. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  881. }
  882. /*
  883. * We guarantee that this checkpoint procedure will not fail.
  884. */
  885. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  886. {
  887. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  888. unsigned long long ckpt_ver;
  889. mutex_lock(&sbi->cp_mutex);
  890. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  891. (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC))
  892. goto out;
  893. if (unlikely(f2fs_cp_error(sbi)))
  894. goto out;
  895. if (f2fs_readonly(sbi->sb))
  896. goto out;
  897. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  898. if (block_operations(sbi))
  899. goto out;
  900. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  901. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  902. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  903. f2fs_submit_merged_bio(sbi, META, WRITE);
  904. /*
  905. * update checkpoint pack index
  906. * Increase the version number so that
  907. * SIT entries and seg summaries are written at correct place
  908. */
  909. ckpt_ver = cur_cp_version(ckpt);
  910. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  911. /* write cached NAT/SIT entries to NAT/SIT area */
  912. flush_nat_entries(sbi);
  913. flush_sit_entries(sbi, cpc);
  914. /* unlock all the fs_lock[] in do_checkpoint() */
  915. do_checkpoint(sbi, cpc);
  916. unblock_operations(sbi);
  917. stat_inc_cp_count(sbi->stat_info);
  918. if (cpc->reason == CP_RECOVERY)
  919. f2fs_msg(sbi->sb, KERN_NOTICE,
  920. "checkpoint: version = %llx", ckpt_ver);
  921. out:
  922. mutex_unlock(&sbi->cp_mutex);
  923. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  924. }
  925. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  926. {
  927. int i;
  928. for (i = 0; i < MAX_INO_ENTRY; i++) {
  929. struct inode_management *im = &sbi->im[i];
  930. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  931. spin_lock_init(&im->ino_lock);
  932. INIT_LIST_HEAD(&im->ino_list);
  933. im->ino_num = 0;
  934. }
  935. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  936. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  937. F2FS_ORPHANS_PER_BLOCK;
  938. }
  939. int __init create_checkpoint_caches(void)
  940. {
  941. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  942. sizeof(struct ino_entry));
  943. if (!ino_entry_slab)
  944. return -ENOMEM;
  945. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  946. sizeof(struct inode_entry));
  947. if (!inode_entry_slab) {
  948. kmem_cache_destroy(ino_entry_slab);
  949. return -ENOMEM;
  950. }
  951. return 0;
  952. }
  953. void destroy_checkpoint_caches(void)
  954. {
  955. kmem_cache_destroy(ino_entry_slab);
  956. kmem_cache_destroy(inode_entry_slab);
  957. }