amd5536udc.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/timer.h>
  40. #include <linux/list.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/fs.h>
  44. #include <linux/dmapool.h>
  45. #include <linux/moduleparam.h>
  46. #include <linux/device.h>
  47. #include <linux/io.h>
  48. #include <linux/irq.h>
  49. #include <linux/prefetch.h>
  50. #include <asm/byteorder.h>
  51. #include <asm/unaligned.h>
  52. /* gadget stack */
  53. #include <linux/usb/ch9.h>
  54. #include <linux/usb/gadget.h>
  55. /* udc specific */
  56. #include "amd5536udc.h"
  57. static void udc_tasklet_disconnect(unsigned long);
  58. static void empty_req_queue(struct udc_ep *);
  59. static int udc_probe(struct udc *dev);
  60. static void udc_basic_init(struct udc *dev);
  61. static void udc_setup_endpoints(struct udc *dev);
  62. static void udc_soft_reset(struct udc *dev);
  63. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  64. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  65. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  66. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  67. unsigned long buf_len, gfp_t gfp_flags);
  68. static int udc_remote_wakeup(struct udc *dev);
  69. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  70. static void udc_pci_remove(struct pci_dev *pdev);
  71. /* description */
  72. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  73. static const char name[] = "amd5536udc";
  74. /* structure to hold endpoint function pointers */
  75. static const struct usb_ep_ops udc_ep_ops;
  76. /* received setup data */
  77. static union udc_setup_data setup_data;
  78. /* pointer to device object */
  79. static struct udc *udc;
  80. /* irq spin lock for soft reset */
  81. static DEFINE_SPINLOCK(udc_irq_spinlock);
  82. /* stall spin lock */
  83. static DEFINE_SPINLOCK(udc_stall_spinlock);
  84. /*
  85. * slave mode: pending bytes in rx fifo after nyet,
  86. * used if EPIN irq came but no req was available
  87. */
  88. static unsigned int udc_rxfifo_pending;
  89. /* count soft resets after suspend to avoid loop */
  90. static int soft_reset_occured;
  91. static int soft_reset_after_usbreset_occured;
  92. /* timer */
  93. static struct timer_list udc_timer;
  94. static int stop_timer;
  95. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  96. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  97. * all OUT endpoints. So we have to handle race conditions like
  98. * when OUT data reaches the fifo but no request was queued yet.
  99. * This cannot be solved by letting the RX DMA disabled until a
  100. * request gets queued because there may be other OUT packets
  101. * in the FIFO (important for not blocking control traffic).
  102. * The value of set_rde controls the correspondig timer.
  103. *
  104. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  105. * set_rde 0 == do not touch RDE, do no start the RDE timer
  106. * set_rde 1 == timer function will look whether FIFO has data
  107. * set_rde 2 == set by timer function to enable RX DMA on next call
  108. */
  109. static int set_rde = -1;
  110. static DECLARE_COMPLETION(on_exit);
  111. static struct timer_list udc_pollstall_timer;
  112. static int stop_pollstall_timer;
  113. static DECLARE_COMPLETION(on_pollstall_exit);
  114. /* tasklet for usb disconnect */
  115. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  116. (unsigned long) &udc);
  117. /* endpoint names used for print */
  118. static const char ep0_string[] = "ep0in";
  119. static const char *const ep_string[] = {
  120. ep0_string,
  121. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  122. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  123. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  124. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  125. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  126. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  127. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  128. };
  129. /* DMA usage flag */
  130. static bool use_dma = 1;
  131. /* packet per buffer dma */
  132. static bool use_dma_ppb = 1;
  133. /* with per descr. update */
  134. static bool use_dma_ppb_du;
  135. /* buffer fill mode */
  136. static int use_dma_bufferfill_mode;
  137. /* full speed only mode */
  138. static bool use_fullspeed;
  139. /* tx buffer size for high speed */
  140. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  141. /* module parameters */
  142. module_param(use_dma, bool, S_IRUGO);
  143. MODULE_PARM_DESC(use_dma, "true for DMA");
  144. module_param(use_dma_ppb, bool, S_IRUGO);
  145. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  146. module_param(use_dma_ppb_du, bool, S_IRUGO);
  147. MODULE_PARM_DESC(use_dma_ppb_du,
  148. "true for DMA in packet per buffer mode with descriptor update");
  149. module_param(use_fullspeed, bool, S_IRUGO);
  150. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  151. /*---------------------------------------------------------------------------*/
  152. /* Prints UDC device registers and endpoint irq registers */
  153. static void print_regs(struct udc *dev)
  154. {
  155. DBG(dev, "------- Device registers -------\n");
  156. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  157. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  158. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  159. DBG(dev, "\n");
  160. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  161. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  162. DBG(dev, "\n");
  163. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  164. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  165. DBG(dev, "\n");
  166. DBG(dev, "USE DMA = %d\n", use_dma);
  167. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  168. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  169. "WITHOUT desc. update)\n");
  170. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  171. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  172. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  173. "WITH desc. update)\n");
  174. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  175. }
  176. if (use_dma && use_dma_bufferfill_mode) {
  177. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  178. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  179. }
  180. if (!use_dma)
  181. dev_info(&dev->pdev->dev, "FIFO mode\n");
  182. DBG(dev, "-------------------------------------------------------\n");
  183. }
  184. /* Masks unused interrupts */
  185. static int udc_mask_unused_interrupts(struct udc *dev)
  186. {
  187. u32 tmp;
  188. /* mask all dev interrupts */
  189. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  190. AMD_BIT(UDC_DEVINT_ENUM) |
  191. AMD_BIT(UDC_DEVINT_US) |
  192. AMD_BIT(UDC_DEVINT_UR) |
  193. AMD_BIT(UDC_DEVINT_ES) |
  194. AMD_BIT(UDC_DEVINT_SI) |
  195. AMD_BIT(UDC_DEVINT_SOF)|
  196. AMD_BIT(UDC_DEVINT_SC);
  197. writel(tmp, &dev->regs->irqmsk);
  198. /* mask all ep interrupts */
  199. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  200. return 0;
  201. }
  202. /* Enables endpoint 0 interrupts */
  203. static int udc_enable_ep0_interrupts(struct udc *dev)
  204. {
  205. u32 tmp;
  206. DBG(dev, "udc_enable_ep0_interrupts()\n");
  207. /* read irq mask */
  208. tmp = readl(&dev->regs->ep_irqmsk);
  209. /* enable ep0 irq's */
  210. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  211. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  212. writel(tmp, &dev->regs->ep_irqmsk);
  213. return 0;
  214. }
  215. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  216. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  217. {
  218. u32 tmp;
  219. DBG(dev, "enable device interrupts for setup data\n");
  220. /* read irq mask */
  221. tmp = readl(&dev->regs->irqmsk);
  222. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  223. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  224. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  225. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  226. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  228. writel(tmp, &dev->regs->irqmsk);
  229. return 0;
  230. }
  231. /* Calculates fifo start of endpoint based on preceding endpoints */
  232. static int udc_set_txfifo_addr(struct udc_ep *ep)
  233. {
  234. struct udc *dev;
  235. u32 tmp;
  236. int i;
  237. if (!ep || !(ep->in))
  238. return -EINVAL;
  239. dev = ep->dev;
  240. ep->txfifo = dev->txfifo;
  241. /* traverse ep's */
  242. for (i = 0; i < ep->num; i++) {
  243. if (dev->ep[i].regs) {
  244. /* read fifo size */
  245. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  246. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  247. ep->txfifo += tmp;
  248. }
  249. }
  250. return 0;
  251. }
  252. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  253. static u32 cnak_pending;
  254. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  255. {
  256. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  257. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  258. cnak_pending |= 1 << (num);
  259. ep->naking = 1;
  260. } else
  261. cnak_pending = cnak_pending & (~(1 << (num)));
  262. }
  263. /* Enables endpoint, is called by gadget driver */
  264. static int
  265. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  266. {
  267. struct udc_ep *ep;
  268. struct udc *dev;
  269. u32 tmp;
  270. unsigned long iflags;
  271. u8 udc_csr_epix;
  272. unsigned maxpacket;
  273. if (!usbep
  274. || usbep->name == ep0_string
  275. || !desc
  276. || desc->bDescriptorType != USB_DT_ENDPOINT)
  277. return -EINVAL;
  278. ep = container_of(usbep, struct udc_ep, ep);
  279. dev = ep->dev;
  280. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  281. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  282. return -ESHUTDOWN;
  283. spin_lock_irqsave(&dev->lock, iflags);
  284. ep->ep.desc = desc;
  285. ep->halted = 0;
  286. /* set traffic type */
  287. tmp = readl(&dev->ep[ep->num].regs->ctl);
  288. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  289. writel(tmp, &dev->ep[ep->num].regs->ctl);
  290. /* set max packet size */
  291. maxpacket = usb_endpoint_maxp(desc);
  292. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  293. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  294. ep->ep.maxpacket = maxpacket;
  295. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  296. /* IN ep */
  297. if (ep->in) {
  298. /* ep ix in UDC CSR register space */
  299. udc_csr_epix = ep->num;
  300. /* set buffer size (tx fifo entries) */
  301. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  302. /* double buffering: fifo size = 2 x max packet size */
  303. tmp = AMD_ADDBITS(
  304. tmp,
  305. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  306. / UDC_DWORD_BYTES,
  307. UDC_EPIN_BUFF_SIZE);
  308. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  309. /* calc. tx fifo base addr */
  310. udc_set_txfifo_addr(ep);
  311. /* flush fifo */
  312. tmp = readl(&ep->regs->ctl);
  313. tmp |= AMD_BIT(UDC_EPCTL_F);
  314. writel(tmp, &ep->regs->ctl);
  315. /* OUT ep */
  316. } else {
  317. /* ep ix in UDC CSR register space */
  318. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  319. /* set max packet size UDC CSR */
  320. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  321. tmp = AMD_ADDBITS(tmp, maxpacket,
  322. UDC_CSR_NE_MAX_PKT);
  323. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  324. if (use_dma && !ep->in) {
  325. /* alloc and init BNA dummy request */
  326. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  327. ep->bna_occurred = 0;
  328. }
  329. if (ep->num != UDC_EP0OUT_IX)
  330. dev->data_ep_enabled = 1;
  331. }
  332. /* set ep values */
  333. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  334. /* max packet */
  335. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  336. /* ep number */
  337. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  338. /* ep direction */
  339. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  340. /* ep type */
  341. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  342. /* ep config */
  343. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  344. /* ep interface */
  345. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  346. /* ep alt */
  347. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  348. /* write reg */
  349. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  350. /* enable ep irq */
  351. tmp = readl(&dev->regs->ep_irqmsk);
  352. tmp &= AMD_UNMASK_BIT(ep->num);
  353. writel(tmp, &dev->regs->ep_irqmsk);
  354. /*
  355. * clear NAK by writing CNAK
  356. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  357. */
  358. if (!use_dma || ep->in) {
  359. tmp = readl(&ep->regs->ctl);
  360. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  361. writel(tmp, &ep->regs->ctl);
  362. ep->naking = 0;
  363. UDC_QUEUE_CNAK(ep, ep->num);
  364. }
  365. tmp = desc->bEndpointAddress;
  366. DBG(dev, "%s enabled\n", usbep->name);
  367. spin_unlock_irqrestore(&dev->lock, iflags);
  368. return 0;
  369. }
  370. /* Resets endpoint */
  371. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  372. {
  373. u32 tmp;
  374. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  375. ep->ep.desc = NULL;
  376. ep->ep.ops = &udc_ep_ops;
  377. INIT_LIST_HEAD(&ep->queue);
  378. usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
  379. /* set NAK */
  380. tmp = readl(&ep->regs->ctl);
  381. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  382. writel(tmp, &ep->regs->ctl);
  383. ep->naking = 1;
  384. /* disable interrupt */
  385. tmp = readl(&regs->ep_irqmsk);
  386. tmp |= AMD_BIT(ep->num);
  387. writel(tmp, &regs->ep_irqmsk);
  388. if (ep->in) {
  389. /* unset P and IN bit of potential former DMA */
  390. tmp = readl(&ep->regs->ctl);
  391. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  392. writel(tmp, &ep->regs->ctl);
  393. tmp = readl(&ep->regs->sts);
  394. tmp |= AMD_BIT(UDC_EPSTS_IN);
  395. writel(tmp, &ep->regs->sts);
  396. /* flush the fifo */
  397. tmp = readl(&ep->regs->ctl);
  398. tmp |= AMD_BIT(UDC_EPCTL_F);
  399. writel(tmp, &ep->regs->ctl);
  400. }
  401. /* reset desc pointer */
  402. writel(0, &ep->regs->desptr);
  403. }
  404. /* Disables endpoint, is called by gadget driver */
  405. static int udc_ep_disable(struct usb_ep *usbep)
  406. {
  407. struct udc_ep *ep = NULL;
  408. unsigned long iflags;
  409. if (!usbep)
  410. return -EINVAL;
  411. ep = container_of(usbep, struct udc_ep, ep);
  412. if (usbep->name == ep0_string || !ep->ep.desc)
  413. return -EINVAL;
  414. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  415. spin_lock_irqsave(&ep->dev->lock, iflags);
  416. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  417. empty_req_queue(ep);
  418. ep_init(ep->dev->regs, ep);
  419. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  420. return 0;
  421. }
  422. /* Allocates request packet, called by gadget driver */
  423. static struct usb_request *
  424. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  425. {
  426. struct udc_request *req;
  427. struct udc_data_dma *dma_desc;
  428. struct udc_ep *ep;
  429. if (!usbep)
  430. return NULL;
  431. ep = container_of(usbep, struct udc_ep, ep);
  432. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  433. req = kzalloc(sizeof(struct udc_request), gfp);
  434. if (!req)
  435. return NULL;
  436. req->req.dma = DMA_DONT_USE;
  437. INIT_LIST_HEAD(&req->queue);
  438. if (ep->dma) {
  439. /* ep0 in requests are allocated from data pool here */
  440. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  441. &req->td_phys);
  442. if (!dma_desc) {
  443. kfree(req);
  444. return NULL;
  445. }
  446. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  447. "td_phys = %lx\n",
  448. req, dma_desc,
  449. (unsigned long)req->td_phys);
  450. /* prevent from using desc. - set HOST BUSY */
  451. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  452. UDC_DMA_STP_STS_BS_HOST_BUSY,
  453. UDC_DMA_STP_STS_BS);
  454. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  455. req->td_data = dma_desc;
  456. req->td_data_last = NULL;
  457. req->chain_len = 1;
  458. }
  459. return &req->req;
  460. }
  461. /* Frees request packet, called by gadget driver */
  462. static void
  463. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  464. {
  465. struct udc_ep *ep;
  466. struct udc_request *req;
  467. if (!usbep || !usbreq)
  468. return;
  469. ep = container_of(usbep, struct udc_ep, ep);
  470. req = container_of(usbreq, struct udc_request, req);
  471. VDBG(ep->dev, "free_req req=%p\n", req);
  472. BUG_ON(!list_empty(&req->queue));
  473. if (req->td_data) {
  474. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  475. /* free dma chain if created */
  476. if (req->chain_len > 1)
  477. udc_free_dma_chain(ep->dev, req);
  478. pci_pool_free(ep->dev->data_requests, req->td_data,
  479. req->td_phys);
  480. }
  481. kfree(req);
  482. }
  483. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  484. static void udc_init_bna_dummy(struct udc_request *req)
  485. {
  486. if (req) {
  487. /* set last bit */
  488. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  489. /* set next pointer to itself */
  490. req->td_data->next = req->td_phys;
  491. /* set HOST BUSY */
  492. req->td_data->status
  493. = AMD_ADDBITS(req->td_data->status,
  494. UDC_DMA_STP_STS_BS_DMA_DONE,
  495. UDC_DMA_STP_STS_BS);
  496. #ifdef UDC_VERBOSE
  497. pr_debug("bna desc = %p, sts = %08x\n",
  498. req->td_data, req->td_data->status);
  499. #endif
  500. }
  501. }
  502. /* Allocate BNA dummy descriptor */
  503. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  504. {
  505. struct udc_request *req = NULL;
  506. struct usb_request *_req = NULL;
  507. /* alloc the dummy request */
  508. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  509. if (_req) {
  510. req = container_of(_req, struct udc_request, req);
  511. ep->bna_dummy_req = req;
  512. udc_init_bna_dummy(req);
  513. }
  514. return req;
  515. }
  516. /* Write data to TX fifo for IN packets */
  517. static void
  518. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  519. {
  520. u8 *req_buf;
  521. u32 *buf;
  522. int i, j;
  523. unsigned bytes = 0;
  524. unsigned remaining = 0;
  525. if (!req || !ep)
  526. return;
  527. req_buf = req->buf + req->actual;
  528. prefetch(req_buf);
  529. remaining = req->length - req->actual;
  530. buf = (u32 *) req_buf;
  531. bytes = ep->ep.maxpacket;
  532. if (bytes > remaining)
  533. bytes = remaining;
  534. /* dwords first */
  535. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  536. writel(*(buf + i), ep->txfifo);
  537. /* remaining bytes must be written by byte access */
  538. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  539. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  540. ep->txfifo);
  541. }
  542. /* dummy write confirm */
  543. writel(0, &ep->regs->confirm);
  544. }
  545. /* Read dwords from RX fifo for OUT transfers */
  546. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  547. {
  548. int i;
  549. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  550. for (i = 0; i < dwords; i++)
  551. *(buf + i) = readl(dev->rxfifo);
  552. return 0;
  553. }
  554. /* Read bytes from RX fifo for OUT transfers */
  555. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  556. {
  557. int i, j;
  558. u32 tmp;
  559. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  560. /* dwords first */
  561. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  562. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  563. /* remaining bytes must be read by byte access */
  564. if (bytes % UDC_DWORD_BYTES) {
  565. tmp = readl(dev->rxfifo);
  566. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  567. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  568. tmp = tmp >> UDC_BITS_PER_BYTE;
  569. }
  570. }
  571. return 0;
  572. }
  573. /* Read data from RX fifo for OUT transfers */
  574. static int
  575. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  576. {
  577. u8 *buf;
  578. unsigned buf_space;
  579. unsigned bytes = 0;
  580. unsigned finished = 0;
  581. /* received number bytes */
  582. bytes = readl(&ep->regs->sts);
  583. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  584. buf_space = req->req.length - req->req.actual;
  585. buf = req->req.buf + req->req.actual;
  586. if (bytes > buf_space) {
  587. if ((buf_space % ep->ep.maxpacket) != 0) {
  588. DBG(ep->dev,
  589. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  590. ep->ep.name, bytes, buf_space);
  591. req->req.status = -EOVERFLOW;
  592. }
  593. bytes = buf_space;
  594. }
  595. req->req.actual += bytes;
  596. /* last packet ? */
  597. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  598. || ((req->req.actual == req->req.length) && !req->req.zero))
  599. finished = 1;
  600. /* read rx fifo bytes */
  601. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  602. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  603. return finished;
  604. }
  605. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  606. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  607. {
  608. int retval = 0;
  609. u32 tmp;
  610. VDBG(ep->dev, "prep_dma\n");
  611. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  612. ep->num, req->td_data);
  613. /* set buffer pointer */
  614. req->td_data->bufptr = req->req.dma;
  615. /* set last bit */
  616. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  617. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  618. if (use_dma_ppb) {
  619. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  620. if (retval != 0) {
  621. if (retval == -ENOMEM)
  622. DBG(ep->dev, "Out of DMA memory\n");
  623. return retval;
  624. }
  625. if (ep->in) {
  626. if (req->req.length == ep->ep.maxpacket) {
  627. /* write tx bytes */
  628. req->td_data->status =
  629. AMD_ADDBITS(req->td_data->status,
  630. ep->ep.maxpacket,
  631. UDC_DMA_IN_STS_TXBYTES);
  632. }
  633. }
  634. }
  635. if (ep->in) {
  636. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  637. "maxpacket=%d ep%d\n",
  638. use_dma_ppb, req->req.length,
  639. ep->ep.maxpacket, ep->num);
  640. /*
  641. * if bytes < max packet then tx bytes must
  642. * be written in packet per buffer mode
  643. */
  644. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  645. || ep->num == UDC_EP0OUT_IX
  646. || ep->num == UDC_EP0IN_IX) {
  647. /* write tx bytes */
  648. req->td_data->status =
  649. AMD_ADDBITS(req->td_data->status,
  650. req->req.length,
  651. UDC_DMA_IN_STS_TXBYTES);
  652. /* reset frame num */
  653. req->td_data->status =
  654. AMD_ADDBITS(req->td_data->status,
  655. 0,
  656. UDC_DMA_IN_STS_FRAMENUM);
  657. }
  658. /* set HOST BUSY */
  659. req->td_data->status =
  660. AMD_ADDBITS(req->td_data->status,
  661. UDC_DMA_STP_STS_BS_HOST_BUSY,
  662. UDC_DMA_STP_STS_BS);
  663. } else {
  664. VDBG(ep->dev, "OUT set host ready\n");
  665. /* set HOST READY */
  666. req->td_data->status =
  667. AMD_ADDBITS(req->td_data->status,
  668. UDC_DMA_STP_STS_BS_HOST_READY,
  669. UDC_DMA_STP_STS_BS);
  670. /* clear NAK by writing CNAK */
  671. if (ep->naking) {
  672. tmp = readl(&ep->regs->ctl);
  673. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  674. writel(tmp, &ep->regs->ctl);
  675. ep->naking = 0;
  676. UDC_QUEUE_CNAK(ep, ep->num);
  677. }
  678. }
  679. return retval;
  680. }
  681. /* Completes request packet ... caller MUST hold lock */
  682. static void
  683. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  684. __releases(ep->dev->lock)
  685. __acquires(ep->dev->lock)
  686. {
  687. struct udc *dev;
  688. unsigned halted;
  689. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  690. dev = ep->dev;
  691. /* unmap DMA */
  692. if (ep->dma)
  693. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  694. halted = ep->halted;
  695. ep->halted = 1;
  696. /* set new status if pending */
  697. if (req->req.status == -EINPROGRESS)
  698. req->req.status = sts;
  699. /* remove from ep queue */
  700. list_del_init(&req->queue);
  701. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  702. &req->req, req->req.length, ep->ep.name, sts);
  703. spin_unlock(&dev->lock);
  704. usb_gadget_giveback_request(&ep->ep, &req->req);
  705. spin_lock(&dev->lock);
  706. ep->halted = halted;
  707. }
  708. /* frees pci pool descriptors of a DMA chain */
  709. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  710. {
  711. int ret_val = 0;
  712. struct udc_data_dma *td;
  713. struct udc_data_dma *td_last = NULL;
  714. unsigned int i;
  715. DBG(dev, "free chain req = %p\n", req);
  716. /* do not free first desc., will be done by free for request */
  717. td_last = req->td_data;
  718. td = phys_to_virt(td_last->next);
  719. for (i = 1; i < req->chain_len; i++) {
  720. pci_pool_free(dev->data_requests, td,
  721. (dma_addr_t) td_last->next);
  722. td_last = td;
  723. td = phys_to_virt(td_last->next);
  724. }
  725. return ret_val;
  726. }
  727. /* Iterates to the end of a DMA chain and returns last descriptor */
  728. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  729. {
  730. struct udc_data_dma *td;
  731. td = req->td_data;
  732. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  733. td = phys_to_virt(td->next);
  734. return td;
  735. }
  736. /* Iterates to the end of a DMA chain and counts bytes received */
  737. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  738. {
  739. struct udc_data_dma *td;
  740. u32 count;
  741. td = req->td_data;
  742. /* received number bytes */
  743. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  744. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  745. td = phys_to_virt(td->next);
  746. /* received number bytes */
  747. if (td) {
  748. count += AMD_GETBITS(td->status,
  749. UDC_DMA_OUT_STS_RXBYTES);
  750. }
  751. }
  752. return count;
  753. }
  754. /* Creates or re-inits a DMA chain */
  755. static int udc_create_dma_chain(
  756. struct udc_ep *ep,
  757. struct udc_request *req,
  758. unsigned long buf_len, gfp_t gfp_flags
  759. )
  760. {
  761. unsigned long bytes = req->req.length;
  762. unsigned int i;
  763. dma_addr_t dma_addr;
  764. struct udc_data_dma *td = NULL;
  765. struct udc_data_dma *last = NULL;
  766. unsigned long txbytes;
  767. unsigned create_new_chain = 0;
  768. unsigned len;
  769. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  770. bytes, buf_len);
  771. dma_addr = DMA_DONT_USE;
  772. /* unset L bit in first desc for OUT */
  773. if (!ep->in)
  774. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  775. /* alloc only new desc's if not already available */
  776. len = req->req.length / ep->ep.maxpacket;
  777. if (req->req.length % ep->ep.maxpacket)
  778. len++;
  779. if (len > req->chain_len) {
  780. /* shorter chain already allocated before */
  781. if (req->chain_len > 1)
  782. udc_free_dma_chain(ep->dev, req);
  783. req->chain_len = len;
  784. create_new_chain = 1;
  785. }
  786. td = req->td_data;
  787. /* gen. required number of descriptors and buffers */
  788. for (i = buf_len; i < bytes; i += buf_len) {
  789. /* create or determine next desc. */
  790. if (create_new_chain) {
  791. td = pci_pool_alloc(ep->dev->data_requests,
  792. gfp_flags, &dma_addr);
  793. if (!td)
  794. return -ENOMEM;
  795. td->status = 0;
  796. } else if (i == buf_len) {
  797. /* first td */
  798. td = (struct udc_data_dma *) phys_to_virt(
  799. req->td_data->next);
  800. td->status = 0;
  801. } else {
  802. td = (struct udc_data_dma *) phys_to_virt(last->next);
  803. td->status = 0;
  804. }
  805. if (td)
  806. td->bufptr = req->req.dma + i; /* assign buffer */
  807. else
  808. break;
  809. /* short packet ? */
  810. if ((bytes - i) >= buf_len) {
  811. txbytes = buf_len;
  812. } else {
  813. /* short packet */
  814. txbytes = bytes - i;
  815. }
  816. /* link td and assign tx bytes */
  817. if (i == buf_len) {
  818. if (create_new_chain)
  819. req->td_data->next = dma_addr;
  820. /*
  821. else
  822. req->td_data->next = virt_to_phys(td);
  823. */
  824. /* write tx bytes */
  825. if (ep->in) {
  826. /* first desc */
  827. req->td_data->status =
  828. AMD_ADDBITS(req->td_data->status,
  829. ep->ep.maxpacket,
  830. UDC_DMA_IN_STS_TXBYTES);
  831. /* second desc */
  832. td->status = AMD_ADDBITS(td->status,
  833. txbytes,
  834. UDC_DMA_IN_STS_TXBYTES);
  835. }
  836. } else {
  837. if (create_new_chain)
  838. last->next = dma_addr;
  839. /*
  840. else
  841. last->next = virt_to_phys(td);
  842. */
  843. if (ep->in) {
  844. /* write tx bytes */
  845. td->status = AMD_ADDBITS(td->status,
  846. txbytes,
  847. UDC_DMA_IN_STS_TXBYTES);
  848. }
  849. }
  850. last = td;
  851. }
  852. /* set last bit */
  853. if (td) {
  854. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  855. /* last desc. points to itself */
  856. req->td_data_last = td;
  857. }
  858. return 0;
  859. }
  860. /* Enabling RX DMA */
  861. static void udc_set_rde(struct udc *dev)
  862. {
  863. u32 tmp;
  864. VDBG(dev, "udc_set_rde()\n");
  865. /* stop RDE timer */
  866. if (timer_pending(&udc_timer)) {
  867. set_rde = 0;
  868. mod_timer(&udc_timer, jiffies - 1);
  869. }
  870. /* set RDE */
  871. tmp = readl(&dev->regs->ctl);
  872. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  873. writel(tmp, &dev->regs->ctl);
  874. }
  875. /* Queues a request packet, called by gadget driver */
  876. static int
  877. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  878. {
  879. int retval = 0;
  880. u8 open_rxfifo = 0;
  881. unsigned long iflags;
  882. struct udc_ep *ep;
  883. struct udc_request *req;
  884. struct udc *dev;
  885. u32 tmp;
  886. /* check the inputs */
  887. req = container_of(usbreq, struct udc_request, req);
  888. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  889. || !list_empty(&req->queue))
  890. return -EINVAL;
  891. ep = container_of(usbep, struct udc_ep, ep);
  892. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  893. return -EINVAL;
  894. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  895. dev = ep->dev;
  896. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  897. return -ESHUTDOWN;
  898. /* map dma (usually done before) */
  899. if (ep->dma) {
  900. VDBG(dev, "DMA map req %p\n", req);
  901. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  902. if (retval)
  903. return retval;
  904. }
  905. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  906. usbep->name, usbreq, usbreq->length,
  907. req->td_data, usbreq->buf);
  908. spin_lock_irqsave(&dev->lock, iflags);
  909. usbreq->actual = 0;
  910. usbreq->status = -EINPROGRESS;
  911. req->dma_done = 0;
  912. /* on empty queue just do first transfer */
  913. if (list_empty(&ep->queue)) {
  914. /* zlp */
  915. if (usbreq->length == 0) {
  916. /* IN zlp's are handled by hardware */
  917. complete_req(ep, req, 0);
  918. VDBG(dev, "%s: zlp\n", ep->ep.name);
  919. /*
  920. * if set_config or set_intf is waiting for ack by zlp
  921. * then set CSR_DONE
  922. */
  923. if (dev->set_cfg_not_acked) {
  924. tmp = readl(&dev->regs->ctl);
  925. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  926. writel(tmp, &dev->regs->ctl);
  927. dev->set_cfg_not_acked = 0;
  928. }
  929. /* setup command is ACK'ed now by zlp */
  930. if (dev->waiting_zlp_ack_ep0in) {
  931. /* clear NAK by writing CNAK in EP0_IN */
  932. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  933. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  934. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  935. dev->ep[UDC_EP0IN_IX].naking = 0;
  936. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  937. UDC_EP0IN_IX);
  938. dev->waiting_zlp_ack_ep0in = 0;
  939. }
  940. goto finished;
  941. }
  942. if (ep->dma) {
  943. retval = prep_dma(ep, req, GFP_ATOMIC);
  944. if (retval != 0)
  945. goto finished;
  946. /* write desc pointer to enable DMA */
  947. if (ep->in) {
  948. /* set HOST READY */
  949. req->td_data->status =
  950. AMD_ADDBITS(req->td_data->status,
  951. UDC_DMA_IN_STS_BS_HOST_READY,
  952. UDC_DMA_IN_STS_BS);
  953. }
  954. /* disabled rx dma while descriptor update */
  955. if (!ep->in) {
  956. /* stop RDE timer */
  957. if (timer_pending(&udc_timer)) {
  958. set_rde = 0;
  959. mod_timer(&udc_timer, jiffies - 1);
  960. }
  961. /* clear RDE */
  962. tmp = readl(&dev->regs->ctl);
  963. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  964. writel(tmp, &dev->regs->ctl);
  965. open_rxfifo = 1;
  966. /*
  967. * if BNA occurred then let BNA dummy desc.
  968. * point to current desc.
  969. */
  970. if (ep->bna_occurred) {
  971. VDBG(dev, "copy to BNA dummy desc.\n");
  972. memcpy(ep->bna_dummy_req->td_data,
  973. req->td_data,
  974. sizeof(struct udc_data_dma));
  975. }
  976. }
  977. /* write desc pointer */
  978. writel(req->td_phys, &ep->regs->desptr);
  979. /* clear NAK by writing CNAK */
  980. if (ep->naking) {
  981. tmp = readl(&ep->regs->ctl);
  982. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  983. writel(tmp, &ep->regs->ctl);
  984. ep->naking = 0;
  985. UDC_QUEUE_CNAK(ep, ep->num);
  986. }
  987. if (ep->in) {
  988. /* enable ep irq */
  989. tmp = readl(&dev->regs->ep_irqmsk);
  990. tmp &= AMD_UNMASK_BIT(ep->num);
  991. writel(tmp, &dev->regs->ep_irqmsk);
  992. }
  993. } else if (ep->in) {
  994. /* enable ep irq */
  995. tmp = readl(&dev->regs->ep_irqmsk);
  996. tmp &= AMD_UNMASK_BIT(ep->num);
  997. writel(tmp, &dev->regs->ep_irqmsk);
  998. }
  999. } else if (ep->dma) {
  1000. /*
  1001. * prep_dma not used for OUT ep's, this is not possible
  1002. * for PPB modes, because of chain creation reasons
  1003. */
  1004. if (ep->in) {
  1005. retval = prep_dma(ep, req, GFP_ATOMIC);
  1006. if (retval != 0)
  1007. goto finished;
  1008. }
  1009. }
  1010. VDBG(dev, "list_add\n");
  1011. /* add request to ep queue */
  1012. if (req) {
  1013. list_add_tail(&req->queue, &ep->queue);
  1014. /* open rxfifo if out data queued */
  1015. if (open_rxfifo) {
  1016. /* enable DMA */
  1017. req->dma_going = 1;
  1018. udc_set_rde(dev);
  1019. if (ep->num != UDC_EP0OUT_IX)
  1020. dev->data_ep_queued = 1;
  1021. }
  1022. /* stop OUT naking */
  1023. if (!ep->in) {
  1024. if (!use_dma && udc_rxfifo_pending) {
  1025. DBG(dev, "udc_queue(): pending bytes in "
  1026. "rxfifo after nyet\n");
  1027. /*
  1028. * read pending bytes afer nyet:
  1029. * referring to isr
  1030. */
  1031. if (udc_rxfifo_read(ep, req)) {
  1032. /* finish */
  1033. complete_req(ep, req, 0);
  1034. }
  1035. udc_rxfifo_pending = 0;
  1036. }
  1037. }
  1038. }
  1039. finished:
  1040. spin_unlock_irqrestore(&dev->lock, iflags);
  1041. return retval;
  1042. }
  1043. /* Empty request queue of an endpoint; caller holds spinlock */
  1044. static void empty_req_queue(struct udc_ep *ep)
  1045. {
  1046. struct udc_request *req;
  1047. ep->halted = 1;
  1048. while (!list_empty(&ep->queue)) {
  1049. req = list_entry(ep->queue.next,
  1050. struct udc_request,
  1051. queue);
  1052. complete_req(ep, req, -ESHUTDOWN);
  1053. }
  1054. }
  1055. /* Dequeues a request packet, called by gadget driver */
  1056. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1057. {
  1058. struct udc_ep *ep;
  1059. struct udc_request *req;
  1060. unsigned halted;
  1061. unsigned long iflags;
  1062. ep = container_of(usbep, struct udc_ep, ep);
  1063. if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
  1064. && ep->num != UDC_EP0OUT_IX)))
  1065. return -EINVAL;
  1066. req = container_of(usbreq, struct udc_request, req);
  1067. spin_lock_irqsave(&ep->dev->lock, iflags);
  1068. halted = ep->halted;
  1069. ep->halted = 1;
  1070. /* request in processing or next one */
  1071. if (ep->queue.next == &req->queue) {
  1072. if (ep->dma && req->dma_going) {
  1073. if (ep->in)
  1074. ep->cancel_transfer = 1;
  1075. else {
  1076. u32 tmp;
  1077. u32 dma_sts;
  1078. /* stop potential receive DMA */
  1079. tmp = readl(&udc->regs->ctl);
  1080. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1081. &udc->regs->ctl);
  1082. /*
  1083. * Cancel transfer later in ISR
  1084. * if descriptor was touched.
  1085. */
  1086. dma_sts = AMD_GETBITS(req->td_data->status,
  1087. UDC_DMA_OUT_STS_BS);
  1088. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1089. ep->cancel_transfer = 1;
  1090. else {
  1091. udc_init_bna_dummy(ep->req);
  1092. writel(ep->bna_dummy_req->td_phys,
  1093. &ep->regs->desptr);
  1094. }
  1095. writel(tmp, &udc->regs->ctl);
  1096. }
  1097. }
  1098. }
  1099. complete_req(ep, req, -ECONNRESET);
  1100. ep->halted = halted;
  1101. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1102. return 0;
  1103. }
  1104. /* Halt or clear halt of endpoint */
  1105. static int
  1106. udc_set_halt(struct usb_ep *usbep, int halt)
  1107. {
  1108. struct udc_ep *ep;
  1109. u32 tmp;
  1110. unsigned long iflags;
  1111. int retval = 0;
  1112. if (!usbep)
  1113. return -EINVAL;
  1114. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1115. ep = container_of(usbep, struct udc_ep, ep);
  1116. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1117. return -EINVAL;
  1118. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1119. return -ESHUTDOWN;
  1120. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1121. /* halt or clear halt */
  1122. if (halt) {
  1123. if (ep->num == 0)
  1124. ep->dev->stall_ep0in = 1;
  1125. else {
  1126. /*
  1127. * set STALL
  1128. * rxfifo empty not taken into acount
  1129. */
  1130. tmp = readl(&ep->regs->ctl);
  1131. tmp |= AMD_BIT(UDC_EPCTL_S);
  1132. writel(tmp, &ep->regs->ctl);
  1133. ep->halted = 1;
  1134. /* setup poll timer */
  1135. if (!timer_pending(&udc_pollstall_timer)) {
  1136. udc_pollstall_timer.expires = jiffies +
  1137. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1138. / (1000 * 1000);
  1139. if (!stop_pollstall_timer) {
  1140. DBG(ep->dev, "start polltimer\n");
  1141. add_timer(&udc_pollstall_timer);
  1142. }
  1143. }
  1144. }
  1145. } else {
  1146. /* ep is halted by set_halt() before */
  1147. if (ep->halted) {
  1148. tmp = readl(&ep->regs->ctl);
  1149. /* clear stall bit */
  1150. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1151. /* clear NAK by writing CNAK */
  1152. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1153. writel(tmp, &ep->regs->ctl);
  1154. ep->halted = 0;
  1155. UDC_QUEUE_CNAK(ep, ep->num);
  1156. }
  1157. }
  1158. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1159. return retval;
  1160. }
  1161. /* gadget interface */
  1162. static const struct usb_ep_ops udc_ep_ops = {
  1163. .enable = udc_ep_enable,
  1164. .disable = udc_ep_disable,
  1165. .alloc_request = udc_alloc_request,
  1166. .free_request = udc_free_request,
  1167. .queue = udc_queue,
  1168. .dequeue = udc_dequeue,
  1169. .set_halt = udc_set_halt,
  1170. /* fifo ops not implemented */
  1171. };
  1172. /*-------------------------------------------------------------------------*/
  1173. /* Get frame counter (not implemented) */
  1174. static int udc_get_frame(struct usb_gadget *gadget)
  1175. {
  1176. return -EOPNOTSUPP;
  1177. }
  1178. /* Remote wakeup gadget interface */
  1179. static int udc_wakeup(struct usb_gadget *gadget)
  1180. {
  1181. struct udc *dev;
  1182. if (!gadget)
  1183. return -EINVAL;
  1184. dev = container_of(gadget, struct udc, gadget);
  1185. udc_remote_wakeup(dev);
  1186. return 0;
  1187. }
  1188. static int amd5536_udc_start(struct usb_gadget *g,
  1189. struct usb_gadget_driver *driver);
  1190. static int amd5536_udc_stop(struct usb_gadget *g);
  1191. static const struct usb_gadget_ops udc_ops = {
  1192. .wakeup = udc_wakeup,
  1193. .get_frame = udc_get_frame,
  1194. .udc_start = amd5536_udc_start,
  1195. .udc_stop = amd5536_udc_stop,
  1196. };
  1197. /* Setups endpoint parameters, adds endpoints to linked list */
  1198. static void make_ep_lists(struct udc *dev)
  1199. {
  1200. /* make gadget ep lists */
  1201. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1202. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1203. &dev->gadget.ep_list);
  1204. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1205. &dev->gadget.ep_list);
  1206. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1207. &dev->gadget.ep_list);
  1208. /* fifo config */
  1209. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1210. if (dev->gadget.speed == USB_SPEED_FULL)
  1211. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1212. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1213. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1214. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1215. }
  1216. /* init registers at driver load time */
  1217. static int startup_registers(struct udc *dev)
  1218. {
  1219. u32 tmp;
  1220. /* init controller by soft reset */
  1221. udc_soft_reset(dev);
  1222. /* mask not needed interrupts */
  1223. udc_mask_unused_interrupts(dev);
  1224. /* put into initial config */
  1225. udc_basic_init(dev);
  1226. /* link up all endpoints */
  1227. udc_setup_endpoints(dev);
  1228. /* program speed */
  1229. tmp = readl(&dev->regs->cfg);
  1230. if (use_fullspeed)
  1231. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1232. else
  1233. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1234. writel(tmp, &dev->regs->cfg);
  1235. return 0;
  1236. }
  1237. /* Inits UDC context */
  1238. static void udc_basic_init(struct udc *dev)
  1239. {
  1240. u32 tmp;
  1241. DBG(dev, "udc_basic_init()\n");
  1242. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1243. /* stop RDE timer */
  1244. if (timer_pending(&udc_timer)) {
  1245. set_rde = 0;
  1246. mod_timer(&udc_timer, jiffies - 1);
  1247. }
  1248. /* stop poll stall timer */
  1249. if (timer_pending(&udc_pollstall_timer))
  1250. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1251. /* disable DMA */
  1252. tmp = readl(&dev->regs->ctl);
  1253. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1254. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1255. writel(tmp, &dev->regs->ctl);
  1256. /* enable dynamic CSR programming */
  1257. tmp = readl(&dev->regs->cfg);
  1258. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1259. /* set self powered */
  1260. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1261. /* set remote wakeupable */
  1262. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1263. writel(tmp, &dev->regs->cfg);
  1264. make_ep_lists(dev);
  1265. dev->data_ep_enabled = 0;
  1266. dev->data_ep_queued = 0;
  1267. }
  1268. /* Sets initial endpoint parameters */
  1269. static void udc_setup_endpoints(struct udc *dev)
  1270. {
  1271. struct udc_ep *ep;
  1272. u32 tmp;
  1273. u32 reg;
  1274. DBG(dev, "udc_setup_endpoints()\n");
  1275. /* read enum speed */
  1276. tmp = readl(&dev->regs->sts);
  1277. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1278. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1279. dev->gadget.speed = USB_SPEED_HIGH;
  1280. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1281. dev->gadget.speed = USB_SPEED_FULL;
  1282. /* set basic ep parameters */
  1283. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1284. ep = &dev->ep[tmp];
  1285. ep->dev = dev;
  1286. ep->ep.name = ep_string[tmp];
  1287. ep->num = tmp;
  1288. /* txfifo size is calculated at enable time */
  1289. ep->txfifo = dev->txfifo;
  1290. /* fifo size */
  1291. if (tmp < UDC_EPIN_NUM) {
  1292. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1293. ep->in = 1;
  1294. } else {
  1295. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1296. ep->in = 0;
  1297. }
  1298. ep->regs = &dev->ep_regs[tmp];
  1299. /*
  1300. * ep will be reset only if ep was not enabled before to avoid
  1301. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1302. * not enabled by gadget driver
  1303. */
  1304. if (!ep->ep.desc)
  1305. ep_init(dev->regs, ep);
  1306. if (use_dma) {
  1307. /*
  1308. * ep->dma is not really used, just to indicate that
  1309. * DMA is active: remove this
  1310. * dma regs = dev control regs
  1311. */
  1312. ep->dma = &dev->regs->ctl;
  1313. /* nak OUT endpoints until enable - not for ep0 */
  1314. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1315. && tmp > UDC_EPIN_NUM) {
  1316. /* set NAK */
  1317. reg = readl(&dev->ep[tmp].regs->ctl);
  1318. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1319. writel(reg, &dev->ep[tmp].regs->ctl);
  1320. dev->ep[tmp].naking = 1;
  1321. }
  1322. }
  1323. }
  1324. /* EP0 max packet */
  1325. if (dev->gadget.speed == USB_SPEED_FULL) {
  1326. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1327. UDC_FS_EP0IN_MAX_PKT_SIZE);
  1328. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1329. UDC_FS_EP0OUT_MAX_PKT_SIZE);
  1330. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1331. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1332. UDC_EP0IN_MAX_PKT_SIZE);
  1333. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1334. UDC_EP0OUT_MAX_PKT_SIZE);
  1335. }
  1336. /*
  1337. * with suspend bug workaround, ep0 params for gadget driver
  1338. * are set at gadget driver bind() call
  1339. */
  1340. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1341. dev->ep[UDC_EP0IN_IX].halted = 0;
  1342. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1343. /* init cfg/alt/int */
  1344. dev->cur_config = 0;
  1345. dev->cur_intf = 0;
  1346. dev->cur_alt = 0;
  1347. }
  1348. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1349. static void usb_connect(struct udc *dev)
  1350. {
  1351. dev_info(&dev->pdev->dev, "USB Connect\n");
  1352. dev->connected = 1;
  1353. /* put into initial config */
  1354. udc_basic_init(dev);
  1355. /* enable device setup interrupts */
  1356. udc_enable_dev_setup_interrupts(dev);
  1357. }
  1358. /*
  1359. * Calls gadget with disconnect event and resets the UDC and makes
  1360. * initial bringup to be ready for ep0 events
  1361. */
  1362. static void usb_disconnect(struct udc *dev)
  1363. {
  1364. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1365. dev->connected = 0;
  1366. /* mask interrupts */
  1367. udc_mask_unused_interrupts(dev);
  1368. /* REVISIT there doesn't seem to be a point to having this
  1369. * talk to a tasklet ... do it directly, we already hold
  1370. * the spinlock needed to process the disconnect.
  1371. */
  1372. tasklet_schedule(&disconnect_tasklet);
  1373. }
  1374. /* Tasklet for disconnect to be outside of interrupt context */
  1375. static void udc_tasklet_disconnect(unsigned long par)
  1376. {
  1377. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1378. u32 tmp;
  1379. DBG(dev, "Tasklet disconnect\n");
  1380. spin_lock_irq(&dev->lock);
  1381. if (dev->driver) {
  1382. spin_unlock(&dev->lock);
  1383. dev->driver->disconnect(&dev->gadget);
  1384. spin_lock(&dev->lock);
  1385. /* empty queues */
  1386. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1387. empty_req_queue(&dev->ep[tmp]);
  1388. }
  1389. /* disable ep0 */
  1390. ep_init(dev->regs,
  1391. &dev->ep[UDC_EP0IN_IX]);
  1392. if (!soft_reset_occured) {
  1393. /* init controller by soft reset */
  1394. udc_soft_reset(dev);
  1395. soft_reset_occured++;
  1396. }
  1397. /* re-enable dev interrupts */
  1398. udc_enable_dev_setup_interrupts(dev);
  1399. /* back to full speed ? */
  1400. if (use_fullspeed) {
  1401. tmp = readl(&dev->regs->cfg);
  1402. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1403. writel(tmp, &dev->regs->cfg);
  1404. }
  1405. spin_unlock_irq(&dev->lock);
  1406. }
  1407. /* Reset the UDC core */
  1408. static void udc_soft_reset(struct udc *dev)
  1409. {
  1410. unsigned long flags;
  1411. DBG(dev, "Soft reset\n");
  1412. /*
  1413. * reset possible waiting interrupts, because int.
  1414. * status is lost after soft reset,
  1415. * ep int. status reset
  1416. */
  1417. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1418. /* device int. status reset */
  1419. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1420. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1421. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1422. readl(&dev->regs->cfg);
  1423. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1424. }
  1425. /* RDE timer callback to set RDE bit */
  1426. static void udc_timer_function(unsigned long v)
  1427. {
  1428. u32 tmp;
  1429. spin_lock_irq(&udc_irq_spinlock);
  1430. if (set_rde > 0) {
  1431. /*
  1432. * open the fifo if fifo was filled on last timer call
  1433. * conditionally
  1434. */
  1435. if (set_rde > 1) {
  1436. /* set RDE to receive setup data */
  1437. tmp = readl(&udc->regs->ctl);
  1438. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1439. writel(tmp, &udc->regs->ctl);
  1440. set_rde = -1;
  1441. } else if (readl(&udc->regs->sts)
  1442. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1443. /*
  1444. * if fifo empty setup polling, do not just
  1445. * open the fifo
  1446. */
  1447. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1448. if (!stop_timer)
  1449. add_timer(&udc_timer);
  1450. } else {
  1451. /*
  1452. * fifo contains data now, setup timer for opening
  1453. * the fifo when timer expires to be able to receive
  1454. * setup packets, when data packets gets queued by
  1455. * gadget layer then timer will forced to expire with
  1456. * set_rde=0 (RDE is set in udc_queue())
  1457. */
  1458. set_rde++;
  1459. /* debug: lhadmot_timer_start = 221070 */
  1460. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1461. if (!stop_timer)
  1462. add_timer(&udc_timer);
  1463. }
  1464. } else
  1465. set_rde = -1; /* RDE was set by udc_queue() */
  1466. spin_unlock_irq(&udc_irq_spinlock);
  1467. if (stop_timer)
  1468. complete(&on_exit);
  1469. }
  1470. /* Handle halt state, used in stall poll timer */
  1471. static void udc_handle_halt_state(struct udc_ep *ep)
  1472. {
  1473. u32 tmp;
  1474. /* set stall as long not halted */
  1475. if (ep->halted == 1) {
  1476. tmp = readl(&ep->regs->ctl);
  1477. /* STALL cleared ? */
  1478. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1479. /*
  1480. * FIXME: MSC spec requires that stall remains
  1481. * even on receivng of CLEAR_FEATURE HALT. So
  1482. * we would set STALL again here to be compliant.
  1483. * But with current mass storage drivers this does
  1484. * not work (would produce endless host retries).
  1485. * So we clear halt on CLEAR_FEATURE.
  1486. *
  1487. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1488. tmp |= AMD_BIT(UDC_EPCTL_S);
  1489. writel(tmp, &ep->regs->ctl);*/
  1490. /* clear NAK by writing CNAK */
  1491. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1492. writel(tmp, &ep->regs->ctl);
  1493. ep->halted = 0;
  1494. UDC_QUEUE_CNAK(ep, ep->num);
  1495. }
  1496. }
  1497. }
  1498. /* Stall timer callback to poll S bit and set it again after */
  1499. static void udc_pollstall_timer_function(unsigned long v)
  1500. {
  1501. struct udc_ep *ep;
  1502. int halted = 0;
  1503. spin_lock_irq(&udc_stall_spinlock);
  1504. /*
  1505. * only one IN and OUT endpoints are handled
  1506. * IN poll stall
  1507. */
  1508. ep = &udc->ep[UDC_EPIN_IX];
  1509. udc_handle_halt_state(ep);
  1510. if (ep->halted)
  1511. halted = 1;
  1512. /* OUT poll stall */
  1513. ep = &udc->ep[UDC_EPOUT_IX];
  1514. udc_handle_halt_state(ep);
  1515. if (ep->halted)
  1516. halted = 1;
  1517. /* setup timer again when still halted */
  1518. if (!stop_pollstall_timer && halted) {
  1519. udc_pollstall_timer.expires = jiffies +
  1520. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1521. / (1000 * 1000);
  1522. add_timer(&udc_pollstall_timer);
  1523. }
  1524. spin_unlock_irq(&udc_stall_spinlock);
  1525. if (stop_pollstall_timer)
  1526. complete(&on_pollstall_exit);
  1527. }
  1528. /* Inits endpoint 0 so that SETUP packets are processed */
  1529. static void activate_control_endpoints(struct udc *dev)
  1530. {
  1531. u32 tmp;
  1532. DBG(dev, "activate_control_endpoints\n");
  1533. /* flush fifo */
  1534. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1535. tmp |= AMD_BIT(UDC_EPCTL_F);
  1536. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1537. /* set ep0 directions */
  1538. dev->ep[UDC_EP0IN_IX].in = 1;
  1539. dev->ep[UDC_EP0OUT_IX].in = 0;
  1540. /* set buffer size (tx fifo entries) of EP0_IN */
  1541. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1542. if (dev->gadget.speed == USB_SPEED_FULL)
  1543. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1544. UDC_EPIN_BUFF_SIZE);
  1545. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1546. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1547. UDC_EPIN_BUFF_SIZE);
  1548. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1549. /* set max packet size of EP0_IN */
  1550. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1551. if (dev->gadget.speed == USB_SPEED_FULL)
  1552. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1553. UDC_EP_MAX_PKT_SIZE);
  1554. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1555. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1556. UDC_EP_MAX_PKT_SIZE);
  1557. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1558. /* set max packet size of EP0_OUT */
  1559. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1560. if (dev->gadget.speed == USB_SPEED_FULL)
  1561. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1562. UDC_EP_MAX_PKT_SIZE);
  1563. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1564. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1565. UDC_EP_MAX_PKT_SIZE);
  1566. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1567. /* set max packet size of EP0 in UDC CSR */
  1568. tmp = readl(&dev->csr->ne[0]);
  1569. if (dev->gadget.speed == USB_SPEED_FULL)
  1570. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1571. UDC_CSR_NE_MAX_PKT);
  1572. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1573. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1574. UDC_CSR_NE_MAX_PKT);
  1575. writel(tmp, &dev->csr->ne[0]);
  1576. if (use_dma) {
  1577. dev->ep[UDC_EP0OUT_IX].td->status |=
  1578. AMD_BIT(UDC_DMA_OUT_STS_L);
  1579. /* write dma desc address */
  1580. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1581. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1582. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1583. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1584. /* stop RDE timer */
  1585. if (timer_pending(&udc_timer)) {
  1586. set_rde = 0;
  1587. mod_timer(&udc_timer, jiffies - 1);
  1588. }
  1589. /* stop pollstall timer */
  1590. if (timer_pending(&udc_pollstall_timer))
  1591. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1592. /* enable DMA */
  1593. tmp = readl(&dev->regs->ctl);
  1594. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1595. | AMD_BIT(UDC_DEVCTL_RDE)
  1596. | AMD_BIT(UDC_DEVCTL_TDE);
  1597. if (use_dma_bufferfill_mode)
  1598. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1599. else if (use_dma_ppb_du)
  1600. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1601. writel(tmp, &dev->regs->ctl);
  1602. }
  1603. /* clear NAK by writing CNAK for EP0IN */
  1604. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1605. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1606. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1607. dev->ep[UDC_EP0IN_IX].naking = 0;
  1608. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1609. /* clear NAK by writing CNAK for EP0OUT */
  1610. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1611. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1612. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1613. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1614. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1615. }
  1616. /* Make endpoint 0 ready for control traffic */
  1617. static int setup_ep0(struct udc *dev)
  1618. {
  1619. activate_control_endpoints(dev);
  1620. /* enable ep0 interrupts */
  1621. udc_enable_ep0_interrupts(dev);
  1622. /* enable device setup interrupts */
  1623. udc_enable_dev_setup_interrupts(dev);
  1624. return 0;
  1625. }
  1626. /* Called by gadget driver to register itself */
  1627. static int amd5536_udc_start(struct usb_gadget *g,
  1628. struct usb_gadget_driver *driver)
  1629. {
  1630. struct udc *dev = to_amd5536_udc(g);
  1631. u32 tmp;
  1632. driver->driver.bus = NULL;
  1633. dev->driver = driver;
  1634. /* Some gadget drivers use both ep0 directions.
  1635. * NOTE: to gadget driver, ep0 is just one endpoint...
  1636. */
  1637. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1638. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1639. /* get ready for ep0 traffic */
  1640. setup_ep0(dev);
  1641. /* clear SD */
  1642. tmp = readl(&dev->regs->ctl);
  1643. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1644. writel(tmp, &dev->regs->ctl);
  1645. usb_connect(dev);
  1646. return 0;
  1647. }
  1648. /* shutdown requests and disconnect from gadget */
  1649. static void
  1650. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1651. __releases(dev->lock)
  1652. __acquires(dev->lock)
  1653. {
  1654. int tmp;
  1655. /* empty queues and init hardware */
  1656. udc_basic_init(dev);
  1657. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1658. empty_req_queue(&dev->ep[tmp]);
  1659. udc_setup_endpoints(dev);
  1660. }
  1661. /* Called by gadget driver to unregister itself */
  1662. static int amd5536_udc_stop(struct usb_gadget *g)
  1663. {
  1664. struct udc *dev = to_amd5536_udc(g);
  1665. unsigned long flags;
  1666. u32 tmp;
  1667. spin_lock_irqsave(&dev->lock, flags);
  1668. udc_mask_unused_interrupts(dev);
  1669. shutdown(dev, NULL);
  1670. spin_unlock_irqrestore(&dev->lock, flags);
  1671. dev->driver = NULL;
  1672. /* set SD */
  1673. tmp = readl(&dev->regs->ctl);
  1674. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1675. writel(tmp, &dev->regs->ctl);
  1676. return 0;
  1677. }
  1678. /* Clear pending NAK bits */
  1679. static void udc_process_cnak_queue(struct udc *dev)
  1680. {
  1681. u32 tmp;
  1682. u32 reg;
  1683. /* check epin's */
  1684. DBG(dev, "CNAK pending queue processing\n");
  1685. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1686. if (cnak_pending & (1 << tmp)) {
  1687. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1688. /* clear NAK by writing CNAK */
  1689. reg = readl(&dev->ep[tmp].regs->ctl);
  1690. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1691. writel(reg, &dev->ep[tmp].regs->ctl);
  1692. dev->ep[tmp].naking = 0;
  1693. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1694. }
  1695. }
  1696. /* ... and ep0out */
  1697. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1698. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1699. /* clear NAK by writing CNAK */
  1700. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1701. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1702. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1703. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1704. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1705. dev->ep[UDC_EP0OUT_IX].num);
  1706. }
  1707. }
  1708. /* Enabling RX DMA after setup packet */
  1709. static void udc_ep0_set_rde(struct udc *dev)
  1710. {
  1711. if (use_dma) {
  1712. /*
  1713. * only enable RXDMA when no data endpoint enabled
  1714. * or data is queued
  1715. */
  1716. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1717. udc_set_rde(dev);
  1718. } else {
  1719. /*
  1720. * setup timer for enabling RDE (to not enable
  1721. * RXFIFO DMA for data endpoints to early)
  1722. */
  1723. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1724. udc_timer.expires =
  1725. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1726. set_rde = 1;
  1727. if (!stop_timer)
  1728. add_timer(&udc_timer);
  1729. }
  1730. }
  1731. }
  1732. }
  1733. /* Interrupt handler for data OUT traffic */
  1734. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1735. {
  1736. irqreturn_t ret_val = IRQ_NONE;
  1737. u32 tmp;
  1738. struct udc_ep *ep;
  1739. struct udc_request *req;
  1740. unsigned int count;
  1741. struct udc_data_dma *td = NULL;
  1742. unsigned dma_done;
  1743. VDBG(dev, "ep%d irq\n", ep_ix);
  1744. ep = &dev->ep[ep_ix];
  1745. tmp = readl(&ep->regs->sts);
  1746. if (use_dma) {
  1747. /* BNA event ? */
  1748. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1749. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1750. ep->num, readl(&ep->regs->desptr));
  1751. /* clear BNA */
  1752. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1753. if (!ep->cancel_transfer)
  1754. ep->bna_occurred = 1;
  1755. else
  1756. ep->cancel_transfer = 0;
  1757. ret_val = IRQ_HANDLED;
  1758. goto finished;
  1759. }
  1760. }
  1761. /* HE event ? */
  1762. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1763. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1764. /* clear HE */
  1765. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1766. ret_val = IRQ_HANDLED;
  1767. goto finished;
  1768. }
  1769. if (!list_empty(&ep->queue)) {
  1770. /* next request */
  1771. req = list_entry(ep->queue.next,
  1772. struct udc_request, queue);
  1773. } else {
  1774. req = NULL;
  1775. udc_rxfifo_pending = 1;
  1776. }
  1777. VDBG(dev, "req = %p\n", req);
  1778. /* fifo mode */
  1779. if (!use_dma) {
  1780. /* read fifo */
  1781. if (req && udc_rxfifo_read(ep, req)) {
  1782. ret_val = IRQ_HANDLED;
  1783. /* finish */
  1784. complete_req(ep, req, 0);
  1785. /* next request */
  1786. if (!list_empty(&ep->queue) && !ep->halted) {
  1787. req = list_entry(ep->queue.next,
  1788. struct udc_request, queue);
  1789. } else
  1790. req = NULL;
  1791. }
  1792. /* DMA */
  1793. } else if (!ep->cancel_transfer && req != NULL) {
  1794. ret_val = IRQ_HANDLED;
  1795. /* check for DMA done */
  1796. if (!use_dma_ppb) {
  1797. dma_done = AMD_GETBITS(req->td_data->status,
  1798. UDC_DMA_OUT_STS_BS);
  1799. /* packet per buffer mode - rx bytes */
  1800. } else {
  1801. /*
  1802. * if BNA occurred then recover desc. from
  1803. * BNA dummy desc.
  1804. */
  1805. if (ep->bna_occurred) {
  1806. VDBG(dev, "Recover desc. from BNA dummy\n");
  1807. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1808. sizeof(struct udc_data_dma));
  1809. ep->bna_occurred = 0;
  1810. udc_init_bna_dummy(ep->req);
  1811. }
  1812. td = udc_get_last_dma_desc(req);
  1813. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1814. }
  1815. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1816. /* buffer fill mode - rx bytes */
  1817. if (!use_dma_ppb) {
  1818. /* received number bytes */
  1819. count = AMD_GETBITS(req->td_data->status,
  1820. UDC_DMA_OUT_STS_RXBYTES);
  1821. VDBG(dev, "rx bytes=%u\n", count);
  1822. /* packet per buffer mode - rx bytes */
  1823. } else {
  1824. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1825. VDBG(dev, "last desc = %p\n", td);
  1826. /* received number bytes */
  1827. if (use_dma_ppb_du) {
  1828. /* every desc. counts bytes */
  1829. count = udc_get_ppbdu_rxbytes(req);
  1830. } else {
  1831. /* last desc. counts bytes */
  1832. count = AMD_GETBITS(td->status,
  1833. UDC_DMA_OUT_STS_RXBYTES);
  1834. if (!count && req->req.length
  1835. == UDC_DMA_MAXPACKET) {
  1836. /*
  1837. * on 64k packets the RXBYTES
  1838. * field is zero
  1839. */
  1840. count = UDC_DMA_MAXPACKET;
  1841. }
  1842. }
  1843. VDBG(dev, "last desc rx bytes=%u\n", count);
  1844. }
  1845. tmp = req->req.length - req->req.actual;
  1846. if (count > tmp) {
  1847. if ((tmp % ep->ep.maxpacket) != 0) {
  1848. DBG(dev, "%s: rx %db, space=%db\n",
  1849. ep->ep.name, count, tmp);
  1850. req->req.status = -EOVERFLOW;
  1851. }
  1852. count = tmp;
  1853. }
  1854. req->req.actual += count;
  1855. req->dma_going = 0;
  1856. /* complete request */
  1857. complete_req(ep, req, 0);
  1858. /* next request */
  1859. if (!list_empty(&ep->queue) && !ep->halted) {
  1860. req = list_entry(ep->queue.next,
  1861. struct udc_request,
  1862. queue);
  1863. /*
  1864. * DMA may be already started by udc_queue()
  1865. * called by gadget drivers completion
  1866. * routine. This happens when queue
  1867. * holds one request only.
  1868. */
  1869. if (req->dma_going == 0) {
  1870. /* next dma */
  1871. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1872. goto finished;
  1873. /* write desc pointer */
  1874. writel(req->td_phys,
  1875. &ep->regs->desptr);
  1876. req->dma_going = 1;
  1877. /* enable DMA */
  1878. udc_set_rde(dev);
  1879. }
  1880. } else {
  1881. /*
  1882. * implant BNA dummy descriptor to allow
  1883. * RXFIFO opening by RDE
  1884. */
  1885. if (ep->bna_dummy_req) {
  1886. /* write desc pointer */
  1887. writel(ep->bna_dummy_req->td_phys,
  1888. &ep->regs->desptr);
  1889. ep->bna_occurred = 0;
  1890. }
  1891. /*
  1892. * schedule timer for setting RDE if queue
  1893. * remains empty to allow ep0 packets pass
  1894. * through
  1895. */
  1896. if (set_rde != 0
  1897. && !timer_pending(&udc_timer)) {
  1898. udc_timer.expires =
  1899. jiffies
  1900. + HZ*UDC_RDE_TIMER_SECONDS;
  1901. set_rde = 1;
  1902. if (!stop_timer)
  1903. add_timer(&udc_timer);
  1904. }
  1905. if (ep->num != UDC_EP0OUT_IX)
  1906. dev->data_ep_queued = 0;
  1907. }
  1908. } else {
  1909. /*
  1910. * RX DMA must be reenabled for each desc in PPBDU mode
  1911. * and must be enabled for PPBNDU mode in case of BNA
  1912. */
  1913. udc_set_rde(dev);
  1914. }
  1915. } else if (ep->cancel_transfer) {
  1916. ret_val = IRQ_HANDLED;
  1917. ep->cancel_transfer = 0;
  1918. }
  1919. /* check pending CNAKS */
  1920. if (cnak_pending) {
  1921. /* CNAk processing when rxfifo empty only */
  1922. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1923. udc_process_cnak_queue(dev);
  1924. }
  1925. /* clear OUT bits in ep status */
  1926. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1927. finished:
  1928. return ret_val;
  1929. }
  1930. /* Interrupt handler for data IN traffic */
  1931. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1932. {
  1933. irqreturn_t ret_val = IRQ_NONE;
  1934. u32 tmp;
  1935. u32 epsts;
  1936. struct udc_ep *ep;
  1937. struct udc_request *req;
  1938. struct udc_data_dma *td;
  1939. unsigned dma_done;
  1940. unsigned len;
  1941. ep = &dev->ep[ep_ix];
  1942. epsts = readl(&ep->regs->sts);
  1943. if (use_dma) {
  1944. /* BNA ? */
  1945. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1946. dev_err(&dev->pdev->dev,
  1947. "BNA ep%din occurred - DESPTR = %08lx\n",
  1948. ep->num,
  1949. (unsigned long) readl(&ep->regs->desptr));
  1950. /* clear BNA */
  1951. writel(epsts, &ep->regs->sts);
  1952. ret_val = IRQ_HANDLED;
  1953. goto finished;
  1954. }
  1955. }
  1956. /* HE event ? */
  1957. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  1958. dev_err(&dev->pdev->dev,
  1959. "HE ep%dn occurred - DESPTR = %08lx\n",
  1960. ep->num, (unsigned long) readl(&ep->regs->desptr));
  1961. /* clear HE */
  1962. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1963. ret_val = IRQ_HANDLED;
  1964. goto finished;
  1965. }
  1966. /* DMA completion */
  1967. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  1968. VDBG(dev, "TDC set- completion\n");
  1969. ret_val = IRQ_HANDLED;
  1970. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  1971. req = list_entry(ep->queue.next,
  1972. struct udc_request, queue);
  1973. /*
  1974. * length bytes transferred
  1975. * check dma done of last desc. in PPBDU mode
  1976. */
  1977. if (use_dma_ppb_du) {
  1978. td = udc_get_last_dma_desc(req);
  1979. if (td) {
  1980. dma_done =
  1981. AMD_GETBITS(td->status,
  1982. UDC_DMA_IN_STS_BS);
  1983. /* don't care DMA done */
  1984. req->req.actual = req->req.length;
  1985. }
  1986. } else {
  1987. /* assume all bytes transferred */
  1988. req->req.actual = req->req.length;
  1989. }
  1990. if (req->req.actual == req->req.length) {
  1991. /* complete req */
  1992. complete_req(ep, req, 0);
  1993. req->dma_going = 0;
  1994. /* further request available ? */
  1995. if (list_empty(&ep->queue)) {
  1996. /* disable interrupt */
  1997. tmp = readl(&dev->regs->ep_irqmsk);
  1998. tmp |= AMD_BIT(ep->num);
  1999. writel(tmp, &dev->regs->ep_irqmsk);
  2000. }
  2001. }
  2002. }
  2003. ep->cancel_transfer = 0;
  2004. }
  2005. /*
  2006. * status reg has IN bit set and TDC not set (if TDC was handled,
  2007. * IN must not be handled (UDC defect) ?
  2008. */
  2009. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2010. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2011. ret_val = IRQ_HANDLED;
  2012. if (!list_empty(&ep->queue)) {
  2013. /* next request */
  2014. req = list_entry(ep->queue.next,
  2015. struct udc_request, queue);
  2016. /* FIFO mode */
  2017. if (!use_dma) {
  2018. /* write fifo */
  2019. udc_txfifo_write(ep, &req->req);
  2020. len = req->req.length - req->req.actual;
  2021. if (len > ep->ep.maxpacket)
  2022. len = ep->ep.maxpacket;
  2023. req->req.actual += len;
  2024. if (req->req.actual == req->req.length
  2025. || (len != ep->ep.maxpacket)) {
  2026. /* complete req */
  2027. complete_req(ep, req, 0);
  2028. }
  2029. /* DMA */
  2030. } else if (req && !req->dma_going) {
  2031. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2032. req, req->td_data);
  2033. if (req->td_data) {
  2034. req->dma_going = 1;
  2035. /*
  2036. * unset L bit of first desc.
  2037. * for chain
  2038. */
  2039. if (use_dma_ppb && req->req.length >
  2040. ep->ep.maxpacket) {
  2041. req->td_data->status &=
  2042. AMD_CLEAR_BIT(
  2043. UDC_DMA_IN_STS_L);
  2044. }
  2045. /* write desc pointer */
  2046. writel(req->td_phys, &ep->regs->desptr);
  2047. /* set HOST READY */
  2048. req->td_data->status =
  2049. AMD_ADDBITS(
  2050. req->td_data->status,
  2051. UDC_DMA_IN_STS_BS_HOST_READY,
  2052. UDC_DMA_IN_STS_BS);
  2053. /* set poll demand bit */
  2054. tmp = readl(&ep->regs->ctl);
  2055. tmp |= AMD_BIT(UDC_EPCTL_P);
  2056. writel(tmp, &ep->regs->ctl);
  2057. }
  2058. }
  2059. } else if (!use_dma && ep->in) {
  2060. /* disable interrupt */
  2061. tmp = readl(
  2062. &dev->regs->ep_irqmsk);
  2063. tmp |= AMD_BIT(ep->num);
  2064. writel(tmp,
  2065. &dev->regs->ep_irqmsk);
  2066. }
  2067. }
  2068. /* clear status bits */
  2069. writel(epsts, &ep->regs->sts);
  2070. finished:
  2071. return ret_val;
  2072. }
  2073. /* Interrupt handler for Control OUT traffic */
  2074. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2075. __releases(dev->lock)
  2076. __acquires(dev->lock)
  2077. {
  2078. irqreturn_t ret_val = IRQ_NONE;
  2079. u32 tmp;
  2080. int setup_supported;
  2081. u32 count;
  2082. int set = 0;
  2083. struct udc_ep *ep;
  2084. struct udc_ep *ep_tmp;
  2085. ep = &dev->ep[UDC_EP0OUT_IX];
  2086. /* clear irq */
  2087. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2088. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2089. /* check BNA and clear if set */
  2090. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2091. VDBG(dev, "ep0: BNA set\n");
  2092. writel(AMD_BIT(UDC_EPSTS_BNA),
  2093. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2094. ep->bna_occurred = 1;
  2095. ret_val = IRQ_HANDLED;
  2096. goto finished;
  2097. }
  2098. /* type of data: SETUP or DATA 0 bytes */
  2099. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2100. VDBG(dev, "data_typ = %x\n", tmp);
  2101. /* setup data */
  2102. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2103. ret_val = IRQ_HANDLED;
  2104. ep->dev->stall_ep0in = 0;
  2105. dev->waiting_zlp_ack_ep0in = 0;
  2106. /* set NAK for EP0_IN */
  2107. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2108. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2109. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2110. dev->ep[UDC_EP0IN_IX].naking = 1;
  2111. /* get setup data */
  2112. if (use_dma) {
  2113. /* clear OUT bits in ep status */
  2114. writel(UDC_EPSTS_OUT_CLEAR,
  2115. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2116. setup_data.data[0] =
  2117. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2118. setup_data.data[1] =
  2119. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2120. /* set HOST READY */
  2121. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2122. UDC_DMA_STP_STS_BS_HOST_READY;
  2123. } else {
  2124. /* read fifo */
  2125. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2126. }
  2127. /* determine direction of control data */
  2128. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2129. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2130. /* enable RDE */
  2131. udc_ep0_set_rde(dev);
  2132. set = 0;
  2133. } else {
  2134. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2135. /*
  2136. * implant BNA dummy descriptor to allow RXFIFO opening
  2137. * by RDE
  2138. */
  2139. if (ep->bna_dummy_req) {
  2140. /* write desc pointer */
  2141. writel(ep->bna_dummy_req->td_phys,
  2142. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2143. ep->bna_occurred = 0;
  2144. }
  2145. set = 1;
  2146. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2147. /*
  2148. * setup timer for enabling RDE (to not enable
  2149. * RXFIFO DMA for data to early)
  2150. */
  2151. set_rde = 1;
  2152. if (!timer_pending(&udc_timer)) {
  2153. udc_timer.expires = jiffies +
  2154. HZ/UDC_RDE_TIMER_DIV;
  2155. if (!stop_timer)
  2156. add_timer(&udc_timer);
  2157. }
  2158. }
  2159. /*
  2160. * mass storage reset must be processed here because
  2161. * next packet may be a CLEAR_FEATURE HALT which would not
  2162. * clear the stall bit when no STALL handshake was received
  2163. * before (autostall can cause this)
  2164. */
  2165. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2166. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2167. DBG(dev, "MSC Reset\n");
  2168. /*
  2169. * clear stall bits
  2170. * only one IN and OUT endpoints are handled
  2171. */
  2172. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2173. udc_set_halt(&ep_tmp->ep, 0);
  2174. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2175. udc_set_halt(&ep_tmp->ep, 0);
  2176. }
  2177. /* call gadget with setup data received */
  2178. spin_unlock(&dev->lock);
  2179. setup_supported = dev->driver->setup(&dev->gadget,
  2180. &setup_data.request);
  2181. spin_lock(&dev->lock);
  2182. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2183. /* ep0 in returns data (not zlp) on IN phase */
  2184. if (setup_supported >= 0 && setup_supported <
  2185. UDC_EP0IN_MAXPACKET) {
  2186. /* clear NAK by writing CNAK in EP0_IN */
  2187. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2188. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2189. dev->ep[UDC_EP0IN_IX].naking = 0;
  2190. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2191. /* if unsupported request then stall */
  2192. } else if (setup_supported < 0) {
  2193. tmp |= AMD_BIT(UDC_EPCTL_S);
  2194. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2195. } else
  2196. dev->waiting_zlp_ack_ep0in = 1;
  2197. /* clear NAK by writing CNAK in EP0_OUT */
  2198. if (!set) {
  2199. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2200. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2201. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2202. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2203. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2204. }
  2205. if (!use_dma) {
  2206. /* clear OUT bits in ep status */
  2207. writel(UDC_EPSTS_OUT_CLEAR,
  2208. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2209. }
  2210. /* data packet 0 bytes */
  2211. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2212. /* clear OUT bits in ep status */
  2213. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2214. /* get setup data: only 0 packet */
  2215. if (use_dma) {
  2216. /* no req if 0 packet, just reactivate */
  2217. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2218. VDBG(dev, "ZLP\n");
  2219. /* set HOST READY */
  2220. dev->ep[UDC_EP0OUT_IX].td->status =
  2221. AMD_ADDBITS(
  2222. dev->ep[UDC_EP0OUT_IX].td->status,
  2223. UDC_DMA_OUT_STS_BS_HOST_READY,
  2224. UDC_DMA_OUT_STS_BS);
  2225. /* enable RDE */
  2226. udc_ep0_set_rde(dev);
  2227. ret_val = IRQ_HANDLED;
  2228. } else {
  2229. /* control write */
  2230. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2231. /* re-program desc. pointer for possible ZLPs */
  2232. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2233. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2234. /* enable RDE */
  2235. udc_ep0_set_rde(dev);
  2236. }
  2237. } else {
  2238. /* received number bytes */
  2239. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2240. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2241. /* out data for fifo mode not working */
  2242. count = 0;
  2243. /* 0 packet or real data ? */
  2244. if (count != 0) {
  2245. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2246. } else {
  2247. /* dummy read confirm */
  2248. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2249. ret_val = IRQ_HANDLED;
  2250. }
  2251. }
  2252. }
  2253. /* check pending CNAKS */
  2254. if (cnak_pending) {
  2255. /* CNAk processing when rxfifo empty only */
  2256. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2257. udc_process_cnak_queue(dev);
  2258. }
  2259. finished:
  2260. return ret_val;
  2261. }
  2262. /* Interrupt handler for Control IN traffic */
  2263. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2264. {
  2265. irqreturn_t ret_val = IRQ_NONE;
  2266. u32 tmp;
  2267. struct udc_ep *ep;
  2268. struct udc_request *req;
  2269. unsigned len;
  2270. ep = &dev->ep[UDC_EP0IN_IX];
  2271. /* clear irq */
  2272. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2273. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2274. /* DMA completion */
  2275. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2276. VDBG(dev, "isr: TDC clear\n");
  2277. ret_val = IRQ_HANDLED;
  2278. /* clear TDC bit */
  2279. writel(AMD_BIT(UDC_EPSTS_TDC),
  2280. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2281. /* status reg has IN bit set ? */
  2282. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2283. ret_val = IRQ_HANDLED;
  2284. if (ep->dma) {
  2285. /* clear IN bit */
  2286. writel(AMD_BIT(UDC_EPSTS_IN),
  2287. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2288. }
  2289. if (dev->stall_ep0in) {
  2290. DBG(dev, "stall ep0in\n");
  2291. /* halt ep0in */
  2292. tmp = readl(&ep->regs->ctl);
  2293. tmp |= AMD_BIT(UDC_EPCTL_S);
  2294. writel(tmp, &ep->regs->ctl);
  2295. } else {
  2296. if (!list_empty(&ep->queue)) {
  2297. /* next request */
  2298. req = list_entry(ep->queue.next,
  2299. struct udc_request, queue);
  2300. if (ep->dma) {
  2301. /* write desc pointer */
  2302. writel(req->td_phys, &ep->regs->desptr);
  2303. /* set HOST READY */
  2304. req->td_data->status =
  2305. AMD_ADDBITS(
  2306. req->td_data->status,
  2307. UDC_DMA_STP_STS_BS_HOST_READY,
  2308. UDC_DMA_STP_STS_BS);
  2309. /* set poll demand bit */
  2310. tmp =
  2311. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2312. tmp |= AMD_BIT(UDC_EPCTL_P);
  2313. writel(tmp,
  2314. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2315. /* all bytes will be transferred */
  2316. req->req.actual = req->req.length;
  2317. /* complete req */
  2318. complete_req(ep, req, 0);
  2319. } else {
  2320. /* write fifo */
  2321. udc_txfifo_write(ep, &req->req);
  2322. /* lengh bytes transferred */
  2323. len = req->req.length - req->req.actual;
  2324. if (len > ep->ep.maxpacket)
  2325. len = ep->ep.maxpacket;
  2326. req->req.actual += len;
  2327. if (req->req.actual == req->req.length
  2328. || (len != ep->ep.maxpacket)) {
  2329. /* complete req */
  2330. complete_req(ep, req, 0);
  2331. }
  2332. }
  2333. }
  2334. }
  2335. ep->halted = 0;
  2336. dev->stall_ep0in = 0;
  2337. if (!ep->dma) {
  2338. /* clear IN bit */
  2339. writel(AMD_BIT(UDC_EPSTS_IN),
  2340. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2341. }
  2342. }
  2343. return ret_val;
  2344. }
  2345. /* Interrupt handler for global device events */
  2346. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2347. __releases(dev->lock)
  2348. __acquires(dev->lock)
  2349. {
  2350. irqreturn_t ret_val = IRQ_NONE;
  2351. u32 tmp;
  2352. u32 cfg;
  2353. struct udc_ep *ep;
  2354. u16 i;
  2355. u8 udc_csr_epix;
  2356. /* SET_CONFIG irq ? */
  2357. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2358. ret_val = IRQ_HANDLED;
  2359. /* read config value */
  2360. tmp = readl(&dev->regs->sts);
  2361. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2362. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2363. dev->cur_config = cfg;
  2364. dev->set_cfg_not_acked = 1;
  2365. /* make usb request for gadget driver */
  2366. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2367. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2368. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2369. /* programm the NE registers */
  2370. for (i = 0; i < UDC_EP_NUM; i++) {
  2371. ep = &dev->ep[i];
  2372. if (ep->in) {
  2373. /* ep ix in UDC CSR register space */
  2374. udc_csr_epix = ep->num;
  2375. /* OUT ep */
  2376. } else {
  2377. /* ep ix in UDC CSR register space */
  2378. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2379. }
  2380. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2381. /* ep cfg */
  2382. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2383. UDC_CSR_NE_CFG);
  2384. /* write reg */
  2385. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2386. /* clear stall bits */
  2387. ep->halted = 0;
  2388. tmp = readl(&ep->regs->ctl);
  2389. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2390. writel(tmp, &ep->regs->ctl);
  2391. }
  2392. /* call gadget zero with setup data received */
  2393. spin_unlock(&dev->lock);
  2394. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2395. spin_lock(&dev->lock);
  2396. } /* SET_INTERFACE ? */
  2397. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2398. ret_val = IRQ_HANDLED;
  2399. dev->set_cfg_not_acked = 1;
  2400. /* read interface and alt setting values */
  2401. tmp = readl(&dev->regs->sts);
  2402. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2403. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2404. /* make usb request for gadget driver */
  2405. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2406. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2407. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2408. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2409. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2410. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2411. dev->cur_alt, dev->cur_intf);
  2412. /* programm the NE registers */
  2413. for (i = 0; i < UDC_EP_NUM; i++) {
  2414. ep = &dev->ep[i];
  2415. if (ep->in) {
  2416. /* ep ix in UDC CSR register space */
  2417. udc_csr_epix = ep->num;
  2418. /* OUT ep */
  2419. } else {
  2420. /* ep ix in UDC CSR register space */
  2421. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2422. }
  2423. /* UDC CSR reg */
  2424. /* set ep values */
  2425. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2426. /* ep interface */
  2427. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2428. UDC_CSR_NE_INTF);
  2429. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2430. /* ep alt */
  2431. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2432. UDC_CSR_NE_ALT);
  2433. /* write reg */
  2434. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2435. /* clear stall bits */
  2436. ep->halted = 0;
  2437. tmp = readl(&ep->regs->ctl);
  2438. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2439. writel(tmp, &ep->regs->ctl);
  2440. }
  2441. /* call gadget zero with setup data received */
  2442. spin_unlock(&dev->lock);
  2443. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2444. spin_lock(&dev->lock);
  2445. } /* USB reset */
  2446. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2447. DBG(dev, "USB Reset interrupt\n");
  2448. ret_val = IRQ_HANDLED;
  2449. /* allow soft reset when suspend occurs */
  2450. soft_reset_occured = 0;
  2451. dev->waiting_zlp_ack_ep0in = 0;
  2452. dev->set_cfg_not_acked = 0;
  2453. /* mask not needed interrupts */
  2454. udc_mask_unused_interrupts(dev);
  2455. /* call gadget to resume and reset configs etc. */
  2456. spin_unlock(&dev->lock);
  2457. if (dev->sys_suspended && dev->driver->resume) {
  2458. dev->driver->resume(&dev->gadget);
  2459. dev->sys_suspended = 0;
  2460. }
  2461. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2462. spin_lock(&dev->lock);
  2463. /* disable ep0 to empty req queue */
  2464. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2465. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2466. /* soft reset when rxfifo not empty */
  2467. tmp = readl(&dev->regs->sts);
  2468. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2469. && !soft_reset_after_usbreset_occured) {
  2470. udc_soft_reset(dev);
  2471. soft_reset_after_usbreset_occured++;
  2472. }
  2473. /*
  2474. * DMA reset to kill potential old DMA hw hang,
  2475. * POLL bit is already reset by ep_init() through
  2476. * disconnect()
  2477. */
  2478. DBG(dev, "DMA machine reset\n");
  2479. tmp = readl(&dev->regs->cfg);
  2480. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2481. writel(tmp, &dev->regs->cfg);
  2482. /* put into initial config */
  2483. udc_basic_init(dev);
  2484. /* enable device setup interrupts */
  2485. udc_enable_dev_setup_interrupts(dev);
  2486. /* enable suspend interrupt */
  2487. tmp = readl(&dev->regs->irqmsk);
  2488. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2489. writel(tmp, &dev->regs->irqmsk);
  2490. } /* USB suspend */
  2491. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2492. DBG(dev, "USB Suspend interrupt\n");
  2493. ret_val = IRQ_HANDLED;
  2494. if (dev->driver->suspend) {
  2495. spin_unlock(&dev->lock);
  2496. dev->sys_suspended = 1;
  2497. dev->driver->suspend(&dev->gadget);
  2498. spin_lock(&dev->lock);
  2499. }
  2500. } /* new speed ? */
  2501. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2502. DBG(dev, "ENUM interrupt\n");
  2503. ret_val = IRQ_HANDLED;
  2504. soft_reset_after_usbreset_occured = 0;
  2505. /* disable ep0 to empty req queue */
  2506. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2507. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2508. /* link up all endpoints */
  2509. udc_setup_endpoints(dev);
  2510. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2511. usb_speed_string(dev->gadget.speed));
  2512. /* init ep 0 */
  2513. activate_control_endpoints(dev);
  2514. /* enable ep0 interrupts */
  2515. udc_enable_ep0_interrupts(dev);
  2516. }
  2517. /* session valid change interrupt */
  2518. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2519. DBG(dev, "USB SVC interrupt\n");
  2520. ret_val = IRQ_HANDLED;
  2521. /* check that session is not valid to detect disconnect */
  2522. tmp = readl(&dev->regs->sts);
  2523. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2524. /* disable suspend interrupt */
  2525. tmp = readl(&dev->regs->irqmsk);
  2526. tmp |= AMD_BIT(UDC_DEVINT_US);
  2527. writel(tmp, &dev->regs->irqmsk);
  2528. DBG(dev, "USB Disconnect (session valid low)\n");
  2529. /* cleanup on disconnect */
  2530. usb_disconnect(udc);
  2531. }
  2532. }
  2533. return ret_val;
  2534. }
  2535. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2536. static irqreturn_t udc_irq(int irq, void *pdev)
  2537. {
  2538. struct udc *dev = pdev;
  2539. u32 reg;
  2540. u16 i;
  2541. u32 ep_irq;
  2542. irqreturn_t ret_val = IRQ_NONE;
  2543. spin_lock(&dev->lock);
  2544. /* check for ep irq */
  2545. reg = readl(&dev->regs->ep_irqsts);
  2546. if (reg) {
  2547. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2548. ret_val |= udc_control_out_isr(dev);
  2549. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2550. ret_val |= udc_control_in_isr(dev);
  2551. /*
  2552. * data endpoint
  2553. * iterate ep's
  2554. */
  2555. for (i = 1; i < UDC_EP_NUM; i++) {
  2556. ep_irq = 1 << i;
  2557. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2558. continue;
  2559. /* clear irq status */
  2560. writel(ep_irq, &dev->regs->ep_irqsts);
  2561. /* irq for out ep ? */
  2562. if (i > UDC_EPIN_NUM)
  2563. ret_val |= udc_data_out_isr(dev, i);
  2564. else
  2565. ret_val |= udc_data_in_isr(dev, i);
  2566. }
  2567. }
  2568. /* check for dev irq */
  2569. reg = readl(&dev->regs->irqsts);
  2570. if (reg) {
  2571. /* clear irq */
  2572. writel(reg, &dev->regs->irqsts);
  2573. ret_val |= udc_dev_isr(dev, reg);
  2574. }
  2575. spin_unlock(&dev->lock);
  2576. return ret_val;
  2577. }
  2578. /* Tears down device */
  2579. static void gadget_release(struct device *pdev)
  2580. {
  2581. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2582. kfree(dev);
  2583. }
  2584. /* Cleanup on device remove */
  2585. static void udc_remove(struct udc *dev)
  2586. {
  2587. /* remove timer */
  2588. stop_timer++;
  2589. if (timer_pending(&udc_timer))
  2590. wait_for_completion(&on_exit);
  2591. if (udc_timer.data)
  2592. del_timer_sync(&udc_timer);
  2593. /* remove pollstall timer */
  2594. stop_pollstall_timer++;
  2595. if (timer_pending(&udc_pollstall_timer))
  2596. wait_for_completion(&on_pollstall_exit);
  2597. if (udc_pollstall_timer.data)
  2598. del_timer_sync(&udc_pollstall_timer);
  2599. udc = NULL;
  2600. }
  2601. /* Reset all pci context */
  2602. static void udc_pci_remove(struct pci_dev *pdev)
  2603. {
  2604. struct udc *dev;
  2605. dev = pci_get_drvdata(pdev);
  2606. usb_del_gadget_udc(&udc->gadget);
  2607. /* gadget driver must not be registered */
  2608. BUG_ON(dev->driver != NULL);
  2609. /* dma pool cleanup */
  2610. if (dev->data_requests)
  2611. pci_pool_destroy(dev->data_requests);
  2612. if (dev->stp_requests) {
  2613. /* cleanup DMA desc's for ep0in */
  2614. pci_pool_free(dev->stp_requests,
  2615. dev->ep[UDC_EP0OUT_IX].td_stp,
  2616. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2617. pci_pool_free(dev->stp_requests,
  2618. dev->ep[UDC_EP0OUT_IX].td,
  2619. dev->ep[UDC_EP0OUT_IX].td_phys);
  2620. pci_pool_destroy(dev->stp_requests);
  2621. }
  2622. /* reset controller */
  2623. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2624. if (dev->irq_registered)
  2625. free_irq(pdev->irq, dev);
  2626. if (dev->regs)
  2627. iounmap(dev->regs);
  2628. if (dev->mem_region)
  2629. release_mem_region(pci_resource_start(pdev, 0),
  2630. pci_resource_len(pdev, 0));
  2631. if (dev->active)
  2632. pci_disable_device(pdev);
  2633. udc_remove(dev);
  2634. }
  2635. /* create dma pools on init */
  2636. static int init_dma_pools(struct udc *dev)
  2637. {
  2638. struct udc_stp_dma *td_stp;
  2639. struct udc_data_dma *td_data;
  2640. int retval;
  2641. /* consistent DMA mode setting ? */
  2642. if (use_dma_ppb) {
  2643. use_dma_bufferfill_mode = 0;
  2644. } else {
  2645. use_dma_ppb_du = 0;
  2646. use_dma_bufferfill_mode = 1;
  2647. }
  2648. /* DMA setup */
  2649. dev->data_requests = dma_pool_create("data_requests", NULL,
  2650. sizeof(struct udc_data_dma), 0, 0);
  2651. if (!dev->data_requests) {
  2652. DBG(dev, "can't get request data pool\n");
  2653. retval = -ENOMEM;
  2654. goto finished;
  2655. }
  2656. /* EP0 in dma regs = dev control regs */
  2657. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2658. /* dma desc for setup data */
  2659. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2660. sizeof(struct udc_stp_dma), 0, 0);
  2661. if (!dev->stp_requests) {
  2662. DBG(dev, "can't get stp request pool\n");
  2663. retval = -ENOMEM;
  2664. goto finished;
  2665. }
  2666. /* setup */
  2667. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2668. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2669. if (td_stp == NULL) {
  2670. retval = -ENOMEM;
  2671. goto finished;
  2672. }
  2673. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2674. /* data: 0 packets !? */
  2675. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2676. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2677. if (td_data == NULL) {
  2678. retval = -ENOMEM;
  2679. goto finished;
  2680. }
  2681. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2682. return 0;
  2683. finished:
  2684. return retval;
  2685. }
  2686. /* Called by pci bus driver to init pci context */
  2687. static int udc_pci_probe(
  2688. struct pci_dev *pdev,
  2689. const struct pci_device_id *id
  2690. )
  2691. {
  2692. struct udc *dev;
  2693. unsigned long resource;
  2694. unsigned long len;
  2695. int retval = 0;
  2696. /* one udc only */
  2697. if (udc) {
  2698. dev_dbg(&pdev->dev, "already probed\n");
  2699. return -EBUSY;
  2700. }
  2701. /* init */
  2702. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2703. if (!dev) {
  2704. retval = -ENOMEM;
  2705. goto finished;
  2706. }
  2707. /* pci setup */
  2708. if (pci_enable_device(pdev) < 0) {
  2709. kfree(dev);
  2710. dev = NULL;
  2711. retval = -ENODEV;
  2712. goto finished;
  2713. }
  2714. dev->active = 1;
  2715. /* PCI resource allocation */
  2716. resource = pci_resource_start(pdev, 0);
  2717. len = pci_resource_len(pdev, 0);
  2718. if (!request_mem_region(resource, len, name)) {
  2719. dev_dbg(&pdev->dev, "pci device used already\n");
  2720. kfree(dev);
  2721. dev = NULL;
  2722. retval = -EBUSY;
  2723. goto finished;
  2724. }
  2725. dev->mem_region = 1;
  2726. dev->virt_addr = ioremap_nocache(resource, len);
  2727. if (dev->virt_addr == NULL) {
  2728. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2729. kfree(dev);
  2730. dev = NULL;
  2731. retval = -EFAULT;
  2732. goto finished;
  2733. }
  2734. if (!pdev->irq) {
  2735. dev_err(&pdev->dev, "irq not set\n");
  2736. kfree(dev);
  2737. dev = NULL;
  2738. retval = -ENODEV;
  2739. goto finished;
  2740. }
  2741. spin_lock_init(&dev->lock);
  2742. /* udc csr registers base */
  2743. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2744. /* dev registers base */
  2745. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2746. /* ep registers base */
  2747. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2748. /* fifo's base */
  2749. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2750. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2751. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2752. dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2753. kfree(dev);
  2754. dev = NULL;
  2755. retval = -EBUSY;
  2756. goto finished;
  2757. }
  2758. dev->irq_registered = 1;
  2759. pci_set_drvdata(pdev, dev);
  2760. /* chip revision for Hs AMD5536 */
  2761. dev->chiprev = pdev->revision;
  2762. pci_set_master(pdev);
  2763. pci_try_set_mwi(pdev);
  2764. /* init dma pools */
  2765. if (use_dma) {
  2766. retval = init_dma_pools(dev);
  2767. if (retval != 0)
  2768. goto finished;
  2769. }
  2770. dev->phys_addr = resource;
  2771. dev->irq = pdev->irq;
  2772. dev->pdev = pdev;
  2773. /* general probing */
  2774. if (udc_probe(dev) == 0)
  2775. return 0;
  2776. finished:
  2777. if (dev)
  2778. udc_pci_remove(pdev);
  2779. return retval;
  2780. }
  2781. /* general probe */
  2782. static int udc_probe(struct udc *dev)
  2783. {
  2784. char tmp[128];
  2785. u32 reg;
  2786. int retval;
  2787. /* mark timer as not initialized */
  2788. udc_timer.data = 0;
  2789. udc_pollstall_timer.data = 0;
  2790. /* device struct setup */
  2791. dev->gadget.ops = &udc_ops;
  2792. dev_set_name(&dev->gadget.dev, "gadget");
  2793. dev->gadget.name = name;
  2794. dev->gadget.max_speed = USB_SPEED_HIGH;
  2795. /* init registers, interrupts, ... */
  2796. startup_registers(dev);
  2797. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2798. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2799. dev_info(&dev->pdev->dev,
  2800. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2801. tmp, dev->phys_addr, dev->chiprev,
  2802. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2803. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2804. if (dev->chiprev == UDC_HSA0_REV) {
  2805. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2806. retval = -ENODEV;
  2807. goto finished;
  2808. }
  2809. dev_info(&dev->pdev->dev,
  2810. "driver version: %s(for Geode5536 B1)\n", tmp);
  2811. udc = dev;
  2812. retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
  2813. gadget_release);
  2814. if (retval)
  2815. goto finished;
  2816. /* timer init */
  2817. init_timer(&udc_timer);
  2818. udc_timer.function = udc_timer_function;
  2819. udc_timer.data = 1;
  2820. /* timer pollstall init */
  2821. init_timer(&udc_pollstall_timer);
  2822. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2823. udc_pollstall_timer.data = 1;
  2824. /* set SD */
  2825. reg = readl(&dev->regs->ctl);
  2826. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2827. writel(reg, &dev->regs->ctl);
  2828. /* print dev register info */
  2829. print_regs(dev);
  2830. return 0;
  2831. finished:
  2832. return retval;
  2833. }
  2834. /* Initiates a remote wakeup */
  2835. static int udc_remote_wakeup(struct udc *dev)
  2836. {
  2837. unsigned long flags;
  2838. u32 tmp;
  2839. DBG(dev, "UDC initiates remote wakeup\n");
  2840. spin_lock_irqsave(&dev->lock, flags);
  2841. tmp = readl(&dev->regs->ctl);
  2842. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2843. writel(tmp, &dev->regs->ctl);
  2844. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2845. writel(tmp, &dev->regs->ctl);
  2846. spin_unlock_irqrestore(&dev->lock, flags);
  2847. return 0;
  2848. }
  2849. /* PCI device parameters */
  2850. static const struct pci_device_id pci_id[] = {
  2851. {
  2852. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2853. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2854. .class_mask = 0xffffffff,
  2855. },
  2856. {},
  2857. };
  2858. MODULE_DEVICE_TABLE(pci, pci_id);
  2859. /* PCI functions */
  2860. static struct pci_driver udc_pci_driver = {
  2861. .name = (char *) name,
  2862. .id_table = pci_id,
  2863. .probe = udc_pci_probe,
  2864. .remove = udc_pci_remove,
  2865. };
  2866. module_pci_driver(udc_pci_driver);
  2867. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2868. MODULE_AUTHOR("Thomas Dahlmann");
  2869. MODULE_LICENSE("GPL");