target_core_rd.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. /*******************************************************************************
  2. * Filename: target_core_rd.c
  3. *
  4. * This file contains the Storage Engine <-> Ramdisk transport
  5. * specific functions.
  6. *
  7. * (c) Copyright 2003-2013 Datera, Inc.
  8. *
  9. * Nicholas A. Bellinger <nab@kernel.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  24. *
  25. ******************************************************************************/
  26. #include <linux/string.h>
  27. #include <linux/parser.h>
  28. #include <linux/timer.h>
  29. #include <linux/slab.h>
  30. #include <linux/spinlock.h>
  31. #include <scsi/scsi.h>
  32. #include <scsi/scsi_host.h>
  33. #include <target/target_core_base.h>
  34. #include <target/target_core_backend.h>
  35. #include <target/target_core_backend_configfs.h>
  36. #include "target_core_rd.h"
  37. static inline struct rd_dev *RD_DEV(struct se_device *dev)
  38. {
  39. return container_of(dev, struct rd_dev, dev);
  40. }
  41. /* rd_attach_hba(): (Part of se_subsystem_api_t template)
  42. *
  43. *
  44. */
  45. static int rd_attach_hba(struct se_hba *hba, u32 host_id)
  46. {
  47. struct rd_host *rd_host;
  48. rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
  49. if (!rd_host) {
  50. pr_err("Unable to allocate memory for struct rd_host\n");
  51. return -ENOMEM;
  52. }
  53. rd_host->rd_host_id = host_id;
  54. hba->hba_ptr = rd_host;
  55. pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
  56. " Generic Target Core Stack %s\n", hba->hba_id,
  57. RD_HBA_VERSION, TARGET_CORE_MOD_VERSION);
  58. return 0;
  59. }
  60. static void rd_detach_hba(struct se_hba *hba)
  61. {
  62. struct rd_host *rd_host = hba->hba_ptr;
  63. pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
  64. " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
  65. kfree(rd_host);
  66. hba->hba_ptr = NULL;
  67. }
  68. static u32 rd_release_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
  69. u32 sg_table_count)
  70. {
  71. struct page *pg;
  72. struct scatterlist *sg;
  73. u32 i, j, page_count = 0, sg_per_table;
  74. for (i = 0; i < sg_table_count; i++) {
  75. sg = sg_table[i].sg_table;
  76. sg_per_table = sg_table[i].rd_sg_count;
  77. for (j = 0; j < sg_per_table; j++) {
  78. pg = sg_page(&sg[j]);
  79. if (pg) {
  80. __free_page(pg);
  81. page_count++;
  82. }
  83. }
  84. kfree(sg);
  85. }
  86. kfree(sg_table);
  87. return page_count;
  88. }
  89. static void rd_release_device_space(struct rd_dev *rd_dev)
  90. {
  91. u32 page_count;
  92. if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
  93. return;
  94. page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_table_array,
  95. rd_dev->sg_table_count);
  96. pr_debug("CORE_RD[%u] - Released device space for Ramdisk"
  97. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  98. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  99. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  100. rd_dev->sg_table_array = NULL;
  101. rd_dev->sg_table_count = 0;
  102. }
  103. /* rd_build_device_space():
  104. *
  105. *
  106. */
  107. static int rd_allocate_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
  108. u32 total_sg_needed, unsigned char init_payload)
  109. {
  110. u32 i = 0, j, page_offset = 0, sg_per_table;
  111. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  112. sizeof(struct scatterlist));
  113. struct page *pg;
  114. struct scatterlist *sg;
  115. unsigned char *p;
  116. while (total_sg_needed) {
  117. unsigned int chain_entry = 0;
  118. sg_per_table = (total_sg_needed > max_sg_per_table) ?
  119. max_sg_per_table : total_sg_needed;
  120. #ifdef CONFIG_ARCH_HAS_SG_CHAIN
  121. /*
  122. * Reserve extra element for chain entry
  123. */
  124. if (sg_per_table < total_sg_needed)
  125. chain_entry = 1;
  126. #endif /* CONFIG_ARCH_HAS_SG_CHAIN */
  127. sg = kcalloc(sg_per_table + chain_entry, sizeof(*sg),
  128. GFP_KERNEL);
  129. if (!sg) {
  130. pr_err("Unable to allocate scatterlist array"
  131. " for struct rd_dev\n");
  132. return -ENOMEM;
  133. }
  134. sg_init_table(sg, sg_per_table + chain_entry);
  135. #ifdef CONFIG_ARCH_HAS_SG_CHAIN
  136. if (i > 0) {
  137. sg_chain(sg_table[i - 1].sg_table,
  138. max_sg_per_table + 1, sg);
  139. }
  140. #endif /* CONFIG_ARCH_HAS_SG_CHAIN */
  141. sg_table[i].sg_table = sg;
  142. sg_table[i].rd_sg_count = sg_per_table;
  143. sg_table[i].page_start_offset = page_offset;
  144. sg_table[i++].page_end_offset = (page_offset + sg_per_table)
  145. - 1;
  146. for (j = 0; j < sg_per_table; j++) {
  147. pg = alloc_pages(GFP_KERNEL, 0);
  148. if (!pg) {
  149. pr_err("Unable to allocate scatterlist"
  150. " pages for struct rd_dev_sg_table\n");
  151. return -ENOMEM;
  152. }
  153. sg_assign_page(&sg[j], pg);
  154. sg[j].length = PAGE_SIZE;
  155. p = kmap(pg);
  156. memset(p, init_payload, PAGE_SIZE);
  157. kunmap(pg);
  158. }
  159. page_offset += sg_per_table;
  160. total_sg_needed -= sg_per_table;
  161. }
  162. return 0;
  163. }
  164. static int rd_build_device_space(struct rd_dev *rd_dev)
  165. {
  166. struct rd_dev_sg_table *sg_table;
  167. u32 sg_tables, total_sg_needed;
  168. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  169. sizeof(struct scatterlist));
  170. int rc;
  171. if (rd_dev->rd_page_count <= 0) {
  172. pr_err("Illegal page count: %u for Ramdisk device\n",
  173. rd_dev->rd_page_count);
  174. return -EINVAL;
  175. }
  176. /* Don't need backing pages for NULLIO */
  177. if (rd_dev->rd_flags & RDF_NULLIO)
  178. return 0;
  179. total_sg_needed = rd_dev->rd_page_count;
  180. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  181. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  182. if (!sg_table) {
  183. pr_err("Unable to allocate memory for Ramdisk"
  184. " scatterlist tables\n");
  185. return -ENOMEM;
  186. }
  187. rd_dev->sg_table_array = sg_table;
  188. rd_dev->sg_table_count = sg_tables;
  189. rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0x00);
  190. if (rc)
  191. return rc;
  192. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
  193. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  194. rd_dev->rd_dev_id, rd_dev->rd_page_count,
  195. rd_dev->sg_table_count);
  196. return 0;
  197. }
  198. static void rd_release_prot_space(struct rd_dev *rd_dev)
  199. {
  200. u32 page_count;
  201. if (!rd_dev->sg_prot_array || !rd_dev->sg_prot_count)
  202. return;
  203. page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_prot_array,
  204. rd_dev->sg_prot_count);
  205. pr_debug("CORE_RD[%u] - Released protection space for Ramdisk"
  206. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  207. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  208. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  209. rd_dev->sg_prot_array = NULL;
  210. rd_dev->sg_prot_count = 0;
  211. }
  212. static int rd_build_prot_space(struct rd_dev *rd_dev, int prot_length, int block_size)
  213. {
  214. struct rd_dev_sg_table *sg_table;
  215. u32 total_sg_needed, sg_tables;
  216. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  217. sizeof(struct scatterlist));
  218. int rc;
  219. if (rd_dev->rd_flags & RDF_NULLIO)
  220. return 0;
  221. /*
  222. * prot_length=8byte dif data
  223. * tot sg needed = rd_page_count * (PGSZ/block_size) *
  224. * (prot_length/block_size) + pad
  225. * PGSZ canceled each other.
  226. */
  227. total_sg_needed = (rd_dev->rd_page_count * prot_length / block_size) + 1;
  228. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  229. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  230. if (!sg_table) {
  231. pr_err("Unable to allocate memory for Ramdisk protection"
  232. " scatterlist tables\n");
  233. return -ENOMEM;
  234. }
  235. rd_dev->sg_prot_array = sg_table;
  236. rd_dev->sg_prot_count = sg_tables;
  237. rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0xff);
  238. if (rc)
  239. return rc;
  240. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u prot space of"
  241. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  242. rd_dev->rd_dev_id, total_sg_needed, rd_dev->sg_prot_count);
  243. return 0;
  244. }
  245. static struct se_device *rd_alloc_device(struct se_hba *hba, const char *name)
  246. {
  247. struct rd_dev *rd_dev;
  248. struct rd_host *rd_host = hba->hba_ptr;
  249. rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
  250. if (!rd_dev) {
  251. pr_err("Unable to allocate memory for struct rd_dev\n");
  252. return NULL;
  253. }
  254. rd_dev->rd_host = rd_host;
  255. return &rd_dev->dev;
  256. }
  257. static int rd_configure_device(struct se_device *dev)
  258. {
  259. struct rd_dev *rd_dev = RD_DEV(dev);
  260. struct rd_host *rd_host = dev->se_hba->hba_ptr;
  261. int ret;
  262. if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
  263. pr_debug("Missing rd_pages= parameter\n");
  264. return -EINVAL;
  265. }
  266. ret = rd_build_device_space(rd_dev);
  267. if (ret < 0)
  268. goto fail;
  269. dev->dev_attrib.hw_block_size = RD_BLOCKSIZE;
  270. dev->dev_attrib.hw_max_sectors = UINT_MAX;
  271. dev->dev_attrib.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
  272. rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
  273. pr_debug("CORE_RD[%u] - Added TCM MEMCPY Ramdisk Device ID: %u of"
  274. " %u pages in %u tables, %lu total bytes\n",
  275. rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count,
  276. rd_dev->sg_table_count,
  277. (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
  278. return 0;
  279. fail:
  280. rd_release_device_space(rd_dev);
  281. return ret;
  282. }
  283. static void rd_free_device(struct se_device *dev)
  284. {
  285. struct rd_dev *rd_dev = RD_DEV(dev);
  286. rd_release_device_space(rd_dev);
  287. kfree(rd_dev);
  288. }
  289. static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
  290. {
  291. struct rd_dev_sg_table *sg_table;
  292. u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  293. sizeof(struct scatterlist));
  294. i = page / sg_per_table;
  295. if (i < rd_dev->sg_table_count) {
  296. sg_table = &rd_dev->sg_table_array[i];
  297. if ((sg_table->page_start_offset <= page) &&
  298. (sg_table->page_end_offset >= page))
  299. return sg_table;
  300. }
  301. pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n",
  302. page);
  303. return NULL;
  304. }
  305. static struct rd_dev_sg_table *rd_get_prot_table(struct rd_dev *rd_dev, u32 page)
  306. {
  307. struct rd_dev_sg_table *sg_table;
  308. u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  309. sizeof(struct scatterlist));
  310. i = page / sg_per_table;
  311. if (i < rd_dev->sg_prot_count) {
  312. sg_table = &rd_dev->sg_prot_array[i];
  313. if ((sg_table->page_start_offset <= page) &&
  314. (sg_table->page_end_offset >= page))
  315. return sg_table;
  316. }
  317. pr_err("Unable to locate struct prot rd_dev_sg_table for page: %u\n",
  318. page);
  319. return NULL;
  320. }
  321. typedef sense_reason_t (*dif_verify)(struct se_cmd *, sector_t, unsigned int,
  322. unsigned int, struct scatterlist *, int);
  323. static sense_reason_t rd_do_prot_rw(struct se_cmd *cmd, dif_verify dif_verify)
  324. {
  325. struct se_device *se_dev = cmd->se_dev;
  326. struct rd_dev *dev = RD_DEV(se_dev);
  327. struct rd_dev_sg_table *prot_table;
  328. bool need_to_release = false;
  329. struct scatterlist *prot_sg;
  330. u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size;
  331. u32 prot_offset, prot_page;
  332. u32 prot_npages __maybe_unused;
  333. u64 tmp;
  334. sense_reason_t rc = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  335. tmp = cmd->t_task_lba * se_dev->prot_length;
  336. prot_offset = do_div(tmp, PAGE_SIZE);
  337. prot_page = tmp;
  338. prot_table = rd_get_prot_table(dev, prot_page);
  339. if (!prot_table)
  340. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  341. prot_sg = &prot_table->sg_table[prot_page -
  342. prot_table->page_start_offset];
  343. #ifndef CONFIG_ARCH_HAS_SG_CHAIN
  344. prot_npages = DIV_ROUND_UP(prot_offset + sectors * se_dev->prot_length,
  345. PAGE_SIZE);
  346. /*
  347. * Allocate temporaly contiguous scatterlist entries if prot pages
  348. * straddles multiple scatterlist tables.
  349. */
  350. if (prot_table->page_end_offset < prot_page + prot_npages - 1) {
  351. int i;
  352. prot_sg = kcalloc(prot_npages, sizeof(*prot_sg), GFP_KERNEL);
  353. if (!prot_sg)
  354. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  355. need_to_release = true;
  356. sg_init_table(prot_sg, prot_npages);
  357. for (i = 0; i < prot_npages; i++) {
  358. if (prot_page + i > prot_table->page_end_offset) {
  359. prot_table = rd_get_prot_table(dev,
  360. prot_page + i);
  361. if (!prot_table) {
  362. kfree(prot_sg);
  363. return rc;
  364. }
  365. sg_unmark_end(&prot_sg[i - 1]);
  366. }
  367. prot_sg[i] = prot_table->sg_table[prot_page + i -
  368. prot_table->page_start_offset];
  369. }
  370. }
  371. #endif /* !CONFIG_ARCH_HAS_SG_CHAIN */
  372. rc = dif_verify(cmd, cmd->t_task_lba, sectors, 0, prot_sg, prot_offset);
  373. if (need_to_release)
  374. kfree(prot_sg);
  375. return rc;
  376. }
  377. static sense_reason_t
  378. rd_execute_rw(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_nents,
  379. enum dma_data_direction data_direction)
  380. {
  381. struct se_device *se_dev = cmd->se_dev;
  382. struct rd_dev *dev = RD_DEV(se_dev);
  383. struct rd_dev_sg_table *table;
  384. struct scatterlist *rd_sg;
  385. struct sg_mapping_iter m;
  386. u32 rd_offset;
  387. u32 rd_size;
  388. u32 rd_page;
  389. u32 src_len;
  390. u64 tmp;
  391. sense_reason_t rc;
  392. if (dev->rd_flags & RDF_NULLIO) {
  393. target_complete_cmd(cmd, SAM_STAT_GOOD);
  394. return 0;
  395. }
  396. tmp = cmd->t_task_lba * se_dev->dev_attrib.block_size;
  397. rd_offset = do_div(tmp, PAGE_SIZE);
  398. rd_page = tmp;
  399. rd_size = cmd->data_length;
  400. table = rd_get_sg_table(dev, rd_page);
  401. if (!table)
  402. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  403. rd_sg = &table->sg_table[rd_page - table->page_start_offset];
  404. pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n",
  405. dev->rd_dev_id,
  406. data_direction == DMA_FROM_DEVICE ? "Read" : "Write",
  407. cmd->t_task_lba, rd_size, rd_page, rd_offset);
  408. if (cmd->prot_type && se_dev->dev_attrib.pi_prot_type &&
  409. data_direction == DMA_TO_DEVICE) {
  410. rc = rd_do_prot_rw(cmd, sbc_dif_verify_write);
  411. if (rc)
  412. return rc;
  413. }
  414. src_len = PAGE_SIZE - rd_offset;
  415. sg_miter_start(&m, sgl, sgl_nents,
  416. data_direction == DMA_FROM_DEVICE ?
  417. SG_MITER_TO_SG : SG_MITER_FROM_SG);
  418. while (rd_size) {
  419. u32 len;
  420. void *rd_addr;
  421. sg_miter_next(&m);
  422. if (!(u32)m.length) {
  423. pr_debug("RD[%u]: invalid sgl %p len %zu\n",
  424. dev->rd_dev_id, m.addr, m.length);
  425. sg_miter_stop(&m);
  426. return TCM_INCORRECT_AMOUNT_OF_DATA;
  427. }
  428. len = min((u32)m.length, src_len);
  429. if (len > rd_size) {
  430. pr_debug("RD[%u]: size underrun page %d offset %d "
  431. "size %d\n", dev->rd_dev_id,
  432. rd_page, rd_offset, rd_size);
  433. len = rd_size;
  434. }
  435. m.consumed = len;
  436. rd_addr = sg_virt(rd_sg) + rd_offset;
  437. if (data_direction == DMA_FROM_DEVICE)
  438. memcpy(m.addr, rd_addr, len);
  439. else
  440. memcpy(rd_addr, m.addr, len);
  441. rd_size -= len;
  442. if (!rd_size)
  443. continue;
  444. src_len -= len;
  445. if (src_len) {
  446. rd_offset += len;
  447. continue;
  448. }
  449. /* rd page completed, next one please */
  450. rd_page++;
  451. rd_offset = 0;
  452. src_len = PAGE_SIZE;
  453. if (rd_page <= table->page_end_offset) {
  454. rd_sg++;
  455. continue;
  456. }
  457. table = rd_get_sg_table(dev, rd_page);
  458. if (!table) {
  459. sg_miter_stop(&m);
  460. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  461. }
  462. /* since we increment, the first sg entry is correct */
  463. rd_sg = table->sg_table;
  464. }
  465. sg_miter_stop(&m);
  466. if (cmd->prot_type && se_dev->dev_attrib.pi_prot_type &&
  467. data_direction == DMA_FROM_DEVICE) {
  468. rc = rd_do_prot_rw(cmd, sbc_dif_verify_read);
  469. if (rc)
  470. return rc;
  471. }
  472. target_complete_cmd(cmd, SAM_STAT_GOOD);
  473. return 0;
  474. }
  475. enum {
  476. Opt_rd_pages, Opt_rd_nullio, Opt_err
  477. };
  478. static match_table_t tokens = {
  479. {Opt_rd_pages, "rd_pages=%d"},
  480. {Opt_rd_nullio, "rd_nullio=%d"},
  481. {Opt_err, NULL}
  482. };
  483. static ssize_t rd_set_configfs_dev_params(struct se_device *dev,
  484. const char *page, ssize_t count)
  485. {
  486. struct rd_dev *rd_dev = RD_DEV(dev);
  487. char *orig, *ptr, *opts;
  488. substring_t args[MAX_OPT_ARGS];
  489. int ret = 0, arg, token;
  490. opts = kstrdup(page, GFP_KERNEL);
  491. if (!opts)
  492. return -ENOMEM;
  493. orig = opts;
  494. while ((ptr = strsep(&opts, ",\n")) != NULL) {
  495. if (!*ptr)
  496. continue;
  497. token = match_token(ptr, tokens, args);
  498. switch (token) {
  499. case Opt_rd_pages:
  500. match_int(args, &arg);
  501. rd_dev->rd_page_count = arg;
  502. pr_debug("RAMDISK: Referencing Page"
  503. " Count: %u\n", rd_dev->rd_page_count);
  504. rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
  505. break;
  506. case Opt_rd_nullio:
  507. match_int(args, &arg);
  508. if (arg != 1)
  509. break;
  510. pr_debug("RAMDISK: Setting NULLIO flag: %d\n", arg);
  511. rd_dev->rd_flags |= RDF_NULLIO;
  512. break;
  513. default:
  514. break;
  515. }
  516. }
  517. kfree(orig);
  518. return (!ret) ? count : ret;
  519. }
  520. static ssize_t rd_show_configfs_dev_params(struct se_device *dev, char *b)
  521. {
  522. struct rd_dev *rd_dev = RD_DEV(dev);
  523. ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: rd_mcp\n",
  524. rd_dev->rd_dev_id);
  525. bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu"
  526. " SG_table_count: %u nullio: %d\n", rd_dev->rd_page_count,
  527. PAGE_SIZE, rd_dev->sg_table_count,
  528. !!(rd_dev->rd_flags & RDF_NULLIO));
  529. return bl;
  530. }
  531. static sector_t rd_get_blocks(struct se_device *dev)
  532. {
  533. struct rd_dev *rd_dev = RD_DEV(dev);
  534. unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
  535. dev->dev_attrib.block_size) - 1;
  536. return blocks_long;
  537. }
  538. static int rd_init_prot(struct se_device *dev)
  539. {
  540. struct rd_dev *rd_dev = RD_DEV(dev);
  541. if (!dev->dev_attrib.pi_prot_type)
  542. return 0;
  543. return rd_build_prot_space(rd_dev, dev->prot_length,
  544. dev->dev_attrib.block_size);
  545. }
  546. static void rd_free_prot(struct se_device *dev)
  547. {
  548. struct rd_dev *rd_dev = RD_DEV(dev);
  549. rd_release_prot_space(rd_dev);
  550. }
  551. static struct sbc_ops rd_sbc_ops = {
  552. .execute_rw = rd_execute_rw,
  553. };
  554. static sense_reason_t
  555. rd_parse_cdb(struct se_cmd *cmd)
  556. {
  557. return sbc_parse_cdb(cmd, &rd_sbc_ops);
  558. }
  559. DEF_TB_DEFAULT_ATTRIBS(rd_mcp);
  560. static struct configfs_attribute *rd_mcp_backend_dev_attrs[] = {
  561. &rd_mcp_dev_attrib_emulate_model_alias.attr,
  562. &rd_mcp_dev_attrib_emulate_dpo.attr,
  563. &rd_mcp_dev_attrib_emulate_fua_write.attr,
  564. &rd_mcp_dev_attrib_emulate_fua_read.attr,
  565. &rd_mcp_dev_attrib_emulate_write_cache.attr,
  566. &rd_mcp_dev_attrib_emulate_ua_intlck_ctrl.attr,
  567. &rd_mcp_dev_attrib_emulate_tas.attr,
  568. &rd_mcp_dev_attrib_emulate_tpu.attr,
  569. &rd_mcp_dev_attrib_emulate_tpws.attr,
  570. &rd_mcp_dev_attrib_emulate_caw.attr,
  571. &rd_mcp_dev_attrib_emulate_3pc.attr,
  572. &rd_mcp_dev_attrib_pi_prot_type.attr,
  573. &rd_mcp_dev_attrib_hw_pi_prot_type.attr,
  574. &rd_mcp_dev_attrib_pi_prot_format.attr,
  575. &rd_mcp_dev_attrib_enforce_pr_isids.attr,
  576. &rd_mcp_dev_attrib_is_nonrot.attr,
  577. &rd_mcp_dev_attrib_emulate_rest_reord.attr,
  578. &rd_mcp_dev_attrib_force_pr_aptpl.attr,
  579. &rd_mcp_dev_attrib_hw_block_size.attr,
  580. &rd_mcp_dev_attrib_block_size.attr,
  581. &rd_mcp_dev_attrib_hw_max_sectors.attr,
  582. &rd_mcp_dev_attrib_optimal_sectors.attr,
  583. &rd_mcp_dev_attrib_hw_queue_depth.attr,
  584. &rd_mcp_dev_attrib_queue_depth.attr,
  585. &rd_mcp_dev_attrib_max_unmap_lba_count.attr,
  586. &rd_mcp_dev_attrib_max_unmap_block_desc_count.attr,
  587. &rd_mcp_dev_attrib_unmap_granularity.attr,
  588. &rd_mcp_dev_attrib_unmap_granularity_alignment.attr,
  589. &rd_mcp_dev_attrib_max_write_same_len.attr,
  590. NULL,
  591. };
  592. static struct se_subsystem_api rd_mcp_template = {
  593. .name = "rd_mcp",
  594. .inquiry_prod = "RAMDISK-MCP",
  595. .inquiry_rev = RD_MCP_VERSION,
  596. .attach_hba = rd_attach_hba,
  597. .detach_hba = rd_detach_hba,
  598. .alloc_device = rd_alloc_device,
  599. .configure_device = rd_configure_device,
  600. .free_device = rd_free_device,
  601. .parse_cdb = rd_parse_cdb,
  602. .set_configfs_dev_params = rd_set_configfs_dev_params,
  603. .show_configfs_dev_params = rd_show_configfs_dev_params,
  604. .get_device_type = sbc_get_device_type,
  605. .get_blocks = rd_get_blocks,
  606. .init_prot = rd_init_prot,
  607. .free_prot = rd_free_prot,
  608. };
  609. int __init rd_module_init(void)
  610. {
  611. struct target_backend_cits *tbc = &rd_mcp_template.tb_cits;
  612. int ret;
  613. target_core_setup_sub_cits(&rd_mcp_template);
  614. tbc->tb_dev_attrib_cit.ct_attrs = rd_mcp_backend_dev_attrs;
  615. ret = transport_subsystem_register(&rd_mcp_template);
  616. if (ret < 0) {
  617. return ret;
  618. }
  619. return 0;
  620. }
  621. void rd_module_exit(void)
  622. {
  623. transport_subsystem_release(&rd_mcp_template);
  624. }