spi-pxa2xx.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/init.h>
  16. #include <linux/module.h>
  17. #include <linux/device.h>
  18. #include <linux/ioport.h>
  19. #include <linux/errno.h>
  20. #include <linux/err.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kernel.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/spi/pxa2xx_spi.h>
  25. #include <linux/spi/spi.h>
  26. #include <linux/delay.h>
  27. #include <linux/gpio.h>
  28. #include <linux/slab.h>
  29. #include <linux/clk.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/acpi.h>
  32. #include "spi-pxa2xx.h"
  33. MODULE_AUTHOR("Stephen Street");
  34. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35. MODULE_LICENSE("GPL");
  36. MODULE_ALIAS("platform:pxa2xx-spi");
  37. #define TIMOUT_DFLT 1000
  38. /*
  39. * for testing SSCR1 changes that require SSP restart, basically
  40. * everything except the service and interrupt enables, the pxa270 developer
  41. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  42. * list, but the PXA255 dev man says all bits without really meaning the
  43. * service and interrupt enables
  44. */
  45. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  46. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  47. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  48. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  49. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  50. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  51. #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
  52. | QUARK_X1000_SSCR1_EFWR \
  53. | QUARK_X1000_SSCR1_RFT \
  54. | QUARK_X1000_SSCR1_TFT \
  55. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  56. #define LPSS_RX_THRESH_DFLT 64
  57. #define LPSS_TX_LOTHRESH_DFLT 160
  58. #define LPSS_TX_HITHRESH_DFLT 224
  59. /* Offset from drv_data->lpss_base */
  60. #define GENERAL_REG 0x08
  61. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  62. #define SSP_REG 0x0c
  63. #define SPI_CS_CONTROL 0x18
  64. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  65. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  66. static bool is_lpss_ssp(const struct driver_data *drv_data)
  67. {
  68. return drv_data->ssp_type == LPSS_SSP;
  69. }
  70. static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
  71. {
  72. return drv_data->ssp_type == QUARK_X1000_SSP;
  73. }
  74. static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
  75. {
  76. switch (drv_data->ssp_type) {
  77. case QUARK_X1000_SSP:
  78. return QUARK_X1000_SSCR1_CHANGE_MASK;
  79. default:
  80. return SSCR1_CHANGE_MASK;
  81. }
  82. }
  83. static u32
  84. pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
  85. {
  86. switch (drv_data->ssp_type) {
  87. case QUARK_X1000_SSP:
  88. return RX_THRESH_QUARK_X1000_DFLT;
  89. default:
  90. return RX_THRESH_DFLT;
  91. }
  92. }
  93. static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
  94. {
  95. u32 mask;
  96. switch (drv_data->ssp_type) {
  97. case QUARK_X1000_SSP:
  98. mask = QUARK_X1000_SSSR_TFL_MASK;
  99. break;
  100. default:
  101. mask = SSSR_TFL_MASK;
  102. break;
  103. }
  104. return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
  105. }
  106. static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
  107. u32 *sccr1_reg)
  108. {
  109. u32 mask;
  110. switch (drv_data->ssp_type) {
  111. case QUARK_X1000_SSP:
  112. mask = QUARK_X1000_SSCR1_RFT;
  113. break;
  114. default:
  115. mask = SSCR1_RFT;
  116. break;
  117. }
  118. *sccr1_reg &= ~mask;
  119. }
  120. static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
  121. u32 *sccr1_reg, u32 threshold)
  122. {
  123. switch (drv_data->ssp_type) {
  124. case QUARK_X1000_SSP:
  125. *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
  126. break;
  127. default:
  128. *sccr1_reg |= SSCR1_RxTresh(threshold);
  129. break;
  130. }
  131. }
  132. static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
  133. u32 clk_div, u8 bits)
  134. {
  135. switch (drv_data->ssp_type) {
  136. case QUARK_X1000_SSP:
  137. return clk_div
  138. | QUARK_X1000_SSCR0_Motorola
  139. | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
  140. | SSCR0_SSE;
  141. default:
  142. return clk_div
  143. | SSCR0_Motorola
  144. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  145. | SSCR0_SSE
  146. | (bits > 16 ? SSCR0_EDSS : 0);
  147. }
  148. }
  149. /*
  150. * Read and write LPSS SSP private registers. Caller must first check that
  151. * is_lpss_ssp() returns true before these can be called.
  152. */
  153. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  154. {
  155. WARN_ON(!drv_data->lpss_base);
  156. return readl(drv_data->lpss_base + offset);
  157. }
  158. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  159. unsigned offset, u32 value)
  160. {
  161. WARN_ON(!drv_data->lpss_base);
  162. writel(value, drv_data->lpss_base + offset);
  163. }
  164. /*
  165. * lpss_ssp_setup - perform LPSS SSP specific setup
  166. * @drv_data: pointer to the driver private data
  167. *
  168. * Perform LPSS SSP specific setup. This function must be called first if
  169. * one is going to use LPSS SSP private registers.
  170. */
  171. static void lpss_ssp_setup(struct driver_data *drv_data)
  172. {
  173. unsigned offset = 0x400;
  174. u32 value, orig;
  175. /*
  176. * Perform auto-detection of the LPSS SSP private registers. They
  177. * can be either at 1k or 2k offset from the base address.
  178. */
  179. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  180. /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
  181. value = orig | SPI_CS_CONTROL_SW_MODE;
  182. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  183. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  184. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  185. offset = 0x800;
  186. goto detection_done;
  187. }
  188. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  189. /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
  190. value = orig & ~SPI_CS_CONTROL_SW_MODE;
  191. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  192. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  193. if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
  194. offset = 0x800;
  195. goto detection_done;
  196. }
  197. detection_done:
  198. /* Now set the LPSS base */
  199. drv_data->lpss_base = drv_data->ioaddr + offset;
  200. /* Enable software chip select control */
  201. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  202. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  203. /* Enable multiblock DMA transfers */
  204. if (drv_data->master_info->enable_dma) {
  205. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  206. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  207. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  208. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  209. }
  210. }
  211. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  212. {
  213. u32 value;
  214. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  215. if (enable)
  216. value &= ~SPI_CS_CONTROL_CS_HIGH;
  217. else
  218. value |= SPI_CS_CONTROL_CS_HIGH;
  219. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  220. }
  221. static void cs_assert(struct driver_data *drv_data)
  222. {
  223. struct chip_data *chip = drv_data->cur_chip;
  224. if (drv_data->ssp_type == CE4100_SSP) {
  225. pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
  226. return;
  227. }
  228. if (chip->cs_control) {
  229. chip->cs_control(PXA2XX_CS_ASSERT);
  230. return;
  231. }
  232. if (gpio_is_valid(chip->gpio_cs)) {
  233. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  234. return;
  235. }
  236. if (is_lpss_ssp(drv_data))
  237. lpss_ssp_cs_control(drv_data, true);
  238. }
  239. static void cs_deassert(struct driver_data *drv_data)
  240. {
  241. struct chip_data *chip = drv_data->cur_chip;
  242. if (drv_data->ssp_type == CE4100_SSP)
  243. return;
  244. if (chip->cs_control) {
  245. chip->cs_control(PXA2XX_CS_DEASSERT);
  246. return;
  247. }
  248. if (gpio_is_valid(chip->gpio_cs)) {
  249. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  250. return;
  251. }
  252. if (is_lpss_ssp(drv_data))
  253. lpss_ssp_cs_control(drv_data, false);
  254. }
  255. int pxa2xx_spi_flush(struct driver_data *drv_data)
  256. {
  257. unsigned long limit = loops_per_jiffy << 1;
  258. do {
  259. while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  260. pxa2xx_spi_read(drv_data, SSDR);
  261. } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
  262. write_SSSR_CS(drv_data, SSSR_ROR);
  263. return limit;
  264. }
  265. static int null_writer(struct driver_data *drv_data)
  266. {
  267. u8 n_bytes = drv_data->n_bytes;
  268. if (pxa2xx_spi_txfifo_full(drv_data)
  269. || (drv_data->tx == drv_data->tx_end))
  270. return 0;
  271. pxa2xx_spi_write(drv_data, SSDR, 0);
  272. drv_data->tx += n_bytes;
  273. return 1;
  274. }
  275. static int null_reader(struct driver_data *drv_data)
  276. {
  277. u8 n_bytes = drv_data->n_bytes;
  278. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  279. && (drv_data->rx < drv_data->rx_end)) {
  280. pxa2xx_spi_read(drv_data, SSDR);
  281. drv_data->rx += n_bytes;
  282. }
  283. return drv_data->rx == drv_data->rx_end;
  284. }
  285. static int u8_writer(struct driver_data *drv_data)
  286. {
  287. if (pxa2xx_spi_txfifo_full(drv_data)
  288. || (drv_data->tx == drv_data->tx_end))
  289. return 0;
  290. pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
  291. ++drv_data->tx;
  292. return 1;
  293. }
  294. static int u8_reader(struct driver_data *drv_data)
  295. {
  296. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  297. && (drv_data->rx < drv_data->rx_end)) {
  298. *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
  299. ++drv_data->rx;
  300. }
  301. return drv_data->rx == drv_data->rx_end;
  302. }
  303. static int u16_writer(struct driver_data *drv_data)
  304. {
  305. if (pxa2xx_spi_txfifo_full(drv_data)
  306. || (drv_data->tx == drv_data->tx_end))
  307. return 0;
  308. pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
  309. drv_data->tx += 2;
  310. return 1;
  311. }
  312. static int u16_reader(struct driver_data *drv_data)
  313. {
  314. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  315. && (drv_data->rx < drv_data->rx_end)) {
  316. *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
  317. drv_data->rx += 2;
  318. }
  319. return drv_data->rx == drv_data->rx_end;
  320. }
  321. static int u32_writer(struct driver_data *drv_data)
  322. {
  323. if (pxa2xx_spi_txfifo_full(drv_data)
  324. || (drv_data->tx == drv_data->tx_end))
  325. return 0;
  326. pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
  327. drv_data->tx += 4;
  328. return 1;
  329. }
  330. static int u32_reader(struct driver_data *drv_data)
  331. {
  332. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  333. && (drv_data->rx < drv_data->rx_end)) {
  334. *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
  335. drv_data->rx += 4;
  336. }
  337. return drv_data->rx == drv_data->rx_end;
  338. }
  339. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  340. {
  341. struct spi_message *msg = drv_data->cur_msg;
  342. struct spi_transfer *trans = drv_data->cur_transfer;
  343. /* Move to next transfer */
  344. if (trans->transfer_list.next != &msg->transfers) {
  345. drv_data->cur_transfer =
  346. list_entry(trans->transfer_list.next,
  347. struct spi_transfer,
  348. transfer_list);
  349. return RUNNING_STATE;
  350. } else
  351. return DONE_STATE;
  352. }
  353. /* caller already set message->status; dma and pio irqs are blocked */
  354. static void giveback(struct driver_data *drv_data)
  355. {
  356. struct spi_transfer* last_transfer;
  357. struct spi_message *msg;
  358. msg = drv_data->cur_msg;
  359. drv_data->cur_msg = NULL;
  360. drv_data->cur_transfer = NULL;
  361. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  362. transfer_list);
  363. /* Delay if requested before any change in chip select */
  364. if (last_transfer->delay_usecs)
  365. udelay(last_transfer->delay_usecs);
  366. /* Drop chip select UNLESS cs_change is true or we are returning
  367. * a message with an error, or next message is for another chip
  368. */
  369. if (!last_transfer->cs_change)
  370. cs_deassert(drv_data);
  371. else {
  372. struct spi_message *next_msg;
  373. /* Holding of cs was hinted, but we need to make sure
  374. * the next message is for the same chip. Don't waste
  375. * time with the following tests unless this was hinted.
  376. *
  377. * We cannot postpone this until pump_messages, because
  378. * after calling msg->complete (below) the driver that
  379. * sent the current message could be unloaded, which
  380. * could invalidate the cs_control() callback...
  381. */
  382. /* get a pointer to the next message, if any */
  383. next_msg = spi_get_next_queued_message(drv_data->master);
  384. /* see if the next and current messages point
  385. * to the same chip
  386. */
  387. if (next_msg && next_msg->spi != msg->spi)
  388. next_msg = NULL;
  389. if (!next_msg || msg->state == ERROR_STATE)
  390. cs_deassert(drv_data);
  391. }
  392. drv_data->cur_chip = NULL;
  393. spi_finalize_current_message(drv_data->master);
  394. }
  395. static void reset_sccr1(struct driver_data *drv_data)
  396. {
  397. struct chip_data *chip = drv_data->cur_chip;
  398. u32 sccr1_reg;
  399. sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
  400. sccr1_reg &= ~SSCR1_RFT;
  401. sccr1_reg |= chip->threshold;
  402. pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
  403. }
  404. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  405. {
  406. /* Stop and reset SSP */
  407. write_SSSR_CS(drv_data, drv_data->clear_sr);
  408. reset_sccr1(drv_data);
  409. if (!pxa25x_ssp_comp(drv_data))
  410. pxa2xx_spi_write(drv_data, SSTO, 0);
  411. pxa2xx_spi_flush(drv_data);
  412. pxa2xx_spi_write(drv_data, SSCR0,
  413. pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
  414. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  415. drv_data->cur_msg->state = ERROR_STATE;
  416. tasklet_schedule(&drv_data->pump_transfers);
  417. }
  418. static void int_transfer_complete(struct driver_data *drv_data)
  419. {
  420. /* Stop SSP */
  421. write_SSSR_CS(drv_data, drv_data->clear_sr);
  422. reset_sccr1(drv_data);
  423. if (!pxa25x_ssp_comp(drv_data))
  424. pxa2xx_spi_write(drv_data, SSTO, 0);
  425. /* Update total byte transferred return count actual bytes read */
  426. drv_data->cur_msg->actual_length += drv_data->len -
  427. (drv_data->rx_end - drv_data->rx);
  428. /* Transfer delays and chip select release are
  429. * handled in pump_transfers or giveback
  430. */
  431. /* Move to next transfer */
  432. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  433. /* Schedule transfer tasklet */
  434. tasklet_schedule(&drv_data->pump_transfers);
  435. }
  436. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  437. {
  438. u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
  439. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  440. u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
  441. if (irq_status & SSSR_ROR) {
  442. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  443. return IRQ_HANDLED;
  444. }
  445. if (irq_status & SSSR_TINT) {
  446. pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
  447. if (drv_data->read(drv_data)) {
  448. int_transfer_complete(drv_data);
  449. return IRQ_HANDLED;
  450. }
  451. }
  452. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  453. do {
  454. if (drv_data->read(drv_data)) {
  455. int_transfer_complete(drv_data);
  456. return IRQ_HANDLED;
  457. }
  458. } while (drv_data->write(drv_data));
  459. if (drv_data->read(drv_data)) {
  460. int_transfer_complete(drv_data);
  461. return IRQ_HANDLED;
  462. }
  463. if (drv_data->tx == drv_data->tx_end) {
  464. u32 bytes_left;
  465. u32 sccr1_reg;
  466. sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
  467. sccr1_reg &= ~SSCR1_TIE;
  468. /*
  469. * PXA25x_SSP has no timeout, set up rx threshould for the
  470. * remaining RX bytes.
  471. */
  472. if (pxa25x_ssp_comp(drv_data)) {
  473. u32 rx_thre;
  474. pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
  475. bytes_left = drv_data->rx_end - drv_data->rx;
  476. switch (drv_data->n_bytes) {
  477. case 4:
  478. bytes_left >>= 1;
  479. case 2:
  480. bytes_left >>= 1;
  481. }
  482. rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
  483. if (rx_thre > bytes_left)
  484. rx_thre = bytes_left;
  485. pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
  486. }
  487. pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
  488. }
  489. /* We did something */
  490. return IRQ_HANDLED;
  491. }
  492. static irqreturn_t ssp_int(int irq, void *dev_id)
  493. {
  494. struct driver_data *drv_data = dev_id;
  495. u32 sccr1_reg;
  496. u32 mask = drv_data->mask_sr;
  497. u32 status;
  498. /*
  499. * The IRQ might be shared with other peripherals so we must first
  500. * check that are we RPM suspended or not. If we are we assume that
  501. * the IRQ was not for us (we shouldn't be RPM suspended when the
  502. * interrupt is enabled).
  503. */
  504. if (pm_runtime_suspended(&drv_data->pdev->dev))
  505. return IRQ_NONE;
  506. /*
  507. * If the device is not yet in RPM suspended state and we get an
  508. * interrupt that is meant for another device, check if status bits
  509. * are all set to one. That means that the device is already
  510. * powered off.
  511. */
  512. status = pxa2xx_spi_read(drv_data, SSSR);
  513. if (status == ~0)
  514. return IRQ_NONE;
  515. sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
  516. /* Ignore possible writes if we don't need to write */
  517. if (!(sccr1_reg & SSCR1_TIE))
  518. mask &= ~SSSR_TFS;
  519. if (!(status & mask))
  520. return IRQ_NONE;
  521. if (!drv_data->cur_msg) {
  522. pxa2xx_spi_write(drv_data, SSCR0,
  523. pxa2xx_spi_read(drv_data, SSCR0)
  524. & ~SSCR0_SSE);
  525. pxa2xx_spi_write(drv_data, SSCR1,
  526. pxa2xx_spi_read(drv_data, SSCR1)
  527. & ~drv_data->int_cr1);
  528. if (!pxa25x_ssp_comp(drv_data))
  529. pxa2xx_spi_write(drv_data, SSTO, 0);
  530. write_SSSR_CS(drv_data, drv_data->clear_sr);
  531. dev_err(&drv_data->pdev->dev,
  532. "bad message state in interrupt handler\n");
  533. /* Never fail */
  534. return IRQ_HANDLED;
  535. }
  536. return drv_data->transfer_handler(drv_data);
  537. }
  538. /*
  539. * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
  540. * input frequency by fractions of 2^24. It also has a divider by 5.
  541. *
  542. * There are formulas to get baud rate value for given input frequency and
  543. * divider parameters, such as DDS_CLK_RATE and SCR:
  544. *
  545. * Fsys = 200MHz
  546. *
  547. * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
  548. * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
  549. *
  550. * DDS_CLK_RATE either 2^n or 2^n / 5.
  551. * SCR is in range 0 .. 255
  552. *
  553. * Divisor = 5^i * 2^j * 2 * k
  554. * i = [0, 1] i = 1 iff j = 0 or j > 3
  555. * j = [0, 23] j = 0 iff i = 1
  556. * k = [1, 256]
  557. * Special case: j = 0, i = 1: Divisor = 2 / 5
  558. *
  559. * Accordingly to the specification the recommended values for DDS_CLK_RATE
  560. * are:
  561. * Case 1: 2^n, n = [0, 23]
  562. * Case 2: 2^24 * 2 / 5 (0x666666)
  563. * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
  564. *
  565. * In all cases the lowest possible value is better.
  566. *
  567. * The function calculates parameters for all cases and chooses the one closest
  568. * to the asked baud rate.
  569. */
  570. static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
  571. {
  572. unsigned long xtal = 200000000;
  573. unsigned long fref = xtal / 2; /* mandatory division by 2,
  574. see (2) */
  575. /* case 3 */
  576. unsigned long fref1 = fref / 2; /* case 1 */
  577. unsigned long fref2 = fref * 2 / 5; /* case 2 */
  578. unsigned long scale;
  579. unsigned long q, q1, q2;
  580. long r, r1, r2;
  581. u32 mul;
  582. /* Case 1 */
  583. /* Set initial value for DDS_CLK_RATE */
  584. mul = (1 << 24) >> 1;
  585. /* Calculate initial quot */
  586. q1 = DIV_ROUND_CLOSEST(fref1, rate);
  587. /* Scale q1 if it's too big */
  588. if (q1 > 256) {
  589. /* Scale q1 to range [1, 512] */
  590. scale = fls_long(q1 - 1);
  591. if (scale > 9) {
  592. q1 >>= scale - 9;
  593. mul >>= scale - 9;
  594. }
  595. /* Round the result if we have a remainder */
  596. q1 += q1 & 1;
  597. }
  598. /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
  599. scale = __ffs(q1);
  600. q1 >>= scale;
  601. mul >>= scale;
  602. /* Get the remainder */
  603. r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
  604. /* Case 2 */
  605. q2 = DIV_ROUND_CLOSEST(fref2, rate);
  606. r2 = abs(fref2 / q2 - rate);
  607. /*
  608. * Choose the best between two: less remainder we have the better. We
  609. * can't go case 2 if q2 is greater than 256 since SCR register can
  610. * hold only values 0 .. 255.
  611. */
  612. if (r2 >= r1 || q2 > 256) {
  613. /* case 1 is better */
  614. r = r1;
  615. q = q1;
  616. } else {
  617. /* case 2 is better */
  618. r = r2;
  619. q = q2;
  620. mul = (1 << 24) * 2 / 5;
  621. }
  622. /* Check case 3 only If the divisor is big enough */
  623. if (fref / rate >= 80) {
  624. u64 fssp;
  625. u32 m;
  626. /* Calculate initial quot */
  627. q1 = DIV_ROUND_CLOSEST(fref, rate);
  628. m = (1 << 24) / q1;
  629. /* Get the remainder */
  630. fssp = (u64)fref * m;
  631. do_div(fssp, 1 << 24);
  632. r1 = abs(fssp - rate);
  633. /* Choose this one if it suits better */
  634. if (r1 < r) {
  635. /* case 3 is better */
  636. q = 1;
  637. mul = m;
  638. }
  639. }
  640. *dds = mul;
  641. return q - 1;
  642. }
  643. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  644. {
  645. unsigned long ssp_clk = drv_data->max_clk_rate;
  646. const struct ssp_device *ssp = drv_data->ssp;
  647. rate = min_t(int, ssp_clk, rate);
  648. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  649. return (ssp_clk / (2 * rate) - 1) & 0xff;
  650. else
  651. return (ssp_clk / rate - 1) & 0xfff;
  652. }
  653. static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
  654. struct chip_data *chip, int rate)
  655. {
  656. unsigned int clk_div;
  657. switch (drv_data->ssp_type) {
  658. case QUARK_X1000_SSP:
  659. clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
  660. break;
  661. default:
  662. clk_div = ssp_get_clk_div(drv_data, rate);
  663. break;
  664. }
  665. return clk_div << 8;
  666. }
  667. static void pump_transfers(unsigned long data)
  668. {
  669. struct driver_data *drv_data = (struct driver_data *)data;
  670. struct spi_message *message = NULL;
  671. struct spi_transfer *transfer = NULL;
  672. struct spi_transfer *previous = NULL;
  673. struct chip_data *chip = NULL;
  674. u32 clk_div = 0;
  675. u8 bits = 0;
  676. u32 speed = 0;
  677. u32 cr0;
  678. u32 cr1;
  679. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  680. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  681. u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
  682. /* Get current state information */
  683. message = drv_data->cur_msg;
  684. transfer = drv_data->cur_transfer;
  685. chip = drv_data->cur_chip;
  686. /* Handle for abort */
  687. if (message->state == ERROR_STATE) {
  688. message->status = -EIO;
  689. giveback(drv_data);
  690. return;
  691. }
  692. /* Handle end of message */
  693. if (message->state == DONE_STATE) {
  694. message->status = 0;
  695. giveback(drv_data);
  696. return;
  697. }
  698. /* Delay if requested at end of transfer before CS change */
  699. if (message->state == RUNNING_STATE) {
  700. previous = list_entry(transfer->transfer_list.prev,
  701. struct spi_transfer,
  702. transfer_list);
  703. if (previous->delay_usecs)
  704. udelay(previous->delay_usecs);
  705. /* Drop chip select only if cs_change is requested */
  706. if (previous->cs_change)
  707. cs_deassert(drv_data);
  708. }
  709. /* Check if we can DMA this transfer */
  710. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  711. /* reject already-mapped transfers; PIO won't always work */
  712. if (message->is_dma_mapped
  713. || transfer->rx_dma || transfer->tx_dma) {
  714. dev_err(&drv_data->pdev->dev,
  715. "pump_transfers: mapped transfer length of "
  716. "%u is greater than %d\n",
  717. transfer->len, MAX_DMA_LEN);
  718. message->status = -EINVAL;
  719. giveback(drv_data);
  720. return;
  721. }
  722. /* warn ... we force this to PIO mode */
  723. dev_warn_ratelimited(&message->spi->dev,
  724. "pump_transfers: DMA disabled for transfer length %ld "
  725. "greater than %d\n",
  726. (long)drv_data->len, MAX_DMA_LEN);
  727. }
  728. /* Setup the transfer state based on the type of transfer */
  729. if (pxa2xx_spi_flush(drv_data) == 0) {
  730. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  731. message->status = -EIO;
  732. giveback(drv_data);
  733. return;
  734. }
  735. drv_data->n_bytes = chip->n_bytes;
  736. drv_data->tx = (void *)transfer->tx_buf;
  737. drv_data->tx_end = drv_data->tx + transfer->len;
  738. drv_data->rx = transfer->rx_buf;
  739. drv_data->rx_end = drv_data->rx + transfer->len;
  740. drv_data->rx_dma = transfer->rx_dma;
  741. drv_data->tx_dma = transfer->tx_dma;
  742. drv_data->len = transfer->len;
  743. drv_data->write = drv_data->tx ? chip->write : null_writer;
  744. drv_data->read = drv_data->rx ? chip->read : null_reader;
  745. /* Change speed and bit per word on a per transfer */
  746. cr0 = chip->cr0;
  747. if (transfer->speed_hz || transfer->bits_per_word) {
  748. bits = chip->bits_per_word;
  749. speed = chip->speed_hz;
  750. if (transfer->speed_hz)
  751. speed = transfer->speed_hz;
  752. if (transfer->bits_per_word)
  753. bits = transfer->bits_per_word;
  754. clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
  755. if (bits <= 8) {
  756. drv_data->n_bytes = 1;
  757. drv_data->read = drv_data->read != null_reader ?
  758. u8_reader : null_reader;
  759. drv_data->write = drv_data->write != null_writer ?
  760. u8_writer : null_writer;
  761. } else if (bits <= 16) {
  762. drv_data->n_bytes = 2;
  763. drv_data->read = drv_data->read != null_reader ?
  764. u16_reader : null_reader;
  765. drv_data->write = drv_data->write != null_writer ?
  766. u16_writer : null_writer;
  767. } else if (bits <= 32) {
  768. drv_data->n_bytes = 4;
  769. drv_data->read = drv_data->read != null_reader ?
  770. u32_reader : null_reader;
  771. drv_data->write = drv_data->write != null_writer ?
  772. u32_writer : null_writer;
  773. }
  774. /* if bits/word is changed in dma mode, then must check the
  775. * thresholds and burst also */
  776. if (chip->enable_dma) {
  777. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  778. message->spi,
  779. bits, &dma_burst,
  780. &dma_thresh))
  781. dev_warn_ratelimited(&message->spi->dev,
  782. "pump_transfers: DMA burst size reduced to match bits_per_word\n");
  783. }
  784. cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
  785. }
  786. message->state = RUNNING_STATE;
  787. drv_data->dma_mapped = 0;
  788. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  789. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  790. if (drv_data->dma_mapped) {
  791. /* Ensure we have the correct interrupt handler */
  792. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  793. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  794. /* Clear status and start DMA engine */
  795. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  796. pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
  797. pxa2xx_spi_dma_start(drv_data);
  798. } else {
  799. /* Ensure we have the correct interrupt handler */
  800. drv_data->transfer_handler = interrupt_transfer;
  801. /* Clear status */
  802. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  803. write_SSSR_CS(drv_data, drv_data->clear_sr);
  804. }
  805. if (is_lpss_ssp(drv_data)) {
  806. if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
  807. != chip->lpss_rx_threshold)
  808. pxa2xx_spi_write(drv_data, SSIRF,
  809. chip->lpss_rx_threshold);
  810. if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
  811. != chip->lpss_tx_threshold)
  812. pxa2xx_spi_write(drv_data, SSITF,
  813. chip->lpss_tx_threshold);
  814. }
  815. if (is_quark_x1000_ssp(drv_data) &&
  816. (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
  817. pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
  818. /* see if we need to reload the config registers */
  819. if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
  820. || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
  821. != (cr1 & change_mask)) {
  822. /* stop the SSP, and update the other bits */
  823. pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
  824. if (!pxa25x_ssp_comp(drv_data))
  825. pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
  826. /* first set CR1 without interrupt and service enables */
  827. pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
  828. /* restart the SSP */
  829. pxa2xx_spi_write(drv_data, SSCR0, cr0);
  830. } else {
  831. if (!pxa25x_ssp_comp(drv_data))
  832. pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
  833. }
  834. cs_assert(drv_data);
  835. /* after chip select, release the data by enabling service
  836. * requests and interrupts, without changing any mode bits */
  837. pxa2xx_spi_write(drv_data, SSCR1, cr1);
  838. }
  839. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  840. struct spi_message *msg)
  841. {
  842. struct driver_data *drv_data = spi_master_get_devdata(master);
  843. drv_data->cur_msg = msg;
  844. /* Initial message state*/
  845. drv_data->cur_msg->state = START_STATE;
  846. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  847. struct spi_transfer,
  848. transfer_list);
  849. /* prepare to setup the SSP, in pump_transfers, using the per
  850. * chip configuration */
  851. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  852. /* Mark as busy and launch transfers */
  853. tasklet_schedule(&drv_data->pump_transfers);
  854. return 0;
  855. }
  856. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  857. {
  858. struct driver_data *drv_data = spi_master_get_devdata(master);
  859. /* Disable the SSP now */
  860. pxa2xx_spi_write(drv_data, SSCR0,
  861. pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
  862. return 0;
  863. }
  864. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  865. struct pxa2xx_spi_chip *chip_info)
  866. {
  867. int err = 0;
  868. if (chip == NULL || chip_info == NULL)
  869. return 0;
  870. /* NOTE: setup() can be called multiple times, possibly with
  871. * different chip_info, release previously requested GPIO
  872. */
  873. if (gpio_is_valid(chip->gpio_cs))
  874. gpio_free(chip->gpio_cs);
  875. /* If (*cs_control) is provided, ignore GPIO chip select */
  876. if (chip_info->cs_control) {
  877. chip->cs_control = chip_info->cs_control;
  878. return 0;
  879. }
  880. if (gpio_is_valid(chip_info->gpio_cs)) {
  881. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  882. if (err) {
  883. dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
  884. chip_info->gpio_cs);
  885. return err;
  886. }
  887. chip->gpio_cs = chip_info->gpio_cs;
  888. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  889. err = gpio_direction_output(chip->gpio_cs,
  890. !chip->gpio_cs_inverted);
  891. }
  892. return err;
  893. }
  894. static int setup(struct spi_device *spi)
  895. {
  896. struct pxa2xx_spi_chip *chip_info = NULL;
  897. struct chip_data *chip;
  898. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  899. unsigned int clk_div;
  900. uint tx_thres, tx_hi_thres, rx_thres;
  901. switch (drv_data->ssp_type) {
  902. case QUARK_X1000_SSP:
  903. tx_thres = TX_THRESH_QUARK_X1000_DFLT;
  904. tx_hi_thres = 0;
  905. rx_thres = RX_THRESH_QUARK_X1000_DFLT;
  906. break;
  907. case LPSS_SSP:
  908. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  909. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  910. rx_thres = LPSS_RX_THRESH_DFLT;
  911. break;
  912. default:
  913. tx_thres = TX_THRESH_DFLT;
  914. tx_hi_thres = 0;
  915. rx_thres = RX_THRESH_DFLT;
  916. break;
  917. }
  918. /* Only alloc on first setup */
  919. chip = spi_get_ctldata(spi);
  920. if (!chip) {
  921. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  922. if (!chip)
  923. return -ENOMEM;
  924. if (drv_data->ssp_type == CE4100_SSP) {
  925. if (spi->chip_select > 4) {
  926. dev_err(&spi->dev,
  927. "failed setup: cs number must not be > 4.\n");
  928. kfree(chip);
  929. return -EINVAL;
  930. }
  931. chip->frm = spi->chip_select;
  932. } else
  933. chip->gpio_cs = -1;
  934. chip->enable_dma = 0;
  935. chip->timeout = TIMOUT_DFLT;
  936. }
  937. /* protocol drivers may change the chip settings, so...
  938. * if chip_info exists, use it */
  939. chip_info = spi->controller_data;
  940. /* chip_info isn't always needed */
  941. chip->cr1 = 0;
  942. if (chip_info) {
  943. if (chip_info->timeout)
  944. chip->timeout = chip_info->timeout;
  945. if (chip_info->tx_threshold)
  946. tx_thres = chip_info->tx_threshold;
  947. if (chip_info->tx_hi_threshold)
  948. tx_hi_thres = chip_info->tx_hi_threshold;
  949. if (chip_info->rx_threshold)
  950. rx_thres = chip_info->rx_threshold;
  951. chip->enable_dma = drv_data->master_info->enable_dma;
  952. chip->dma_threshold = 0;
  953. if (chip_info->enable_loopback)
  954. chip->cr1 = SSCR1_LBM;
  955. } else if (ACPI_HANDLE(&spi->dev)) {
  956. /*
  957. * Slave devices enumerated from ACPI namespace don't
  958. * usually have chip_info but we still might want to use
  959. * DMA with them.
  960. */
  961. chip->enable_dma = drv_data->master_info->enable_dma;
  962. }
  963. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  964. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  965. | SSITF_TxHiThresh(tx_hi_thres);
  966. /* set dma burst and threshold outside of chip_info path so that if
  967. * chip_info goes away after setting chip->enable_dma, the
  968. * burst and threshold can still respond to changes in bits_per_word */
  969. if (chip->enable_dma) {
  970. /* set up legal burst and threshold for dma */
  971. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  972. spi->bits_per_word,
  973. &chip->dma_burst_size,
  974. &chip->dma_threshold)) {
  975. dev_warn(&spi->dev,
  976. "in setup: DMA burst size reduced to match bits_per_word\n");
  977. }
  978. }
  979. clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
  980. chip->speed_hz = spi->max_speed_hz;
  981. chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
  982. spi->bits_per_word);
  983. switch (drv_data->ssp_type) {
  984. case QUARK_X1000_SSP:
  985. chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
  986. & QUARK_X1000_SSCR1_RFT)
  987. | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
  988. & QUARK_X1000_SSCR1_TFT);
  989. break;
  990. default:
  991. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  992. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  993. break;
  994. }
  995. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  996. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  997. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  998. if (spi->mode & SPI_LOOP)
  999. chip->cr1 |= SSCR1_LBM;
  1000. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1001. if (!pxa25x_ssp_comp(drv_data))
  1002. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1003. drv_data->max_clk_rate
  1004. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  1005. chip->enable_dma ? "DMA" : "PIO");
  1006. else
  1007. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1008. drv_data->max_clk_rate / 2
  1009. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  1010. chip->enable_dma ? "DMA" : "PIO");
  1011. if (spi->bits_per_word <= 8) {
  1012. chip->n_bytes = 1;
  1013. chip->read = u8_reader;
  1014. chip->write = u8_writer;
  1015. } else if (spi->bits_per_word <= 16) {
  1016. chip->n_bytes = 2;
  1017. chip->read = u16_reader;
  1018. chip->write = u16_writer;
  1019. } else if (spi->bits_per_word <= 32) {
  1020. if (!is_quark_x1000_ssp(drv_data))
  1021. chip->cr0 |= SSCR0_EDSS;
  1022. chip->n_bytes = 4;
  1023. chip->read = u32_reader;
  1024. chip->write = u32_writer;
  1025. }
  1026. chip->bits_per_word = spi->bits_per_word;
  1027. spi_set_ctldata(spi, chip);
  1028. if (drv_data->ssp_type == CE4100_SSP)
  1029. return 0;
  1030. return setup_cs(spi, chip, chip_info);
  1031. }
  1032. static void cleanup(struct spi_device *spi)
  1033. {
  1034. struct chip_data *chip = spi_get_ctldata(spi);
  1035. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1036. if (!chip)
  1037. return;
  1038. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  1039. gpio_free(chip->gpio_cs);
  1040. kfree(chip);
  1041. }
  1042. #ifdef CONFIG_ACPI
  1043. static struct pxa2xx_spi_master *
  1044. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  1045. {
  1046. struct pxa2xx_spi_master *pdata;
  1047. struct acpi_device *adev;
  1048. struct ssp_device *ssp;
  1049. struct resource *res;
  1050. int devid;
  1051. if (!ACPI_HANDLE(&pdev->dev) ||
  1052. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  1053. return NULL;
  1054. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1055. if (!pdata)
  1056. return NULL;
  1057. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1058. if (!res)
  1059. return NULL;
  1060. ssp = &pdata->ssp;
  1061. ssp->phys_base = res->start;
  1062. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  1063. if (IS_ERR(ssp->mmio_base))
  1064. return NULL;
  1065. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  1066. ssp->irq = platform_get_irq(pdev, 0);
  1067. ssp->type = LPSS_SSP;
  1068. ssp->pdev = pdev;
  1069. ssp->port_id = -1;
  1070. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  1071. ssp->port_id = devid;
  1072. pdata->num_chipselect = 1;
  1073. pdata->enable_dma = true;
  1074. return pdata;
  1075. }
  1076. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  1077. { "INT33C0", 0 },
  1078. { "INT33C1", 0 },
  1079. { "INT3430", 0 },
  1080. { "INT3431", 0 },
  1081. { "80860F0E", 0 },
  1082. { "8086228E", 0 },
  1083. { },
  1084. };
  1085. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  1086. #else
  1087. static inline struct pxa2xx_spi_master *
  1088. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  1089. {
  1090. return NULL;
  1091. }
  1092. #endif
  1093. static int pxa2xx_spi_probe(struct platform_device *pdev)
  1094. {
  1095. struct device *dev = &pdev->dev;
  1096. struct pxa2xx_spi_master *platform_info;
  1097. struct spi_master *master;
  1098. struct driver_data *drv_data;
  1099. struct ssp_device *ssp;
  1100. int status;
  1101. u32 tmp;
  1102. platform_info = dev_get_platdata(dev);
  1103. if (!platform_info) {
  1104. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  1105. if (!platform_info) {
  1106. dev_err(&pdev->dev, "missing platform data\n");
  1107. return -ENODEV;
  1108. }
  1109. }
  1110. ssp = pxa_ssp_request(pdev->id, pdev->name);
  1111. if (!ssp)
  1112. ssp = &platform_info->ssp;
  1113. if (!ssp->mmio_base) {
  1114. dev_err(&pdev->dev, "failed to get ssp\n");
  1115. return -ENODEV;
  1116. }
  1117. /* Allocate master with space for drv_data and null dma buffer */
  1118. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1119. if (!master) {
  1120. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1121. pxa_ssp_free(ssp);
  1122. return -ENOMEM;
  1123. }
  1124. drv_data = spi_master_get_devdata(master);
  1125. drv_data->master = master;
  1126. drv_data->master_info = platform_info;
  1127. drv_data->pdev = pdev;
  1128. drv_data->ssp = ssp;
  1129. master->dev.parent = &pdev->dev;
  1130. master->dev.of_node = pdev->dev.of_node;
  1131. /* the spi->mode bits understood by this driver: */
  1132. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  1133. master->bus_num = ssp->port_id;
  1134. master->num_chipselect = platform_info->num_chipselect;
  1135. master->dma_alignment = DMA_ALIGNMENT;
  1136. master->cleanup = cleanup;
  1137. master->setup = setup;
  1138. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  1139. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  1140. master->auto_runtime_pm = true;
  1141. drv_data->ssp_type = ssp->type;
  1142. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  1143. drv_data->ioaddr = ssp->mmio_base;
  1144. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1145. if (pxa25x_ssp_comp(drv_data)) {
  1146. switch (drv_data->ssp_type) {
  1147. case QUARK_X1000_SSP:
  1148. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1149. break;
  1150. default:
  1151. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  1152. break;
  1153. }
  1154. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1155. drv_data->dma_cr1 = 0;
  1156. drv_data->clear_sr = SSSR_ROR;
  1157. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1158. } else {
  1159. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1160. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1161. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  1162. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1163. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1164. }
  1165. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  1166. drv_data);
  1167. if (status < 0) {
  1168. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1169. goto out_error_master_alloc;
  1170. }
  1171. /* Setup DMA if requested */
  1172. drv_data->tx_channel = -1;
  1173. drv_data->rx_channel = -1;
  1174. if (platform_info->enable_dma) {
  1175. status = pxa2xx_spi_dma_setup(drv_data);
  1176. if (status) {
  1177. dev_dbg(dev, "no DMA channels available, using PIO\n");
  1178. platform_info->enable_dma = false;
  1179. }
  1180. }
  1181. /* Enable SOC clock */
  1182. clk_prepare_enable(ssp->clk);
  1183. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  1184. /* Load default SSP configuration */
  1185. pxa2xx_spi_write(drv_data, SSCR0, 0);
  1186. switch (drv_data->ssp_type) {
  1187. case QUARK_X1000_SSP:
  1188. tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
  1189. | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
  1190. pxa2xx_spi_write(drv_data, SSCR1, tmp);
  1191. /* using the Motorola SPI protocol and use 8 bit frame */
  1192. pxa2xx_spi_write(drv_data, SSCR0,
  1193. QUARK_X1000_SSCR0_Motorola
  1194. | QUARK_X1000_SSCR0_DataSize(8));
  1195. break;
  1196. default:
  1197. tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
  1198. SSCR1_TxTresh(TX_THRESH_DFLT);
  1199. pxa2xx_spi_write(drv_data, SSCR1, tmp);
  1200. tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
  1201. pxa2xx_spi_write(drv_data, SSCR0, tmp);
  1202. break;
  1203. }
  1204. if (!pxa25x_ssp_comp(drv_data))
  1205. pxa2xx_spi_write(drv_data, SSTO, 0);
  1206. if (!is_quark_x1000_ssp(drv_data))
  1207. pxa2xx_spi_write(drv_data, SSPSP, 0);
  1208. if (is_lpss_ssp(drv_data))
  1209. lpss_ssp_setup(drv_data);
  1210. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  1211. (unsigned long)drv_data);
  1212. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  1213. pm_runtime_use_autosuspend(&pdev->dev);
  1214. pm_runtime_set_active(&pdev->dev);
  1215. pm_runtime_enable(&pdev->dev);
  1216. /* Register with the SPI framework */
  1217. platform_set_drvdata(pdev, drv_data);
  1218. status = devm_spi_register_master(&pdev->dev, master);
  1219. if (status != 0) {
  1220. dev_err(&pdev->dev, "problem registering spi master\n");
  1221. goto out_error_clock_enabled;
  1222. }
  1223. return status;
  1224. out_error_clock_enabled:
  1225. clk_disable_unprepare(ssp->clk);
  1226. pxa2xx_spi_dma_release(drv_data);
  1227. free_irq(ssp->irq, drv_data);
  1228. out_error_master_alloc:
  1229. spi_master_put(master);
  1230. pxa_ssp_free(ssp);
  1231. return status;
  1232. }
  1233. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1234. {
  1235. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1236. struct ssp_device *ssp;
  1237. if (!drv_data)
  1238. return 0;
  1239. ssp = drv_data->ssp;
  1240. pm_runtime_get_sync(&pdev->dev);
  1241. /* Disable the SSP at the peripheral and SOC level */
  1242. pxa2xx_spi_write(drv_data, SSCR0, 0);
  1243. clk_disable_unprepare(ssp->clk);
  1244. /* Release DMA */
  1245. if (drv_data->master_info->enable_dma)
  1246. pxa2xx_spi_dma_release(drv_data);
  1247. pm_runtime_put_noidle(&pdev->dev);
  1248. pm_runtime_disable(&pdev->dev);
  1249. /* Release IRQ */
  1250. free_irq(ssp->irq, drv_data);
  1251. /* Release SSP */
  1252. pxa_ssp_free(ssp);
  1253. return 0;
  1254. }
  1255. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1256. {
  1257. int status = 0;
  1258. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1259. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1260. }
  1261. #ifdef CONFIG_PM_SLEEP
  1262. static int pxa2xx_spi_suspend(struct device *dev)
  1263. {
  1264. struct driver_data *drv_data = dev_get_drvdata(dev);
  1265. struct ssp_device *ssp = drv_data->ssp;
  1266. int status = 0;
  1267. status = spi_master_suspend(drv_data->master);
  1268. if (status != 0)
  1269. return status;
  1270. pxa2xx_spi_write(drv_data, SSCR0, 0);
  1271. if (!pm_runtime_suspended(dev))
  1272. clk_disable_unprepare(ssp->clk);
  1273. return 0;
  1274. }
  1275. static int pxa2xx_spi_resume(struct device *dev)
  1276. {
  1277. struct driver_data *drv_data = dev_get_drvdata(dev);
  1278. struct ssp_device *ssp = drv_data->ssp;
  1279. int status = 0;
  1280. pxa2xx_spi_dma_resume(drv_data);
  1281. /* Enable the SSP clock */
  1282. if (!pm_runtime_suspended(dev))
  1283. clk_prepare_enable(ssp->clk);
  1284. /* Restore LPSS private register bits */
  1285. if (is_lpss_ssp(drv_data))
  1286. lpss_ssp_setup(drv_data);
  1287. /* Start the queue running */
  1288. status = spi_master_resume(drv_data->master);
  1289. if (status != 0) {
  1290. dev_err(dev, "problem starting queue (%d)\n", status);
  1291. return status;
  1292. }
  1293. return 0;
  1294. }
  1295. #endif
  1296. #ifdef CONFIG_PM
  1297. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1298. {
  1299. struct driver_data *drv_data = dev_get_drvdata(dev);
  1300. clk_disable_unprepare(drv_data->ssp->clk);
  1301. return 0;
  1302. }
  1303. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1304. {
  1305. struct driver_data *drv_data = dev_get_drvdata(dev);
  1306. clk_prepare_enable(drv_data->ssp->clk);
  1307. return 0;
  1308. }
  1309. #endif
  1310. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1311. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1312. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1313. pxa2xx_spi_runtime_resume, NULL)
  1314. };
  1315. static struct platform_driver driver = {
  1316. .driver = {
  1317. .name = "pxa2xx-spi",
  1318. .pm = &pxa2xx_spi_pm_ops,
  1319. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1320. },
  1321. .probe = pxa2xx_spi_probe,
  1322. .remove = pxa2xx_spi_remove,
  1323. .shutdown = pxa2xx_spi_shutdown,
  1324. };
  1325. static int __init pxa2xx_spi_init(void)
  1326. {
  1327. return platform_driver_register(&driver);
  1328. }
  1329. subsys_initcall(pxa2xx_spi_init);
  1330. static void __exit pxa2xx_spi_exit(void)
  1331. {
  1332. platform_driver_unregister(&driver);
  1333. }
  1334. module_exit(pxa2xx_spi_exit);