msgbuf.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. /* Copyright (c) 2014 Broadcom Corporation
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  14. */
  15. /*******************************************************************************
  16. * Communicates with the dongle by using dcmd codes.
  17. * For certain dcmd codes, the dongle interprets string data from the host.
  18. ******************************************************************************/
  19. #include <linux/types.h>
  20. #include <linux/netdevice.h>
  21. #include <brcmu_utils.h>
  22. #include <brcmu_wifi.h>
  23. #include "core.h"
  24. #include "debug.h"
  25. #include "proto.h"
  26. #include "msgbuf.h"
  27. #include "commonring.h"
  28. #include "flowring.h"
  29. #include "bus.h"
  30. #include "tracepoint.h"
  31. #define MSGBUF_IOCTL_RESP_TIMEOUT 2000
  32. #define MSGBUF_TYPE_GEN_STATUS 0x1
  33. #define MSGBUF_TYPE_RING_STATUS 0x2
  34. #define MSGBUF_TYPE_FLOW_RING_CREATE 0x3
  35. #define MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT 0x4
  36. #define MSGBUF_TYPE_FLOW_RING_DELETE 0x5
  37. #define MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT 0x6
  38. #define MSGBUF_TYPE_FLOW_RING_FLUSH 0x7
  39. #define MSGBUF_TYPE_FLOW_RING_FLUSH_CMPLT 0x8
  40. #define MSGBUF_TYPE_IOCTLPTR_REQ 0x9
  41. #define MSGBUF_TYPE_IOCTLPTR_REQ_ACK 0xA
  42. #define MSGBUF_TYPE_IOCTLRESP_BUF_POST 0xB
  43. #define MSGBUF_TYPE_IOCTL_CMPLT 0xC
  44. #define MSGBUF_TYPE_EVENT_BUF_POST 0xD
  45. #define MSGBUF_TYPE_WL_EVENT 0xE
  46. #define MSGBUF_TYPE_TX_POST 0xF
  47. #define MSGBUF_TYPE_TX_STATUS 0x10
  48. #define MSGBUF_TYPE_RXBUF_POST 0x11
  49. #define MSGBUF_TYPE_RX_CMPLT 0x12
  50. #define MSGBUF_TYPE_LPBK_DMAXFER 0x13
  51. #define MSGBUF_TYPE_LPBK_DMAXFER_CMPLT 0x14
  52. #define NR_TX_PKTIDS 2048
  53. #define NR_RX_PKTIDS 1024
  54. #define BRCMF_IOCTL_REQ_PKTID 0xFFFE
  55. #define BRCMF_MSGBUF_MAX_PKT_SIZE 2048
  56. #define BRCMF_MSGBUF_RXBUFPOST_THRESHOLD 32
  57. #define BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST 8
  58. #define BRCMF_MSGBUF_MAX_EVENTBUF_POST 8
  59. #define BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3 0x01
  60. #define BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT 5
  61. #define BRCMF_MSGBUF_TX_FLUSH_CNT1 32
  62. #define BRCMF_MSGBUF_TX_FLUSH_CNT2 96
  63. #define BRCMF_MSGBUF_DELAY_TXWORKER_THRS 64
  64. #define BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS 32
  65. struct msgbuf_common_hdr {
  66. u8 msgtype;
  67. u8 ifidx;
  68. u8 flags;
  69. u8 rsvd0;
  70. __le32 request_id;
  71. };
  72. struct msgbuf_buf_addr {
  73. __le32 low_addr;
  74. __le32 high_addr;
  75. };
  76. struct msgbuf_ioctl_req_hdr {
  77. struct msgbuf_common_hdr msg;
  78. __le32 cmd;
  79. __le16 trans_id;
  80. __le16 input_buf_len;
  81. __le16 output_buf_len;
  82. __le16 rsvd0[3];
  83. struct msgbuf_buf_addr req_buf_addr;
  84. __le32 rsvd1[2];
  85. };
  86. struct msgbuf_tx_msghdr {
  87. struct msgbuf_common_hdr msg;
  88. u8 txhdr[ETH_HLEN];
  89. u8 flags;
  90. u8 seg_cnt;
  91. struct msgbuf_buf_addr metadata_buf_addr;
  92. struct msgbuf_buf_addr data_buf_addr;
  93. __le16 metadata_buf_len;
  94. __le16 data_len;
  95. __le32 rsvd0;
  96. };
  97. struct msgbuf_rx_bufpost {
  98. struct msgbuf_common_hdr msg;
  99. __le16 metadata_buf_len;
  100. __le16 data_buf_len;
  101. __le32 rsvd0;
  102. struct msgbuf_buf_addr metadata_buf_addr;
  103. struct msgbuf_buf_addr data_buf_addr;
  104. };
  105. struct msgbuf_rx_ioctl_resp_or_event {
  106. struct msgbuf_common_hdr msg;
  107. __le16 host_buf_len;
  108. __le16 rsvd0[3];
  109. struct msgbuf_buf_addr host_buf_addr;
  110. __le32 rsvd1[4];
  111. };
  112. struct msgbuf_completion_hdr {
  113. __le16 status;
  114. __le16 flow_ring_id;
  115. };
  116. struct msgbuf_rx_event {
  117. struct msgbuf_common_hdr msg;
  118. struct msgbuf_completion_hdr compl_hdr;
  119. __le16 event_data_len;
  120. __le16 seqnum;
  121. __le16 rsvd0[4];
  122. };
  123. struct msgbuf_ioctl_resp_hdr {
  124. struct msgbuf_common_hdr msg;
  125. struct msgbuf_completion_hdr compl_hdr;
  126. __le16 resp_len;
  127. __le16 trans_id;
  128. __le32 cmd;
  129. __le32 rsvd0;
  130. };
  131. struct msgbuf_tx_status {
  132. struct msgbuf_common_hdr msg;
  133. struct msgbuf_completion_hdr compl_hdr;
  134. __le16 metadata_len;
  135. __le16 tx_status;
  136. };
  137. struct msgbuf_rx_complete {
  138. struct msgbuf_common_hdr msg;
  139. struct msgbuf_completion_hdr compl_hdr;
  140. __le16 metadata_len;
  141. __le16 data_len;
  142. __le16 data_offset;
  143. __le16 flags;
  144. __le32 rx_status_0;
  145. __le32 rx_status_1;
  146. __le32 rsvd0;
  147. };
  148. struct msgbuf_tx_flowring_create_req {
  149. struct msgbuf_common_hdr msg;
  150. u8 da[ETH_ALEN];
  151. u8 sa[ETH_ALEN];
  152. u8 tid;
  153. u8 if_flags;
  154. __le16 flow_ring_id;
  155. u8 tc;
  156. u8 priority;
  157. __le16 int_vector;
  158. __le16 max_items;
  159. __le16 len_item;
  160. struct msgbuf_buf_addr flow_ring_addr;
  161. };
  162. struct msgbuf_tx_flowring_delete_req {
  163. struct msgbuf_common_hdr msg;
  164. __le16 flow_ring_id;
  165. __le16 reason;
  166. __le32 rsvd0[7];
  167. };
  168. struct msgbuf_flowring_create_resp {
  169. struct msgbuf_common_hdr msg;
  170. struct msgbuf_completion_hdr compl_hdr;
  171. __le32 rsvd0[3];
  172. };
  173. struct msgbuf_flowring_delete_resp {
  174. struct msgbuf_common_hdr msg;
  175. struct msgbuf_completion_hdr compl_hdr;
  176. __le32 rsvd0[3];
  177. };
  178. struct msgbuf_flowring_flush_resp {
  179. struct msgbuf_common_hdr msg;
  180. struct msgbuf_completion_hdr compl_hdr;
  181. __le32 rsvd0[3];
  182. };
  183. struct brcmf_msgbuf_work_item {
  184. struct list_head queue;
  185. u32 flowid;
  186. int ifidx;
  187. u8 sa[ETH_ALEN];
  188. u8 da[ETH_ALEN];
  189. };
  190. struct brcmf_msgbuf {
  191. struct brcmf_pub *drvr;
  192. struct brcmf_commonring **commonrings;
  193. struct brcmf_commonring **flowrings;
  194. dma_addr_t *flowring_dma_handle;
  195. u16 nrof_flowrings;
  196. u16 rx_dataoffset;
  197. u32 max_rxbufpost;
  198. u16 rx_metadata_offset;
  199. u32 rxbufpost;
  200. u32 max_ioctlrespbuf;
  201. u32 cur_ioctlrespbuf;
  202. u32 max_eventbuf;
  203. u32 cur_eventbuf;
  204. void *ioctbuf;
  205. dma_addr_t ioctbuf_handle;
  206. u32 ioctbuf_phys_hi;
  207. u32 ioctbuf_phys_lo;
  208. int ioctl_resp_status;
  209. u32 ioctl_resp_ret_len;
  210. u32 ioctl_resp_pktid;
  211. u16 data_seq_no;
  212. u16 ioctl_seq_no;
  213. u32 reqid;
  214. wait_queue_head_t ioctl_resp_wait;
  215. bool ctl_completed;
  216. struct brcmf_msgbuf_pktids *tx_pktids;
  217. struct brcmf_msgbuf_pktids *rx_pktids;
  218. struct brcmf_flowring *flow;
  219. struct workqueue_struct *txflow_wq;
  220. struct work_struct txflow_work;
  221. unsigned long *flow_map;
  222. unsigned long *txstatus_done_map;
  223. struct work_struct flowring_work;
  224. spinlock_t flowring_work_lock;
  225. struct list_head work_queue;
  226. };
  227. struct brcmf_msgbuf_pktid {
  228. atomic_t allocated;
  229. u16 data_offset;
  230. struct sk_buff *skb;
  231. dma_addr_t physaddr;
  232. };
  233. struct brcmf_msgbuf_pktids {
  234. u32 array_size;
  235. u32 last_allocated_idx;
  236. enum dma_data_direction direction;
  237. struct brcmf_msgbuf_pktid *array;
  238. };
  239. /* dma flushing needs implementation for mips and arm platforms. Should
  240. * be put in util. Note, this is not real flushing. It is virtual non
  241. * cached memory. Only write buffers should have to be drained. Though
  242. * this may be different depending on platform......
  243. */
  244. #define brcmf_dma_flush(addr, len)
  245. #define brcmf_dma_invalidate_cache(addr, len)
  246. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf);
  247. static struct brcmf_msgbuf_pktids *
  248. brcmf_msgbuf_init_pktids(u32 nr_array_entries,
  249. enum dma_data_direction direction)
  250. {
  251. struct brcmf_msgbuf_pktid *array;
  252. struct brcmf_msgbuf_pktids *pktids;
  253. array = kcalloc(nr_array_entries, sizeof(*array), GFP_KERNEL);
  254. if (!array)
  255. return NULL;
  256. pktids = kzalloc(sizeof(*pktids), GFP_KERNEL);
  257. if (!pktids) {
  258. kfree(array);
  259. return NULL;
  260. }
  261. pktids->array = array;
  262. pktids->array_size = nr_array_entries;
  263. return pktids;
  264. }
  265. static int
  266. brcmf_msgbuf_alloc_pktid(struct device *dev,
  267. struct brcmf_msgbuf_pktids *pktids,
  268. struct sk_buff *skb, u16 data_offset,
  269. dma_addr_t *physaddr, u32 *idx)
  270. {
  271. struct brcmf_msgbuf_pktid *array;
  272. u32 count;
  273. array = pktids->array;
  274. *physaddr = dma_map_single(dev, skb->data + data_offset,
  275. skb->len - data_offset, pktids->direction);
  276. if (dma_mapping_error(dev, *physaddr)) {
  277. brcmf_err("dma_map_single failed !!\n");
  278. return -ENOMEM;
  279. }
  280. *idx = pktids->last_allocated_idx;
  281. count = 0;
  282. do {
  283. (*idx)++;
  284. if (*idx == pktids->array_size)
  285. *idx = 0;
  286. if (array[*idx].allocated.counter == 0)
  287. if (atomic_cmpxchg(&array[*idx].allocated, 0, 1) == 0)
  288. break;
  289. count++;
  290. } while (count < pktids->array_size);
  291. if (count == pktids->array_size)
  292. return -ENOMEM;
  293. array[*idx].data_offset = data_offset;
  294. array[*idx].physaddr = *physaddr;
  295. array[*idx].skb = skb;
  296. pktids->last_allocated_idx = *idx;
  297. return 0;
  298. }
  299. static struct sk_buff *
  300. brcmf_msgbuf_get_pktid(struct device *dev, struct brcmf_msgbuf_pktids *pktids,
  301. u32 idx)
  302. {
  303. struct brcmf_msgbuf_pktid *pktid;
  304. struct sk_buff *skb;
  305. if (idx >= pktids->array_size) {
  306. brcmf_err("Invalid packet id %d (max %d)\n", idx,
  307. pktids->array_size);
  308. return NULL;
  309. }
  310. if (pktids->array[idx].allocated.counter) {
  311. pktid = &pktids->array[idx];
  312. dma_unmap_single(dev, pktid->physaddr,
  313. pktid->skb->len - pktid->data_offset,
  314. pktids->direction);
  315. skb = pktid->skb;
  316. pktid->allocated.counter = 0;
  317. return skb;
  318. } else {
  319. brcmf_err("Invalid packet id %d (not in use)\n", idx);
  320. }
  321. return NULL;
  322. }
  323. static void
  324. brcmf_msgbuf_release_array(struct device *dev,
  325. struct brcmf_msgbuf_pktids *pktids)
  326. {
  327. struct brcmf_msgbuf_pktid *array;
  328. struct brcmf_msgbuf_pktid *pktid;
  329. u32 count;
  330. array = pktids->array;
  331. count = 0;
  332. do {
  333. if (array[count].allocated.counter) {
  334. pktid = &array[count];
  335. dma_unmap_single(dev, pktid->physaddr,
  336. pktid->skb->len - pktid->data_offset,
  337. pktids->direction);
  338. brcmu_pkt_buf_free_skb(pktid->skb);
  339. }
  340. count++;
  341. } while (count < pktids->array_size);
  342. kfree(array);
  343. kfree(pktids);
  344. }
  345. static void brcmf_msgbuf_release_pktids(struct brcmf_msgbuf *msgbuf)
  346. {
  347. if (msgbuf->rx_pktids)
  348. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  349. msgbuf->rx_pktids);
  350. if (msgbuf->tx_pktids)
  351. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  352. msgbuf->tx_pktids);
  353. }
  354. static int brcmf_msgbuf_tx_ioctl(struct brcmf_pub *drvr, int ifidx,
  355. uint cmd, void *buf, uint len)
  356. {
  357. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  358. struct brcmf_commonring *commonring;
  359. struct msgbuf_ioctl_req_hdr *request;
  360. u16 buf_len;
  361. void *ret_ptr;
  362. int err;
  363. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  364. brcmf_commonring_lock(commonring);
  365. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  366. if (!ret_ptr) {
  367. brcmf_err("Failed to reserve space in commonring\n");
  368. brcmf_commonring_unlock(commonring);
  369. return -ENOMEM;
  370. }
  371. msgbuf->reqid++;
  372. request = (struct msgbuf_ioctl_req_hdr *)ret_ptr;
  373. request->msg.msgtype = MSGBUF_TYPE_IOCTLPTR_REQ;
  374. request->msg.ifidx = (u8)ifidx;
  375. request->msg.flags = 0;
  376. request->msg.request_id = cpu_to_le32(BRCMF_IOCTL_REQ_PKTID);
  377. request->cmd = cpu_to_le32(cmd);
  378. request->output_buf_len = cpu_to_le16(len);
  379. request->trans_id = cpu_to_le16(msgbuf->reqid);
  380. buf_len = min_t(u16, len, BRCMF_TX_IOCTL_MAX_MSG_SIZE);
  381. request->input_buf_len = cpu_to_le16(buf_len);
  382. request->req_buf_addr.high_addr = cpu_to_le32(msgbuf->ioctbuf_phys_hi);
  383. request->req_buf_addr.low_addr = cpu_to_le32(msgbuf->ioctbuf_phys_lo);
  384. if (buf)
  385. memcpy(msgbuf->ioctbuf, buf, buf_len);
  386. else
  387. memset(msgbuf->ioctbuf, 0, buf_len);
  388. brcmf_dma_flush(ioctl_buf, buf_len);
  389. err = brcmf_commonring_write_complete(commonring);
  390. brcmf_commonring_unlock(commonring);
  391. return err;
  392. }
  393. static int brcmf_msgbuf_ioctl_resp_wait(struct brcmf_msgbuf *msgbuf)
  394. {
  395. return wait_event_timeout(msgbuf->ioctl_resp_wait,
  396. msgbuf->ctl_completed,
  397. msecs_to_jiffies(MSGBUF_IOCTL_RESP_TIMEOUT));
  398. }
  399. static void brcmf_msgbuf_ioctl_resp_wake(struct brcmf_msgbuf *msgbuf)
  400. {
  401. msgbuf->ctl_completed = true;
  402. if (waitqueue_active(&msgbuf->ioctl_resp_wait))
  403. wake_up(&msgbuf->ioctl_resp_wait);
  404. }
  405. static int brcmf_msgbuf_query_dcmd(struct brcmf_pub *drvr, int ifidx,
  406. uint cmd, void *buf, uint len)
  407. {
  408. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  409. struct sk_buff *skb = NULL;
  410. int timeout;
  411. int err;
  412. brcmf_dbg(MSGBUF, "ifidx=%d, cmd=%d, len=%d\n", ifidx, cmd, len);
  413. msgbuf->ctl_completed = false;
  414. err = brcmf_msgbuf_tx_ioctl(drvr, ifidx, cmd, buf, len);
  415. if (err)
  416. return err;
  417. timeout = brcmf_msgbuf_ioctl_resp_wait(msgbuf);
  418. if (!timeout) {
  419. brcmf_err("Timeout on response for query command\n");
  420. return -EIO;
  421. }
  422. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  423. msgbuf->rx_pktids,
  424. msgbuf->ioctl_resp_pktid);
  425. if (msgbuf->ioctl_resp_ret_len != 0) {
  426. if (!skb)
  427. return -EBADF;
  428. memcpy(buf, skb->data, (len < msgbuf->ioctl_resp_ret_len) ?
  429. len : msgbuf->ioctl_resp_ret_len);
  430. }
  431. brcmu_pkt_buf_free_skb(skb);
  432. return msgbuf->ioctl_resp_status;
  433. }
  434. static int brcmf_msgbuf_set_dcmd(struct brcmf_pub *drvr, int ifidx,
  435. uint cmd, void *buf, uint len)
  436. {
  437. return brcmf_msgbuf_query_dcmd(drvr, ifidx, cmd, buf, len);
  438. }
  439. static int brcmf_msgbuf_hdrpull(struct brcmf_pub *drvr, bool do_fws,
  440. u8 *ifidx, struct sk_buff *skb)
  441. {
  442. return -ENODEV;
  443. }
  444. static void
  445. brcmf_msgbuf_remove_flowring(struct brcmf_msgbuf *msgbuf, u16 flowid)
  446. {
  447. u32 dma_sz;
  448. void *dma_buf;
  449. brcmf_dbg(MSGBUF, "Removing flowring %d\n", flowid);
  450. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  451. dma_buf = msgbuf->flowrings[flowid]->buf_addr;
  452. dma_free_coherent(msgbuf->drvr->bus_if->dev, dma_sz, dma_buf,
  453. msgbuf->flowring_dma_handle[flowid]);
  454. brcmf_flowring_delete(msgbuf->flow, flowid);
  455. }
  456. static struct brcmf_msgbuf_work_item *
  457. brcmf_msgbuf_dequeue_work(struct brcmf_msgbuf *msgbuf)
  458. {
  459. struct brcmf_msgbuf_work_item *work = NULL;
  460. ulong flags;
  461. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  462. if (!list_empty(&msgbuf->work_queue)) {
  463. work = list_first_entry(&msgbuf->work_queue,
  464. struct brcmf_msgbuf_work_item, queue);
  465. list_del(&work->queue);
  466. }
  467. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  468. return work;
  469. }
  470. static u32
  471. brcmf_msgbuf_flowring_create_worker(struct brcmf_msgbuf *msgbuf,
  472. struct brcmf_msgbuf_work_item *work)
  473. {
  474. struct msgbuf_tx_flowring_create_req *create;
  475. struct brcmf_commonring *commonring;
  476. void *ret_ptr;
  477. u32 flowid;
  478. void *dma_buf;
  479. u32 dma_sz;
  480. u64 address;
  481. int err;
  482. flowid = work->flowid;
  483. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  484. dma_buf = dma_alloc_coherent(msgbuf->drvr->bus_if->dev, dma_sz,
  485. &msgbuf->flowring_dma_handle[flowid],
  486. GFP_KERNEL);
  487. if (!dma_buf) {
  488. brcmf_err("dma_alloc_coherent failed\n");
  489. brcmf_flowring_delete(msgbuf->flow, flowid);
  490. return BRCMF_FLOWRING_INVALID_ID;
  491. }
  492. brcmf_commonring_config(msgbuf->flowrings[flowid],
  493. BRCMF_H2D_TXFLOWRING_MAX_ITEM,
  494. BRCMF_H2D_TXFLOWRING_ITEMSIZE, dma_buf);
  495. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  496. brcmf_commonring_lock(commonring);
  497. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  498. if (!ret_ptr) {
  499. brcmf_err("Failed to reserve space in commonring\n");
  500. brcmf_commonring_unlock(commonring);
  501. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  502. return BRCMF_FLOWRING_INVALID_ID;
  503. }
  504. create = (struct msgbuf_tx_flowring_create_req *)ret_ptr;
  505. create->msg.msgtype = MSGBUF_TYPE_FLOW_RING_CREATE;
  506. create->msg.ifidx = work->ifidx;
  507. create->msg.request_id = 0;
  508. create->tid = brcmf_flowring_tid(msgbuf->flow, flowid);
  509. create->flow_ring_id = cpu_to_le16(flowid +
  510. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  511. memcpy(create->sa, work->sa, ETH_ALEN);
  512. memcpy(create->da, work->da, ETH_ALEN);
  513. address = (u64)msgbuf->flowring_dma_handle[flowid];
  514. create->flow_ring_addr.high_addr = cpu_to_le32(address >> 32);
  515. create->flow_ring_addr.low_addr = cpu_to_le32(address & 0xffffffff);
  516. create->max_items = cpu_to_le16(BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  517. create->len_item = cpu_to_le16(BRCMF_H2D_TXFLOWRING_ITEMSIZE);
  518. brcmf_dbg(MSGBUF, "Send Flow Create Req flow ID %d for peer %pM prio %d ifindex %d\n",
  519. flowid, work->da, create->tid, work->ifidx);
  520. err = brcmf_commonring_write_complete(commonring);
  521. brcmf_commonring_unlock(commonring);
  522. if (err) {
  523. brcmf_err("Failed to write commonring\n");
  524. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  525. return BRCMF_FLOWRING_INVALID_ID;
  526. }
  527. return flowid;
  528. }
  529. static void brcmf_msgbuf_flowring_worker(struct work_struct *work)
  530. {
  531. struct brcmf_msgbuf *msgbuf;
  532. struct brcmf_msgbuf_work_item *create;
  533. msgbuf = container_of(work, struct brcmf_msgbuf, flowring_work);
  534. while ((create = brcmf_msgbuf_dequeue_work(msgbuf))) {
  535. brcmf_msgbuf_flowring_create_worker(msgbuf, create);
  536. kfree(create);
  537. }
  538. }
  539. static u32 brcmf_msgbuf_flowring_create(struct brcmf_msgbuf *msgbuf, int ifidx,
  540. struct sk_buff *skb)
  541. {
  542. struct brcmf_msgbuf_work_item *create;
  543. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  544. u32 flowid;
  545. ulong flags;
  546. create = kzalloc(sizeof(*create), GFP_ATOMIC);
  547. if (create == NULL)
  548. return BRCMF_FLOWRING_INVALID_ID;
  549. flowid = brcmf_flowring_create(msgbuf->flow, eh->h_dest,
  550. skb->priority, ifidx);
  551. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  552. kfree(create);
  553. return flowid;
  554. }
  555. create->flowid = flowid;
  556. create->ifidx = ifidx;
  557. memcpy(create->sa, eh->h_source, ETH_ALEN);
  558. memcpy(create->da, eh->h_dest, ETH_ALEN);
  559. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  560. list_add_tail(&create->queue, &msgbuf->work_queue);
  561. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  562. schedule_work(&msgbuf->flowring_work);
  563. return flowid;
  564. }
  565. static void brcmf_msgbuf_txflow(struct brcmf_msgbuf *msgbuf, u8 flowid)
  566. {
  567. struct brcmf_flowring *flow = msgbuf->flow;
  568. struct brcmf_commonring *commonring;
  569. void *ret_ptr;
  570. u32 count;
  571. struct sk_buff *skb;
  572. dma_addr_t physaddr;
  573. u32 pktid;
  574. struct msgbuf_tx_msghdr *tx_msghdr;
  575. u64 address;
  576. commonring = msgbuf->flowrings[flowid];
  577. if (!brcmf_commonring_write_available(commonring))
  578. return;
  579. brcmf_commonring_lock(commonring);
  580. count = BRCMF_MSGBUF_TX_FLUSH_CNT2 - BRCMF_MSGBUF_TX_FLUSH_CNT1;
  581. while (brcmf_flowring_qlen(flow, flowid)) {
  582. skb = brcmf_flowring_dequeue(flow, flowid);
  583. if (skb == NULL) {
  584. brcmf_err("No SKB, but qlen %d\n",
  585. brcmf_flowring_qlen(flow, flowid));
  586. break;
  587. }
  588. skb_orphan(skb);
  589. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  590. msgbuf->tx_pktids, skb, ETH_HLEN,
  591. &physaddr, &pktid)) {
  592. brcmf_flowring_reinsert(flow, flowid, skb);
  593. brcmf_err("No PKTID available !!\n");
  594. break;
  595. }
  596. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  597. if (!ret_ptr) {
  598. brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  599. msgbuf->tx_pktids, pktid);
  600. brcmf_flowring_reinsert(flow, flowid, skb);
  601. break;
  602. }
  603. count++;
  604. tx_msghdr = (struct msgbuf_tx_msghdr *)ret_ptr;
  605. tx_msghdr->msg.msgtype = MSGBUF_TYPE_TX_POST;
  606. tx_msghdr->msg.request_id = cpu_to_le32(pktid);
  607. tx_msghdr->msg.ifidx = brcmf_flowring_ifidx_get(flow, flowid);
  608. tx_msghdr->flags = BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3;
  609. tx_msghdr->flags |= (skb->priority & 0x07) <<
  610. BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT;
  611. tx_msghdr->seg_cnt = 1;
  612. memcpy(tx_msghdr->txhdr, skb->data, ETH_HLEN);
  613. tx_msghdr->data_len = cpu_to_le16(skb->len - ETH_HLEN);
  614. address = (u64)physaddr;
  615. tx_msghdr->data_buf_addr.high_addr = cpu_to_le32(address >> 32);
  616. tx_msghdr->data_buf_addr.low_addr =
  617. cpu_to_le32(address & 0xffffffff);
  618. tx_msghdr->metadata_buf_len = 0;
  619. tx_msghdr->metadata_buf_addr.high_addr = 0;
  620. tx_msghdr->metadata_buf_addr.low_addr = 0;
  621. atomic_inc(&commonring->outstanding_tx);
  622. if (count >= BRCMF_MSGBUF_TX_FLUSH_CNT2) {
  623. brcmf_commonring_write_complete(commonring);
  624. count = 0;
  625. }
  626. }
  627. if (count)
  628. brcmf_commonring_write_complete(commonring);
  629. brcmf_commonring_unlock(commonring);
  630. }
  631. static void brcmf_msgbuf_txflow_worker(struct work_struct *worker)
  632. {
  633. struct brcmf_msgbuf *msgbuf;
  634. u32 flowid;
  635. msgbuf = container_of(worker, struct brcmf_msgbuf, txflow_work);
  636. for_each_set_bit(flowid, msgbuf->flow_map, msgbuf->nrof_flowrings) {
  637. clear_bit(flowid, msgbuf->flow_map);
  638. brcmf_msgbuf_txflow(msgbuf, flowid);
  639. }
  640. }
  641. static int brcmf_msgbuf_schedule_txdata(struct brcmf_msgbuf *msgbuf, u32 flowid,
  642. bool force)
  643. {
  644. struct brcmf_commonring *commonring;
  645. set_bit(flowid, msgbuf->flow_map);
  646. commonring = msgbuf->flowrings[flowid];
  647. if ((force) || (atomic_read(&commonring->outstanding_tx) <
  648. BRCMF_MSGBUF_DELAY_TXWORKER_THRS))
  649. queue_work(msgbuf->txflow_wq, &msgbuf->txflow_work);
  650. return 0;
  651. }
  652. static int brcmf_msgbuf_txdata(struct brcmf_pub *drvr, int ifidx,
  653. u8 offset, struct sk_buff *skb)
  654. {
  655. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  656. struct brcmf_flowring *flow = msgbuf->flow;
  657. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  658. u32 flowid;
  659. flowid = brcmf_flowring_lookup(flow, eh->h_dest, skb->priority, ifidx);
  660. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  661. flowid = brcmf_msgbuf_flowring_create(msgbuf, ifidx, skb);
  662. if (flowid == BRCMF_FLOWRING_INVALID_ID)
  663. return -ENOMEM;
  664. }
  665. brcmf_flowring_enqueue(flow, flowid, skb);
  666. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, false);
  667. return 0;
  668. }
  669. static void
  670. brcmf_msgbuf_configure_addr_mode(struct brcmf_pub *drvr, int ifidx,
  671. enum proto_addr_mode addr_mode)
  672. {
  673. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  674. brcmf_flowring_configure_addr_mode(msgbuf->flow, ifidx, addr_mode);
  675. }
  676. static void
  677. brcmf_msgbuf_delete_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  678. {
  679. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  680. brcmf_flowring_delete_peer(msgbuf->flow, ifidx, peer);
  681. }
  682. static void
  683. brcmf_msgbuf_add_tdls_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  684. {
  685. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  686. brcmf_flowring_add_tdls_peer(msgbuf->flow, ifidx, peer);
  687. }
  688. static void
  689. brcmf_msgbuf_process_ioctl_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  690. {
  691. struct msgbuf_ioctl_resp_hdr *ioctl_resp;
  692. ioctl_resp = (struct msgbuf_ioctl_resp_hdr *)buf;
  693. msgbuf->ioctl_resp_status =
  694. (s16)le16_to_cpu(ioctl_resp->compl_hdr.status);
  695. msgbuf->ioctl_resp_ret_len = le16_to_cpu(ioctl_resp->resp_len);
  696. msgbuf->ioctl_resp_pktid = le32_to_cpu(ioctl_resp->msg.request_id);
  697. brcmf_msgbuf_ioctl_resp_wake(msgbuf);
  698. if (msgbuf->cur_ioctlrespbuf)
  699. msgbuf->cur_ioctlrespbuf--;
  700. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  701. }
  702. static void
  703. brcmf_msgbuf_process_txstatus(struct brcmf_msgbuf *msgbuf, void *buf)
  704. {
  705. struct brcmf_commonring *commonring;
  706. struct msgbuf_tx_status *tx_status;
  707. u32 idx;
  708. struct sk_buff *skb;
  709. u16 flowid;
  710. tx_status = (struct msgbuf_tx_status *)buf;
  711. idx = le32_to_cpu(tx_status->msg.request_id);
  712. flowid = le16_to_cpu(tx_status->compl_hdr.flow_ring_id);
  713. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  714. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  715. msgbuf->tx_pktids, idx);
  716. if (!skb)
  717. return;
  718. set_bit(flowid, msgbuf->txstatus_done_map);
  719. commonring = msgbuf->flowrings[flowid];
  720. atomic_dec(&commonring->outstanding_tx);
  721. brcmf_txfinalize(msgbuf->drvr, skb, tx_status->msg.ifidx, true);
  722. }
  723. static u32 brcmf_msgbuf_rxbuf_data_post(struct brcmf_msgbuf *msgbuf, u32 count)
  724. {
  725. struct brcmf_commonring *commonring;
  726. void *ret_ptr;
  727. struct sk_buff *skb;
  728. u16 alloced;
  729. u32 pktlen;
  730. dma_addr_t physaddr;
  731. struct msgbuf_rx_bufpost *rx_bufpost;
  732. u64 address;
  733. u32 pktid;
  734. u32 i;
  735. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  736. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  737. count,
  738. &alloced);
  739. if (!ret_ptr) {
  740. brcmf_dbg(MSGBUF, "Failed to reserve space in commonring\n");
  741. return 0;
  742. }
  743. for (i = 0; i < alloced; i++) {
  744. rx_bufpost = (struct msgbuf_rx_bufpost *)ret_ptr;
  745. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  746. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  747. if (skb == NULL) {
  748. brcmf_err("Failed to alloc SKB\n");
  749. brcmf_commonring_write_cancel(commonring, alloced - i);
  750. break;
  751. }
  752. pktlen = skb->len;
  753. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  754. msgbuf->rx_pktids, skb, 0,
  755. &physaddr, &pktid)) {
  756. dev_kfree_skb_any(skb);
  757. brcmf_err("No PKTID available !!\n");
  758. brcmf_commonring_write_cancel(commonring, alloced - i);
  759. break;
  760. }
  761. if (msgbuf->rx_metadata_offset) {
  762. address = (u64)physaddr;
  763. rx_bufpost->metadata_buf_len =
  764. cpu_to_le16(msgbuf->rx_metadata_offset);
  765. rx_bufpost->metadata_buf_addr.high_addr =
  766. cpu_to_le32(address >> 32);
  767. rx_bufpost->metadata_buf_addr.low_addr =
  768. cpu_to_le32(address & 0xffffffff);
  769. skb_pull(skb, msgbuf->rx_metadata_offset);
  770. pktlen = skb->len;
  771. physaddr += msgbuf->rx_metadata_offset;
  772. }
  773. rx_bufpost->msg.msgtype = MSGBUF_TYPE_RXBUF_POST;
  774. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  775. address = (u64)physaddr;
  776. rx_bufpost->data_buf_len = cpu_to_le16((u16)pktlen);
  777. rx_bufpost->data_buf_addr.high_addr =
  778. cpu_to_le32(address >> 32);
  779. rx_bufpost->data_buf_addr.low_addr =
  780. cpu_to_le32(address & 0xffffffff);
  781. ret_ptr += brcmf_commonring_len_item(commonring);
  782. }
  783. if (i)
  784. brcmf_commonring_write_complete(commonring);
  785. return i;
  786. }
  787. static void
  788. brcmf_msgbuf_rxbuf_data_fill(struct brcmf_msgbuf *msgbuf)
  789. {
  790. u32 fillbufs;
  791. u32 retcount;
  792. fillbufs = msgbuf->max_rxbufpost - msgbuf->rxbufpost;
  793. while (fillbufs) {
  794. retcount = brcmf_msgbuf_rxbuf_data_post(msgbuf, fillbufs);
  795. if (!retcount)
  796. break;
  797. msgbuf->rxbufpost += retcount;
  798. fillbufs -= retcount;
  799. }
  800. }
  801. static void
  802. brcmf_msgbuf_update_rxbufpost_count(struct brcmf_msgbuf *msgbuf, u16 rxcnt)
  803. {
  804. msgbuf->rxbufpost -= rxcnt;
  805. if (msgbuf->rxbufpost <= (msgbuf->max_rxbufpost -
  806. BRCMF_MSGBUF_RXBUFPOST_THRESHOLD))
  807. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  808. }
  809. static u32
  810. brcmf_msgbuf_rxbuf_ctrl_post(struct brcmf_msgbuf *msgbuf, bool event_buf,
  811. u32 count)
  812. {
  813. struct brcmf_commonring *commonring;
  814. void *ret_ptr;
  815. struct sk_buff *skb;
  816. u16 alloced;
  817. u32 pktlen;
  818. dma_addr_t physaddr;
  819. struct msgbuf_rx_ioctl_resp_or_event *rx_bufpost;
  820. u64 address;
  821. u32 pktid;
  822. u32 i;
  823. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  824. brcmf_commonring_lock(commonring);
  825. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  826. count,
  827. &alloced);
  828. if (!ret_ptr) {
  829. brcmf_err("Failed to reserve space in commonring\n");
  830. brcmf_commonring_unlock(commonring);
  831. return 0;
  832. }
  833. for (i = 0; i < alloced; i++) {
  834. rx_bufpost = (struct msgbuf_rx_ioctl_resp_or_event *)ret_ptr;
  835. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  836. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  837. if (skb == NULL) {
  838. brcmf_err("Failed to alloc SKB\n");
  839. brcmf_commonring_write_cancel(commonring, alloced - i);
  840. break;
  841. }
  842. pktlen = skb->len;
  843. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  844. msgbuf->rx_pktids, skb, 0,
  845. &physaddr, &pktid)) {
  846. dev_kfree_skb_any(skb);
  847. brcmf_err("No PKTID available !!\n");
  848. brcmf_commonring_write_cancel(commonring, alloced - i);
  849. break;
  850. }
  851. if (event_buf)
  852. rx_bufpost->msg.msgtype = MSGBUF_TYPE_EVENT_BUF_POST;
  853. else
  854. rx_bufpost->msg.msgtype =
  855. MSGBUF_TYPE_IOCTLRESP_BUF_POST;
  856. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  857. address = (u64)physaddr;
  858. rx_bufpost->host_buf_len = cpu_to_le16((u16)pktlen);
  859. rx_bufpost->host_buf_addr.high_addr =
  860. cpu_to_le32(address >> 32);
  861. rx_bufpost->host_buf_addr.low_addr =
  862. cpu_to_le32(address & 0xffffffff);
  863. ret_ptr += brcmf_commonring_len_item(commonring);
  864. }
  865. if (i)
  866. brcmf_commonring_write_complete(commonring);
  867. brcmf_commonring_unlock(commonring);
  868. return i;
  869. }
  870. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf)
  871. {
  872. u32 count;
  873. count = msgbuf->max_ioctlrespbuf - msgbuf->cur_ioctlrespbuf;
  874. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, false, count);
  875. msgbuf->cur_ioctlrespbuf += count;
  876. }
  877. static void brcmf_msgbuf_rxbuf_event_post(struct brcmf_msgbuf *msgbuf)
  878. {
  879. u32 count;
  880. count = msgbuf->max_eventbuf - msgbuf->cur_eventbuf;
  881. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, true, count);
  882. msgbuf->cur_eventbuf += count;
  883. }
  884. static void
  885. brcmf_msgbuf_rx_skb(struct brcmf_msgbuf *msgbuf, struct sk_buff *skb,
  886. u8 ifidx)
  887. {
  888. struct brcmf_if *ifp;
  889. /* The ifidx is the idx to map to matching netdev/ifp. When receiving
  890. * events this is easy because it contains the bssidx which maps
  891. * 1-on-1 to the netdev/ifp. But for data frames the ifidx is rcvd.
  892. * bssidx 1 is used for p2p0 and no data can be received or
  893. * transmitted on it. Therefor bssidx is ifidx + 1 if ifidx > 0
  894. */
  895. if (ifidx)
  896. (ifidx)++;
  897. ifp = msgbuf->drvr->iflist[ifidx];
  898. if (!ifp || !ifp->ndev) {
  899. brcmf_err("Received pkt for invalid ifidx %d\n", ifidx);
  900. brcmu_pkt_buf_free_skb(skb);
  901. return;
  902. }
  903. brcmf_netif_rx(ifp, skb);
  904. }
  905. static void brcmf_msgbuf_process_event(struct brcmf_msgbuf *msgbuf, void *buf)
  906. {
  907. struct msgbuf_rx_event *event;
  908. u32 idx;
  909. u16 buflen;
  910. struct sk_buff *skb;
  911. event = (struct msgbuf_rx_event *)buf;
  912. idx = le32_to_cpu(event->msg.request_id);
  913. buflen = le16_to_cpu(event->event_data_len);
  914. if (msgbuf->cur_eventbuf)
  915. msgbuf->cur_eventbuf--;
  916. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  917. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  918. msgbuf->rx_pktids, idx);
  919. if (!skb)
  920. return;
  921. if (msgbuf->rx_dataoffset)
  922. skb_pull(skb, msgbuf->rx_dataoffset);
  923. skb_trim(skb, buflen);
  924. brcmf_msgbuf_rx_skb(msgbuf, skb, event->msg.ifidx);
  925. }
  926. static void
  927. brcmf_msgbuf_process_rx_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  928. {
  929. struct msgbuf_rx_complete *rx_complete;
  930. struct sk_buff *skb;
  931. u16 data_offset;
  932. u16 buflen;
  933. u32 idx;
  934. brcmf_msgbuf_update_rxbufpost_count(msgbuf, 1);
  935. rx_complete = (struct msgbuf_rx_complete *)buf;
  936. data_offset = le16_to_cpu(rx_complete->data_offset);
  937. buflen = le16_to_cpu(rx_complete->data_len);
  938. idx = le32_to_cpu(rx_complete->msg.request_id);
  939. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  940. msgbuf->rx_pktids, idx);
  941. if (!skb)
  942. return;
  943. if (data_offset)
  944. skb_pull(skb, data_offset);
  945. else if (msgbuf->rx_dataoffset)
  946. skb_pull(skb, msgbuf->rx_dataoffset);
  947. skb_trim(skb, buflen);
  948. brcmf_msgbuf_rx_skb(msgbuf, skb, rx_complete->msg.ifidx);
  949. }
  950. static void
  951. brcmf_msgbuf_process_flow_ring_create_response(struct brcmf_msgbuf *msgbuf,
  952. void *buf)
  953. {
  954. struct msgbuf_flowring_create_resp *flowring_create_resp;
  955. u16 status;
  956. u16 flowid;
  957. flowring_create_resp = (struct msgbuf_flowring_create_resp *)buf;
  958. flowid = le16_to_cpu(flowring_create_resp->compl_hdr.flow_ring_id);
  959. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  960. status = le16_to_cpu(flowring_create_resp->compl_hdr.status);
  961. if (status) {
  962. brcmf_err("Flowring creation failed, code %d\n", status);
  963. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  964. return;
  965. }
  966. brcmf_dbg(MSGBUF, "Flowring %d Create response status %d\n", flowid,
  967. status);
  968. brcmf_flowring_open(msgbuf->flow, flowid);
  969. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, true);
  970. }
  971. static void
  972. brcmf_msgbuf_process_flow_ring_delete_response(struct brcmf_msgbuf *msgbuf,
  973. void *buf)
  974. {
  975. struct msgbuf_flowring_delete_resp *flowring_delete_resp;
  976. u16 status;
  977. u16 flowid;
  978. flowring_delete_resp = (struct msgbuf_flowring_delete_resp *)buf;
  979. flowid = le16_to_cpu(flowring_delete_resp->compl_hdr.flow_ring_id);
  980. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  981. status = le16_to_cpu(flowring_delete_resp->compl_hdr.status);
  982. if (status) {
  983. brcmf_err("Flowring deletion failed, code %d\n", status);
  984. brcmf_flowring_delete(msgbuf->flow, flowid);
  985. return;
  986. }
  987. brcmf_dbg(MSGBUF, "Flowring %d Delete response status %d\n", flowid,
  988. status);
  989. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  990. }
  991. static void brcmf_msgbuf_process_msgtype(struct brcmf_msgbuf *msgbuf, void *buf)
  992. {
  993. struct msgbuf_common_hdr *msg;
  994. msg = (struct msgbuf_common_hdr *)buf;
  995. switch (msg->msgtype) {
  996. case MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT:
  997. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT\n");
  998. brcmf_msgbuf_process_flow_ring_create_response(msgbuf, buf);
  999. break;
  1000. case MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT:
  1001. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT\n");
  1002. brcmf_msgbuf_process_flow_ring_delete_response(msgbuf, buf);
  1003. break;
  1004. case MSGBUF_TYPE_IOCTLPTR_REQ_ACK:
  1005. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTLPTR_REQ_ACK\n");
  1006. break;
  1007. case MSGBUF_TYPE_IOCTL_CMPLT:
  1008. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTL_CMPLT\n");
  1009. brcmf_msgbuf_process_ioctl_complete(msgbuf, buf);
  1010. break;
  1011. case MSGBUF_TYPE_WL_EVENT:
  1012. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_WL_EVENT\n");
  1013. brcmf_msgbuf_process_event(msgbuf, buf);
  1014. break;
  1015. case MSGBUF_TYPE_TX_STATUS:
  1016. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_TX_STATUS\n");
  1017. brcmf_msgbuf_process_txstatus(msgbuf, buf);
  1018. break;
  1019. case MSGBUF_TYPE_RX_CMPLT:
  1020. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_RX_CMPLT\n");
  1021. brcmf_msgbuf_process_rx_complete(msgbuf, buf);
  1022. break;
  1023. default:
  1024. brcmf_err("Unsupported msgtype %d\n", msg->msgtype);
  1025. break;
  1026. }
  1027. }
  1028. static void brcmf_msgbuf_process_rx(struct brcmf_msgbuf *msgbuf,
  1029. struct brcmf_commonring *commonring)
  1030. {
  1031. void *buf;
  1032. u16 count;
  1033. again:
  1034. buf = brcmf_commonring_get_read_ptr(commonring, &count);
  1035. if (buf == NULL)
  1036. return;
  1037. while (count) {
  1038. brcmf_msgbuf_process_msgtype(msgbuf,
  1039. buf + msgbuf->rx_dataoffset);
  1040. buf += brcmf_commonring_len_item(commonring);
  1041. count--;
  1042. }
  1043. brcmf_commonring_read_complete(commonring);
  1044. if (commonring->r_ptr == 0)
  1045. goto again;
  1046. }
  1047. int brcmf_proto_msgbuf_rx_trigger(struct device *dev)
  1048. {
  1049. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1050. struct brcmf_pub *drvr = bus_if->drvr;
  1051. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1052. struct brcmf_commonring *commonring;
  1053. void *buf;
  1054. u32 flowid;
  1055. int qlen;
  1056. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1057. brcmf_msgbuf_process_rx(msgbuf, buf);
  1058. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1059. brcmf_msgbuf_process_rx(msgbuf, buf);
  1060. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1061. brcmf_msgbuf_process_rx(msgbuf, buf);
  1062. for_each_set_bit(flowid, msgbuf->txstatus_done_map,
  1063. msgbuf->nrof_flowrings) {
  1064. clear_bit(flowid, msgbuf->txstatus_done_map);
  1065. commonring = msgbuf->flowrings[flowid];
  1066. qlen = brcmf_flowring_qlen(msgbuf->flow, flowid);
  1067. if ((qlen > BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS) ||
  1068. ((qlen) && (atomic_read(&commonring->outstanding_tx) <
  1069. BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS)))
  1070. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, true);
  1071. }
  1072. return 0;
  1073. }
  1074. void brcmf_msgbuf_delete_flowring(struct brcmf_pub *drvr, u8 flowid)
  1075. {
  1076. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1077. struct msgbuf_tx_flowring_delete_req *delete;
  1078. struct brcmf_commonring *commonring;
  1079. void *ret_ptr;
  1080. u8 ifidx;
  1081. int err;
  1082. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1083. brcmf_commonring_lock(commonring);
  1084. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  1085. if (!ret_ptr) {
  1086. brcmf_err("FW unaware, flowring will be removed !!\n");
  1087. brcmf_commonring_unlock(commonring);
  1088. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1089. return;
  1090. }
  1091. delete = (struct msgbuf_tx_flowring_delete_req *)ret_ptr;
  1092. ifidx = brcmf_flowring_ifidx_get(msgbuf->flow, flowid);
  1093. delete->msg.msgtype = MSGBUF_TYPE_FLOW_RING_DELETE;
  1094. delete->msg.ifidx = ifidx;
  1095. delete->msg.request_id = 0;
  1096. delete->flow_ring_id = cpu_to_le16(flowid +
  1097. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  1098. delete->reason = 0;
  1099. brcmf_dbg(MSGBUF, "Send Flow Delete Req flow ID %d, ifindex %d\n",
  1100. flowid, ifidx);
  1101. err = brcmf_commonring_write_complete(commonring);
  1102. brcmf_commonring_unlock(commonring);
  1103. if (err) {
  1104. brcmf_err("Failed to submit RING_DELETE, flowring will be removed\n");
  1105. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1106. }
  1107. }
  1108. int brcmf_proto_msgbuf_attach(struct brcmf_pub *drvr)
  1109. {
  1110. struct brcmf_bus_msgbuf *if_msgbuf;
  1111. struct brcmf_msgbuf *msgbuf;
  1112. u64 address;
  1113. u32 count;
  1114. if_msgbuf = drvr->bus_if->msgbuf;
  1115. msgbuf = kzalloc(sizeof(*msgbuf), GFP_KERNEL);
  1116. if (!msgbuf)
  1117. goto fail;
  1118. msgbuf->txflow_wq = create_singlethread_workqueue("msgbuf_txflow");
  1119. if (msgbuf->txflow_wq == NULL) {
  1120. brcmf_err("workqueue creation failed\n");
  1121. goto fail;
  1122. }
  1123. INIT_WORK(&msgbuf->txflow_work, brcmf_msgbuf_txflow_worker);
  1124. count = BITS_TO_LONGS(if_msgbuf->nrof_flowrings);
  1125. count = count * sizeof(unsigned long);
  1126. msgbuf->flow_map = kzalloc(count, GFP_KERNEL);
  1127. if (!msgbuf->flow_map)
  1128. goto fail;
  1129. msgbuf->txstatus_done_map = kzalloc(count, GFP_KERNEL);
  1130. if (!msgbuf->txstatus_done_map)
  1131. goto fail;
  1132. msgbuf->drvr = drvr;
  1133. msgbuf->ioctbuf = dma_alloc_coherent(drvr->bus_if->dev,
  1134. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1135. &msgbuf->ioctbuf_handle,
  1136. GFP_KERNEL);
  1137. if (!msgbuf->ioctbuf)
  1138. goto fail;
  1139. address = (u64)msgbuf->ioctbuf_handle;
  1140. msgbuf->ioctbuf_phys_hi = address >> 32;
  1141. msgbuf->ioctbuf_phys_lo = address & 0xffffffff;
  1142. drvr->proto->hdrpull = brcmf_msgbuf_hdrpull;
  1143. drvr->proto->query_dcmd = brcmf_msgbuf_query_dcmd;
  1144. drvr->proto->set_dcmd = brcmf_msgbuf_set_dcmd;
  1145. drvr->proto->txdata = brcmf_msgbuf_txdata;
  1146. drvr->proto->configure_addr_mode = brcmf_msgbuf_configure_addr_mode;
  1147. drvr->proto->delete_peer = brcmf_msgbuf_delete_peer;
  1148. drvr->proto->add_tdls_peer = brcmf_msgbuf_add_tdls_peer;
  1149. drvr->proto->pd = msgbuf;
  1150. init_waitqueue_head(&msgbuf->ioctl_resp_wait);
  1151. msgbuf->commonrings =
  1152. (struct brcmf_commonring **)if_msgbuf->commonrings;
  1153. msgbuf->flowrings = (struct brcmf_commonring **)if_msgbuf->flowrings;
  1154. msgbuf->nrof_flowrings = if_msgbuf->nrof_flowrings;
  1155. msgbuf->flowring_dma_handle = kzalloc(msgbuf->nrof_flowrings *
  1156. sizeof(*msgbuf->flowring_dma_handle), GFP_KERNEL);
  1157. if (!msgbuf->flowring_dma_handle)
  1158. goto fail;
  1159. msgbuf->rx_dataoffset = if_msgbuf->rx_dataoffset;
  1160. msgbuf->max_rxbufpost = if_msgbuf->max_rxbufpost;
  1161. msgbuf->max_ioctlrespbuf = BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST;
  1162. msgbuf->max_eventbuf = BRCMF_MSGBUF_MAX_EVENTBUF_POST;
  1163. msgbuf->tx_pktids = brcmf_msgbuf_init_pktids(NR_TX_PKTIDS,
  1164. DMA_TO_DEVICE);
  1165. if (!msgbuf->tx_pktids)
  1166. goto fail;
  1167. msgbuf->rx_pktids = brcmf_msgbuf_init_pktids(NR_RX_PKTIDS,
  1168. DMA_FROM_DEVICE);
  1169. if (!msgbuf->rx_pktids)
  1170. goto fail;
  1171. msgbuf->flow = brcmf_flowring_attach(drvr->bus_if->dev,
  1172. if_msgbuf->nrof_flowrings);
  1173. if (!msgbuf->flow)
  1174. goto fail;
  1175. brcmf_dbg(MSGBUF, "Feeding buffers, rx data %d, rx event %d, rx ioctl resp %d\n",
  1176. msgbuf->max_rxbufpost, msgbuf->max_eventbuf,
  1177. msgbuf->max_ioctlrespbuf);
  1178. count = 0;
  1179. do {
  1180. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  1181. if (msgbuf->max_rxbufpost != msgbuf->rxbufpost)
  1182. msleep(10);
  1183. else
  1184. break;
  1185. count++;
  1186. } while (count < 10);
  1187. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  1188. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  1189. INIT_WORK(&msgbuf->flowring_work, brcmf_msgbuf_flowring_worker);
  1190. spin_lock_init(&msgbuf->flowring_work_lock);
  1191. INIT_LIST_HEAD(&msgbuf->work_queue);
  1192. return 0;
  1193. fail:
  1194. if (msgbuf) {
  1195. kfree(msgbuf->flow_map);
  1196. kfree(msgbuf->txstatus_done_map);
  1197. brcmf_msgbuf_release_pktids(msgbuf);
  1198. kfree(msgbuf->flowring_dma_handle);
  1199. if (msgbuf->ioctbuf)
  1200. dma_free_coherent(drvr->bus_if->dev,
  1201. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1202. msgbuf->ioctbuf,
  1203. msgbuf->ioctbuf_handle);
  1204. kfree(msgbuf);
  1205. }
  1206. return -ENOMEM;
  1207. }
  1208. void brcmf_proto_msgbuf_detach(struct brcmf_pub *drvr)
  1209. {
  1210. struct brcmf_msgbuf *msgbuf;
  1211. struct brcmf_msgbuf_work_item *work;
  1212. brcmf_dbg(TRACE, "Enter\n");
  1213. if (drvr->proto->pd) {
  1214. msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1215. cancel_work_sync(&msgbuf->flowring_work);
  1216. while (!list_empty(&msgbuf->work_queue)) {
  1217. work = list_first_entry(&msgbuf->work_queue,
  1218. struct brcmf_msgbuf_work_item,
  1219. queue);
  1220. list_del(&work->queue);
  1221. kfree(work);
  1222. }
  1223. kfree(msgbuf->flow_map);
  1224. kfree(msgbuf->txstatus_done_map);
  1225. if (msgbuf->txflow_wq)
  1226. destroy_workqueue(msgbuf->txflow_wq);
  1227. brcmf_flowring_detach(msgbuf->flow);
  1228. dma_free_coherent(drvr->bus_if->dev,
  1229. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1230. msgbuf->ioctbuf, msgbuf->ioctbuf_handle);
  1231. brcmf_msgbuf_release_pktids(msgbuf);
  1232. kfree(msgbuf->flowring_dma_handle);
  1233. kfree(msgbuf);
  1234. drvr->proto->pd = NULL;
  1235. }
  1236. }