chip.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * Copyright (c) 2014 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/ssb/ssb_regs.h>
  20. #include <linux/bcma/bcma.h>
  21. #include <linux/bcma/bcma_regs.h>
  22. #include <defs.h>
  23. #include <soc.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_utils.h>
  26. #include <chipcommon.h>
  27. #include "debug.h"
  28. #include "chip.h"
  29. /* SOC Interconnect types (aka chip types) */
  30. #define SOCI_SB 0
  31. #define SOCI_AI 1
  32. /* PL-368 DMP definitions */
  33. #define DMP_DESC_TYPE_MSK 0x0000000F
  34. #define DMP_DESC_EMPTY 0x00000000
  35. #define DMP_DESC_VALID 0x00000001
  36. #define DMP_DESC_COMPONENT 0x00000001
  37. #define DMP_DESC_MASTER_PORT 0x00000003
  38. #define DMP_DESC_ADDRESS 0x00000005
  39. #define DMP_DESC_ADDRSIZE_GT32 0x00000008
  40. #define DMP_DESC_EOT 0x0000000F
  41. #define DMP_COMP_DESIGNER 0xFFF00000
  42. #define DMP_COMP_DESIGNER_S 20
  43. #define DMP_COMP_PARTNUM 0x000FFF00
  44. #define DMP_COMP_PARTNUM_S 8
  45. #define DMP_COMP_CLASS 0x000000F0
  46. #define DMP_COMP_CLASS_S 4
  47. #define DMP_COMP_REVISION 0xFF000000
  48. #define DMP_COMP_REVISION_S 24
  49. #define DMP_COMP_NUM_SWRAP 0x00F80000
  50. #define DMP_COMP_NUM_SWRAP_S 19
  51. #define DMP_COMP_NUM_MWRAP 0x0007C000
  52. #define DMP_COMP_NUM_MWRAP_S 14
  53. #define DMP_COMP_NUM_SPORT 0x00003E00
  54. #define DMP_COMP_NUM_SPORT_S 9
  55. #define DMP_COMP_NUM_MPORT 0x000001F0
  56. #define DMP_COMP_NUM_MPORT_S 4
  57. #define DMP_MASTER_PORT_UID 0x0000FF00
  58. #define DMP_MASTER_PORT_UID_S 8
  59. #define DMP_MASTER_PORT_NUM 0x000000F0
  60. #define DMP_MASTER_PORT_NUM_S 4
  61. #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
  62. #define DMP_SLAVE_ADDR_BASE_S 12
  63. #define DMP_SLAVE_PORT_NUM 0x00000F00
  64. #define DMP_SLAVE_PORT_NUM_S 8
  65. #define DMP_SLAVE_TYPE 0x000000C0
  66. #define DMP_SLAVE_TYPE_S 6
  67. #define DMP_SLAVE_TYPE_SLAVE 0
  68. #define DMP_SLAVE_TYPE_BRIDGE 1
  69. #define DMP_SLAVE_TYPE_SWRAP 2
  70. #define DMP_SLAVE_TYPE_MWRAP 3
  71. #define DMP_SLAVE_SIZE_TYPE 0x00000030
  72. #define DMP_SLAVE_SIZE_TYPE_S 4
  73. #define DMP_SLAVE_SIZE_4K 0
  74. #define DMP_SLAVE_SIZE_8K 1
  75. #define DMP_SLAVE_SIZE_16K 2
  76. #define DMP_SLAVE_SIZE_DESC 3
  77. /* EROM CompIdentB */
  78. #define CIB_REV_MASK 0xff000000
  79. #define CIB_REV_SHIFT 24
  80. /* ARM CR4 core specific control flag bits */
  81. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  82. /* D11 core specific control flag bits */
  83. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  84. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  85. /* chip core base & ramsize */
  86. /* bcm4329 */
  87. /* SDIO device core, ID 0x829 */
  88. #define BCM4329_CORE_BUS_BASE 0x18011000
  89. /* internal memory core, ID 0x80e */
  90. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  91. /* ARM Cortex M3 core, ID 0x82a */
  92. #define BCM4329_CORE_ARM_BASE 0x18002000
  93. #define CORE_SB(base, field) \
  94. (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
  95. #define SBCOREREV(sbidh) \
  96. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  97. ((sbidh) & SSB_IDHIGH_RCLO))
  98. struct sbconfig {
  99. u32 PAD[2];
  100. u32 sbipsflag; /* initiator port ocp slave flag */
  101. u32 PAD[3];
  102. u32 sbtpsflag; /* target port ocp slave flag */
  103. u32 PAD[11];
  104. u32 sbtmerrloga; /* (sonics >= 2.3) */
  105. u32 PAD;
  106. u32 sbtmerrlog; /* (sonics >= 2.3) */
  107. u32 PAD[3];
  108. u32 sbadmatch3; /* address match3 */
  109. u32 PAD;
  110. u32 sbadmatch2; /* address match2 */
  111. u32 PAD;
  112. u32 sbadmatch1; /* address match1 */
  113. u32 PAD[7];
  114. u32 sbimstate; /* initiator agent state */
  115. u32 sbintvec; /* interrupt mask */
  116. u32 sbtmstatelow; /* target state */
  117. u32 sbtmstatehigh; /* target state */
  118. u32 sbbwa0; /* bandwidth allocation table0 */
  119. u32 PAD;
  120. u32 sbimconfiglow; /* initiator configuration */
  121. u32 sbimconfighigh; /* initiator configuration */
  122. u32 sbadmatch0; /* address match0 */
  123. u32 PAD;
  124. u32 sbtmconfiglow; /* target configuration */
  125. u32 sbtmconfighigh; /* target configuration */
  126. u32 sbbconfig; /* broadcast configuration */
  127. u32 PAD;
  128. u32 sbbstate; /* broadcast state */
  129. u32 PAD[3];
  130. u32 sbactcnfg; /* activate configuration */
  131. u32 PAD[3];
  132. u32 sbflagst; /* current sbflags */
  133. u32 PAD[3];
  134. u32 sbidlow; /* identification */
  135. u32 sbidhigh; /* identification */
  136. };
  137. /* bankidx and bankinfo reg defines corerev >= 8 */
  138. #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
  139. #define SOCRAM_BANKINFO_SZMASK 0x0000007f
  140. #define SOCRAM_BANKIDX_ROM_MASK 0x00000100
  141. #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
  142. /* socram bankinfo memtype */
  143. #define SOCRAM_MEMTYPE_RAM 0
  144. #define SOCRAM_MEMTYPE_R0M 1
  145. #define SOCRAM_MEMTYPE_DEVRAM 2
  146. #define SOCRAM_BANKINFO_SZBASE 8192
  147. #define SRCI_LSS_MASK 0x00f00000
  148. #define SRCI_LSS_SHIFT 20
  149. #define SRCI_SRNB_MASK 0xf0
  150. #define SRCI_SRNB_SHIFT 4
  151. #define SRCI_SRBSZ_MASK 0xf
  152. #define SRCI_SRBSZ_SHIFT 0
  153. #define SR_BSZ_BASE 14
  154. struct sbsocramregs {
  155. u32 coreinfo;
  156. u32 bwalloc;
  157. u32 extracoreinfo;
  158. u32 biststat;
  159. u32 bankidx;
  160. u32 standbyctrl;
  161. u32 errlogstatus; /* rev 6 */
  162. u32 errlogaddr; /* rev 6 */
  163. /* used for patching rev 3 & 5 */
  164. u32 cambankidx;
  165. u32 cambankstandbyctrl;
  166. u32 cambankpatchctrl;
  167. u32 cambankpatchtblbaseaddr;
  168. u32 cambankcmdreg;
  169. u32 cambankdatareg;
  170. u32 cambankmaskreg;
  171. u32 PAD[1];
  172. u32 bankinfo; /* corev 8 */
  173. u32 bankpda;
  174. u32 PAD[14];
  175. u32 extmemconfig;
  176. u32 extmemparitycsr;
  177. u32 extmemparityerrdata;
  178. u32 extmemparityerrcnt;
  179. u32 extmemwrctrlandsize;
  180. u32 PAD[84];
  181. u32 workaround;
  182. u32 pwrctl; /* corerev >= 2 */
  183. u32 PAD[133];
  184. u32 sr_control; /* corerev >= 15 */
  185. u32 sr_status; /* corerev >= 15 */
  186. u32 sr_address; /* corerev >= 15 */
  187. u32 sr_data; /* corerev >= 15 */
  188. };
  189. #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
  190. #define ARMCR4_CAP (0x04)
  191. #define ARMCR4_BANKIDX (0x40)
  192. #define ARMCR4_BANKINFO (0x44)
  193. #define ARMCR4_BANKPDA (0x4C)
  194. #define ARMCR4_TCBBNB_MASK 0xf0
  195. #define ARMCR4_TCBBNB_SHIFT 4
  196. #define ARMCR4_TCBANB_MASK 0xf
  197. #define ARMCR4_TCBANB_SHIFT 0
  198. #define ARMCR4_BSZ_MASK 0x3f
  199. #define ARMCR4_BSZ_MULT 8192
  200. struct brcmf_core_priv {
  201. struct brcmf_core pub;
  202. u32 wrapbase;
  203. struct list_head list;
  204. struct brcmf_chip_priv *chip;
  205. };
  206. struct brcmf_chip_priv {
  207. struct brcmf_chip pub;
  208. const struct brcmf_buscore_ops *ops;
  209. void *ctx;
  210. /* assured first core is chipcommon, second core is buscore */
  211. struct list_head cores;
  212. u16 num_cores;
  213. bool (*iscoreup)(struct brcmf_core_priv *core);
  214. void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
  215. u32 reset);
  216. void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
  217. u32 postreset);
  218. };
  219. static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
  220. struct brcmf_core *core)
  221. {
  222. u32 regdata;
  223. regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
  224. core->rev = SBCOREREV(regdata);
  225. }
  226. static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
  227. {
  228. struct brcmf_chip_priv *ci;
  229. u32 regdata;
  230. u32 address;
  231. ci = core->chip;
  232. address = CORE_SB(core->pub.base, sbtmstatelow);
  233. regdata = ci->ops->read32(ci->ctx, address);
  234. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  235. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  236. return SSB_TMSLOW_CLOCK == regdata;
  237. }
  238. static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
  239. {
  240. struct brcmf_chip_priv *ci;
  241. u32 regdata;
  242. bool ret;
  243. ci = core->chip;
  244. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  245. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  246. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  247. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  248. return ret;
  249. }
  250. static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
  251. u32 prereset, u32 reset)
  252. {
  253. struct brcmf_chip_priv *ci;
  254. u32 val, base;
  255. ci = core->chip;
  256. base = core->pub.base;
  257. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  258. if (val & SSB_TMSLOW_RESET)
  259. return;
  260. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  261. if ((val & SSB_TMSLOW_CLOCK) != 0) {
  262. /*
  263. * set target reject and spin until busy is clear
  264. * (preserve core-specific bits)
  265. */
  266. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  267. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  268. val | SSB_TMSLOW_REJECT);
  269. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  270. udelay(1);
  271. SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
  272. & SSB_TMSHIGH_BUSY), 100000);
  273. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  274. if (val & SSB_TMSHIGH_BUSY)
  275. brcmf_err("core state still busy\n");
  276. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  277. if (val & SSB_IDLOW_INITIATOR) {
  278. val = ci->ops->read32(ci->ctx,
  279. CORE_SB(base, sbimstate));
  280. val |= SSB_IMSTATE_REJECT;
  281. ci->ops->write32(ci->ctx,
  282. CORE_SB(base, sbimstate), val);
  283. val = ci->ops->read32(ci->ctx,
  284. CORE_SB(base, sbimstate));
  285. udelay(1);
  286. SPINWAIT((ci->ops->read32(ci->ctx,
  287. CORE_SB(base, sbimstate)) &
  288. SSB_IMSTATE_BUSY), 100000);
  289. }
  290. /* set reset and reject while enabling the clocks */
  291. val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  292. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  293. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
  294. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  295. udelay(10);
  296. /* clear the initiator reject bit */
  297. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  298. if (val & SSB_IDLOW_INITIATOR) {
  299. val = ci->ops->read32(ci->ctx,
  300. CORE_SB(base, sbimstate));
  301. val &= ~SSB_IMSTATE_REJECT;
  302. ci->ops->write32(ci->ctx,
  303. CORE_SB(base, sbimstate), val);
  304. }
  305. }
  306. /* leave reset and reject asserted */
  307. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  308. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
  309. udelay(1);
  310. }
  311. static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
  312. u32 prereset, u32 reset)
  313. {
  314. struct brcmf_chip_priv *ci;
  315. u32 regdata;
  316. ci = core->chip;
  317. /* if core is already in reset, skip reset */
  318. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  319. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  320. goto in_reset_configure;
  321. /* configure reset */
  322. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  323. prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  324. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  325. /* put in reset */
  326. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
  327. BCMA_RESET_CTL_RESET);
  328. usleep_range(10, 20);
  329. /* wait till reset is 1 */
  330. SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
  331. BCMA_RESET_CTL_RESET, 300);
  332. in_reset_configure:
  333. /* in-reset configure */
  334. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  335. reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  336. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  337. }
  338. static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
  339. u32 reset, u32 postreset)
  340. {
  341. struct brcmf_chip_priv *ci;
  342. u32 regdata;
  343. u32 base;
  344. ci = core->chip;
  345. base = core->pub.base;
  346. /*
  347. * Must do the disable sequence first to work for
  348. * arbitrary current core state.
  349. */
  350. brcmf_chip_sb_coredisable(core, 0, 0);
  351. /*
  352. * Now do the initialization sequence.
  353. * set reset while enabling the clock and
  354. * forcing them on throughout the core
  355. */
  356. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  357. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  358. SSB_TMSLOW_RESET);
  359. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  360. udelay(1);
  361. /* clear any serror */
  362. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  363. if (regdata & SSB_TMSHIGH_SERR)
  364. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
  365. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
  366. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  367. regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  368. ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
  369. }
  370. /* clear reset and allow it to propagate throughout the core */
  371. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  372. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
  373. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  374. udelay(1);
  375. /* leave clock enabled */
  376. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  377. SSB_TMSLOW_CLOCK);
  378. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  379. udelay(1);
  380. }
  381. static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
  382. u32 reset, u32 postreset)
  383. {
  384. struct brcmf_chip_priv *ci;
  385. int count;
  386. ci = core->chip;
  387. /* must disable first to work for arbitrary current core state */
  388. brcmf_chip_ai_coredisable(core, prereset, reset);
  389. count = 0;
  390. while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
  391. BCMA_RESET_CTL_RESET) {
  392. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
  393. count++;
  394. if (count > 50)
  395. break;
  396. usleep_range(40, 60);
  397. }
  398. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  399. postreset | BCMA_IOCTL_CLK);
  400. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  401. }
  402. static char *brcmf_chip_name(uint chipid, char *buf, uint len)
  403. {
  404. const char *fmt;
  405. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  406. snprintf(buf, len, fmt, chipid);
  407. return buf;
  408. }
  409. static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
  410. u16 coreid, u32 base,
  411. u32 wrapbase)
  412. {
  413. struct brcmf_core_priv *core;
  414. core = kzalloc(sizeof(*core), GFP_KERNEL);
  415. if (!core)
  416. return ERR_PTR(-ENOMEM);
  417. core->pub.id = coreid;
  418. core->pub.base = base;
  419. core->chip = ci;
  420. core->wrapbase = wrapbase;
  421. list_add_tail(&core->list, &ci->cores);
  422. return &core->pub;
  423. }
  424. /* safety check for chipinfo */
  425. static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  426. {
  427. struct brcmf_core_priv *core;
  428. bool need_socram = false;
  429. bool has_socram = false;
  430. bool cpu_found = false;
  431. int idx = 1;
  432. list_for_each_entry(core, &ci->cores, list) {
  433. brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
  434. idx++, core->pub.id, core->pub.rev, core->pub.base,
  435. core->wrapbase);
  436. switch (core->pub.id) {
  437. case BCMA_CORE_ARM_CM3:
  438. cpu_found = true;
  439. need_socram = true;
  440. break;
  441. case BCMA_CORE_INTERNAL_MEM:
  442. has_socram = true;
  443. break;
  444. case BCMA_CORE_ARM_CR4:
  445. cpu_found = true;
  446. break;
  447. default:
  448. break;
  449. }
  450. }
  451. if (!cpu_found) {
  452. brcmf_err("CPU core not detected\n");
  453. return -ENXIO;
  454. }
  455. /* check RAM core presence for ARM CM3 core */
  456. if (need_socram && !has_socram) {
  457. brcmf_err("RAM core not provided with ARM CM3 core\n");
  458. return -ENODEV;
  459. }
  460. return 0;
  461. }
  462. static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
  463. {
  464. return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
  465. }
  466. static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
  467. u16 reg, u32 val)
  468. {
  469. core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
  470. }
  471. static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
  472. u32 *banksize)
  473. {
  474. u32 bankinfo;
  475. u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
  476. bankidx |= idx;
  477. brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
  478. bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
  479. *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
  480. *banksize *= SOCRAM_BANKINFO_SZBASE;
  481. return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
  482. }
  483. static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
  484. u32 *srsize)
  485. {
  486. u32 coreinfo;
  487. uint nb, banksize, lss;
  488. bool retent;
  489. int i;
  490. *ramsize = 0;
  491. *srsize = 0;
  492. if (WARN_ON(sr->pub.rev < 4))
  493. return;
  494. if (!brcmf_chip_iscoreup(&sr->pub))
  495. brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
  496. /* Get info for determining size */
  497. coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
  498. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  499. if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
  500. banksize = (coreinfo & SRCI_SRBSZ_MASK);
  501. lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
  502. if (lss != 0)
  503. nb--;
  504. *ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
  505. if (lss != 0)
  506. *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
  507. } else {
  508. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  509. for (i = 0; i < nb; i++) {
  510. retent = brcmf_chip_socram_banksize(sr, i, &banksize);
  511. *ramsize += banksize;
  512. if (retent)
  513. *srsize += banksize;
  514. }
  515. }
  516. /* hardcoded save&restore memory sizes */
  517. switch (sr->chip->pub.chip) {
  518. case BRCM_CC_4334_CHIP_ID:
  519. if (sr->chip->pub.chiprev < 2)
  520. *srsize = (32 * 1024);
  521. break;
  522. case BRCM_CC_43430_CHIP_ID:
  523. /* assume sr for now as we can not check
  524. * firmware sr capability at this point.
  525. */
  526. *srsize = (64 * 1024);
  527. break;
  528. default:
  529. break;
  530. }
  531. }
  532. /** Return the TCM-RAM size of the ARMCR4 core. */
  533. static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
  534. {
  535. u32 corecap;
  536. u32 memsize = 0;
  537. u32 nab;
  538. u32 nbb;
  539. u32 totb;
  540. u32 bxinfo;
  541. u32 idx;
  542. corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
  543. nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
  544. nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
  545. totb = nab + nbb;
  546. for (idx = 0; idx < totb; idx++) {
  547. brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
  548. bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
  549. memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
  550. }
  551. return memsize;
  552. }
  553. static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
  554. {
  555. switch (ci->pub.chip) {
  556. case BRCM_CC_4345_CHIP_ID:
  557. return 0x198000;
  558. case BRCM_CC_4335_CHIP_ID:
  559. case BRCM_CC_4339_CHIP_ID:
  560. case BRCM_CC_4354_CHIP_ID:
  561. case BRCM_CC_4356_CHIP_ID:
  562. case BRCM_CC_43567_CHIP_ID:
  563. case BRCM_CC_43569_CHIP_ID:
  564. case BRCM_CC_43570_CHIP_ID:
  565. case BRCM_CC_43602_CHIP_ID:
  566. return 0x180000;
  567. default:
  568. brcmf_err("unknown chip: %s\n", ci->pub.name);
  569. break;
  570. }
  571. return 0;
  572. }
  573. static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
  574. {
  575. struct brcmf_core_priv *mem_core;
  576. struct brcmf_core *mem;
  577. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
  578. if (mem) {
  579. mem_core = container_of(mem, struct brcmf_core_priv, pub);
  580. ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
  581. ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
  582. if (!ci->pub.rambase) {
  583. brcmf_err("RAM base not provided with ARM CR4 core\n");
  584. return -EINVAL;
  585. }
  586. } else {
  587. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_INTERNAL_MEM);
  588. mem_core = container_of(mem, struct brcmf_core_priv, pub);
  589. brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
  590. &ci->pub.srsize);
  591. }
  592. brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
  593. ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
  594. ci->pub.srsize, ci->pub.srsize);
  595. if (!ci->pub.ramsize) {
  596. brcmf_err("RAM size is undetermined\n");
  597. return -ENOMEM;
  598. }
  599. return 0;
  600. }
  601. static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
  602. u8 *type)
  603. {
  604. u32 val;
  605. /* read next descriptor */
  606. val = ci->ops->read32(ci->ctx, *eromaddr);
  607. *eromaddr += 4;
  608. if (!type)
  609. return val;
  610. /* determine descriptor type */
  611. *type = (val & DMP_DESC_TYPE_MSK);
  612. if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
  613. *type = DMP_DESC_ADDRESS;
  614. return val;
  615. }
  616. static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
  617. u32 *regbase, u32 *wrapbase)
  618. {
  619. u8 desc;
  620. u32 val;
  621. u8 mpnum = 0;
  622. u8 stype, sztype, wraptype;
  623. *regbase = 0;
  624. *wrapbase = 0;
  625. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  626. if (desc == DMP_DESC_MASTER_PORT) {
  627. mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
  628. wraptype = DMP_SLAVE_TYPE_MWRAP;
  629. } else if (desc == DMP_DESC_ADDRESS) {
  630. /* revert erom address */
  631. *eromaddr -= 4;
  632. wraptype = DMP_SLAVE_TYPE_SWRAP;
  633. } else {
  634. *eromaddr -= 4;
  635. return -EILSEQ;
  636. }
  637. do {
  638. /* locate address descriptor */
  639. do {
  640. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  641. /* unexpected table end */
  642. if (desc == DMP_DESC_EOT) {
  643. *eromaddr -= 4;
  644. return -EFAULT;
  645. }
  646. } while (desc != DMP_DESC_ADDRESS);
  647. /* skip upper 32-bit address descriptor */
  648. if (val & DMP_DESC_ADDRSIZE_GT32)
  649. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  650. sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
  651. /* next size descriptor can be skipped */
  652. if (sztype == DMP_SLAVE_SIZE_DESC) {
  653. val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  654. /* skip upper size descriptor if present */
  655. if (val & DMP_DESC_ADDRSIZE_GT32)
  656. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  657. }
  658. /* only look for 4K register regions */
  659. if (sztype != DMP_SLAVE_SIZE_4K)
  660. continue;
  661. stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
  662. /* only regular slave and wrapper */
  663. if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
  664. *regbase = val & DMP_SLAVE_ADDR_BASE;
  665. if (*wrapbase == 0 && stype == wraptype)
  666. *wrapbase = val & DMP_SLAVE_ADDR_BASE;
  667. } while (*regbase == 0 || *wrapbase == 0);
  668. return 0;
  669. }
  670. static
  671. int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
  672. {
  673. struct brcmf_core *core;
  674. u32 eromaddr;
  675. u8 desc_type = 0;
  676. u32 val;
  677. u16 id;
  678. u8 nmp, nsp, nmw, nsw, rev;
  679. u32 base, wrap;
  680. int err;
  681. eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
  682. while (desc_type != DMP_DESC_EOT) {
  683. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  684. if (!(val & DMP_DESC_VALID))
  685. continue;
  686. if (desc_type == DMP_DESC_EMPTY)
  687. continue;
  688. /* need a component descriptor */
  689. if (desc_type != DMP_DESC_COMPONENT)
  690. continue;
  691. id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
  692. /* next descriptor must be component as well */
  693. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  694. if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
  695. return -EFAULT;
  696. /* only look at cores with master port(s) */
  697. nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
  698. nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
  699. nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
  700. nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
  701. rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
  702. /* need core with ports */
  703. if (nmw + nsw == 0)
  704. continue;
  705. /* try to obtain register address info */
  706. err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
  707. if (err)
  708. continue;
  709. /* finally a core to be added */
  710. core = brcmf_chip_add_core(ci, id, base, wrap);
  711. if (IS_ERR(core))
  712. return PTR_ERR(core);
  713. core->rev = rev;
  714. }
  715. return 0;
  716. }
  717. static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
  718. {
  719. struct brcmf_core *core;
  720. u32 regdata;
  721. u32 socitype;
  722. int ret;
  723. /* Get CC core rev
  724. * Chipid is assume to be at offset 0 from SI_ENUM_BASE
  725. * For different chiptypes or old sdio hosts w/o chipcommon,
  726. * other ways of recognition should be added here.
  727. */
  728. regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
  729. ci->pub.chip = regdata & CID_ID_MASK;
  730. ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  731. socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  732. brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
  733. brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
  734. socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
  735. ci->pub.chiprev);
  736. if (socitype == SOCI_SB) {
  737. if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
  738. brcmf_err("SB chip is not supported\n");
  739. return -ENODEV;
  740. }
  741. ci->iscoreup = brcmf_chip_sb_iscoreup;
  742. ci->coredisable = brcmf_chip_sb_coredisable;
  743. ci->resetcore = brcmf_chip_sb_resetcore;
  744. core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
  745. SI_ENUM_BASE, 0);
  746. brcmf_chip_sb_corerev(ci, core);
  747. core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
  748. BCM4329_CORE_BUS_BASE, 0);
  749. brcmf_chip_sb_corerev(ci, core);
  750. core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
  751. BCM4329_CORE_SOCRAM_BASE, 0);
  752. brcmf_chip_sb_corerev(ci, core);
  753. core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
  754. BCM4329_CORE_ARM_BASE, 0);
  755. brcmf_chip_sb_corerev(ci, core);
  756. core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
  757. brcmf_chip_sb_corerev(ci, core);
  758. } else if (socitype == SOCI_AI) {
  759. ci->iscoreup = brcmf_chip_ai_iscoreup;
  760. ci->coredisable = brcmf_chip_ai_coredisable;
  761. ci->resetcore = brcmf_chip_ai_resetcore;
  762. brcmf_chip_dmp_erom_scan(ci);
  763. } else {
  764. brcmf_err("chip backplane type %u is not supported\n",
  765. socitype);
  766. return -ENODEV;
  767. }
  768. ret = brcmf_chip_cores_check(ci);
  769. if (ret)
  770. return ret;
  771. /* assure chip is passive for core access */
  772. brcmf_chip_set_passive(&ci->pub);
  773. return brcmf_chip_get_raminfo(ci);
  774. }
  775. static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
  776. {
  777. struct brcmf_core *core;
  778. struct brcmf_core_priv *cr4;
  779. u32 val;
  780. core = brcmf_chip_get_core(&chip->pub, id);
  781. if (!core)
  782. return;
  783. switch (id) {
  784. case BCMA_CORE_ARM_CM3:
  785. brcmf_chip_coredisable(core, 0, 0);
  786. break;
  787. case BCMA_CORE_ARM_CR4:
  788. cr4 = container_of(core, struct brcmf_core_priv, pub);
  789. /* clear all IOCTL bits except HALT bit */
  790. val = chip->ops->read32(chip->ctx, cr4->wrapbase + BCMA_IOCTL);
  791. val &= ARMCR4_BCMA_IOCTL_CPUHALT;
  792. brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
  793. ARMCR4_BCMA_IOCTL_CPUHALT);
  794. break;
  795. default:
  796. brcmf_err("unknown id: %u\n", id);
  797. break;
  798. }
  799. }
  800. static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
  801. {
  802. struct brcmf_chip *pub;
  803. struct brcmf_core_priv *cc;
  804. u32 base;
  805. u32 val;
  806. int ret = 0;
  807. pub = &chip->pub;
  808. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  809. base = cc->pub.base;
  810. /* get chipcommon capabilites */
  811. pub->cc_caps = chip->ops->read32(chip->ctx,
  812. CORE_CC_REG(base, capabilities));
  813. /* get pmu caps & rev */
  814. if (pub->cc_caps & CC_CAP_PMU) {
  815. val = chip->ops->read32(chip->ctx,
  816. CORE_CC_REG(base, pmucapabilities));
  817. pub->pmurev = val & PCAP_REV_MASK;
  818. pub->pmucaps = val;
  819. }
  820. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
  821. cc->pub.rev, pub->pmurev, pub->pmucaps);
  822. /* execute bus core specific setup */
  823. if (chip->ops->setup)
  824. ret = chip->ops->setup(chip->ctx, pub);
  825. return ret;
  826. }
  827. struct brcmf_chip *brcmf_chip_attach(void *ctx,
  828. const struct brcmf_buscore_ops *ops)
  829. {
  830. struct brcmf_chip_priv *chip;
  831. int err = 0;
  832. if (WARN_ON(!ops->read32))
  833. err = -EINVAL;
  834. if (WARN_ON(!ops->write32))
  835. err = -EINVAL;
  836. if (WARN_ON(!ops->prepare))
  837. err = -EINVAL;
  838. if (WARN_ON(!ops->activate))
  839. err = -EINVAL;
  840. if (err < 0)
  841. return ERR_PTR(-EINVAL);
  842. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  843. if (!chip)
  844. return ERR_PTR(-ENOMEM);
  845. INIT_LIST_HEAD(&chip->cores);
  846. chip->num_cores = 0;
  847. chip->ops = ops;
  848. chip->ctx = ctx;
  849. err = ops->prepare(ctx);
  850. if (err < 0)
  851. goto fail;
  852. err = brcmf_chip_recognition(chip);
  853. if (err < 0)
  854. goto fail;
  855. err = brcmf_chip_setup(chip);
  856. if (err < 0)
  857. goto fail;
  858. return &chip->pub;
  859. fail:
  860. brcmf_chip_detach(&chip->pub);
  861. return ERR_PTR(err);
  862. }
  863. void brcmf_chip_detach(struct brcmf_chip *pub)
  864. {
  865. struct brcmf_chip_priv *chip;
  866. struct brcmf_core_priv *core;
  867. struct brcmf_core_priv *tmp;
  868. chip = container_of(pub, struct brcmf_chip_priv, pub);
  869. list_for_each_entry_safe(core, tmp, &chip->cores, list) {
  870. list_del(&core->list);
  871. kfree(core);
  872. }
  873. kfree(chip);
  874. }
  875. struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
  876. {
  877. struct brcmf_chip_priv *chip;
  878. struct brcmf_core_priv *core;
  879. chip = container_of(pub, struct brcmf_chip_priv, pub);
  880. list_for_each_entry(core, &chip->cores, list)
  881. if (core->pub.id == coreid)
  882. return &core->pub;
  883. return NULL;
  884. }
  885. struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
  886. {
  887. struct brcmf_chip_priv *chip;
  888. struct brcmf_core_priv *cc;
  889. chip = container_of(pub, struct brcmf_chip_priv, pub);
  890. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  891. if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
  892. return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
  893. return &cc->pub;
  894. }
  895. bool brcmf_chip_iscoreup(struct brcmf_core *pub)
  896. {
  897. struct brcmf_core_priv *core;
  898. core = container_of(pub, struct brcmf_core_priv, pub);
  899. return core->chip->iscoreup(core);
  900. }
  901. void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
  902. {
  903. struct brcmf_core_priv *core;
  904. core = container_of(pub, struct brcmf_core_priv, pub);
  905. core->chip->coredisable(core, prereset, reset);
  906. }
  907. void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
  908. u32 postreset)
  909. {
  910. struct brcmf_core_priv *core;
  911. core = container_of(pub, struct brcmf_core_priv, pub);
  912. core->chip->resetcore(core, prereset, reset, postreset);
  913. }
  914. static void
  915. brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
  916. {
  917. struct brcmf_core *core;
  918. struct brcmf_core_priv *sr;
  919. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  920. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  921. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  922. D11_BCMA_IOCTL_PHYCLOCKEN,
  923. D11_BCMA_IOCTL_PHYCLOCKEN,
  924. D11_BCMA_IOCTL_PHYCLOCKEN);
  925. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  926. brcmf_chip_resetcore(core, 0, 0, 0);
  927. /* disable bank #3 remap for this device */
  928. if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
  929. sr = container_of(core, struct brcmf_core_priv, pub);
  930. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
  931. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
  932. }
  933. }
  934. static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
  935. {
  936. struct brcmf_core *core;
  937. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  938. if (!brcmf_chip_iscoreup(core)) {
  939. brcmf_err("SOCRAM core is down after reset?\n");
  940. return false;
  941. }
  942. chip->ops->activate(chip->ctx, &chip->pub, 0);
  943. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
  944. brcmf_chip_resetcore(core, 0, 0, 0);
  945. return true;
  946. }
  947. static inline void
  948. brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
  949. {
  950. struct brcmf_core *core;
  951. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  952. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  953. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  954. D11_BCMA_IOCTL_PHYCLOCKEN,
  955. D11_BCMA_IOCTL_PHYCLOCKEN,
  956. D11_BCMA_IOCTL_PHYCLOCKEN);
  957. }
  958. static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
  959. {
  960. struct brcmf_core *core;
  961. chip->ops->activate(chip->ctx, &chip->pub, rstvec);
  962. /* restore ARM */
  963. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
  964. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  965. return true;
  966. }
  967. void brcmf_chip_set_passive(struct brcmf_chip *pub)
  968. {
  969. struct brcmf_chip_priv *chip;
  970. struct brcmf_core *arm;
  971. brcmf_dbg(TRACE, "Enter\n");
  972. chip = container_of(pub, struct brcmf_chip_priv, pub);
  973. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  974. if (arm) {
  975. brcmf_chip_cr4_set_passive(chip);
  976. return;
  977. }
  978. brcmf_chip_cm3_set_passive(chip);
  979. }
  980. bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
  981. {
  982. struct brcmf_chip_priv *chip;
  983. struct brcmf_core *arm;
  984. brcmf_dbg(TRACE, "Enter\n");
  985. chip = container_of(pub, struct brcmf_chip_priv, pub);
  986. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  987. if (arm)
  988. return brcmf_chip_cr4_set_active(chip, rstvec);
  989. return brcmf_chip_cm3_set_active(chip);
  990. }
  991. bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
  992. {
  993. u32 base, addr, reg, pmu_cc3_mask = ~0;
  994. struct brcmf_chip_priv *chip;
  995. brcmf_dbg(TRACE, "Enter\n");
  996. /* old chips with PMU version less than 17 don't support save restore */
  997. if (pub->pmurev < 17)
  998. return false;
  999. base = brcmf_chip_get_chipcommon(pub)->base;
  1000. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1001. switch (pub->chip) {
  1002. case BRCM_CC_4354_CHIP_ID:
  1003. /* explicitly check SR engine enable bit */
  1004. pmu_cc3_mask = BIT(2);
  1005. /* fall-through */
  1006. case BRCM_CC_43241_CHIP_ID:
  1007. case BRCM_CC_4335_CHIP_ID:
  1008. case BRCM_CC_4339_CHIP_ID:
  1009. /* read PMU chipcontrol register 3 */
  1010. addr = CORE_CC_REG(base, chipcontrol_addr);
  1011. chip->ops->write32(chip->ctx, addr, 3);
  1012. addr = CORE_CC_REG(base, chipcontrol_data);
  1013. reg = chip->ops->read32(chip->ctx, addr);
  1014. return (reg & pmu_cc3_mask) != 0;
  1015. case BRCM_CC_43430_CHIP_ID:
  1016. addr = CORE_CC_REG(base, sr_control1);
  1017. reg = chip->ops->read32(chip->ctx, addr);
  1018. return reg != 0;
  1019. default:
  1020. addr = CORE_CC_REG(base, pmucapabilities_ext);
  1021. reg = chip->ops->read32(chip->ctx, addr);
  1022. if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
  1023. return false;
  1024. addr = CORE_CC_REG(base, retention_ctl);
  1025. reg = chip->ops->read32(chip->ctx, addr);
  1026. return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
  1027. PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
  1028. }
  1029. }