xmit.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid, struct sk_buff *skb);
  47. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  48. int tx_flags, struct ath_txq *txq);
  49. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  50. struct ath_txq *txq, struct list_head *bf_q,
  51. struct ath_tx_status *ts, int txok);
  52. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  53. struct list_head *head, bool internal);
  54. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int nframes, int nbad,
  56. int txok);
  57. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  58. int seqno);
  59. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  60. struct ath_txq *txq,
  61. struct ath_atx_tid *tid,
  62. struct sk_buff *skb);
  63. enum {
  64. MCS_HT20,
  65. MCS_HT20_SGI,
  66. MCS_HT40,
  67. MCS_HT40_SGI,
  68. };
  69. /*********************/
  70. /* Aggregation logic */
  71. /*********************/
  72. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  73. __acquires(&txq->axq_lock)
  74. {
  75. spin_lock_bh(&txq->axq_lock);
  76. }
  77. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  78. __releases(&txq->axq_lock)
  79. {
  80. spin_unlock_bh(&txq->axq_lock);
  81. }
  82. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  83. __releases(&txq->axq_lock)
  84. {
  85. struct sk_buff_head q;
  86. struct sk_buff *skb;
  87. __skb_queue_head_init(&q);
  88. skb_queue_splice_init(&txq->complete_q, &q);
  89. spin_unlock_bh(&txq->axq_lock);
  90. while ((skb = __skb_dequeue(&q)))
  91. ieee80211_tx_status(sc->hw, skb);
  92. }
  93. static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
  94. struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. struct list_head *list;
  98. struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
  99. struct ath_chanctx *ctx = avp->chanctx;
  100. if (!ctx)
  101. return;
  102. if (tid->sched)
  103. return;
  104. tid->sched = true;
  105. list_add_tail(&tid->list, &ac->tid_q);
  106. if (ac->sched)
  107. return;
  108. ac->sched = true;
  109. list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
  110. list_add_tail(&ac->list, list);
  111. }
  112. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  113. {
  114. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  115. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  116. sizeof(tx_info->rate_driver_data));
  117. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  118. }
  119. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  120. {
  121. if (!tid->an->sta)
  122. return;
  123. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  124. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  125. }
  126. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  127. struct ath_buf *bf)
  128. {
  129. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  130. ARRAY_SIZE(bf->rates));
  131. }
  132. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  133. struct sk_buff *skb)
  134. {
  135. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  136. struct ath_frame_info *fi = get_frame_info(skb);
  137. int q = fi->txq;
  138. if (q < 0)
  139. return;
  140. txq = sc->tx.txq_map[q];
  141. if (WARN_ON(--txq->pending_frames < 0))
  142. txq->pending_frames = 0;
  143. if (txq->stopped &&
  144. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  145. if (ath9k_is_chanctx_enabled())
  146. ieee80211_wake_queue(sc->hw, info->hw_queue);
  147. else
  148. ieee80211_wake_queue(sc->hw, q);
  149. txq->stopped = false;
  150. }
  151. }
  152. static struct ath_atx_tid *
  153. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  154. {
  155. u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
  156. return ATH_AN_2_TID(an, tidno);
  157. }
  158. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  159. {
  160. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  161. }
  162. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  163. {
  164. struct sk_buff *skb;
  165. skb = __skb_dequeue(&tid->retry_q);
  166. if (!skb)
  167. skb = __skb_dequeue(&tid->buf_q);
  168. return skb;
  169. }
  170. /*
  171. * ath_tx_tid_change_state:
  172. * - clears a-mpdu flag of previous session
  173. * - force sequence number allocation to fix next BlockAck Window
  174. */
  175. static void
  176. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  177. {
  178. struct ath_txq *txq = tid->ac->txq;
  179. struct ieee80211_tx_info *tx_info;
  180. struct sk_buff *skb, *tskb;
  181. struct ath_buf *bf;
  182. struct ath_frame_info *fi;
  183. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  184. fi = get_frame_info(skb);
  185. bf = fi->bf;
  186. tx_info = IEEE80211_SKB_CB(skb);
  187. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  188. if (bf)
  189. continue;
  190. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  191. if (!bf) {
  192. __skb_unlink(skb, &tid->buf_q);
  193. ath_txq_skb_done(sc, txq, skb);
  194. ieee80211_free_txskb(sc->hw, skb);
  195. continue;
  196. }
  197. }
  198. }
  199. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  200. {
  201. struct ath_txq *txq = tid->ac->txq;
  202. struct sk_buff *skb;
  203. struct ath_buf *bf;
  204. struct list_head bf_head;
  205. struct ath_tx_status ts;
  206. struct ath_frame_info *fi;
  207. bool sendbar = false;
  208. INIT_LIST_HEAD(&bf_head);
  209. memset(&ts, 0, sizeof(ts));
  210. while ((skb = __skb_dequeue(&tid->retry_q))) {
  211. fi = get_frame_info(skb);
  212. bf = fi->bf;
  213. if (!bf) {
  214. ath_txq_skb_done(sc, txq, skb);
  215. ieee80211_free_txskb(sc->hw, skb);
  216. continue;
  217. }
  218. if (fi->baw_tracked) {
  219. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  220. sendbar = true;
  221. }
  222. list_add_tail(&bf->list, &bf_head);
  223. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  224. }
  225. if (sendbar) {
  226. ath_txq_unlock(sc, txq);
  227. ath_send_bar(tid, tid->seq_start);
  228. ath_txq_lock(sc, txq);
  229. }
  230. }
  231. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  232. int seqno)
  233. {
  234. int index, cindex;
  235. index = ATH_BA_INDEX(tid->seq_start, seqno);
  236. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  237. __clear_bit(cindex, tid->tx_buf);
  238. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  239. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  240. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  241. if (tid->bar_index >= 0)
  242. tid->bar_index--;
  243. }
  244. }
  245. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  246. struct ath_buf *bf)
  247. {
  248. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  249. u16 seqno = bf->bf_state.seqno;
  250. int index, cindex;
  251. index = ATH_BA_INDEX(tid->seq_start, seqno);
  252. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  253. __set_bit(cindex, tid->tx_buf);
  254. fi->baw_tracked = 1;
  255. if (index >= ((tid->baw_tail - tid->baw_head) &
  256. (ATH_TID_MAX_BUFS - 1))) {
  257. tid->baw_tail = cindex;
  258. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  259. }
  260. }
  261. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  262. struct ath_atx_tid *tid)
  263. {
  264. struct sk_buff *skb;
  265. struct ath_buf *bf;
  266. struct list_head bf_head;
  267. struct ath_tx_status ts;
  268. struct ath_frame_info *fi;
  269. memset(&ts, 0, sizeof(ts));
  270. INIT_LIST_HEAD(&bf_head);
  271. while ((skb = ath_tid_dequeue(tid))) {
  272. fi = get_frame_info(skb);
  273. bf = fi->bf;
  274. if (!bf) {
  275. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  276. continue;
  277. }
  278. list_add_tail(&bf->list, &bf_head);
  279. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  280. }
  281. }
  282. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  283. struct sk_buff *skb, int count)
  284. {
  285. struct ath_frame_info *fi = get_frame_info(skb);
  286. struct ath_buf *bf = fi->bf;
  287. struct ieee80211_hdr *hdr;
  288. int prev = fi->retries;
  289. TX_STAT_INC(txq->axq_qnum, a_retries);
  290. fi->retries += count;
  291. if (prev > 0)
  292. return;
  293. hdr = (struct ieee80211_hdr *)skb->data;
  294. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  295. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  296. sizeof(*hdr), DMA_TO_DEVICE);
  297. }
  298. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  299. {
  300. struct ath_buf *bf = NULL;
  301. spin_lock_bh(&sc->tx.txbuflock);
  302. if (unlikely(list_empty(&sc->tx.txbuf))) {
  303. spin_unlock_bh(&sc->tx.txbuflock);
  304. return NULL;
  305. }
  306. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  307. list_del(&bf->list);
  308. spin_unlock_bh(&sc->tx.txbuflock);
  309. return bf;
  310. }
  311. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  312. {
  313. spin_lock_bh(&sc->tx.txbuflock);
  314. list_add_tail(&bf->list, &sc->tx.txbuf);
  315. spin_unlock_bh(&sc->tx.txbuflock);
  316. }
  317. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  318. {
  319. struct ath_buf *tbf;
  320. tbf = ath_tx_get_buffer(sc);
  321. if (WARN_ON(!tbf))
  322. return NULL;
  323. ATH_TXBUF_RESET(tbf);
  324. tbf->bf_mpdu = bf->bf_mpdu;
  325. tbf->bf_buf_addr = bf->bf_buf_addr;
  326. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  327. tbf->bf_state = bf->bf_state;
  328. tbf->bf_state.stale = false;
  329. return tbf;
  330. }
  331. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  332. struct ath_tx_status *ts, int txok,
  333. int *nframes, int *nbad)
  334. {
  335. struct ath_frame_info *fi;
  336. u16 seq_st = 0;
  337. u32 ba[WME_BA_BMP_SIZE >> 5];
  338. int ba_index;
  339. int isaggr = 0;
  340. *nbad = 0;
  341. *nframes = 0;
  342. isaggr = bf_isaggr(bf);
  343. if (isaggr) {
  344. seq_st = ts->ts_seqnum;
  345. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  346. }
  347. while (bf) {
  348. fi = get_frame_info(bf->bf_mpdu);
  349. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  350. (*nframes)++;
  351. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  352. (*nbad)++;
  353. bf = bf->bf_next;
  354. }
  355. }
  356. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  357. struct ath_buf *bf, struct list_head *bf_q,
  358. struct ath_tx_status *ts, int txok)
  359. {
  360. struct ath_node *an = NULL;
  361. struct sk_buff *skb;
  362. struct ieee80211_sta *sta;
  363. struct ieee80211_hw *hw = sc->hw;
  364. struct ieee80211_hdr *hdr;
  365. struct ieee80211_tx_info *tx_info;
  366. struct ath_atx_tid *tid = NULL;
  367. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  368. struct list_head bf_head;
  369. struct sk_buff_head bf_pending;
  370. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  371. u32 ba[WME_BA_BMP_SIZE >> 5];
  372. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  373. bool rc_update = true, isba;
  374. struct ieee80211_tx_rate rates[4];
  375. struct ath_frame_info *fi;
  376. int nframes;
  377. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  378. int i, retries;
  379. int bar_index = -1;
  380. skb = bf->bf_mpdu;
  381. hdr = (struct ieee80211_hdr *)skb->data;
  382. tx_info = IEEE80211_SKB_CB(skb);
  383. memcpy(rates, bf->rates, sizeof(rates));
  384. retries = ts->ts_longretry + 1;
  385. for (i = 0; i < ts->ts_rateindex; i++)
  386. retries += rates[i].count;
  387. rcu_read_lock();
  388. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  389. if (!sta) {
  390. rcu_read_unlock();
  391. INIT_LIST_HEAD(&bf_head);
  392. while (bf) {
  393. bf_next = bf->bf_next;
  394. if (!bf->bf_state.stale || bf_next != NULL)
  395. list_move_tail(&bf->list, &bf_head);
  396. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  397. bf = bf_next;
  398. }
  399. return;
  400. }
  401. an = (struct ath_node *)sta->drv_priv;
  402. tid = ath_get_skb_tid(sc, an, skb);
  403. seq_first = tid->seq_start;
  404. isba = ts->ts_flags & ATH9K_TX_BA;
  405. /*
  406. * The hardware occasionally sends a tx status for the wrong TID.
  407. * In this case, the BA status cannot be considered valid and all
  408. * subframes need to be retransmitted
  409. *
  410. * Only BlockAcks have a TID and therefore normal Acks cannot be
  411. * checked
  412. */
  413. if (isba && tid->tidno != ts->tid)
  414. txok = false;
  415. isaggr = bf_isaggr(bf);
  416. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  417. if (isaggr && txok) {
  418. if (ts->ts_flags & ATH9K_TX_BA) {
  419. seq_st = ts->ts_seqnum;
  420. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  421. } else {
  422. /*
  423. * AR5416 can become deaf/mute when BA
  424. * issue happens. Chip needs to be reset.
  425. * But AP code may have sychronization issues
  426. * when perform internal reset in this routine.
  427. * Only enable reset in STA mode for now.
  428. */
  429. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  430. needreset = 1;
  431. }
  432. }
  433. __skb_queue_head_init(&bf_pending);
  434. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  435. while (bf) {
  436. u16 seqno = bf->bf_state.seqno;
  437. txfail = txpending = sendbar = 0;
  438. bf_next = bf->bf_next;
  439. skb = bf->bf_mpdu;
  440. tx_info = IEEE80211_SKB_CB(skb);
  441. fi = get_frame_info(skb);
  442. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  443. !tid->active) {
  444. /*
  445. * Outside of the current BlockAck window,
  446. * maybe part of a previous session
  447. */
  448. txfail = 1;
  449. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  450. /* transmit completion, subframe is
  451. * acked by block ack */
  452. acked_cnt++;
  453. } else if (!isaggr && txok) {
  454. /* transmit completion */
  455. acked_cnt++;
  456. } else if (flush) {
  457. txpending = 1;
  458. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  459. if (txok || !an->sleeping)
  460. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  461. retries);
  462. txpending = 1;
  463. } else {
  464. txfail = 1;
  465. txfail_cnt++;
  466. bar_index = max_t(int, bar_index,
  467. ATH_BA_INDEX(seq_first, seqno));
  468. }
  469. /*
  470. * Make sure the last desc is reclaimed if it
  471. * not a holding desc.
  472. */
  473. INIT_LIST_HEAD(&bf_head);
  474. if (bf_next != NULL || !bf_last->bf_state.stale)
  475. list_move_tail(&bf->list, &bf_head);
  476. if (!txpending) {
  477. /*
  478. * complete the acked-ones/xretried ones; update
  479. * block-ack window
  480. */
  481. ath_tx_update_baw(sc, tid, seqno);
  482. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  483. memcpy(tx_info->control.rates, rates, sizeof(rates));
  484. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  485. rc_update = false;
  486. if (bf == bf->bf_lastbf)
  487. ath_dynack_sample_tx_ts(sc->sc_ah,
  488. bf->bf_mpdu,
  489. ts);
  490. }
  491. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  492. !txfail);
  493. } else {
  494. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  495. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  496. ieee80211_sta_eosp(sta);
  497. }
  498. /* retry the un-acked ones */
  499. if (bf->bf_next == NULL && bf_last->bf_state.stale) {
  500. struct ath_buf *tbf;
  501. tbf = ath_clone_txbuf(sc, bf_last);
  502. /*
  503. * Update tx baw and complete the
  504. * frame with failed status if we
  505. * run out of tx buf.
  506. */
  507. if (!tbf) {
  508. ath_tx_update_baw(sc, tid, seqno);
  509. ath_tx_complete_buf(sc, bf, txq,
  510. &bf_head, ts, 0);
  511. bar_index = max_t(int, bar_index,
  512. ATH_BA_INDEX(seq_first, seqno));
  513. break;
  514. }
  515. fi->bf = tbf;
  516. }
  517. /*
  518. * Put this buffer to the temporary pending
  519. * queue to retain ordering
  520. */
  521. __skb_queue_tail(&bf_pending, skb);
  522. }
  523. bf = bf_next;
  524. }
  525. /* prepend un-acked frames to the beginning of the pending frame queue */
  526. if (!skb_queue_empty(&bf_pending)) {
  527. if (an->sleeping)
  528. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  529. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  530. if (!an->sleeping) {
  531. ath_tx_queue_tid(sc, txq, tid);
  532. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  533. tid->ac->clear_ps_filter = true;
  534. }
  535. }
  536. if (bar_index >= 0) {
  537. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  538. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  539. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  540. ath_txq_unlock(sc, txq);
  541. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  542. ath_txq_lock(sc, txq);
  543. }
  544. rcu_read_unlock();
  545. if (needreset)
  546. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  547. }
  548. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  549. {
  550. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  551. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  552. }
  553. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  554. struct ath_tx_status *ts, struct ath_buf *bf,
  555. struct list_head *bf_head)
  556. {
  557. struct ieee80211_tx_info *info;
  558. bool txok, flush;
  559. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  560. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  561. txq->axq_tx_inprogress = false;
  562. txq->axq_depth--;
  563. if (bf_is_ampdu_not_probing(bf))
  564. txq->axq_ampdu_depth--;
  565. ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
  566. ts->ts_rateindex);
  567. if (!bf_isampdu(bf)) {
  568. if (!flush) {
  569. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  570. memcpy(info->control.rates, bf->rates,
  571. sizeof(info->control.rates));
  572. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  573. ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
  574. }
  575. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  576. } else
  577. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  578. if (!flush)
  579. ath_txq_schedule(sc, txq);
  580. }
  581. static bool ath_lookup_legacy(struct ath_buf *bf)
  582. {
  583. struct sk_buff *skb;
  584. struct ieee80211_tx_info *tx_info;
  585. struct ieee80211_tx_rate *rates;
  586. int i;
  587. skb = bf->bf_mpdu;
  588. tx_info = IEEE80211_SKB_CB(skb);
  589. rates = tx_info->control.rates;
  590. for (i = 0; i < 4; i++) {
  591. if (!rates[i].count || rates[i].idx < 0)
  592. break;
  593. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  594. return true;
  595. }
  596. return false;
  597. }
  598. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  599. struct ath_atx_tid *tid)
  600. {
  601. struct sk_buff *skb;
  602. struct ieee80211_tx_info *tx_info;
  603. struct ieee80211_tx_rate *rates;
  604. u32 max_4ms_framelen, frmlen;
  605. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  606. int q = tid->ac->txq->mac80211_qnum;
  607. int i;
  608. skb = bf->bf_mpdu;
  609. tx_info = IEEE80211_SKB_CB(skb);
  610. rates = bf->rates;
  611. /*
  612. * Find the lowest frame length among the rate series that will have a
  613. * 4ms (or TXOP limited) transmit duration.
  614. */
  615. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  616. for (i = 0; i < 4; i++) {
  617. int modeidx;
  618. if (!rates[i].count)
  619. continue;
  620. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  621. legacy = 1;
  622. break;
  623. }
  624. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  625. modeidx = MCS_HT40;
  626. else
  627. modeidx = MCS_HT20;
  628. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  629. modeidx++;
  630. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  631. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  632. }
  633. /*
  634. * limit aggregate size by the minimum rate if rate selected is
  635. * not a probe rate, if rate selected is a probe rate then
  636. * avoid aggregation of this packet.
  637. */
  638. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  639. return 0;
  640. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  641. /*
  642. * Override the default aggregation limit for BTCOEX.
  643. */
  644. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  645. if (bt_aggr_limit)
  646. aggr_limit = bt_aggr_limit;
  647. if (tid->an->maxampdu)
  648. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  649. return aggr_limit;
  650. }
  651. /*
  652. * Returns the number of delimiters to be added to
  653. * meet the minimum required mpdudensity.
  654. */
  655. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  656. struct ath_buf *bf, u16 frmlen,
  657. bool first_subfrm)
  658. {
  659. #define FIRST_DESC_NDELIMS 60
  660. u32 nsymbits, nsymbols;
  661. u16 minlen;
  662. u8 flags, rix;
  663. int width, streams, half_gi, ndelim, mindelim;
  664. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  665. /* Select standard number of delimiters based on frame length alone */
  666. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  667. /*
  668. * If encryption enabled, hardware requires some more padding between
  669. * subframes.
  670. * TODO - this could be improved to be dependent on the rate.
  671. * The hardware can keep up at lower rates, but not higher rates
  672. */
  673. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  674. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  675. ndelim += ATH_AGGR_ENCRYPTDELIM;
  676. /*
  677. * Add delimiter when using RTS/CTS with aggregation
  678. * and non enterprise AR9003 card
  679. */
  680. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  681. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  682. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  683. /*
  684. * Convert desired mpdu density from microeconds to bytes based
  685. * on highest rate in rate series (i.e. first rate) to determine
  686. * required minimum length for subframe. Take into account
  687. * whether high rate is 20 or 40Mhz and half or full GI.
  688. *
  689. * If there is no mpdu density restriction, no further calculation
  690. * is needed.
  691. */
  692. if (tid->an->mpdudensity == 0)
  693. return ndelim;
  694. rix = bf->rates[0].idx;
  695. flags = bf->rates[0].flags;
  696. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  697. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  698. if (half_gi)
  699. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  700. else
  701. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  702. if (nsymbols == 0)
  703. nsymbols = 1;
  704. streams = HT_RC_2_STREAMS(rix);
  705. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  706. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  707. if (frmlen < minlen) {
  708. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  709. ndelim = max(mindelim, ndelim);
  710. }
  711. return ndelim;
  712. }
  713. static struct ath_buf *
  714. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  715. struct ath_atx_tid *tid, struct sk_buff_head **q)
  716. {
  717. struct ieee80211_tx_info *tx_info;
  718. struct ath_frame_info *fi;
  719. struct sk_buff *skb;
  720. struct ath_buf *bf;
  721. u16 seqno;
  722. while (1) {
  723. *q = &tid->retry_q;
  724. if (skb_queue_empty(*q))
  725. *q = &tid->buf_q;
  726. skb = skb_peek(*q);
  727. if (!skb)
  728. break;
  729. fi = get_frame_info(skb);
  730. bf = fi->bf;
  731. if (!fi->bf)
  732. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  733. else
  734. bf->bf_state.stale = false;
  735. if (!bf) {
  736. __skb_unlink(skb, *q);
  737. ath_txq_skb_done(sc, txq, skb);
  738. ieee80211_free_txskb(sc->hw, skb);
  739. continue;
  740. }
  741. bf->bf_next = NULL;
  742. bf->bf_lastbf = bf;
  743. tx_info = IEEE80211_SKB_CB(skb);
  744. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  745. /*
  746. * No aggregation session is running, but there may be frames
  747. * from a previous session or a failed attempt in the queue.
  748. * Send them out as normal data frames
  749. */
  750. if (!tid->active)
  751. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  752. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  753. bf->bf_state.bf_type = 0;
  754. return bf;
  755. }
  756. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  757. seqno = bf->bf_state.seqno;
  758. /* do not step over block-ack window */
  759. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  760. break;
  761. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  762. struct ath_tx_status ts = {};
  763. struct list_head bf_head;
  764. INIT_LIST_HEAD(&bf_head);
  765. list_add(&bf->list, &bf_head);
  766. __skb_unlink(skb, *q);
  767. ath_tx_update_baw(sc, tid, seqno);
  768. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  769. continue;
  770. }
  771. return bf;
  772. }
  773. return NULL;
  774. }
  775. static bool
  776. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  777. struct ath_atx_tid *tid, struct list_head *bf_q,
  778. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  779. int *aggr_len)
  780. {
  781. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  782. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  783. int nframes = 0, ndelim;
  784. u16 aggr_limit = 0, al = 0, bpad = 0,
  785. al_delta, h_baw = tid->baw_size / 2;
  786. struct ieee80211_tx_info *tx_info;
  787. struct ath_frame_info *fi;
  788. struct sk_buff *skb;
  789. bool closed = false;
  790. bf = bf_first;
  791. aggr_limit = ath_lookup_rate(sc, bf, tid);
  792. do {
  793. skb = bf->bf_mpdu;
  794. fi = get_frame_info(skb);
  795. /* do not exceed aggregation limit */
  796. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  797. if (nframes) {
  798. if (aggr_limit < al + bpad + al_delta ||
  799. ath_lookup_legacy(bf) || nframes >= h_baw)
  800. break;
  801. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  802. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  803. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  804. break;
  805. }
  806. /* add padding for previous frame to aggregation length */
  807. al += bpad + al_delta;
  808. /*
  809. * Get the delimiters needed to meet the MPDU
  810. * density for this node.
  811. */
  812. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  813. !nframes);
  814. bpad = PADBYTES(al_delta) + (ndelim << 2);
  815. nframes++;
  816. bf->bf_next = NULL;
  817. /* link buffers of this frame to the aggregate */
  818. if (!fi->baw_tracked)
  819. ath_tx_addto_baw(sc, tid, bf);
  820. bf->bf_state.ndelim = ndelim;
  821. __skb_unlink(skb, tid_q);
  822. list_add_tail(&bf->list, bf_q);
  823. if (bf_prev)
  824. bf_prev->bf_next = bf;
  825. bf_prev = bf;
  826. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  827. if (!bf) {
  828. closed = true;
  829. break;
  830. }
  831. } while (ath_tid_has_buffered(tid));
  832. bf = bf_first;
  833. bf->bf_lastbf = bf_prev;
  834. if (bf == bf_prev) {
  835. al = get_frame_info(bf->bf_mpdu)->framelen;
  836. bf->bf_state.bf_type = BUF_AMPDU;
  837. } else {
  838. TX_STAT_INC(txq->axq_qnum, a_aggr);
  839. }
  840. *aggr_len = al;
  841. return closed;
  842. #undef PADBYTES
  843. }
  844. /*
  845. * rix - rate index
  846. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  847. * width - 0 for 20 MHz, 1 for 40 MHz
  848. * half_gi - to use 4us v/s 3.6 us for symbol time
  849. */
  850. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  851. int width, int half_gi, bool shortPreamble)
  852. {
  853. u32 nbits, nsymbits, duration, nsymbols;
  854. int streams;
  855. /* find number of symbols: PLCP + data */
  856. streams = HT_RC_2_STREAMS(rix);
  857. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  858. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  859. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  860. if (!half_gi)
  861. duration = SYMBOL_TIME(nsymbols);
  862. else
  863. duration = SYMBOL_TIME_HALFGI(nsymbols);
  864. /* addup duration for legacy/ht training and signal fields */
  865. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  866. return duration;
  867. }
  868. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  869. {
  870. int streams = HT_RC_2_STREAMS(mcs);
  871. int symbols, bits;
  872. int bytes = 0;
  873. usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  874. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  875. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  876. bits -= OFDM_PLCP_BITS;
  877. bytes = bits / 8;
  878. if (bytes > 65532)
  879. bytes = 65532;
  880. return bytes;
  881. }
  882. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  883. {
  884. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  885. int mcs;
  886. /* 4ms is the default (and maximum) duration */
  887. if (!txop || txop > 4096)
  888. txop = 4096;
  889. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  890. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  891. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  892. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  893. for (mcs = 0; mcs < 32; mcs++) {
  894. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  895. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  896. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  897. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  898. }
  899. }
  900. static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
  901. u8 rateidx, bool is_40, bool is_cck)
  902. {
  903. u8 max_power;
  904. struct sk_buff *skb;
  905. struct ath_frame_info *fi;
  906. struct ieee80211_tx_info *info;
  907. struct ath_hw *ah = sc->sc_ah;
  908. if (sc->tx99_state || !ah->tpc_enabled)
  909. return MAX_RATE_POWER;
  910. skb = bf->bf_mpdu;
  911. fi = get_frame_info(skb);
  912. info = IEEE80211_SKB_CB(skb);
  913. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  914. int txpower = fi->tx_power;
  915. if (is_40) {
  916. u8 power_ht40delta;
  917. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  918. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
  919. bool is_2ghz;
  920. struct modal_eep_header *pmodal;
  921. is_2ghz = info->band == IEEE80211_BAND_2GHZ;
  922. pmodal = &eep->modalHeader[is_2ghz];
  923. power_ht40delta = pmodal->ht40PowerIncForPdadc;
  924. } else {
  925. power_ht40delta = 2;
  926. }
  927. txpower += power_ht40delta;
  928. }
  929. if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
  930. AR_SREV_9271(ah)) {
  931. txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
  932. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  933. s8 power_offset;
  934. power_offset = ah->eep_ops->get_eeprom(ah,
  935. EEP_PWR_TABLE_OFFSET);
  936. txpower -= 2 * power_offset;
  937. }
  938. if (OLC_FOR_AR9280_20_LATER && is_cck)
  939. txpower -= 2;
  940. txpower = max(txpower, 0);
  941. max_power = min_t(u8, ah->tx_power[rateidx], txpower);
  942. /* XXX: clamp minimum TX power at 1 for AR9160 since if
  943. * max_power is set to 0, frames are transmitted at max
  944. * TX power
  945. */
  946. if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
  947. max_power = 1;
  948. } else if (!bf->bf_state.bfs_paprd) {
  949. if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
  950. max_power = min_t(u8, ah->tx_power_stbc[rateidx],
  951. fi->tx_power);
  952. else
  953. max_power = min_t(u8, ah->tx_power[rateidx],
  954. fi->tx_power);
  955. } else {
  956. max_power = ah->paprd_training_power;
  957. }
  958. return max_power;
  959. }
  960. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  961. struct ath_tx_info *info, int len, bool rts)
  962. {
  963. struct ath_hw *ah = sc->sc_ah;
  964. struct ath_common *common = ath9k_hw_common(ah);
  965. struct sk_buff *skb;
  966. struct ieee80211_tx_info *tx_info;
  967. struct ieee80211_tx_rate *rates;
  968. const struct ieee80211_rate *rate;
  969. struct ieee80211_hdr *hdr;
  970. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  971. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  972. int i;
  973. u8 rix = 0;
  974. skb = bf->bf_mpdu;
  975. tx_info = IEEE80211_SKB_CB(skb);
  976. rates = bf->rates;
  977. hdr = (struct ieee80211_hdr *)skb->data;
  978. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  979. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  980. info->rtscts_rate = fi->rtscts_rate;
  981. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  982. bool is_40, is_sgi, is_sp, is_cck;
  983. int phy;
  984. if (!rates[i].count || (rates[i].idx < 0))
  985. continue;
  986. rix = rates[i].idx;
  987. info->rates[i].Tries = rates[i].count;
  988. /*
  989. * Handle RTS threshold for unaggregated HT frames.
  990. */
  991. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  992. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  993. unlikely(rts_thresh != (u32) -1)) {
  994. if (!rts_thresh || (len > rts_thresh))
  995. rts = true;
  996. }
  997. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  998. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  999. info->flags |= ATH9K_TXDESC_RTSENA;
  1000. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1001. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1002. info->flags |= ATH9K_TXDESC_CTSENA;
  1003. }
  1004. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1005. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  1006. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1007. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1008. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1009. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1010. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1011. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1012. /* MCS rates */
  1013. info->rates[i].Rate = rix | 0x80;
  1014. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  1015. ah->txchainmask, info->rates[i].Rate);
  1016. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  1017. is_40, is_sgi, is_sp);
  1018. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1019. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1020. info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
  1021. is_40, false);
  1022. continue;
  1023. }
  1024. /* legacy rates */
  1025. rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
  1026. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1027. !(rate->flags & IEEE80211_RATE_ERP_G))
  1028. phy = WLAN_RC_PHY_CCK;
  1029. else
  1030. phy = WLAN_RC_PHY_OFDM;
  1031. info->rates[i].Rate = rate->hw_value;
  1032. if (rate->hw_value_short) {
  1033. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1034. info->rates[i].Rate |= rate->hw_value_short;
  1035. } else {
  1036. is_sp = false;
  1037. }
  1038. if (bf->bf_state.bfs_paprd)
  1039. info->rates[i].ChSel = ah->txchainmask;
  1040. else
  1041. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  1042. ah->txchainmask, info->rates[i].Rate);
  1043. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1044. phy, rate->bitrate * 100, len, rix, is_sp);
  1045. is_cck = IS_CCK_RATE(info->rates[i].Rate);
  1046. info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
  1047. is_cck);
  1048. }
  1049. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1050. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  1051. info->flags &= ~ATH9K_TXDESC_RTSENA;
  1052. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1053. if (info->flags & ATH9K_TXDESC_RTSENA)
  1054. info->flags &= ~ATH9K_TXDESC_CTSENA;
  1055. }
  1056. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1057. {
  1058. struct ieee80211_hdr *hdr;
  1059. enum ath9k_pkt_type htype;
  1060. __le16 fc;
  1061. hdr = (struct ieee80211_hdr *)skb->data;
  1062. fc = hdr->frame_control;
  1063. if (ieee80211_is_beacon(fc))
  1064. htype = ATH9K_PKT_TYPE_BEACON;
  1065. else if (ieee80211_is_probe_resp(fc))
  1066. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1067. else if (ieee80211_is_atim(fc))
  1068. htype = ATH9K_PKT_TYPE_ATIM;
  1069. else if (ieee80211_is_pspoll(fc))
  1070. htype = ATH9K_PKT_TYPE_PSPOLL;
  1071. else
  1072. htype = ATH9K_PKT_TYPE_NORMAL;
  1073. return htype;
  1074. }
  1075. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  1076. struct ath_txq *txq, int len)
  1077. {
  1078. struct ath_hw *ah = sc->sc_ah;
  1079. struct ath_buf *bf_first = NULL;
  1080. struct ath_tx_info info;
  1081. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1082. bool rts = false;
  1083. memset(&info, 0, sizeof(info));
  1084. info.is_first = true;
  1085. info.is_last = true;
  1086. info.qcu = txq->axq_qnum;
  1087. while (bf) {
  1088. struct sk_buff *skb = bf->bf_mpdu;
  1089. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1090. struct ath_frame_info *fi = get_frame_info(skb);
  1091. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1092. info.type = get_hw_packet_type(skb);
  1093. if (bf->bf_next)
  1094. info.link = bf->bf_next->bf_daddr;
  1095. else
  1096. info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
  1097. if (!bf_first) {
  1098. bf_first = bf;
  1099. if (!sc->tx99_state)
  1100. info.flags = ATH9K_TXDESC_INTREQ;
  1101. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1102. txq == sc->tx.uapsdq)
  1103. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1104. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1105. info.flags |= ATH9K_TXDESC_NOACK;
  1106. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1107. info.flags |= ATH9K_TXDESC_LDPC;
  1108. if (bf->bf_state.bfs_paprd)
  1109. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1110. ATH9K_TXDESC_PAPRD_S;
  1111. /*
  1112. * mac80211 doesn't handle RTS threshold for HT because
  1113. * the decision has to be taken based on AMPDU length
  1114. * and aggregation is done entirely inside ath9k.
  1115. * Set the RTS/CTS flag for the first subframe based
  1116. * on the threshold.
  1117. */
  1118. if (aggr && (bf == bf_first) &&
  1119. unlikely(rts_thresh != (u32) -1)) {
  1120. /*
  1121. * "len" is the size of the entire AMPDU.
  1122. */
  1123. if (!rts_thresh || (len > rts_thresh))
  1124. rts = true;
  1125. }
  1126. if (!aggr)
  1127. len = fi->framelen;
  1128. ath_buf_set_rate(sc, bf, &info, len, rts);
  1129. }
  1130. info.buf_addr[0] = bf->bf_buf_addr;
  1131. info.buf_len[0] = skb->len;
  1132. info.pkt_len = fi->framelen;
  1133. info.keyix = fi->keyix;
  1134. info.keytype = fi->keytype;
  1135. if (aggr) {
  1136. if (bf == bf_first)
  1137. info.aggr = AGGR_BUF_FIRST;
  1138. else if (bf == bf_first->bf_lastbf)
  1139. info.aggr = AGGR_BUF_LAST;
  1140. else
  1141. info.aggr = AGGR_BUF_MIDDLE;
  1142. info.ndelim = bf->bf_state.ndelim;
  1143. info.aggr_len = len;
  1144. }
  1145. if (bf == bf_first->bf_lastbf)
  1146. bf_first = NULL;
  1147. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1148. bf = bf->bf_next;
  1149. }
  1150. }
  1151. static void
  1152. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1153. struct ath_atx_tid *tid, struct list_head *bf_q,
  1154. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1155. {
  1156. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1157. struct sk_buff *skb;
  1158. int nframes = 0;
  1159. do {
  1160. struct ieee80211_tx_info *tx_info;
  1161. skb = bf->bf_mpdu;
  1162. nframes++;
  1163. __skb_unlink(skb, tid_q);
  1164. list_add_tail(&bf->list, bf_q);
  1165. if (bf_prev)
  1166. bf_prev->bf_next = bf;
  1167. bf_prev = bf;
  1168. if (nframes >= 2)
  1169. break;
  1170. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1171. if (!bf)
  1172. break;
  1173. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1174. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1175. break;
  1176. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1177. } while (1);
  1178. }
  1179. static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1180. struct ath_atx_tid *tid, bool *stop)
  1181. {
  1182. struct ath_buf *bf;
  1183. struct ieee80211_tx_info *tx_info;
  1184. struct sk_buff_head *tid_q;
  1185. struct list_head bf_q;
  1186. int aggr_len = 0;
  1187. bool aggr, last = true;
  1188. if (!ath_tid_has_buffered(tid))
  1189. return false;
  1190. INIT_LIST_HEAD(&bf_q);
  1191. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1192. if (!bf)
  1193. return false;
  1194. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1195. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1196. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1197. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
  1198. *stop = true;
  1199. return false;
  1200. }
  1201. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1202. if (aggr)
  1203. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1204. tid_q, &aggr_len);
  1205. else
  1206. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1207. if (list_empty(&bf_q))
  1208. return false;
  1209. if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
  1210. tid->ac->clear_ps_filter = false;
  1211. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1212. }
  1213. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1214. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1215. return true;
  1216. }
  1217. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1218. u16 tid, u16 *ssn)
  1219. {
  1220. struct ath_atx_tid *txtid;
  1221. struct ath_txq *txq;
  1222. struct ath_node *an;
  1223. u8 density;
  1224. an = (struct ath_node *)sta->drv_priv;
  1225. txtid = ATH_AN_2_TID(an, tid);
  1226. txq = txtid->ac->txq;
  1227. ath_txq_lock(sc, txq);
  1228. /* update ampdu factor/density, they may have changed. This may happen
  1229. * in HT IBSS when a beacon with HT-info is received after the station
  1230. * has already been added.
  1231. */
  1232. if (sta->ht_cap.ht_supported) {
  1233. an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1234. sta->ht_cap.ampdu_factor)) - 1;
  1235. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1236. an->mpdudensity = density;
  1237. }
  1238. /* force sequence number allocation for pending frames */
  1239. ath_tx_tid_change_state(sc, txtid);
  1240. txtid->active = true;
  1241. *ssn = txtid->seq_start = txtid->seq_next;
  1242. txtid->bar_index = -1;
  1243. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1244. txtid->baw_head = txtid->baw_tail = 0;
  1245. ath_txq_unlock_complete(sc, txq);
  1246. return 0;
  1247. }
  1248. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1249. {
  1250. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1251. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1252. struct ath_txq *txq = txtid->ac->txq;
  1253. ath_txq_lock(sc, txq);
  1254. txtid->active = false;
  1255. ath_tx_flush_tid(sc, txtid);
  1256. ath_tx_tid_change_state(sc, txtid);
  1257. ath_txq_unlock_complete(sc, txq);
  1258. }
  1259. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1260. struct ath_node *an)
  1261. {
  1262. struct ath_atx_tid *tid;
  1263. struct ath_atx_ac *ac;
  1264. struct ath_txq *txq;
  1265. bool buffered;
  1266. int tidno;
  1267. for (tidno = 0, tid = &an->tid[tidno];
  1268. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1269. ac = tid->ac;
  1270. txq = ac->txq;
  1271. ath_txq_lock(sc, txq);
  1272. if (!tid->sched) {
  1273. ath_txq_unlock(sc, txq);
  1274. continue;
  1275. }
  1276. buffered = ath_tid_has_buffered(tid);
  1277. tid->sched = false;
  1278. list_del(&tid->list);
  1279. if (ac->sched) {
  1280. ac->sched = false;
  1281. list_del(&ac->list);
  1282. }
  1283. ath_txq_unlock(sc, txq);
  1284. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1285. }
  1286. }
  1287. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1288. {
  1289. struct ath_atx_tid *tid;
  1290. struct ath_atx_ac *ac;
  1291. struct ath_txq *txq;
  1292. int tidno;
  1293. for (tidno = 0, tid = &an->tid[tidno];
  1294. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1295. ac = tid->ac;
  1296. txq = ac->txq;
  1297. ath_txq_lock(sc, txq);
  1298. ac->clear_ps_filter = true;
  1299. if (ath_tid_has_buffered(tid)) {
  1300. ath_tx_queue_tid(sc, txq, tid);
  1301. ath_txq_schedule(sc, txq);
  1302. }
  1303. ath_txq_unlock_complete(sc, txq);
  1304. }
  1305. }
  1306. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1307. u16 tidno)
  1308. {
  1309. struct ath_atx_tid *tid;
  1310. struct ath_node *an;
  1311. struct ath_txq *txq;
  1312. an = (struct ath_node *)sta->drv_priv;
  1313. tid = ATH_AN_2_TID(an, tidno);
  1314. txq = tid->ac->txq;
  1315. ath_txq_lock(sc, txq);
  1316. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1317. if (ath_tid_has_buffered(tid)) {
  1318. ath_tx_queue_tid(sc, txq, tid);
  1319. ath_txq_schedule(sc, txq);
  1320. }
  1321. ath_txq_unlock_complete(sc, txq);
  1322. }
  1323. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1324. struct ieee80211_sta *sta,
  1325. u16 tids, int nframes,
  1326. enum ieee80211_frame_release_type reason,
  1327. bool more_data)
  1328. {
  1329. struct ath_softc *sc = hw->priv;
  1330. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1331. struct ath_txq *txq = sc->tx.uapsdq;
  1332. struct ieee80211_tx_info *info;
  1333. struct list_head bf_q;
  1334. struct ath_buf *bf_tail = NULL, *bf;
  1335. struct sk_buff_head *tid_q;
  1336. int sent = 0;
  1337. int i;
  1338. INIT_LIST_HEAD(&bf_q);
  1339. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1340. struct ath_atx_tid *tid;
  1341. if (!(tids & 1))
  1342. continue;
  1343. tid = ATH_AN_2_TID(an, i);
  1344. ath_txq_lock(sc, tid->ac->txq);
  1345. while (nframes > 0) {
  1346. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1347. if (!bf)
  1348. break;
  1349. __skb_unlink(bf->bf_mpdu, tid_q);
  1350. list_add_tail(&bf->list, &bf_q);
  1351. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1352. if (bf_isampdu(bf)) {
  1353. ath_tx_addto_baw(sc, tid, bf);
  1354. bf->bf_state.bf_type &= ~BUF_AGGR;
  1355. }
  1356. if (bf_tail)
  1357. bf_tail->bf_next = bf;
  1358. bf_tail = bf;
  1359. nframes--;
  1360. sent++;
  1361. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1362. if (an->sta && !ath_tid_has_buffered(tid))
  1363. ieee80211_sta_set_buffered(an->sta, i, false);
  1364. }
  1365. ath_txq_unlock_complete(sc, tid->ac->txq);
  1366. }
  1367. if (list_empty(&bf_q))
  1368. return;
  1369. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1370. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1371. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1372. ath_txq_lock(sc, txq);
  1373. ath_tx_fill_desc(sc, bf, txq, 0);
  1374. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1375. ath_txq_unlock(sc, txq);
  1376. }
  1377. /********************/
  1378. /* Queue Management */
  1379. /********************/
  1380. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1381. {
  1382. struct ath_hw *ah = sc->sc_ah;
  1383. struct ath9k_tx_queue_info qi;
  1384. static const int subtype_txq_to_hwq[] = {
  1385. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1386. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1387. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1388. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1389. };
  1390. int axq_qnum, i;
  1391. memset(&qi, 0, sizeof(qi));
  1392. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1393. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1394. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1395. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1396. qi.tqi_physCompBuf = 0;
  1397. /*
  1398. * Enable interrupts only for EOL and DESC conditions.
  1399. * We mark tx descriptors to receive a DESC interrupt
  1400. * when a tx queue gets deep; otherwise waiting for the
  1401. * EOL to reap descriptors. Note that this is done to
  1402. * reduce interrupt load and this only defers reaping
  1403. * descriptors, never transmitting frames. Aside from
  1404. * reducing interrupts this also permits more concurrency.
  1405. * The only potential downside is if the tx queue backs
  1406. * up in which case the top half of the kernel may backup
  1407. * due to a lack of tx descriptors.
  1408. *
  1409. * The UAPSD queue is an exception, since we take a desc-
  1410. * based intr on the EOSP frames.
  1411. */
  1412. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1413. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1414. } else {
  1415. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1416. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1417. else
  1418. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1419. TXQ_FLAG_TXDESCINT_ENABLE;
  1420. }
  1421. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1422. if (axq_qnum == -1) {
  1423. /*
  1424. * NB: don't print a message, this happens
  1425. * normally on parts with too few tx queues
  1426. */
  1427. return NULL;
  1428. }
  1429. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1430. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1431. txq->axq_qnum = axq_qnum;
  1432. txq->mac80211_qnum = -1;
  1433. txq->axq_link = NULL;
  1434. __skb_queue_head_init(&txq->complete_q);
  1435. INIT_LIST_HEAD(&txq->axq_q);
  1436. spin_lock_init(&txq->axq_lock);
  1437. txq->axq_depth = 0;
  1438. txq->axq_ampdu_depth = 0;
  1439. txq->axq_tx_inprogress = false;
  1440. sc->tx.txqsetup |= 1<<axq_qnum;
  1441. txq->txq_headidx = txq->txq_tailidx = 0;
  1442. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1443. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1444. }
  1445. return &sc->tx.txq[axq_qnum];
  1446. }
  1447. int ath_txq_update(struct ath_softc *sc, int qnum,
  1448. struct ath9k_tx_queue_info *qinfo)
  1449. {
  1450. struct ath_hw *ah = sc->sc_ah;
  1451. int error = 0;
  1452. struct ath9k_tx_queue_info qi;
  1453. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1454. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1455. qi.tqi_aifs = qinfo->tqi_aifs;
  1456. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1457. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1458. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1459. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1460. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1461. ath_err(ath9k_hw_common(sc->sc_ah),
  1462. "Unable to update hardware queue %u!\n", qnum);
  1463. error = -EIO;
  1464. } else {
  1465. ath9k_hw_resettxqueue(ah, qnum);
  1466. }
  1467. return error;
  1468. }
  1469. int ath_cabq_update(struct ath_softc *sc)
  1470. {
  1471. struct ath9k_tx_queue_info qi;
  1472. struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
  1473. int qnum = sc->beacon.cabq->axq_qnum;
  1474. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1475. qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
  1476. ATH_CABQ_READY_TIME) / 100;
  1477. ath_txq_update(sc, qnum, &qi);
  1478. return 0;
  1479. }
  1480. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1481. struct list_head *list)
  1482. {
  1483. struct ath_buf *bf, *lastbf;
  1484. struct list_head bf_head;
  1485. struct ath_tx_status ts;
  1486. memset(&ts, 0, sizeof(ts));
  1487. ts.ts_status = ATH9K_TX_FLUSH;
  1488. INIT_LIST_HEAD(&bf_head);
  1489. while (!list_empty(list)) {
  1490. bf = list_first_entry(list, struct ath_buf, list);
  1491. if (bf->bf_state.stale) {
  1492. list_del(&bf->list);
  1493. ath_tx_return_buffer(sc, bf);
  1494. continue;
  1495. }
  1496. lastbf = bf->bf_lastbf;
  1497. list_cut_position(&bf_head, list, &lastbf->list);
  1498. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1499. }
  1500. }
  1501. /*
  1502. * Drain a given TX queue (could be Beacon or Data)
  1503. *
  1504. * This assumes output has been stopped and
  1505. * we do not need to block ath_tx_tasklet.
  1506. */
  1507. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1508. {
  1509. ath_txq_lock(sc, txq);
  1510. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1511. int idx = txq->txq_tailidx;
  1512. while (!list_empty(&txq->txq_fifo[idx])) {
  1513. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1514. INCR(idx, ATH_TXFIFO_DEPTH);
  1515. }
  1516. txq->txq_tailidx = idx;
  1517. }
  1518. txq->axq_link = NULL;
  1519. txq->axq_tx_inprogress = false;
  1520. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1521. ath_txq_unlock_complete(sc, txq);
  1522. }
  1523. bool ath_drain_all_txq(struct ath_softc *sc)
  1524. {
  1525. struct ath_hw *ah = sc->sc_ah;
  1526. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1527. struct ath_txq *txq;
  1528. int i;
  1529. u32 npend = 0;
  1530. if (test_bit(ATH_OP_INVALID, &common->op_flags))
  1531. return true;
  1532. ath9k_hw_abort_tx_dma(ah);
  1533. /* Check if any queue remains active */
  1534. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1535. if (!ATH_TXQ_SETUP(sc, i))
  1536. continue;
  1537. if (!sc->tx.txq[i].axq_depth)
  1538. continue;
  1539. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1540. npend |= BIT(i);
  1541. }
  1542. if (npend)
  1543. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1544. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1545. if (!ATH_TXQ_SETUP(sc, i))
  1546. continue;
  1547. /*
  1548. * The caller will resume queues with ieee80211_wake_queues.
  1549. * Mark the queue as not stopped to prevent ath_tx_complete
  1550. * from waking the queue too early.
  1551. */
  1552. txq = &sc->tx.txq[i];
  1553. txq->stopped = false;
  1554. ath_draintxq(sc, txq);
  1555. }
  1556. return !npend;
  1557. }
  1558. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1559. {
  1560. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1561. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1562. }
  1563. /* For each acq entry, for each tid, try to schedule packets
  1564. * for transmit until ampdu_depth has reached min Q depth.
  1565. */
  1566. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1567. {
  1568. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1569. struct ath_atx_ac *ac, *last_ac;
  1570. struct ath_atx_tid *tid, *last_tid;
  1571. struct list_head *ac_list;
  1572. bool sent = false;
  1573. if (txq->mac80211_qnum < 0)
  1574. return;
  1575. if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
  1576. return;
  1577. spin_lock_bh(&sc->chan_lock);
  1578. ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
  1579. if (list_empty(ac_list)) {
  1580. spin_unlock_bh(&sc->chan_lock);
  1581. return;
  1582. }
  1583. rcu_read_lock();
  1584. last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
  1585. while (!list_empty(ac_list)) {
  1586. bool stop = false;
  1587. if (sc->cur_chan->stopped)
  1588. break;
  1589. ac = list_first_entry(ac_list, struct ath_atx_ac, list);
  1590. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1591. list_del(&ac->list);
  1592. ac->sched = false;
  1593. while (!list_empty(&ac->tid_q)) {
  1594. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1595. list);
  1596. list_del(&tid->list);
  1597. tid->sched = false;
  1598. if (ath_tx_sched_aggr(sc, txq, tid, &stop))
  1599. sent = true;
  1600. /*
  1601. * add tid to round-robin queue if more frames
  1602. * are pending for the tid
  1603. */
  1604. if (ath_tid_has_buffered(tid))
  1605. ath_tx_queue_tid(sc, txq, tid);
  1606. if (stop || tid == last_tid)
  1607. break;
  1608. }
  1609. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1610. ac->sched = true;
  1611. list_add_tail(&ac->list, ac_list);
  1612. }
  1613. if (stop)
  1614. break;
  1615. if (ac == last_ac) {
  1616. if (!sent)
  1617. break;
  1618. sent = false;
  1619. last_ac = list_entry(ac_list->prev,
  1620. struct ath_atx_ac, list);
  1621. }
  1622. }
  1623. rcu_read_unlock();
  1624. spin_unlock_bh(&sc->chan_lock);
  1625. }
  1626. void ath_txq_schedule_all(struct ath_softc *sc)
  1627. {
  1628. struct ath_txq *txq;
  1629. int i;
  1630. for (i = 0; i < IEEE80211_NUM_ACS; i++) {
  1631. txq = sc->tx.txq_map[i];
  1632. spin_lock_bh(&txq->axq_lock);
  1633. ath_txq_schedule(sc, txq);
  1634. spin_unlock_bh(&txq->axq_lock);
  1635. }
  1636. }
  1637. /***********/
  1638. /* TX, DMA */
  1639. /***********/
  1640. /*
  1641. * Insert a chain of ath_buf (descriptors) on a txq and
  1642. * assume the descriptors are already chained together by caller.
  1643. */
  1644. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1645. struct list_head *head, bool internal)
  1646. {
  1647. struct ath_hw *ah = sc->sc_ah;
  1648. struct ath_common *common = ath9k_hw_common(ah);
  1649. struct ath_buf *bf, *bf_last;
  1650. bool puttxbuf = false;
  1651. bool edma;
  1652. /*
  1653. * Insert the frame on the outbound list and
  1654. * pass it on to the hardware.
  1655. */
  1656. if (list_empty(head))
  1657. return;
  1658. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1659. bf = list_first_entry(head, struct ath_buf, list);
  1660. bf_last = list_entry(head->prev, struct ath_buf, list);
  1661. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1662. txq->axq_qnum, txq->axq_depth);
  1663. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1664. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1665. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1666. puttxbuf = true;
  1667. } else {
  1668. list_splice_tail_init(head, &txq->axq_q);
  1669. if (txq->axq_link) {
  1670. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1671. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1672. txq->axq_qnum, txq->axq_link,
  1673. ito64(bf->bf_daddr), bf->bf_desc);
  1674. } else if (!edma)
  1675. puttxbuf = true;
  1676. txq->axq_link = bf_last->bf_desc;
  1677. }
  1678. if (puttxbuf) {
  1679. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1680. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1681. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1682. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1683. }
  1684. if (!edma || sc->tx99_state) {
  1685. TX_STAT_INC(txq->axq_qnum, txstart);
  1686. ath9k_hw_txstart(ah, txq->axq_qnum);
  1687. }
  1688. if (!internal) {
  1689. while (bf) {
  1690. txq->axq_depth++;
  1691. if (bf_is_ampdu_not_probing(bf))
  1692. txq->axq_ampdu_depth++;
  1693. bf_last = bf->bf_lastbf;
  1694. bf = bf_last->bf_next;
  1695. bf_last->bf_next = NULL;
  1696. }
  1697. }
  1698. }
  1699. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1700. struct ath_atx_tid *tid, struct sk_buff *skb)
  1701. {
  1702. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1703. struct ath_frame_info *fi = get_frame_info(skb);
  1704. struct list_head bf_head;
  1705. struct ath_buf *bf = fi->bf;
  1706. INIT_LIST_HEAD(&bf_head);
  1707. list_add_tail(&bf->list, &bf_head);
  1708. bf->bf_state.bf_type = 0;
  1709. if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  1710. bf->bf_state.bf_type = BUF_AMPDU;
  1711. ath_tx_addto_baw(sc, tid, bf);
  1712. }
  1713. bf->bf_next = NULL;
  1714. bf->bf_lastbf = bf;
  1715. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1716. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1717. TX_STAT_INC(txq->axq_qnum, queued);
  1718. }
  1719. static void setup_frame_info(struct ieee80211_hw *hw,
  1720. struct ieee80211_sta *sta,
  1721. struct sk_buff *skb,
  1722. int framelen)
  1723. {
  1724. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1725. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1726. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1727. const struct ieee80211_rate *rate;
  1728. struct ath_frame_info *fi = get_frame_info(skb);
  1729. struct ath_node *an = NULL;
  1730. enum ath9k_key_type keytype;
  1731. bool short_preamble = false;
  1732. u8 txpower;
  1733. /*
  1734. * We check if Short Preamble is needed for the CTS rate by
  1735. * checking the BSS's global flag.
  1736. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1737. */
  1738. if (tx_info->control.vif &&
  1739. tx_info->control.vif->bss_conf.use_short_preamble)
  1740. short_preamble = true;
  1741. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1742. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1743. if (sta)
  1744. an = (struct ath_node *) sta->drv_priv;
  1745. if (tx_info->control.vif) {
  1746. struct ieee80211_vif *vif = tx_info->control.vif;
  1747. txpower = 2 * vif->bss_conf.txpower;
  1748. } else {
  1749. struct ath_softc *sc = hw->priv;
  1750. txpower = sc->cur_chan->cur_txpower;
  1751. }
  1752. memset(fi, 0, sizeof(*fi));
  1753. fi->txq = -1;
  1754. if (hw_key)
  1755. fi->keyix = hw_key->hw_key_idx;
  1756. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1757. fi->keyix = an->ps_key;
  1758. else
  1759. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1760. fi->keytype = keytype;
  1761. fi->framelen = framelen;
  1762. fi->tx_power = txpower;
  1763. if (!rate)
  1764. return;
  1765. fi->rtscts_rate = rate->hw_value;
  1766. if (short_preamble)
  1767. fi->rtscts_rate |= rate->hw_value_short;
  1768. }
  1769. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1770. {
  1771. struct ath_hw *ah = sc->sc_ah;
  1772. struct ath9k_channel *curchan = ah->curchan;
  1773. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
  1774. (chainmask == 0x7) && (rate < 0x90))
  1775. return 0x3;
  1776. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1777. IS_CCK_RATE(rate))
  1778. return 0x2;
  1779. else
  1780. return chainmask;
  1781. }
  1782. /*
  1783. * Assign a descriptor (and sequence number if necessary,
  1784. * and map buffer for DMA. Frees skb on error
  1785. */
  1786. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1787. struct ath_txq *txq,
  1788. struct ath_atx_tid *tid,
  1789. struct sk_buff *skb)
  1790. {
  1791. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1792. struct ath_frame_info *fi = get_frame_info(skb);
  1793. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1794. struct ath_buf *bf;
  1795. int fragno;
  1796. u16 seqno;
  1797. bf = ath_tx_get_buffer(sc);
  1798. if (!bf) {
  1799. ath_dbg(common, XMIT, "TX buffers are full\n");
  1800. return NULL;
  1801. }
  1802. ATH_TXBUF_RESET(bf);
  1803. if (tid && ieee80211_is_data_present(hdr->frame_control)) {
  1804. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1805. seqno = tid->seq_next;
  1806. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1807. if (fragno)
  1808. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1809. if (!ieee80211_has_morefrags(hdr->frame_control))
  1810. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1811. bf->bf_state.seqno = seqno;
  1812. }
  1813. bf->bf_mpdu = skb;
  1814. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1815. skb->len, DMA_TO_DEVICE);
  1816. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1817. bf->bf_mpdu = NULL;
  1818. bf->bf_buf_addr = 0;
  1819. ath_err(ath9k_hw_common(sc->sc_ah),
  1820. "dma_mapping_error() on TX\n");
  1821. ath_tx_return_buffer(sc, bf);
  1822. return NULL;
  1823. }
  1824. fi->bf = bf;
  1825. return bf;
  1826. }
  1827. void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
  1828. {
  1829. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1830. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1831. struct ieee80211_vif *vif = info->control.vif;
  1832. struct ath_vif *avp;
  1833. if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
  1834. return;
  1835. if (!vif)
  1836. return;
  1837. avp = (struct ath_vif *)vif->drv_priv;
  1838. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1839. avp->seq_no += 0x10;
  1840. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1841. hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
  1842. }
  1843. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1844. struct ath_tx_control *txctl)
  1845. {
  1846. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1847. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1848. struct ieee80211_sta *sta = txctl->sta;
  1849. struct ieee80211_vif *vif = info->control.vif;
  1850. struct ath_vif *avp;
  1851. struct ath_softc *sc = hw->priv;
  1852. int frmlen = skb->len + FCS_LEN;
  1853. int padpos, padsize;
  1854. /* NOTE: sta can be NULL according to net/mac80211.h */
  1855. if (sta)
  1856. txctl->an = (struct ath_node *)sta->drv_priv;
  1857. else if (vif && ieee80211_is_data(hdr->frame_control)) {
  1858. avp = (void *)vif->drv_priv;
  1859. txctl->an = &avp->mcast_node;
  1860. }
  1861. if (info->control.hw_key)
  1862. frmlen += info->control.hw_key->icv_len;
  1863. ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
  1864. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1865. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1866. !ieee80211_is_data(hdr->frame_control))
  1867. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1868. /* Add the padding after the header if this is not already done */
  1869. padpos = ieee80211_hdrlen(hdr->frame_control);
  1870. padsize = padpos & 3;
  1871. if (padsize && skb->len > padpos) {
  1872. if (skb_headroom(skb) < padsize)
  1873. return -ENOMEM;
  1874. skb_push(skb, padsize);
  1875. memmove(skb->data, skb->data + padsize, padpos);
  1876. }
  1877. setup_frame_info(hw, sta, skb, frmlen);
  1878. return 0;
  1879. }
  1880. /* Upon failure caller should free skb */
  1881. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1882. struct ath_tx_control *txctl)
  1883. {
  1884. struct ieee80211_hdr *hdr;
  1885. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1886. struct ieee80211_sta *sta = txctl->sta;
  1887. struct ieee80211_vif *vif = info->control.vif;
  1888. struct ath_frame_info *fi = get_frame_info(skb);
  1889. struct ath_vif *avp = NULL;
  1890. struct ath_softc *sc = hw->priv;
  1891. struct ath_txq *txq = txctl->txq;
  1892. struct ath_atx_tid *tid = NULL;
  1893. struct ath_buf *bf;
  1894. bool queue, skip_uapsd = false, ps_resp;
  1895. int q, ret;
  1896. if (vif)
  1897. avp = (void *)vif->drv_priv;
  1898. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
  1899. txctl->force_channel = true;
  1900. ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
  1901. ret = ath_tx_prepare(hw, skb, txctl);
  1902. if (ret)
  1903. return ret;
  1904. hdr = (struct ieee80211_hdr *) skb->data;
  1905. /*
  1906. * At this point, the vif, hw_key and sta pointers in the tx control
  1907. * info are no longer valid (overwritten by the ath_frame_info data.
  1908. */
  1909. q = skb_get_queue_mapping(skb);
  1910. ath_txq_lock(sc, txq);
  1911. if (txq == sc->tx.txq_map[q]) {
  1912. fi->txq = q;
  1913. if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1914. !txq->stopped) {
  1915. if (ath9k_is_chanctx_enabled())
  1916. ieee80211_stop_queue(sc->hw, info->hw_queue);
  1917. else
  1918. ieee80211_stop_queue(sc->hw, q);
  1919. txq->stopped = true;
  1920. }
  1921. }
  1922. queue = ieee80211_is_data_present(hdr->frame_control);
  1923. /* Force queueing of all frames that belong to a virtual interface on
  1924. * a different channel context, to ensure that they are sent on the
  1925. * correct channel.
  1926. */
  1927. if (((avp && avp->chanctx != sc->cur_chan) ||
  1928. sc->cur_chan->stopped) && !txctl->force_channel) {
  1929. if (!txctl->an)
  1930. txctl->an = &avp->mcast_node;
  1931. queue = true;
  1932. skip_uapsd = true;
  1933. }
  1934. if (txctl->an && queue)
  1935. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1936. if (!skip_uapsd && ps_resp) {
  1937. ath_txq_unlock(sc, txq);
  1938. txq = sc->tx.uapsdq;
  1939. ath_txq_lock(sc, txq);
  1940. } else if (txctl->an && queue) {
  1941. WARN_ON(tid->ac->txq != txctl->txq);
  1942. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1943. tid->ac->clear_ps_filter = true;
  1944. /*
  1945. * Add this frame to software queue for scheduling later
  1946. * for aggregation.
  1947. */
  1948. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1949. __skb_queue_tail(&tid->buf_q, skb);
  1950. if (!txctl->an->sleeping)
  1951. ath_tx_queue_tid(sc, txq, tid);
  1952. ath_txq_schedule(sc, txq);
  1953. goto out;
  1954. }
  1955. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1956. if (!bf) {
  1957. ath_txq_skb_done(sc, txq, skb);
  1958. if (txctl->paprd)
  1959. dev_kfree_skb_any(skb);
  1960. else
  1961. ieee80211_free_txskb(sc->hw, skb);
  1962. goto out;
  1963. }
  1964. bf->bf_state.bfs_paprd = txctl->paprd;
  1965. if (txctl->paprd)
  1966. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1967. ath_set_rates(vif, sta, bf);
  1968. ath_tx_send_normal(sc, txq, tid, skb);
  1969. out:
  1970. ath_txq_unlock(sc, txq);
  1971. return 0;
  1972. }
  1973. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1974. struct sk_buff *skb)
  1975. {
  1976. struct ath_softc *sc = hw->priv;
  1977. struct ath_tx_control txctl = {
  1978. .txq = sc->beacon.cabq
  1979. };
  1980. struct ath_tx_info info = {};
  1981. struct ieee80211_hdr *hdr;
  1982. struct ath_buf *bf_tail = NULL;
  1983. struct ath_buf *bf;
  1984. LIST_HEAD(bf_q);
  1985. int duration = 0;
  1986. int max_duration;
  1987. max_duration =
  1988. sc->cur_chan->beacon.beacon_interval * 1000 *
  1989. sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
  1990. do {
  1991. struct ath_frame_info *fi = get_frame_info(skb);
  1992. if (ath_tx_prepare(hw, skb, &txctl))
  1993. break;
  1994. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1995. if (!bf)
  1996. break;
  1997. bf->bf_lastbf = bf;
  1998. ath_set_rates(vif, NULL, bf);
  1999. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  2000. duration += info.rates[0].PktDuration;
  2001. if (bf_tail)
  2002. bf_tail->bf_next = bf;
  2003. list_add_tail(&bf->list, &bf_q);
  2004. bf_tail = bf;
  2005. skb = NULL;
  2006. if (duration > max_duration)
  2007. break;
  2008. skb = ieee80211_get_buffered_bc(hw, vif);
  2009. } while(skb);
  2010. if (skb)
  2011. ieee80211_free_txskb(hw, skb);
  2012. if (list_empty(&bf_q))
  2013. return;
  2014. bf = list_first_entry(&bf_q, struct ath_buf, list);
  2015. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  2016. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  2017. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  2018. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  2019. sizeof(*hdr), DMA_TO_DEVICE);
  2020. }
  2021. ath_txq_lock(sc, txctl.txq);
  2022. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  2023. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  2024. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  2025. ath_txq_unlock(sc, txctl.txq);
  2026. }
  2027. /*****************/
  2028. /* TX Completion */
  2029. /*****************/
  2030. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  2031. int tx_flags, struct ath_txq *txq)
  2032. {
  2033. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  2034. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2035. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  2036. int padpos, padsize;
  2037. unsigned long flags;
  2038. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  2039. if (sc->sc_ah->caldata)
  2040. set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
  2041. if (!(tx_flags & ATH_TX_ERROR)) {
  2042. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  2043. tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
  2044. else
  2045. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  2046. }
  2047. padpos = ieee80211_hdrlen(hdr->frame_control);
  2048. padsize = padpos & 3;
  2049. if (padsize && skb->len>padpos+padsize) {
  2050. /*
  2051. * Remove MAC header padding before giving the frame back to
  2052. * mac80211.
  2053. */
  2054. memmove(skb->data + padsize, skb->data, padpos);
  2055. skb_pull(skb, padsize);
  2056. }
  2057. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  2058. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  2059. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  2060. ath_dbg(common, PS,
  2061. "Going back to sleep after having received TX status (0x%lx)\n",
  2062. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  2063. PS_WAIT_FOR_CAB |
  2064. PS_WAIT_FOR_PSPOLL_DATA |
  2065. PS_WAIT_FOR_TX_ACK));
  2066. }
  2067. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  2068. __skb_queue_tail(&txq->complete_q, skb);
  2069. ath_txq_skb_done(sc, txq, skb);
  2070. }
  2071. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  2072. struct ath_txq *txq, struct list_head *bf_q,
  2073. struct ath_tx_status *ts, int txok)
  2074. {
  2075. struct sk_buff *skb = bf->bf_mpdu;
  2076. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  2077. unsigned long flags;
  2078. int tx_flags = 0;
  2079. if (!txok)
  2080. tx_flags |= ATH_TX_ERROR;
  2081. if (ts->ts_status & ATH9K_TXERR_FILT)
  2082. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  2083. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  2084. bf->bf_buf_addr = 0;
  2085. if (sc->tx99_state)
  2086. goto skip_tx_complete;
  2087. if (bf->bf_state.bfs_paprd) {
  2088. if (time_after(jiffies,
  2089. bf->bf_state.bfs_paprd_timestamp +
  2090. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  2091. dev_kfree_skb_any(skb);
  2092. else
  2093. complete(&sc->paprd_complete);
  2094. } else {
  2095. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  2096. ath_tx_complete(sc, skb, tx_flags, txq);
  2097. }
  2098. skip_tx_complete:
  2099. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  2100. * accidentally reference it later.
  2101. */
  2102. bf->bf_mpdu = NULL;
  2103. /*
  2104. * Return the list of ath_buf of this mpdu to free queue
  2105. */
  2106. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  2107. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  2108. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  2109. }
  2110. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  2111. struct ath_tx_status *ts, int nframes, int nbad,
  2112. int txok)
  2113. {
  2114. struct sk_buff *skb = bf->bf_mpdu;
  2115. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  2116. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  2117. struct ieee80211_hw *hw = sc->hw;
  2118. struct ath_hw *ah = sc->sc_ah;
  2119. u8 i, tx_rateindex;
  2120. if (txok)
  2121. tx_info->status.ack_signal = ts->ts_rssi;
  2122. tx_rateindex = ts->ts_rateindex;
  2123. WARN_ON(tx_rateindex >= hw->max_rates);
  2124. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  2125. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  2126. BUG_ON(nbad > nframes);
  2127. }
  2128. tx_info->status.ampdu_len = nframes;
  2129. tx_info->status.ampdu_ack_len = nframes - nbad;
  2130. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  2131. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  2132. /*
  2133. * If an underrun error is seen assume it as an excessive
  2134. * retry only if max frame trigger level has been reached
  2135. * (2 KB for single stream, and 4 KB for dual stream).
  2136. * Adjust the long retry as if the frame was tried
  2137. * hw->max_rate_tries times to affect how rate control updates
  2138. * PER for the failed rate.
  2139. * In case of congestion on the bus penalizing this type of
  2140. * underruns should help hardware actually transmit new frames
  2141. * successfully by eventually preferring slower rates.
  2142. * This itself should also alleviate congestion on the bus.
  2143. */
  2144. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  2145. ATH9K_TX_DELIM_UNDERRUN)) &&
  2146. ieee80211_is_data(hdr->frame_control) &&
  2147. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  2148. tx_info->status.rates[tx_rateindex].count =
  2149. hw->max_rate_tries;
  2150. }
  2151. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  2152. tx_info->status.rates[i].count = 0;
  2153. tx_info->status.rates[i].idx = -1;
  2154. }
  2155. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  2156. }
  2157. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2158. {
  2159. struct ath_hw *ah = sc->sc_ah;
  2160. struct ath_common *common = ath9k_hw_common(ah);
  2161. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2162. struct list_head bf_head;
  2163. struct ath_desc *ds;
  2164. struct ath_tx_status ts;
  2165. int status;
  2166. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2167. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2168. txq->axq_link);
  2169. ath_txq_lock(sc, txq);
  2170. for (;;) {
  2171. if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
  2172. break;
  2173. if (list_empty(&txq->axq_q)) {
  2174. txq->axq_link = NULL;
  2175. ath_txq_schedule(sc, txq);
  2176. break;
  2177. }
  2178. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2179. /*
  2180. * There is a race condition that a BH gets scheduled
  2181. * after sw writes TxE and before hw re-load the last
  2182. * descriptor to get the newly chained one.
  2183. * Software must keep the last DONE descriptor as a
  2184. * holding descriptor - software does so by marking
  2185. * it with the STALE flag.
  2186. */
  2187. bf_held = NULL;
  2188. if (bf->bf_state.stale) {
  2189. bf_held = bf;
  2190. if (list_is_last(&bf_held->list, &txq->axq_q))
  2191. break;
  2192. bf = list_entry(bf_held->list.next, struct ath_buf,
  2193. list);
  2194. }
  2195. lastbf = bf->bf_lastbf;
  2196. ds = lastbf->bf_desc;
  2197. memset(&ts, 0, sizeof(ts));
  2198. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2199. if (status == -EINPROGRESS)
  2200. break;
  2201. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2202. /*
  2203. * Remove ath_buf's of the same transmit unit from txq,
  2204. * however leave the last descriptor back as the holding
  2205. * descriptor for hw.
  2206. */
  2207. lastbf->bf_state.stale = true;
  2208. INIT_LIST_HEAD(&bf_head);
  2209. if (!list_is_singular(&lastbf->list))
  2210. list_cut_position(&bf_head,
  2211. &txq->axq_q, lastbf->list.prev);
  2212. if (bf_held) {
  2213. list_del(&bf_held->list);
  2214. ath_tx_return_buffer(sc, bf_held);
  2215. }
  2216. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2217. }
  2218. ath_txq_unlock_complete(sc, txq);
  2219. }
  2220. void ath_tx_tasklet(struct ath_softc *sc)
  2221. {
  2222. struct ath_hw *ah = sc->sc_ah;
  2223. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2224. int i;
  2225. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2226. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2227. ath_tx_processq(sc, &sc->tx.txq[i]);
  2228. }
  2229. }
  2230. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2231. {
  2232. struct ath_tx_status ts;
  2233. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2234. struct ath_hw *ah = sc->sc_ah;
  2235. struct ath_txq *txq;
  2236. struct ath_buf *bf, *lastbf;
  2237. struct list_head bf_head;
  2238. struct list_head *fifo_list;
  2239. int status;
  2240. for (;;) {
  2241. if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
  2242. break;
  2243. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2244. if (status == -EINPROGRESS)
  2245. break;
  2246. if (status == -EIO) {
  2247. ath_dbg(common, XMIT, "Error processing tx status\n");
  2248. break;
  2249. }
  2250. /* Process beacon completions separately */
  2251. if (ts.qid == sc->beacon.beaconq) {
  2252. sc->beacon.tx_processed = true;
  2253. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2254. if (ath9k_is_chanctx_enabled()) {
  2255. ath_chanctx_event(sc, NULL,
  2256. ATH_CHANCTX_EVENT_BEACON_SENT);
  2257. }
  2258. ath9k_csa_update(sc);
  2259. continue;
  2260. }
  2261. txq = &sc->tx.txq[ts.qid];
  2262. ath_txq_lock(sc, txq);
  2263. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2264. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2265. if (list_empty(fifo_list)) {
  2266. ath_txq_unlock(sc, txq);
  2267. return;
  2268. }
  2269. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2270. if (bf->bf_state.stale) {
  2271. list_del(&bf->list);
  2272. ath_tx_return_buffer(sc, bf);
  2273. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2274. }
  2275. lastbf = bf->bf_lastbf;
  2276. INIT_LIST_HEAD(&bf_head);
  2277. if (list_is_last(&lastbf->list, fifo_list)) {
  2278. list_splice_tail_init(fifo_list, &bf_head);
  2279. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2280. if (!list_empty(&txq->axq_q)) {
  2281. struct list_head bf_q;
  2282. INIT_LIST_HEAD(&bf_q);
  2283. txq->axq_link = NULL;
  2284. list_splice_tail_init(&txq->axq_q, &bf_q);
  2285. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2286. }
  2287. } else {
  2288. lastbf->bf_state.stale = true;
  2289. if (bf != lastbf)
  2290. list_cut_position(&bf_head, fifo_list,
  2291. lastbf->list.prev);
  2292. }
  2293. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2294. ath_txq_unlock_complete(sc, txq);
  2295. }
  2296. }
  2297. /*****************/
  2298. /* Init, Cleanup */
  2299. /*****************/
  2300. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2301. {
  2302. struct ath_descdma *dd = &sc->txsdma;
  2303. u8 txs_len = sc->sc_ah->caps.txs_len;
  2304. dd->dd_desc_len = size * txs_len;
  2305. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2306. &dd->dd_desc_paddr, GFP_KERNEL);
  2307. if (!dd->dd_desc)
  2308. return -ENOMEM;
  2309. return 0;
  2310. }
  2311. static int ath_tx_edma_init(struct ath_softc *sc)
  2312. {
  2313. int err;
  2314. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2315. if (!err)
  2316. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2317. sc->txsdma.dd_desc_paddr,
  2318. ATH_TXSTATUS_RING_SIZE);
  2319. return err;
  2320. }
  2321. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2322. {
  2323. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2324. int error = 0;
  2325. spin_lock_init(&sc->tx.txbuflock);
  2326. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2327. "tx", nbufs, 1, 1);
  2328. if (error != 0) {
  2329. ath_err(common,
  2330. "Failed to allocate tx descriptors: %d\n", error);
  2331. return error;
  2332. }
  2333. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2334. "beacon", ATH_BCBUF, 1, 1);
  2335. if (error != 0) {
  2336. ath_err(common,
  2337. "Failed to allocate beacon descriptors: %d\n", error);
  2338. return error;
  2339. }
  2340. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2341. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2342. error = ath_tx_edma_init(sc);
  2343. return error;
  2344. }
  2345. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2346. {
  2347. struct ath_atx_tid *tid;
  2348. struct ath_atx_ac *ac;
  2349. int tidno, acno;
  2350. for (tidno = 0, tid = &an->tid[tidno];
  2351. tidno < IEEE80211_NUM_TIDS;
  2352. tidno++, tid++) {
  2353. tid->an = an;
  2354. tid->tidno = tidno;
  2355. tid->seq_start = tid->seq_next = 0;
  2356. tid->baw_size = WME_MAX_BA;
  2357. tid->baw_head = tid->baw_tail = 0;
  2358. tid->sched = false;
  2359. tid->active = false;
  2360. __skb_queue_head_init(&tid->buf_q);
  2361. __skb_queue_head_init(&tid->retry_q);
  2362. acno = TID_TO_WME_AC(tidno);
  2363. tid->ac = &an->ac[acno];
  2364. }
  2365. for (acno = 0, ac = &an->ac[acno];
  2366. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2367. ac->sched = false;
  2368. ac->clear_ps_filter = true;
  2369. ac->txq = sc->tx.txq_map[acno];
  2370. INIT_LIST_HEAD(&ac->tid_q);
  2371. }
  2372. }
  2373. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2374. {
  2375. struct ath_atx_ac *ac;
  2376. struct ath_atx_tid *tid;
  2377. struct ath_txq *txq;
  2378. int tidno;
  2379. for (tidno = 0, tid = &an->tid[tidno];
  2380. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2381. ac = tid->ac;
  2382. txq = ac->txq;
  2383. ath_txq_lock(sc, txq);
  2384. if (tid->sched) {
  2385. list_del(&tid->list);
  2386. tid->sched = false;
  2387. }
  2388. if (ac->sched) {
  2389. list_del(&ac->list);
  2390. tid->ac->sched = false;
  2391. }
  2392. ath_tid_drain(sc, txq, tid);
  2393. tid->active = false;
  2394. ath_txq_unlock(sc, txq);
  2395. }
  2396. }
  2397. #ifdef CONFIG_ATH9K_TX99
  2398. int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
  2399. struct ath_tx_control *txctl)
  2400. {
  2401. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  2402. struct ath_frame_info *fi = get_frame_info(skb);
  2403. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2404. struct ath_buf *bf;
  2405. int padpos, padsize;
  2406. padpos = ieee80211_hdrlen(hdr->frame_control);
  2407. padsize = padpos & 3;
  2408. if (padsize && skb->len > padpos) {
  2409. if (skb_headroom(skb) < padsize) {
  2410. ath_dbg(common, XMIT,
  2411. "tx99 padding failed\n");
  2412. return -EINVAL;
  2413. }
  2414. skb_push(skb, padsize);
  2415. memmove(skb->data, skb->data + padsize, padpos);
  2416. }
  2417. fi->keyix = ATH9K_TXKEYIX_INVALID;
  2418. fi->framelen = skb->len + FCS_LEN;
  2419. fi->keytype = ATH9K_KEY_TYPE_CLEAR;
  2420. bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
  2421. if (!bf) {
  2422. ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
  2423. return -EINVAL;
  2424. }
  2425. ath_set_rates(sc->tx99_vif, NULL, bf);
  2426. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
  2427. ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
  2428. ath_tx_send_normal(sc, txctl->txq, NULL, skb);
  2429. return 0;
  2430. }
  2431. #endif /* CONFIG_ATH9K_TX99 */