ce.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "hif.h"
  18. #include "pci.h"
  19. #include "ce.h"
  20. #include "debug.h"
  21. /*
  22. * Support for Copy Engine hardware, which is mainly used for
  23. * communication between Host and Target over a PCIe interconnect.
  24. */
  25. /*
  26. * A single CopyEngine (CE) comprises two "rings":
  27. * a source ring
  28. * a destination ring
  29. *
  30. * Each ring consists of a number of descriptors which specify
  31. * an address, length, and meta-data.
  32. *
  33. * Typically, one side of the PCIe interconnect (Host or Target)
  34. * controls one ring and the other side controls the other ring.
  35. * The source side chooses when to initiate a transfer and it
  36. * chooses what to send (buffer address, length). The destination
  37. * side keeps a supply of "anonymous receive buffers" available and
  38. * it handles incoming data as it arrives (when the destination
  39. * recieves an interrupt).
  40. *
  41. * The sender may send a simple buffer (address/length) or it may
  42. * send a small list of buffers. When a small list is sent, hardware
  43. * "gathers" these and they end up in a single destination buffer
  44. * with a single interrupt.
  45. *
  46. * There are several "contexts" managed by this layer -- more, it
  47. * may seem -- than should be needed. These are provided mainly for
  48. * maximum flexibility and especially to facilitate a simpler HIF
  49. * implementation. There are per-CopyEngine recv, send, and watermark
  50. * contexts. These are supplied by the caller when a recv, send,
  51. * or watermark handler is established and they are echoed back to
  52. * the caller when the respective callbacks are invoked. There is
  53. * also a per-transfer context supplied by the caller when a buffer
  54. * (or sendlist) is sent and when a buffer is enqueued for recv.
  55. * These per-transfer contexts are echoed back to the caller when
  56. * the buffer is sent/received.
  57. */
  58. static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
  59. u32 ce_ctrl_addr,
  60. unsigned int n)
  61. {
  62. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
  63. }
  64. static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
  65. u32 ce_ctrl_addr)
  66. {
  67. return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
  68. }
  69. static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
  70. u32 ce_ctrl_addr,
  71. unsigned int n)
  72. {
  73. ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
  74. }
  75. static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
  76. u32 ce_ctrl_addr)
  77. {
  78. return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
  79. }
  80. static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
  81. u32 ce_ctrl_addr)
  82. {
  83. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
  84. }
  85. static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
  86. u32 ce_ctrl_addr,
  87. unsigned int addr)
  88. {
  89. ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
  90. }
  91. static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
  92. u32 ce_ctrl_addr,
  93. unsigned int n)
  94. {
  95. ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
  96. }
  97. static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
  98. u32 ce_ctrl_addr,
  99. unsigned int n)
  100. {
  101. u32 ctrl1_addr = ath10k_pci_read32((ar),
  102. (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
  103. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  104. (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
  105. CE_CTRL1_DMAX_LENGTH_SET(n));
  106. }
  107. static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
  108. u32 ce_ctrl_addr,
  109. unsigned int n)
  110. {
  111. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  112. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  113. (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
  114. CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
  115. }
  116. static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
  117. u32 ce_ctrl_addr,
  118. unsigned int n)
  119. {
  120. u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
  121. ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
  122. (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
  123. CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
  124. }
  125. static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
  126. u32 ce_ctrl_addr)
  127. {
  128. return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
  129. }
  130. static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
  131. u32 ce_ctrl_addr,
  132. u32 addr)
  133. {
  134. ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
  135. }
  136. static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
  137. u32 ce_ctrl_addr,
  138. unsigned int n)
  139. {
  140. ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
  141. }
  142. static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
  143. u32 ce_ctrl_addr,
  144. unsigned int n)
  145. {
  146. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  147. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  148. (addr & ~SRC_WATERMARK_HIGH_MASK) |
  149. SRC_WATERMARK_HIGH_SET(n));
  150. }
  151. static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
  152. u32 ce_ctrl_addr,
  153. unsigned int n)
  154. {
  155. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
  156. ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
  157. (addr & ~SRC_WATERMARK_LOW_MASK) |
  158. SRC_WATERMARK_LOW_SET(n));
  159. }
  160. static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
  161. u32 ce_ctrl_addr,
  162. unsigned int n)
  163. {
  164. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  165. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  166. (addr & ~DST_WATERMARK_HIGH_MASK) |
  167. DST_WATERMARK_HIGH_SET(n));
  168. }
  169. static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
  170. u32 ce_ctrl_addr,
  171. unsigned int n)
  172. {
  173. u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
  174. ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
  175. (addr & ~DST_WATERMARK_LOW_MASK) |
  176. DST_WATERMARK_LOW_SET(n));
  177. }
  178. static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
  179. u32 ce_ctrl_addr)
  180. {
  181. u32 host_ie_addr = ath10k_pci_read32(ar,
  182. ce_ctrl_addr + HOST_IE_ADDRESS);
  183. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  184. host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
  185. }
  186. static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
  187. u32 ce_ctrl_addr)
  188. {
  189. u32 host_ie_addr = ath10k_pci_read32(ar,
  190. ce_ctrl_addr + HOST_IE_ADDRESS);
  191. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  192. host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
  193. }
  194. static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
  195. u32 ce_ctrl_addr)
  196. {
  197. u32 host_ie_addr = ath10k_pci_read32(ar,
  198. ce_ctrl_addr + HOST_IE_ADDRESS);
  199. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
  200. host_ie_addr & ~CE_WATERMARK_MASK);
  201. }
  202. static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
  203. u32 ce_ctrl_addr)
  204. {
  205. u32 misc_ie_addr = ath10k_pci_read32(ar,
  206. ce_ctrl_addr + MISC_IE_ADDRESS);
  207. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  208. misc_ie_addr | CE_ERROR_MASK);
  209. }
  210. static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
  211. u32 ce_ctrl_addr)
  212. {
  213. u32 misc_ie_addr = ath10k_pci_read32(ar,
  214. ce_ctrl_addr + MISC_IE_ADDRESS);
  215. ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
  216. misc_ie_addr & ~CE_ERROR_MASK);
  217. }
  218. static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
  219. u32 ce_ctrl_addr,
  220. unsigned int mask)
  221. {
  222. ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
  223. }
  224. /*
  225. * Guts of ath10k_ce_send, used by both ath10k_ce_send and
  226. * ath10k_ce_sendlist_send.
  227. * The caller takes responsibility for any needed locking.
  228. */
  229. int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
  230. void *per_transfer_context,
  231. u32 buffer,
  232. unsigned int nbytes,
  233. unsigned int transfer_id,
  234. unsigned int flags)
  235. {
  236. struct ath10k *ar = ce_state->ar;
  237. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  238. struct ce_desc *desc, *sdesc;
  239. unsigned int nentries_mask = src_ring->nentries_mask;
  240. unsigned int sw_index = src_ring->sw_index;
  241. unsigned int write_index = src_ring->write_index;
  242. u32 ctrl_addr = ce_state->ctrl_addr;
  243. u32 desc_flags = 0;
  244. int ret = 0;
  245. if (nbytes > ce_state->src_sz_max)
  246. ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
  247. __func__, nbytes, ce_state->src_sz_max);
  248. if (unlikely(CE_RING_DELTA(nentries_mask,
  249. write_index, sw_index - 1) <= 0)) {
  250. ret = -ENOSR;
  251. goto exit;
  252. }
  253. desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
  254. write_index);
  255. sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
  256. desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
  257. if (flags & CE_SEND_FLAG_GATHER)
  258. desc_flags |= CE_DESC_FLAGS_GATHER;
  259. if (flags & CE_SEND_FLAG_BYTE_SWAP)
  260. desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
  261. sdesc->addr = __cpu_to_le32(buffer);
  262. sdesc->nbytes = __cpu_to_le16(nbytes);
  263. sdesc->flags = __cpu_to_le16(desc_flags);
  264. *desc = *sdesc;
  265. src_ring->per_transfer_context[write_index] = per_transfer_context;
  266. /* Update Source Ring Write Index */
  267. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  268. /* WORKAROUND */
  269. if (!(flags & CE_SEND_FLAG_GATHER))
  270. ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
  271. src_ring->write_index = write_index;
  272. exit:
  273. return ret;
  274. }
  275. void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
  276. {
  277. struct ath10k *ar = pipe->ar;
  278. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  279. struct ath10k_ce_ring *src_ring = pipe->src_ring;
  280. u32 ctrl_addr = pipe->ctrl_addr;
  281. lockdep_assert_held(&ar_pci->ce_lock);
  282. /*
  283. * This function must be called only if there is an incomplete
  284. * scatter-gather transfer (before index register is updated)
  285. * that needs to be cleaned up.
  286. */
  287. if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
  288. return;
  289. if (WARN_ON_ONCE(src_ring->write_index ==
  290. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
  291. return;
  292. src_ring->write_index--;
  293. src_ring->write_index &= src_ring->nentries_mask;
  294. src_ring->per_transfer_context[src_ring->write_index] = NULL;
  295. }
  296. int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
  297. void *per_transfer_context,
  298. u32 buffer,
  299. unsigned int nbytes,
  300. unsigned int transfer_id,
  301. unsigned int flags)
  302. {
  303. struct ath10k *ar = ce_state->ar;
  304. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  305. int ret;
  306. spin_lock_bh(&ar_pci->ce_lock);
  307. ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
  308. buffer, nbytes, transfer_id, flags);
  309. spin_unlock_bh(&ar_pci->ce_lock);
  310. return ret;
  311. }
  312. int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
  313. {
  314. struct ath10k *ar = pipe->ar;
  315. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  316. int delta;
  317. spin_lock_bh(&ar_pci->ce_lock);
  318. delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
  319. pipe->src_ring->write_index,
  320. pipe->src_ring->sw_index - 1);
  321. spin_unlock_bh(&ar_pci->ce_lock);
  322. return delta;
  323. }
  324. int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
  325. {
  326. struct ath10k *ar = pipe->ar;
  327. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  328. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  329. unsigned int nentries_mask = dest_ring->nentries_mask;
  330. unsigned int write_index = dest_ring->write_index;
  331. unsigned int sw_index = dest_ring->sw_index;
  332. lockdep_assert_held(&ar_pci->ce_lock);
  333. return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
  334. }
  335. int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
  336. {
  337. struct ath10k *ar = pipe->ar;
  338. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  339. struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
  340. unsigned int nentries_mask = dest_ring->nentries_mask;
  341. unsigned int write_index = dest_ring->write_index;
  342. unsigned int sw_index = dest_ring->sw_index;
  343. struct ce_desc *base = dest_ring->base_addr_owner_space;
  344. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
  345. u32 ctrl_addr = pipe->ctrl_addr;
  346. lockdep_assert_held(&ar_pci->ce_lock);
  347. if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
  348. return -EIO;
  349. desc->addr = __cpu_to_le32(paddr);
  350. desc->nbytes = 0;
  351. dest_ring->per_transfer_context[write_index] = ctx;
  352. write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
  353. ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
  354. dest_ring->write_index = write_index;
  355. return 0;
  356. }
  357. int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
  358. {
  359. struct ath10k *ar = pipe->ar;
  360. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  361. int ret;
  362. spin_lock_bh(&ar_pci->ce_lock);
  363. ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
  364. spin_unlock_bh(&ar_pci->ce_lock);
  365. return ret;
  366. }
  367. /*
  368. * Guts of ath10k_ce_completed_recv_next.
  369. * The caller takes responsibility for any necessary locking.
  370. */
  371. int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
  372. void **per_transfer_contextp,
  373. u32 *bufferp,
  374. unsigned int *nbytesp,
  375. unsigned int *transfer_idp,
  376. unsigned int *flagsp)
  377. {
  378. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  379. unsigned int nentries_mask = dest_ring->nentries_mask;
  380. unsigned int sw_index = dest_ring->sw_index;
  381. struct ce_desc *base = dest_ring->base_addr_owner_space;
  382. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  383. struct ce_desc sdesc;
  384. u16 nbytes;
  385. /* Copy in one go for performance reasons */
  386. sdesc = *desc;
  387. nbytes = __le16_to_cpu(sdesc.nbytes);
  388. if (nbytes == 0) {
  389. /*
  390. * This closes a relatively unusual race where the Host
  391. * sees the updated DRRI before the update to the
  392. * corresponding descriptor has completed. We treat this
  393. * as a descriptor that is not yet done.
  394. */
  395. return -EIO;
  396. }
  397. desc->nbytes = 0;
  398. /* Return data from completed destination descriptor */
  399. *bufferp = __le32_to_cpu(sdesc.addr);
  400. *nbytesp = nbytes;
  401. *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
  402. if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
  403. *flagsp = CE_RECV_FLAG_SWAPPED;
  404. else
  405. *flagsp = 0;
  406. if (per_transfer_contextp)
  407. *per_transfer_contextp =
  408. dest_ring->per_transfer_context[sw_index];
  409. /* sanity */
  410. dest_ring->per_transfer_context[sw_index] = NULL;
  411. /* Update sw_index */
  412. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  413. dest_ring->sw_index = sw_index;
  414. return 0;
  415. }
  416. int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
  417. void **per_transfer_contextp,
  418. u32 *bufferp,
  419. unsigned int *nbytesp,
  420. unsigned int *transfer_idp,
  421. unsigned int *flagsp)
  422. {
  423. struct ath10k *ar = ce_state->ar;
  424. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  425. int ret;
  426. spin_lock_bh(&ar_pci->ce_lock);
  427. ret = ath10k_ce_completed_recv_next_nolock(ce_state,
  428. per_transfer_contextp,
  429. bufferp, nbytesp,
  430. transfer_idp, flagsp);
  431. spin_unlock_bh(&ar_pci->ce_lock);
  432. return ret;
  433. }
  434. int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
  435. void **per_transfer_contextp,
  436. u32 *bufferp)
  437. {
  438. struct ath10k_ce_ring *dest_ring;
  439. unsigned int nentries_mask;
  440. unsigned int sw_index;
  441. unsigned int write_index;
  442. int ret;
  443. struct ath10k *ar;
  444. struct ath10k_pci *ar_pci;
  445. dest_ring = ce_state->dest_ring;
  446. if (!dest_ring)
  447. return -EIO;
  448. ar = ce_state->ar;
  449. ar_pci = ath10k_pci_priv(ar);
  450. spin_lock_bh(&ar_pci->ce_lock);
  451. nentries_mask = dest_ring->nentries_mask;
  452. sw_index = dest_ring->sw_index;
  453. write_index = dest_ring->write_index;
  454. if (write_index != sw_index) {
  455. struct ce_desc *base = dest_ring->base_addr_owner_space;
  456. struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
  457. /* Return data from completed destination descriptor */
  458. *bufferp = __le32_to_cpu(desc->addr);
  459. if (per_transfer_contextp)
  460. *per_transfer_contextp =
  461. dest_ring->per_transfer_context[sw_index];
  462. /* sanity */
  463. dest_ring->per_transfer_context[sw_index] = NULL;
  464. desc->nbytes = 0;
  465. /* Update sw_index */
  466. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  467. dest_ring->sw_index = sw_index;
  468. ret = 0;
  469. } else {
  470. ret = -EIO;
  471. }
  472. spin_unlock_bh(&ar_pci->ce_lock);
  473. return ret;
  474. }
  475. /*
  476. * Guts of ath10k_ce_completed_send_next.
  477. * The caller takes responsibility for any necessary locking.
  478. */
  479. int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
  480. void **per_transfer_contextp,
  481. u32 *bufferp,
  482. unsigned int *nbytesp,
  483. unsigned int *transfer_idp)
  484. {
  485. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  486. u32 ctrl_addr = ce_state->ctrl_addr;
  487. struct ath10k *ar = ce_state->ar;
  488. unsigned int nentries_mask = src_ring->nentries_mask;
  489. unsigned int sw_index = src_ring->sw_index;
  490. struct ce_desc *sdesc, *sbase;
  491. unsigned int read_index;
  492. if (src_ring->hw_index == sw_index) {
  493. /*
  494. * The SW completion index has caught up with the cached
  495. * version of the HW completion index.
  496. * Update the cached HW completion index to see whether
  497. * the SW has really caught up to the HW, or if the cached
  498. * value of the HW index has become stale.
  499. */
  500. read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  501. if (read_index == 0xffffffff)
  502. return -ENODEV;
  503. read_index &= nentries_mask;
  504. src_ring->hw_index = read_index;
  505. }
  506. read_index = src_ring->hw_index;
  507. if (read_index == sw_index)
  508. return -EIO;
  509. sbase = src_ring->shadow_base;
  510. sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
  511. /* Return data from completed source descriptor */
  512. *bufferp = __le32_to_cpu(sdesc->addr);
  513. *nbytesp = __le16_to_cpu(sdesc->nbytes);
  514. *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
  515. CE_DESC_FLAGS_META_DATA);
  516. if (per_transfer_contextp)
  517. *per_transfer_contextp =
  518. src_ring->per_transfer_context[sw_index];
  519. /* sanity */
  520. src_ring->per_transfer_context[sw_index] = NULL;
  521. /* Update sw_index */
  522. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  523. src_ring->sw_index = sw_index;
  524. return 0;
  525. }
  526. /* NB: Modeled after ath10k_ce_completed_send_next */
  527. int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
  528. void **per_transfer_contextp,
  529. u32 *bufferp,
  530. unsigned int *nbytesp,
  531. unsigned int *transfer_idp)
  532. {
  533. struct ath10k_ce_ring *src_ring;
  534. unsigned int nentries_mask;
  535. unsigned int sw_index;
  536. unsigned int write_index;
  537. int ret;
  538. struct ath10k *ar;
  539. struct ath10k_pci *ar_pci;
  540. src_ring = ce_state->src_ring;
  541. if (!src_ring)
  542. return -EIO;
  543. ar = ce_state->ar;
  544. ar_pci = ath10k_pci_priv(ar);
  545. spin_lock_bh(&ar_pci->ce_lock);
  546. nentries_mask = src_ring->nentries_mask;
  547. sw_index = src_ring->sw_index;
  548. write_index = src_ring->write_index;
  549. if (write_index != sw_index) {
  550. struct ce_desc *base = src_ring->base_addr_owner_space;
  551. struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
  552. /* Return data from completed source descriptor */
  553. *bufferp = __le32_to_cpu(desc->addr);
  554. *nbytesp = __le16_to_cpu(desc->nbytes);
  555. *transfer_idp = MS(__le16_to_cpu(desc->flags),
  556. CE_DESC_FLAGS_META_DATA);
  557. if (per_transfer_contextp)
  558. *per_transfer_contextp =
  559. src_ring->per_transfer_context[sw_index];
  560. /* sanity */
  561. src_ring->per_transfer_context[sw_index] = NULL;
  562. /* Update sw_index */
  563. sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
  564. src_ring->sw_index = sw_index;
  565. ret = 0;
  566. } else {
  567. ret = -EIO;
  568. }
  569. spin_unlock_bh(&ar_pci->ce_lock);
  570. return ret;
  571. }
  572. int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
  573. void **per_transfer_contextp,
  574. u32 *bufferp,
  575. unsigned int *nbytesp,
  576. unsigned int *transfer_idp)
  577. {
  578. struct ath10k *ar = ce_state->ar;
  579. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  580. int ret;
  581. spin_lock_bh(&ar_pci->ce_lock);
  582. ret = ath10k_ce_completed_send_next_nolock(ce_state,
  583. per_transfer_contextp,
  584. bufferp, nbytesp,
  585. transfer_idp);
  586. spin_unlock_bh(&ar_pci->ce_lock);
  587. return ret;
  588. }
  589. /*
  590. * Guts of interrupt handler for per-engine interrupts on a particular CE.
  591. *
  592. * Invokes registered callbacks for recv_complete,
  593. * send_complete, and watermarks.
  594. */
  595. void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
  596. {
  597. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  598. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  599. u32 ctrl_addr = ce_state->ctrl_addr;
  600. spin_lock_bh(&ar_pci->ce_lock);
  601. /* Clear the copy-complete interrupts that will be handled here. */
  602. ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
  603. HOST_IS_COPY_COMPLETE_MASK);
  604. spin_unlock_bh(&ar_pci->ce_lock);
  605. if (ce_state->recv_cb)
  606. ce_state->recv_cb(ce_state);
  607. if (ce_state->send_cb)
  608. ce_state->send_cb(ce_state);
  609. spin_lock_bh(&ar_pci->ce_lock);
  610. /*
  611. * Misc CE interrupts are not being handled, but still need
  612. * to be cleared.
  613. */
  614. ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
  615. spin_unlock_bh(&ar_pci->ce_lock);
  616. }
  617. /*
  618. * Handler for per-engine interrupts on ALL active CEs.
  619. * This is used in cases where the system is sharing a
  620. * single interrput for all CEs
  621. */
  622. void ath10k_ce_per_engine_service_any(struct ath10k *ar)
  623. {
  624. int ce_id;
  625. u32 intr_summary;
  626. intr_summary = CE_INTERRUPT_SUMMARY(ar);
  627. for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
  628. if (intr_summary & (1 << ce_id))
  629. intr_summary &= ~(1 << ce_id);
  630. else
  631. /* no intr pending on this CE */
  632. continue;
  633. ath10k_ce_per_engine_service(ar, ce_id);
  634. }
  635. }
  636. /*
  637. * Adjust interrupts for the copy complete handler.
  638. * If it's needed for either send or recv, then unmask
  639. * this interrupt; otherwise, mask it.
  640. *
  641. * Called with ce_lock held.
  642. */
  643. static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
  644. {
  645. u32 ctrl_addr = ce_state->ctrl_addr;
  646. struct ath10k *ar = ce_state->ar;
  647. bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
  648. if ((!disable_copy_compl_intr) &&
  649. (ce_state->send_cb || ce_state->recv_cb))
  650. ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
  651. else
  652. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  653. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  654. }
  655. int ath10k_ce_disable_interrupts(struct ath10k *ar)
  656. {
  657. int ce_id;
  658. for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
  659. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  660. ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
  661. ath10k_ce_error_intr_disable(ar, ctrl_addr);
  662. ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
  663. }
  664. return 0;
  665. }
  666. void ath10k_ce_enable_interrupts(struct ath10k *ar)
  667. {
  668. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  669. int ce_id;
  670. /* Skip the last copy engine, CE7 the diagnostic window, as that
  671. * uses polling and isn't initialized for interrupts.
  672. */
  673. for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
  674. ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
  675. }
  676. static int ath10k_ce_init_src_ring(struct ath10k *ar,
  677. unsigned int ce_id,
  678. const struct ce_attr *attr)
  679. {
  680. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  681. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  682. struct ath10k_ce_ring *src_ring = ce_state->src_ring;
  683. u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  684. nentries = roundup_pow_of_two(attr->src_nentries);
  685. memset(src_ring->base_addr_owner_space, 0,
  686. nentries * sizeof(struct ce_desc));
  687. src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
  688. src_ring->sw_index &= src_ring->nentries_mask;
  689. src_ring->hw_index = src_ring->sw_index;
  690. src_ring->write_index =
  691. ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
  692. src_ring->write_index &= src_ring->nentries_mask;
  693. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
  694. src_ring->base_addr_ce_space);
  695. ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
  696. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
  697. ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
  698. ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
  699. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
  700. ath10k_dbg(ar, ATH10K_DBG_BOOT,
  701. "boot init ce src ring id %d entries %d base_addr %p\n",
  702. ce_id, nentries, src_ring->base_addr_owner_space);
  703. return 0;
  704. }
  705. static int ath10k_ce_init_dest_ring(struct ath10k *ar,
  706. unsigned int ce_id,
  707. const struct ce_attr *attr)
  708. {
  709. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  710. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  711. struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
  712. u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  713. nentries = roundup_pow_of_two(attr->dest_nentries);
  714. memset(dest_ring->base_addr_owner_space, 0,
  715. nentries * sizeof(struct ce_desc));
  716. dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
  717. dest_ring->sw_index &= dest_ring->nentries_mask;
  718. dest_ring->write_index =
  719. ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
  720. dest_ring->write_index &= dest_ring->nentries_mask;
  721. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
  722. dest_ring->base_addr_ce_space);
  723. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
  724. ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
  725. ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
  726. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
  727. ath10k_dbg(ar, ATH10K_DBG_BOOT,
  728. "boot ce dest ring id %d entries %d base_addr %p\n",
  729. ce_id, nentries, dest_ring->base_addr_owner_space);
  730. return 0;
  731. }
  732. static struct ath10k_ce_ring *
  733. ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
  734. const struct ce_attr *attr)
  735. {
  736. struct ath10k_ce_ring *src_ring;
  737. u32 nentries = attr->src_nentries;
  738. dma_addr_t base_addr;
  739. nentries = roundup_pow_of_two(nentries);
  740. src_ring = kzalloc(sizeof(*src_ring) +
  741. (nentries *
  742. sizeof(*src_ring->per_transfer_context)),
  743. GFP_KERNEL);
  744. if (src_ring == NULL)
  745. return ERR_PTR(-ENOMEM);
  746. src_ring->nentries = nentries;
  747. src_ring->nentries_mask = nentries - 1;
  748. /*
  749. * Legacy platforms that do not support cache
  750. * coherent DMA are unsupported
  751. */
  752. src_ring->base_addr_owner_space_unaligned =
  753. dma_alloc_coherent(ar->dev,
  754. (nentries * sizeof(struct ce_desc) +
  755. CE_DESC_RING_ALIGN),
  756. &base_addr, GFP_KERNEL);
  757. if (!src_ring->base_addr_owner_space_unaligned) {
  758. kfree(src_ring);
  759. return ERR_PTR(-ENOMEM);
  760. }
  761. src_ring->base_addr_ce_space_unaligned = base_addr;
  762. src_ring->base_addr_owner_space = PTR_ALIGN(
  763. src_ring->base_addr_owner_space_unaligned,
  764. CE_DESC_RING_ALIGN);
  765. src_ring->base_addr_ce_space = ALIGN(
  766. src_ring->base_addr_ce_space_unaligned,
  767. CE_DESC_RING_ALIGN);
  768. /*
  769. * Also allocate a shadow src ring in regular
  770. * mem to use for faster access.
  771. */
  772. src_ring->shadow_base_unaligned =
  773. kmalloc((nentries * sizeof(struct ce_desc) +
  774. CE_DESC_RING_ALIGN), GFP_KERNEL);
  775. if (!src_ring->shadow_base_unaligned) {
  776. dma_free_coherent(ar->dev,
  777. (nentries * sizeof(struct ce_desc) +
  778. CE_DESC_RING_ALIGN),
  779. src_ring->base_addr_owner_space,
  780. src_ring->base_addr_ce_space);
  781. kfree(src_ring);
  782. return ERR_PTR(-ENOMEM);
  783. }
  784. src_ring->shadow_base = PTR_ALIGN(
  785. src_ring->shadow_base_unaligned,
  786. CE_DESC_RING_ALIGN);
  787. return src_ring;
  788. }
  789. static struct ath10k_ce_ring *
  790. ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
  791. const struct ce_attr *attr)
  792. {
  793. struct ath10k_ce_ring *dest_ring;
  794. u32 nentries;
  795. dma_addr_t base_addr;
  796. nentries = roundup_pow_of_two(attr->dest_nentries);
  797. dest_ring = kzalloc(sizeof(*dest_ring) +
  798. (nentries *
  799. sizeof(*dest_ring->per_transfer_context)),
  800. GFP_KERNEL);
  801. if (dest_ring == NULL)
  802. return ERR_PTR(-ENOMEM);
  803. dest_ring->nentries = nentries;
  804. dest_ring->nentries_mask = nentries - 1;
  805. /*
  806. * Legacy platforms that do not support cache
  807. * coherent DMA are unsupported
  808. */
  809. dest_ring->base_addr_owner_space_unaligned =
  810. dma_alloc_coherent(ar->dev,
  811. (nentries * sizeof(struct ce_desc) +
  812. CE_DESC_RING_ALIGN),
  813. &base_addr, GFP_KERNEL);
  814. if (!dest_ring->base_addr_owner_space_unaligned) {
  815. kfree(dest_ring);
  816. return ERR_PTR(-ENOMEM);
  817. }
  818. dest_ring->base_addr_ce_space_unaligned = base_addr;
  819. /*
  820. * Correctly initialize memory to 0 to prevent garbage
  821. * data crashing system when download firmware
  822. */
  823. memset(dest_ring->base_addr_owner_space_unaligned, 0,
  824. nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
  825. dest_ring->base_addr_owner_space = PTR_ALIGN(
  826. dest_ring->base_addr_owner_space_unaligned,
  827. CE_DESC_RING_ALIGN);
  828. dest_ring->base_addr_ce_space = ALIGN(
  829. dest_ring->base_addr_ce_space_unaligned,
  830. CE_DESC_RING_ALIGN);
  831. return dest_ring;
  832. }
  833. /*
  834. * Initialize a Copy Engine based on caller-supplied attributes.
  835. * This may be called once to initialize both source and destination
  836. * rings or it may be called twice for separate source and destination
  837. * initialization. It may be that only one side or the other is
  838. * initialized by software/firmware.
  839. */
  840. int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
  841. const struct ce_attr *attr)
  842. {
  843. int ret;
  844. if (attr->src_nentries) {
  845. ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
  846. if (ret) {
  847. ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
  848. ce_id, ret);
  849. return ret;
  850. }
  851. }
  852. if (attr->dest_nentries) {
  853. ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
  854. if (ret) {
  855. ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
  856. ce_id, ret);
  857. return ret;
  858. }
  859. }
  860. return 0;
  861. }
  862. static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
  863. {
  864. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  865. ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
  866. ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
  867. ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
  868. ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
  869. }
  870. static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
  871. {
  872. u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  873. ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
  874. ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
  875. ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
  876. }
  877. void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
  878. {
  879. ath10k_ce_deinit_src_ring(ar, ce_id);
  880. ath10k_ce_deinit_dest_ring(ar, ce_id);
  881. }
  882. int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
  883. const struct ce_attr *attr,
  884. void (*send_cb)(struct ath10k_ce_pipe *),
  885. void (*recv_cb)(struct ath10k_ce_pipe *))
  886. {
  887. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  888. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  889. int ret;
  890. /*
  891. * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
  892. * additional TX locking checks.
  893. *
  894. * For the lack of a better place do the check here.
  895. */
  896. BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
  897. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  898. BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
  899. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  900. BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
  901. (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
  902. ce_state->ar = ar;
  903. ce_state->id = ce_id;
  904. ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
  905. ce_state->attr_flags = attr->flags;
  906. ce_state->src_sz_max = attr->src_sz_max;
  907. if (attr->src_nentries)
  908. ce_state->send_cb = send_cb;
  909. if (attr->dest_nentries)
  910. ce_state->recv_cb = recv_cb;
  911. if (attr->src_nentries) {
  912. ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
  913. if (IS_ERR(ce_state->src_ring)) {
  914. ret = PTR_ERR(ce_state->src_ring);
  915. ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
  916. ce_id, ret);
  917. ce_state->src_ring = NULL;
  918. return ret;
  919. }
  920. }
  921. if (attr->dest_nentries) {
  922. ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
  923. attr);
  924. if (IS_ERR(ce_state->dest_ring)) {
  925. ret = PTR_ERR(ce_state->dest_ring);
  926. ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
  927. ce_id, ret);
  928. ce_state->dest_ring = NULL;
  929. return ret;
  930. }
  931. }
  932. return 0;
  933. }
  934. void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
  935. {
  936. struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
  937. struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
  938. if (ce_state->src_ring) {
  939. kfree(ce_state->src_ring->shadow_base_unaligned);
  940. dma_free_coherent(ar->dev,
  941. (ce_state->src_ring->nentries *
  942. sizeof(struct ce_desc) +
  943. CE_DESC_RING_ALIGN),
  944. ce_state->src_ring->base_addr_owner_space,
  945. ce_state->src_ring->base_addr_ce_space);
  946. kfree(ce_state->src_ring);
  947. }
  948. if (ce_state->dest_ring) {
  949. dma_free_coherent(ar->dev,
  950. (ce_state->dest_ring->nentries *
  951. sizeof(struct ce_desc) +
  952. CE_DESC_RING_ALIGN),
  953. ce_state->dest_ring->base_addr_owner_space,
  954. ce_state->dest_ring->base_addr_ce_space);
  955. kfree(ce_state->dest_ring);
  956. }
  957. ce_state->src_ring = NULL;
  958. ce_state->dest_ring = NULL;
  959. }