netcp_core.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156
  1. /*
  2. * Keystone NetCP Core driver
  3. *
  4. * Copyright (C) 2014 Texas Instruments Incorporated
  5. * Authors: Sandeep Nair <sandeep_n@ti.com>
  6. * Sandeep Paulraj <s-paulraj@ti.com>
  7. * Cyril Chemparathy <cyril@ti.com>
  8. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  9. * Murali Karicheri <m-karicheri2@ti.com>
  10. * Wingman Kwok <w-kwok2@ti.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation version 2.
  15. *
  16. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  17. * kind, whether express or implied; without even the implied warranty
  18. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. */
  21. #include <linux/io.h>
  22. #include <linux/module.h>
  23. #include <linux/of_net.h>
  24. #include <linux/of_address.h>
  25. #include <linux/if_vlan.h>
  26. #include <linux/pm_runtime.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/soc/ti/knav_qmss.h>
  29. #include <linux/soc/ti/knav_dma.h>
  30. #include "netcp.h"
  31. #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
  32. #define NETCP_NAPI_WEIGHT 64
  33. #define NETCP_TX_TIMEOUT (5 * HZ)
  34. #define NETCP_MIN_PACKET_SIZE ETH_ZLEN
  35. #define NETCP_MAX_MCAST_ADDR 16
  36. #define NETCP_EFUSE_REG_INDEX 0
  37. #define NETCP_MOD_PROBE_SKIPPED 1
  38. #define NETCP_MOD_PROBE_FAILED 2
  39. #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
  40. NETIF_MSG_DRV | NETIF_MSG_LINK | \
  41. NETIF_MSG_IFUP | NETIF_MSG_INTR | \
  42. NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
  43. NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
  44. NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
  45. NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
  46. NETIF_MSG_RX_STATUS)
  47. #define knav_queue_get_id(q) knav_queue_device_control(q, \
  48. KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  49. #define knav_queue_enable_notify(q) knav_queue_device_control(q, \
  50. KNAV_QUEUE_ENABLE_NOTIFY, \
  51. (unsigned long)NULL)
  52. #define knav_queue_disable_notify(q) knav_queue_device_control(q, \
  53. KNAV_QUEUE_DISABLE_NOTIFY, \
  54. (unsigned long)NULL)
  55. #define knav_queue_get_count(q) knav_queue_device_control(q, \
  56. KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  57. #define for_each_netcp_module(module) \
  58. list_for_each_entry(module, &netcp_modules, module_list)
  59. #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  60. list_for_each_entry(inst_modpriv, \
  61. &((netcp_device)->modpriv_head), inst_list)
  62. #define for_each_module(netcp, intf_modpriv) \
  63. list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  64. /* Module management structures */
  65. struct netcp_device {
  66. struct list_head device_list;
  67. struct list_head interface_head;
  68. struct list_head modpriv_head;
  69. struct device *device;
  70. };
  71. struct netcp_inst_modpriv {
  72. struct netcp_device *netcp_device;
  73. struct netcp_module *netcp_module;
  74. struct list_head inst_list;
  75. void *module_priv;
  76. };
  77. struct netcp_intf_modpriv {
  78. struct netcp_intf *netcp_priv;
  79. struct netcp_module *netcp_module;
  80. struct list_head intf_list;
  81. void *module_priv;
  82. };
  83. static LIST_HEAD(netcp_devices);
  84. static LIST_HEAD(netcp_modules);
  85. static DEFINE_MUTEX(netcp_modules_lock);
  86. static int netcp_debug_level = -1;
  87. module_param(netcp_debug_level, int, 0);
  88. MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
  89. /* Helper functions - Get/Set */
  90. static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
  91. struct knav_dma_desc *desc)
  92. {
  93. *buff_len = desc->buff_len;
  94. *buff = desc->buff;
  95. *ndesc = desc->next_desc;
  96. }
  97. static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
  98. {
  99. *pad0 = desc->pad[0];
  100. *pad1 = desc->pad[1];
  101. }
  102. static void get_org_pkt_info(u32 *buff, u32 *buff_len,
  103. struct knav_dma_desc *desc)
  104. {
  105. *buff = desc->orig_buff;
  106. *buff_len = desc->orig_len;
  107. }
  108. static void get_words(u32 *words, int num_words, u32 *desc)
  109. {
  110. int i;
  111. for (i = 0; i < num_words; i++)
  112. words[i] = desc[i];
  113. }
  114. static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
  115. struct knav_dma_desc *desc)
  116. {
  117. desc->buff_len = buff_len;
  118. desc->buff = buff;
  119. desc->next_desc = ndesc;
  120. }
  121. static void set_desc_info(u32 desc_info, u32 pkt_info,
  122. struct knav_dma_desc *desc)
  123. {
  124. desc->desc_info = desc_info;
  125. desc->packet_info = pkt_info;
  126. }
  127. static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
  128. {
  129. desc->pad[0] = pad0;
  130. desc->pad[1] = pad1;
  131. }
  132. static void set_org_pkt_info(u32 buff, u32 buff_len,
  133. struct knav_dma_desc *desc)
  134. {
  135. desc->orig_buff = buff;
  136. desc->orig_len = buff_len;
  137. }
  138. static void set_words(u32 *words, int num_words, u32 *desc)
  139. {
  140. int i;
  141. for (i = 0; i < num_words; i++)
  142. desc[i] = words[i];
  143. }
  144. /* Read the e-fuse value as 32 bit values to be endian independent */
  145. static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac)
  146. {
  147. unsigned int addr0, addr1;
  148. addr1 = readl(efuse_mac + 4);
  149. addr0 = readl(efuse_mac);
  150. x[0] = (addr1 & 0x0000ff00) >> 8;
  151. x[1] = addr1 & 0x000000ff;
  152. x[2] = (addr0 & 0xff000000) >> 24;
  153. x[3] = (addr0 & 0x00ff0000) >> 16;
  154. x[4] = (addr0 & 0x0000ff00) >> 8;
  155. x[5] = addr0 & 0x000000ff;
  156. return 0;
  157. }
  158. static const char *netcp_node_name(struct device_node *node)
  159. {
  160. const char *name;
  161. if (of_property_read_string(node, "label", &name) < 0)
  162. name = node->name;
  163. if (!name)
  164. name = "unknown";
  165. return name;
  166. }
  167. /* Module management routines */
  168. static int netcp_register_interface(struct netcp_intf *netcp)
  169. {
  170. int ret;
  171. ret = register_netdev(netcp->ndev);
  172. if (!ret)
  173. netcp->netdev_registered = true;
  174. return ret;
  175. }
  176. static int netcp_module_probe(struct netcp_device *netcp_device,
  177. struct netcp_module *module)
  178. {
  179. struct device *dev = netcp_device->device;
  180. struct device_node *devices, *interface, *node = dev->of_node;
  181. struct device_node *child;
  182. struct netcp_inst_modpriv *inst_modpriv;
  183. struct netcp_intf *netcp_intf;
  184. struct netcp_module *tmp;
  185. bool primary_module_registered = false;
  186. int ret;
  187. /* Find this module in the sub-tree for this device */
  188. devices = of_get_child_by_name(node, "netcp-devices");
  189. if (!devices) {
  190. dev_err(dev, "could not find netcp-devices node\n");
  191. return NETCP_MOD_PROBE_SKIPPED;
  192. }
  193. for_each_available_child_of_node(devices, child) {
  194. const char *name = netcp_node_name(child);
  195. if (!strcasecmp(module->name, name))
  196. break;
  197. }
  198. of_node_put(devices);
  199. /* If module not used for this device, skip it */
  200. if (!child) {
  201. dev_warn(dev, "module(%s) not used for device\n", module->name);
  202. return NETCP_MOD_PROBE_SKIPPED;
  203. }
  204. inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
  205. if (!inst_modpriv) {
  206. of_node_put(child);
  207. return -ENOMEM;
  208. }
  209. inst_modpriv->netcp_device = netcp_device;
  210. inst_modpriv->netcp_module = module;
  211. list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
  212. ret = module->probe(netcp_device, dev, child,
  213. &inst_modpriv->module_priv);
  214. of_node_put(child);
  215. if (ret) {
  216. dev_err(dev, "Probe of module(%s) failed with %d\n",
  217. module->name, ret);
  218. list_del(&inst_modpriv->inst_list);
  219. devm_kfree(dev, inst_modpriv);
  220. return NETCP_MOD_PROBE_FAILED;
  221. }
  222. /* Attach modules only if the primary module is probed */
  223. for_each_netcp_module(tmp) {
  224. if (tmp->primary)
  225. primary_module_registered = true;
  226. }
  227. if (!primary_module_registered)
  228. return 0;
  229. /* Attach module to interfaces */
  230. list_for_each_entry(netcp_intf, &netcp_device->interface_head,
  231. interface_list) {
  232. struct netcp_intf_modpriv *intf_modpriv;
  233. /* If interface not registered then register now */
  234. if (!netcp_intf->netdev_registered)
  235. ret = netcp_register_interface(netcp_intf);
  236. if (ret)
  237. return -ENODEV;
  238. intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
  239. GFP_KERNEL);
  240. if (!intf_modpriv)
  241. return -ENOMEM;
  242. interface = of_parse_phandle(netcp_intf->node_interface,
  243. module->name, 0);
  244. intf_modpriv->netcp_priv = netcp_intf;
  245. intf_modpriv->netcp_module = module;
  246. list_add_tail(&intf_modpriv->intf_list,
  247. &netcp_intf->module_head);
  248. ret = module->attach(inst_modpriv->module_priv,
  249. netcp_intf->ndev, interface,
  250. &intf_modpriv->module_priv);
  251. of_node_put(interface);
  252. if (ret) {
  253. dev_dbg(dev, "Attach of module %s declined with %d\n",
  254. module->name, ret);
  255. list_del(&intf_modpriv->intf_list);
  256. devm_kfree(dev, intf_modpriv);
  257. continue;
  258. }
  259. }
  260. return 0;
  261. }
  262. int netcp_register_module(struct netcp_module *module)
  263. {
  264. struct netcp_device *netcp_device;
  265. struct netcp_module *tmp;
  266. int ret;
  267. if (!module->name) {
  268. WARN(1, "error registering netcp module: no name\n");
  269. return -EINVAL;
  270. }
  271. if (!module->probe) {
  272. WARN(1, "error registering netcp module: no probe\n");
  273. return -EINVAL;
  274. }
  275. mutex_lock(&netcp_modules_lock);
  276. for_each_netcp_module(tmp) {
  277. if (!strcasecmp(tmp->name, module->name)) {
  278. mutex_unlock(&netcp_modules_lock);
  279. return -EEXIST;
  280. }
  281. }
  282. list_add_tail(&module->module_list, &netcp_modules);
  283. list_for_each_entry(netcp_device, &netcp_devices, device_list) {
  284. ret = netcp_module_probe(netcp_device, module);
  285. if (ret < 0)
  286. goto fail;
  287. }
  288. mutex_unlock(&netcp_modules_lock);
  289. return 0;
  290. fail:
  291. mutex_unlock(&netcp_modules_lock);
  292. netcp_unregister_module(module);
  293. return ret;
  294. }
  295. EXPORT_SYMBOL_GPL(netcp_register_module);
  296. static void netcp_release_module(struct netcp_device *netcp_device,
  297. struct netcp_module *module)
  298. {
  299. struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
  300. struct netcp_intf *netcp_intf, *netcp_tmp;
  301. struct device *dev = netcp_device->device;
  302. /* Release the module from each interface */
  303. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  304. &netcp_device->interface_head,
  305. interface_list) {
  306. struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
  307. list_for_each_entry_safe(intf_modpriv, intf_tmp,
  308. &netcp_intf->module_head,
  309. intf_list) {
  310. if (intf_modpriv->netcp_module == module) {
  311. module->release(intf_modpriv->module_priv);
  312. list_del(&intf_modpriv->intf_list);
  313. devm_kfree(dev, intf_modpriv);
  314. break;
  315. }
  316. }
  317. }
  318. /* Remove the module from each instance */
  319. list_for_each_entry_safe(inst_modpriv, inst_tmp,
  320. &netcp_device->modpriv_head, inst_list) {
  321. if (inst_modpriv->netcp_module == module) {
  322. module->remove(netcp_device,
  323. inst_modpriv->module_priv);
  324. list_del(&inst_modpriv->inst_list);
  325. devm_kfree(dev, inst_modpriv);
  326. break;
  327. }
  328. }
  329. }
  330. void netcp_unregister_module(struct netcp_module *module)
  331. {
  332. struct netcp_device *netcp_device;
  333. struct netcp_module *module_tmp;
  334. mutex_lock(&netcp_modules_lock);
  335. list_for_each_entry(netcp_device, &netcp_devices, device_list) {
  336. netcp_release_module(netcp_device, module);
  337. }
  338. /* Remove the module from the module list */
  339. for_each_netcp_module(module_tmp) {
  340. if (module == module_tmp) {
  341. list_del(&module->module_list);
  342. break;
  343. }
  344. }
  345. mutex_unlock(&netcp_modules_lock);
  346. }
  347. EXPORT_SYMBOL_GPL(netcp_unregister_module);
  348. void *netcp_module_get_intf_data(struct netcp_module *module,
  349. struct netcp_intf *intf)
  350. {
  351. struct netcp_intf_modpriv *intf_modpriv;
  352. list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
  353. if (intf_modpriv->netcp_module == module)
  354. return intf_modpriv->module_priv;
  355. return NULL;
  356. }
  357. EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
  358. /* Module TX and RX Hook management */
  359. struct netcp_hook_list {
  360. struct list_head list;
  361. netcp_hook_rtn *hook_rtn;
  362. void *hook_data;
  363. int order;
  364. };
  365. int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
  366. netcp_hook_rtn *hook_rtn, void *hook_data)
  367. {
  368. struct netcp_hook_list *entry;
  369. struct netcp_hook_list *next;
  370. unsigned long flags;
  371. entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
  372. if (!entry)
  373. return -ENOMEM;
  374. entry->hook_rtn = hook_rtn;
  375. entry->hook_data = hook_data;
  376. entry->order = order;
  377. spin_lock_irqsave(&netcp_priv->lock, flags);
  378. list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
  379. if (next->order > order)
  380. break;
  381. }
  382. __list_add(&entry->list, next->list.prev, &next->list);
  383. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  384. return 0;
  385. }
  386. EXPORT_SYMBOL_GPL(netcp_register_txhook);
  387. int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
  388. netcp_hook_rtn *hook_rtn, void *hook_data)
  389. {
  390. struct netcp_hook_list *next, *n;
  391. unsigned long flags;
  392. spin_lock_irqsave(&netcp_priv->lock, flags);
  393. list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
  394. if ((next->order == order) &&
  395. (next->hook_rtn == hook_rtn) &&
  396. (next->hook_data == hook_data)) {
  397. list_del(&next->list);
  398. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  399. devm_kfree(netcp_priv->dev, next);
  400. return 0;
  401. }
  402. }
  403. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  404. return -ENOENT;
  405. }
  406. EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
  407. int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
  408. netcp_hook_rtn *hook_rtn, void *hook_data)
  409. {
  410. struct netcp_hook_list *entry;
  411. struct netcp_hook_list *next;
  412. unsigned long flags;
  413. entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
  414. if (!entry)
  415. return -ENOMEM;
  416. entry->hook_rtn = hook_rtn;
  417. entry->hook_data = hook_data;
  418. entry->order = order;
  419. spin_lock_irqsave(&netcp_priv->lock, flags);
  420. list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
  421. if (next->order > order)
  422. break;
  423. }
  424. __list_add(&entry->list, next->list.prev, &next->list);
  425. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  426. return 0;
  427. }
  428. int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
  429. netcp_hook_rtn *hook_rtn, void *hook_data)
  430. {
  431. struct netcp_hook_list *next, *n;
  432. unsigned long flags;
  433. spin_lock_irqsave(&netcp_priv->lock, flags);
  434. list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
  435. if ((next->order == order) &&
  436. (next->hook_rtn == hook_rtn) &&
  437. (next->hook_data == hook_data)) {
  438. list_del(&next->list);
  439. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  440. devm_kfree(netcp_priv->dev, next);
  441. return 0;
  442. }
  443. }
  444. spin_unlock_irqrestore(&netcp_priv->lock, flags);
  445. return -ENOENT;
  446. }
  447. static void netcp_frag_free(bool is_frag, void *ptr)
  448. {
  449. if (is_frag)
  450. put_page(virt_to_head_page(ptr));
  451. else
  452. kfree(ptr);
  453. }
  454. static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
  455. struct knav_dma_desc *desc)
  456. {
  457. struct knav_dma_desc *ndesc;
  458. dma_addr_t dma_desc, dma_buf;
  459. unsigned int buf_len, dma_sz = sizeof(*ndesc);
  460. void *buf_ptr;
  461. u32 tmp;
  462. get_words(&dma_desc, 1, &desc->next_desc);
  463. while (dma_desc) {
  464. ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  465. if (unlikely(!ndesc)) {
  466. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  467. break;
  468. }
  469. get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
  470. get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
  471. dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
  472. __free_page(buf_ptr);
  473. knav_pool_desc_put(netcp->rx_pool, desc);
  474. }
  475. get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
  476. if (buf_ptr)
  477. netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
  478. knav_pool_desc_put(netcp->rx_pool, desc);
  479. }
  480. static void netcp_empty_rx_queue(struct netcp_intf *netcp)
  481. {
  482. struct knav_dma_desc *desc;
  483. unsigned int dma_sz;
  484. dma_addr_t dma;
  485. for (; ;) {
  486. dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
  487. if (!dma)
  488. break;
  489. desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
  490. if (unlikely(!desc)) {
  491. dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
  492. __func__);
  493. netcp->ndev->stats.rx_errors++;
  494. continue;
  495. }
  496. netcp_free_rx_desc_chain(netcp, desc);
  497. netcp->ndev->stats.rx_dropped++;
  498. }
  499. }
  500. static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
  501. {
  502. unsigned int dma_sz, buf_len, org_buf_len;
  503. struct knav_dma_desc *desc, *ndesc;
  504. unsigned int pkt_sz = 0, accum_sz;
  505. struct netcp_hook_list *rx_hook;
  506. dma_addr_t dma_desc, dma_buff;
  507. struct netcp_packet p_info;
  508. struct sk_buff *skb;
  509. void *org_buf_ptr;
  510. u32 tmp;
  511. dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
  512. if (!dma_desc)
  513. return -1;
  514. desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  515. if (unlikely(!desc)) {
  516. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  517. return 0;
  518. }
  519. get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
  520. get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
  521. if (unlikely(!org_buf_ptr)) {
  522. dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
  523. goto free_desc;
  524. }
  525. pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
  526. accum_sz = buf_len;
  527. dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
  528. /* Build a new sk_buff for the primary buffer */
  529. skb = build_skb(org_buf_ptr, org_buf_len);
  530. if (unlikely(!skb)) {
  531. dev_err(netcp->ndev_dev, "build_skb() failed\n");
  532. goto free_desc;
  533. }
  534. /* update data, tail and len */
  535. skb_reserve(skb, NETCP_SOP_OFFSET);
  536. __skb_put(skb, buf_len);
  537. /* Fill in the page fragment list */
  538. while (dma_desc) {
  539. struct page *page;
  540. ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
  541. if (unlikely(!ndesc)) {
  542. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  543. goto free_desc;
  544. }
  545. get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
  546. get_pad_info((u32 *)&page, &tmp, ndesc);
  547. if (likely(dma_buff && buf_len && page)) {
  548. dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
  549. DMA_FROM_DEVICE);
  550. } else {
  551. dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
  552. (void *)dma_buff, buf_len, page);
  553. goto free_desc;
  554. }
  555. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  556. offset_in_page(dma_buff), buf_len, PAGE_SIZE);
  557. accum_sz += buf_len;
  558. /* Free the descriptor */
  559. knav_pool_desc_put(netcp->rx_pool, ndesc);
  560. }
  561. /* Free the primary descriptor */
  562. knav_pool_desc_put(netcp->rx_pool, desc);
  563. /* check for packet len and warn */
  564. if (unlikely(pkt_sz != accum_sz))
  565. dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
  566. pkt_sz, accum_sz);
  567. /* Remove ethernet FCS from the packet */
  568. __pskb_trim(skb, skb->len - ETH_FCS_LEN);
  569. /* Call each of the RX hooks */
  570. p_info.skb = skb;
  571. p_info.rxtstamp_complete = false;
  572. list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
  573. int ret;
  574. ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
  575. &p_info);
  576. if (unlikely(ret)) {
  577. dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
  578. rx_hook->order, ret);
  579. netcp->ndev->stats.rx_errors++;
  580. dev_kfree_skb(skb);
  581. return 0;
  582. }
  583. }
  584. netcp->ndev->last_rx = jiffies;
  585. netcp->ndev->stats.rx_packets++;
  586. netcp->ndev->stats.rx_bytes += skb->len;
  587. /* push skb up the stack */
  588. skb->protocol = eth_type_trans(skb, netcp->ndev);
  589. netif_receive_skb(skb);
  590. return 0;
  591. free_desc:
  592. netcp_free_rx_desc_chain(netcp, desc);
  593. netcp->ndev->stats.rx_errors++;
  594. return 0;
  595. }
  596. static int netcp_process_rx_packets(struct netcp_intf *netcp,
  597. unsigned int budget)
  598. {
  599. int i;
  600. for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
  601. ;
  602. return i;
  603. }
  604. /* Release descriptors and attached buffers from Rx FDQ */
  605. static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
  606. {
  607. struct knav_dma_desc *desc;
  608. unsigned int buf_len, dma_sz;
  609. dma_addr_t dma;
  610. void *buf_ptr;
  611. u32 tmp;
  612. /* Allocate descriptor */
  613. while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
  614. desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
  615. if (unlikely(!desc)) {
  616. dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
  617. continue;
  618. }
  619. get_org_pkt_info(&dma, &buf_len, desc);
  620. get_pad_info((u32 *)&buf_ptr, &tmp, desc);
  621. if (unlikely(!dma)) {
  622. dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
  623. knav_pool_desc_put(netcp->rx_pool, desc);
  624. continue;
  625. }
  626. if (unlikely(!buf_ptr)) {
  627. dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
  628. knav_pool_desc_put(netcp->rx_pool, desc);
  629. continue;
  630. }
  631. if (fdq == 0) {
  632. dma_unmap_single(netcp->dev, dma, buf_len,
  633. DMA_FROM_DEVICE);
  634. netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
  635. } else {
  636. dma_unmap_page(netcp->dev, dma, buf_len,
  637. DMA_FROM_DEVICE);
  638. __free_page(buf_ptr);
  639. }
  640. knav_pool_desc_put(netcp->rx_pool, desc);
  641. }
  642. }
  643. static void netcp_rxpool_free(struct netcp_intf *netcp)
  644. {
  645. int i;
  646. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  647. !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
  648. netcp_free_rx_buf(netcp, i);
  649. if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
  650. dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
  651. netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
  652. knav_pool_destroy(netcp->rx_pool);
  653. netcp->rx_pool = NULL;
  654. }
  655. static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
  656. {
  657. struct knav_dma_desc *hwdesc;
  658. unsigned int buf_len, dma_sz;
  659. u32 desc_info, pkt_info;
  660. struct page *page;
  661. dma_addr_t dma;
  662. void *bufptr;
  663. u32 pad[2];
  664. /* Allocate descriptor */
  665. hwdesc = knav_pool_desc_get(netcp->rx_pool);
  666. if (IS_ERR_OR_NULL(hwdesc)) {
  667. dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
  668. return;
  669. }
  670. if (likely(fdq == 0)) {
  671. unsigned int primary_buf_len;
  672. /* Allocate a primary receive queue entry */
  673. buf_len = netcp->rx_buffer_sizes[0] + NETCP_SOP_OFFSET;
  674. primary_buf_len = SKB_DATA_ALIGN(buf_len) +
  675. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  676. if (primary_buf_len <= PAGE_SIZE) {
  677. bufptr = netdev_alloc_frag(primary_buf_len);
  678. pad[1] = primary_buf_len;
  679. } else {
  680. bufptr = kmalloc(primary_buf_len, GFP_ATOMIC |
  681. GFP_DMA32 | __GFP_COLD);
  682. pad[1] = 0;
  683. }
  684. if (unlikely(!bufptr)) {
  685. dev_warn_ratelimited(netcp->ndev_dev, "Primary RX buffer alloc failed\n");
  686. goto fail;
  687. }
  688. dma = dma_map_single(netcp->dev, bufptr, buf_len,
  689. DMA_TO_DEVICE);
  690. pad[0] = (u32)bufptr;
  691. } else {
  692. /* Allocate a secondary receive queue entry */
  693. page = alloc_page(GFP_ATOMIC | GFP_DMA32 | __GFP_COLD);
  694. if (unlikely(!page)) {
  695. dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
  696. goto fail;
  697. }
  698. buf_len = PAGE_SIZE;
  699. dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
  700. pad[0] = (u32)page;
  701. pad[1] = 0;
  702. }
  703. desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
  704. desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
  705. pkt_info = KNAV_DMA_DESC_HAS_EPIB;
  706. pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
  707. pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
  708. KNAV_DMA_DESC_RETQ_SHIFT;
  709. set_org_pkt_info(dma, buf_len, hwdesc);
  710. set_pad_info(pad[0], pad[1], hwdesc);
  711. set_desc_info(desc_info, pkt_info, hwdesc);
  712. /* Push to FDQs */
  713. knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
  714. &dma_sz);
  715. knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
  716. return;
  717. fail:
  718. knav_pool_desc_put(netcp->rx_pool, hwdesc);
  719. }
  720. /* Refill Rx FDQ with descriptors & attached buffers */
  721. static void netcp_rxpool_refill(struct netcp_intf *netcp)
  722. {
  723. u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
  724. int i;
  725. /* Calculate the FDQ deficit and refill */
  726. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
  727. fdq_deficit[i] = netcp->rx_queue_depths[i] -
  728. knav_queue_get_count(netcp->rx_fdq[i]);
  729. while (fdq_deficit[i]--)
  730. netcp_allocate_rx_buf(netcp, i);
  731. } /* end for fdqs */
  732. }
  733. /* NAPI poll */
  734. static int netcp_rx_poll(struct napi_struct *napi, int budget)
  735. {
  736. struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
  737. rx_napi);
  738. unsigned int packets;
  739. packets = netcp_process_rx_packets(netcp, budget);
  740. if (packets < budget) {
  741. napi_complete(&netcp->rx_napi);
  742. knav_queue_enable_notify(netcp->rx_queue);
  743. }
  744. netcp_rxpool_refill(netcp);
  745. return packets;
  746. }
  747. static void netcp_rx_notify(void *arg)
  748. {
  749. struct netcp_intf *netcp = arg;
  750. knav_queue_disable_notify(netcp->rx_queue);
  751. napi_schedule(&netcp->rx_napi);
  752. }
  753. static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
  754. struct knav_dma_desc *desc,
  755. unsigned int desc_sz)
  756. {
  757. struct knav_dma_desc *ndesc = desc;
  758. dma_addr_t dma_desc, dma_buf;
  759. unsigned int buf_len;
  760. while (ndesc) {
  761. get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
  762. if (dma_buf && buf_len)
  763. dma_unmap_single(netcp->dev, dma_buf, buf_len,
  764. DMA_TO_DEVICE);
  765. else
  766. dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
  767. (void *)dma_buf, buf_len);
  768. knav_pool_desc_put(netcp->tx_pool, ndesc);
  769. ndesc = NULL;
  770. if (dma_desc) {
  771. ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
  772. desc_sz);
  773. if (!ndesc)
  774. dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
  775. }
  776. }
  777. }
  778. static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
  779. unsigned int budget)
  780. {
  781. struct knav_dma_desc *desc;
  782. struct sk_buff *skb;
  783. unsigned int dma_sz;
  784. dma_addr_t dma;
  785. int pkts = 0;
  786. u32 tmp;
  787. while (budget--) {
  788. dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
  789. if (!dma)
  790. break;
  791. desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
  792. if (unlikely(!desc)) {
  793. dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
  794. netcp->ndev->stats.tx_errors++;
  795. continue;
  796. }
  797. get_pad_info((u32 *)&skb, &tmp, desc);
  798. netcp_free_tx_desc_chain(netcp, desc, dma_sz);
  799. if (!skb) {
  800. dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
  801. netcp->ndev->stats.tx_errors++;
  802. continue;
  803. }
  804. if (netif_subqueue_stopped(netcp->ndev, skb) &&
  805. netif_running(netcp->ndev) &&
  806. (knav_pool_count(netcp->tx_pool) >
  807. netcp->tx_resume_threshold)) {
  808. u16 subqueue = skb_get_queue_mapping(skb);
  809. netif_wake_subqueue(netcp->ndev, subqueue);
  810. }
  811. netcp->ndev->stats.tx_packets++;
  812. netcp->ndev->stats.tx_bytes += skb->len;
  813. dev_kfree_skb(skb);
  814. pkts++;
  815. }
  816. return pkts;
  817. }
  818. static int netcp_tx_poll(struct napi_struct *napi, int budget)
  819. {
  820. int packets;
  821. struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
  822. tx_napi);
  823. packets = netcp_process_tx_compl_packets(netcp, budget);
  824. if (packets < budget) {
  825. napi_complete(&netcp->tx_napi);
  826. knav_queue_enable_notify(netcp->tx_compl_q);
  827. }
  828. return packets;
  829. }
  830. static void netcp_tx_notify(void *arg)
  831. {
  832. struct netcp_intf *netcp = arg;
  833. knav_queue_disable_notify(netcp->tx_compl_q);
  834. napi_schedule(&netcp->tx_napi);
  835. }
  836. static struct knav_dma_desc*
  837. netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
  838. {
  839. struct knav_dma_desc *desc, *ndesc, *pdesc;
  840. unsigned int pkt_len = skb_headlen(skb);
  841. struct device *dev = netcp->dev;
  842. dma_addr_t dma_addr;
  843. unsigned int dma_sz;
  844. int i;
  845. /* Map the linear buffer */
  846. dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
  847. if (unlikely(!dma_addr)) {
  848. dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
  849. return NULL;
  850. }
  851. desc = knav_pool_desc_get(netcp->tx_pool);
  852. if (unlikely(IS_ERR_OR_NULL(desc))) {
  853. dev_err(netcp->ndev_dev, "out of TX desc\n");
  854. dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
  855. return NULL;
  856. }
  857. set_pkt_info(dma_addr, pkt_len, 0, desc);
  858. if (skb_is_nonlinear(skb)) {
  859. prefetchw(skb_shinfo(skb));
  860. } else {
  861. desc->next_desc = 0;
  862. goto upd_pkt_len;
  863. }
  864. pdesc = desc;
  865. /* Handle the case where skb is fragmented in pages */
  866. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  867. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  868. struct page *page = skb_frag_page(frag);
  869. u32 page_offset = frag->page_offset;
  870. u32 buf_len = skb_frag_size(frag);
  871. dma_addr_t desc_dma;
  872. u32 pkt_info;
  873. dma_addr = dma_map_page(dev, page, page_offset, buf_len,
  874. DMA_TO_DEVICE);
  875. if (unlikely(!dma_addr)) {
  876. dev_err(netcp->ndev_dev, "Failed to map skb page\n");
  877. goto free_descs;
  878. }
  879. ndesc = knav_pool_desc_get(netcp->tx_pool);
  880. if (unlikely(IS_ERR_OR_NULL(ndesc))) {
  881. dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
  882. dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
  883. goto free_descs;
  884. }
  885. desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
  886. (void *)ndesc);
  887. pkt_info =
  888. (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
  889. KNAV_DMA_DESC_RETQ_SHIFT;
  890. set_pkt_info(dma_addr, buf_len, 0, ndesc);
  891. set_words(&desc_dma, 1, &pdesc->next_desc);
  892. pkt_len += buf_len;
  893. if (pdesc != desc)
  894. knav_pool_desc_map(netcp->tx_pool, pdesc,
  895. sizeof(*pdesc), &desc_dma, &dma_sz);
  896. pdesc = ndesc;
  897. }
  898. if (pdesc != desc)
  899. knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
  900. &dma_addr, &dma_sz);
  901. /* frag list based linkage is not supported for now. */
  902. if (skb_shinfo(skb)->frag_list) {
  903. dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
  904. goto free_descs;
  905. }
  906. upd_pkt_len:
  907. WARN_ON(pkt_len != skb->len);
  908. pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
  909. set_words(&pkt_len, 1, &desc->desc_info);
  910. return desc;
  911. free_descs:
  912. netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
  913. return NULL;
  914. }
  915. static int netcp_tx_submit_skb(struct netcp_intf *netcp,
  916. struct sk_buff *skb,
  917. struct knav_dma_desc *desc)
  918. {
  919. struct netcp_tx_pipe *tx_pipe = NULL;
  920. struct netcp_hook_list *tx_hook;
  921. struct netcp_packet p_info;
  922. unsigned int dma_sz;
  923. dma_addr_t dma;
  924. u32 tmp = 0;
  925. int ret = 0;
  926. p_info.netcp = netcp;
  927. p_info.skb = skb;
  928. p_info.tx_pipe = NULL;
  929. p_info.psdata_len = 0;
  930. p_info.ts_context = NULL;
  931. p_info.txtstamp_complete = NULL;
  932. p_info.epib = desc->epib;
  933. p_info.psdata = desc->psdata;
  934. memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
  935. /* Find out where to inject the packet for transmission */
  936. list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
  937. ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
  938. &p_info);
  939. if (unlikely(ret != 0)) {
  940. dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
  941. tx_hook->order, ret);
  942. ret = (ret < 0) ? ret : NETDEV_TX_OK;
  943. goto out;
  944. }
  945. }
  946. /* Make sure some TX hook claimed the packet */
  947. tx_pipe = p_info.tx_pipe;
  948. if (!tx_pipe) {
  949. dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
  950. ret = -ENXIO;
  951. goto out;
  952. }
  953. /* update descriptor */
  954. if (p_info.psdata_len) {
  955. u32 *psdata = p_info.psdata;
  956. memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
  957. p_info.psdata_len);
  958. set_words(psdata, p_info.psdata_len, psdata);
  959. tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
  960. KNAV_DMA_DESC_PSLEN_SHIFT;
  961. }
  962. tmp |= KNAV_DMA_DESC_HAS_EPIB |
  963. ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
  964. KNAV_DMA_DESC_RETQ_SHIFT);
  965. if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
  966. tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
  967. KNAV_DMA_DESC_PSFLAG_SHIFT);
  968. }
  969. set_words(&tmp, 1, &desc->packet_info);
  970. set_words((u32 *)&skb, 1, &desc->pad[0]);
  971. if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
  972. tmp = tx_pipe->switch_to_port;
  973. set_words((u32 *)&tmp, 1, &desc->tag_info);
  974. }
  975. /* submit packet descriptor */
  976. ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
  977. &dma_sz);
  978. if (unlikely(ret)) {
  979. dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
  980. ret = -ENOMEM;
  981. goto out;
  982. }
  983. skb_tx_timestamp(skb);
  984. knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
  985. out:
  986. return ret;
  987. }
  988. /* Submit the packet */
  989. static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  990. {
  991. struct netcp_intf *netcp = netdev_priv(ndev);
  992. int subqueue = skb_get_queue_mapping(skb);
  993. struct knav_dma_desc *desc;
  994. int desc_count, ret = 0;
  995. if (unlikely(skb->len <= 0)) {
  996. dev_kfree_skb(skb);
  997. return NETDEV_TX_OK;
  998. }
  999. if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
  1000. ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
  1001. if (ret < 0) {
  1002. /* If we get here, the skb has already been dropped */
  1003. dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
  1004. ret);
  1005. ndev->stats.tx_dropped++;
  1006. return ret;
  1007. }
  1008. skb->len = NETCP_MIN_PACKET_SIZE;
  1009. }
  1010. desc = netcp_tx_map_skb(skb, netcp);
  1011. if (unlikely(!desc)) {
  1012. netif_stop_subqueue(ndev, subqueue);
  1013. ret = -ENOBUFS;
  1014. goto drop;
  1015. }
  1016. ret = netcp_tx_submit_skb(netcp, skb, desc);
  1017. if (ret)
  1018. goto drop;
  1019. ndev->trans_start = jiffies;
  1020. /* Check Tx pool count & stop subqueue if needed */
  1021. desc_count = knav_pool_count(netcp->tx_pool);
  1022. if (desc_count < netcp->tx_pause_threshold) {
  1023. dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
  1024. netif_stop_subqueue(ndev, subqueue);
  1025. }
  1026. return NETDEV_TX_OK;
  1027. drop:
  1028. ndev->stats.tx_dropped++;
  1029. if (desc)
  1030. netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
  1031. dev_kfree_skb(skb);
  1032. return ret;
  1033. }
  1034. int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
  1035. {
  1036. if (tx_pipe->dma_channel) {
  1037. knav_dma_close_channel(tx_pipe->dma_channel);
  1038. tx_pipe->dma_channel = NULL;
  1039. }
  1040. return 0;
  1041. }
  1042. EXPORT_SYMBOL_GPL(netcp_txpipe_close);
  1043. int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
  1044. {
  1045. struct device *dev = tx_pipe->netcp_device->device;
  1046. struct knav_dma_cfg config;
  1047. int ret = 0;
  1048. u8 name[16];
  1049. memset(&config, 0, sizeof(config));
  1050. config.direction = DMA_MEM_TO_DEV;
  1051. config.u.tx.filt_einfo = false;
  1052. config.u.tx.filt_pswords = false;
  1053. config.u.tx.priority = DMA_PRIO_MED_L;
  1054. tx_pipe->dma_channel = knav_dma_open_channel(dev,
  1055. tx_pipe->dma_chan_name, &config);
  1056. if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
  1057. dev_err(dev, "failed opening tx chan(%s)\n",
  1058. tx_pipe->dma_chan_name);
  1059. goto err;
  1060. }
  1061. snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
  1062. tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
  1063. KNAV_QUEUE_SHARED);
  1064. if (IS_ERR(tx_pipe->dma_queue)) {
  1065. dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
  1066. name, ret);
  1067. ret = PTR_ERR(tx_pipe->dma_queue);
  1068. goto err;
  1069. }
  1070. dev_dbg(dev, "opened tx pipe %s\n", name);
  1071. return 0;
  1072. err:
  1073. if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
  1074. knav_dma_close_channel(tx_pipe->dma_channel);
  1075. tx_pipe->dma_channel = NULL;
  1076. return ret;
  1077. }
  1078. EXPORT_SYMBOL_GPL(netcp_txpipe_open);
  1079. int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
  1080. struct netcp_device *netcp_device,
  1081. const char *dma_chan_name, unsigned int dma_queue_id)
  1082. {
  1083. memset(tx_pipe, 0, sizeof(*tx_pipe));
  1084. tx_pipe->netcp_device = netcp_device;
  1085. tx_pipe->dma_chan_name = dma_chan_name;
  1086. tx_pipe->dma_queue_id = dma_queue_id;
  1087. return 0;
  1088. }
  1089. EXPORT_SYMBOL_GPL(netcp_txpipe_init);
  1090. static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
  1091. const u8 *addr,
  1092. enum netcp_addr_type type)
  1093. {
  1094. struct netcp_addr *naddr;
  1095. list_for_each_entry(naddr, &netcp->addr_list, node) {
  1096. if (naddr->type != type)
  1097. continue;
  1098. if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
  1099. continue;
  1100. return naddr;
  1101. }
  1102. return NULL;
  1103. }
  1104. static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
  1105. const u8 *addr,
  1106. enum netcp_addr_type type)
  1107. {
  1108. struct netcp_addr *naddr;
  1109. naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
  1110. if (!naddr)
  1111. return NULL;
  1112. naddr->type = type;
  1113. naddr->flags = 0;
  1114. naddr->netcp = netcp;
  1115. if (addr)
  1116. ether_addr_copy(naddr->addr, addr);
  1117. else
  1118. eth_zero_addr(naddr->addr);
  1119. list_add_tail(&naddr->node, &netcp->addr_list);
  1120. return naddr;
  1121. }
  1122. static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
  1123. {
  1124. list_del(&naddr->node);
  1125. devm_kfree(netcp->dev, naddr);
  1126. }
  1127. static void netcp_addr_clear_mark(struct netcp_intf *netcp)
  1128. {
  1129. struct netcp_addr *naddr;
  1130. list_for_each_entry(naddr, &netcp->addr_list, node)
  1131. naddr->flags = 0;
  1132. }
  1133. static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
  1134. enum netcp_addr_type type)
  1135. {
  1136. struct netcp_addr *naddr;
  1137. naddr = netcp_addr_find(netcp, addr, type);
  1138. if (naddr) {
  1139. naddr->flags |= ADDR_VALID;
  1140. return;
  1141. }
  1142. naddr = netcp_addr_add(netcp, addr, type);
  1143. if (!WARN_ON(!naddr))
  1144. naddr->flags |= ADDR_NEW;
  1145. }
  1146. static void netcp_addr_sweep_del(struct netcp_intf *netcp)
  1147. {
  1148. struct netcp_addr *naddr, *tmp;
  1149. struct netcp_intf_modpriv *priv;
  1150. struct netcp_module *module;
  1151. int error;
  1152. list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
  1153. if (naddr->flags & (ADDR_VALID | ADDR_NEW))
  1154. continue;
  1155. dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
  1156. naddr->addr, naddr->type);
  1157. mutex_lock(&netcp_modules_lock);
  1158. for_each_module(netcp, priv) {
  1159. module = priv->netcp_module;
  1160. if (!module->del_addr)
  1161. continue;
  1162. error = module->del_addr(priv->module_priv,
  1163. naddr);
  1164. WARN_ON(error);
  1165. }
  1166. mutex_unlock(&netcp_modules_lock);
  1167. netcp_addr_del(netcp, naddr);
  1168. }
  1169. }
  1170. static void netcp_addr_sweep_add(struct netcp_intf *netcp)
  1171. {
  1172. struct netcp_addr *naddr, *tmp;
  1173. struct netcp_intf_modpriv *priv;
  1174. struct netcp_module *module;
  1175. int error;
  1176. list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
  1177. if (!(naddr->flags & ADDR_NEW))
  1178. continue;
  1179. dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
  1180. naddr->addr, naddr->type);
  1181. mutex_lock(&netcp_modules_lock);
  1182. for_each_module(netcp, priv) {
  1183. module = priv->netcp_module;
  1184. if (!module->add_addr)
  1185. continue;
  1186. error = module->add_addr(priv->module_priv, naddr);
  1187. WARN_ON(error);
  1188. }
  1189. mutex_unlock(&netcp_modules_lock);
  1190. }
  1191. }
  1192. static void netcp_set_rx_mode(struct net_device *ndev)
  1193. {
  1194. struct netcp_intf *netcp = netdev_priv(ndev);
  1195. struct netdev_hw_addr *ndev_addr;
  1196. bool promisc;
  1197. promisc = (ndev->flags & IFF_PROMISC ||
  1198. ndev->flags & IFF_ALLMULTI ||
  1199. netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
  1200. /* first clear all marks */
  1201. netcp_addr_clear_mark(netcp);
  1202. /* next add new entries, mark existing ones */
  1203. netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
  1204. for_each_dev_addr(ndev, ndev_addr)
  1205. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
  1206. netdev_for_each_uc_addr(ndev_addr, ndev)
  1207. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
  1208. netdev_for_each_mc_addr(ndev_addr, ndev)
  1209. netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
  1210. if (promisc)
  1211. netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
  1212. /* finally sweep and callout into modules */
  1213. netcp_addr_sweep_del(netcp);
  1214. netcp_addr_sweep_add(netcp);
  1215. }
  1216. static void netcp_free_navigator_resources(struct netcp_intf *netcp)
  1217. {
  1218. int i;
  1219. if (netcp->rx_channel) {
  1220. knav_dma_close_channel(netcp->rx_channel);
  1221. netcp->rx_channel = NULL;
  1222. }
  1223. if (!IS_ERR_OR_NULL(netcp->rx_pool))
  1224. netcp_rxpool_free(netcp);
  1225. if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
  1226. knav_queue_close(netcp->rx_queue);
  1227. netcp->rx_queue = NULL;
  1228. }
  1229. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  1230. !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
  1231. knav_queue_close(netcp->rx_fdq[i]);
  1232. netcp->rx_fdq[i] = NULL;
  1233. }
  1234. if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
  1235. knav_queue_close(netcp->tx_compl_q);
  1236. netcp->tx_compl_q = NULL;
  1237. }
  1238. if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
  1239. knav_pool_destroy(netcp->tx_pool);
  1240. netcp->tx_pool = NULL;
  1241. }
  1242. }
  1243. static int netcp_setup_navigator_resources(struct net_device *ndev)
  1244. {
  1245. struct netcp_intf *netcp = netdev_priv(ndev);
  1246. struct knav_queue_notify_config notify_cfg;
  1247. struct knav_dma_cfg config;
  1248. u32 last_fdq = 0;
  1249. u8 name[16];
  1250. int ret;
  1251. int i;
  1252. /* Create Rx/Tx descriptor pools */
  1253. snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
  1254. netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
  1255. netcp->rx_pool_region_id);
  1256. if (IS_ERR_OR_NULL(netcp->rx_pool)) {
  1257. dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
  1258. ret = PTR_ERR(netcp->rx_pool);
  1259. goto fail;
  1260. }
  1261. snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
  1262. netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
  1263. netcp->tx_pool_region_id);
  1264. if (IS_ERR_OR_NULL(netcp->tx_pool)) {
  1265. dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
  1266. ret = PTR_ERR(netcp->tx_pool);
  1267. goto fail;
  1268. }
  1269. /* open Tx completion queue */
  1270. snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
  1271. netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
  1272. if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
  1273. ret = PTR_ERR(netcp->tx_compl_q);
  1274. goto fail;
  1275. }
  1276. netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
  1277. /* Set notification for Tx completion */
  1278. notify_cfg.fn = netcp_tx_notify;
  1279. notify_cfg.fn_arg = netcp;
  1280. ret = knav_queue_device_control(netcp->tx_compl_q,
  1281. KNAV_QUEUE_SET_NOTIFIER,
  1282. (unsigned long)&notify_cfg);
  1283. if (ret)
  1284. goto fail;
  1285. knav_queue_disable_notify(netcp->tx_compl_q);
  1286. /* open Rx completion queue */
  1287. snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
  1288. netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
  1289. if (IS_ERR_OR_NULL(netcp->rx_queue)) {
  1290. ret = PTR_ERR(netcp->rx_queue);
  1291. goto fail;
  1292. }
  1293. netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
  1294. /* Set notification for Rx completion */
  1295. notify_cfg.fn = netcp_rx_notify;
  1296. notify_cfg.fn_arg = netcp;
  1297. ret = knav_queue_device_control(netcp->rx_queue,
  1298. KNAV_QUEUE_SET_NOTIFIER,
  1299. (unsigned long)&notify_cfg);
  1300. if (ret)
  1301. goto fail;
  1302. knav_queue_disable_notify(netcp->rx_queue);
  1303. /* open Rx FDQs */
  1304. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
  1305. netcp->rx_queue_depths[i] && netcp->rx_buffer_sizes[i]; ++i) {
  1306. snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
  1307. netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  1308. if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
  1309. ret = PTR_ERR(netcp->rx_fdq[i]);
  1310. goto fail;
  1311. }
  1312. }
  1313. memset(&config, 0, sizeof(config));
  1314. config.direction = DMA_DEV_TO_MEM;
  1315. config.u.rx.einfo_present = true;
  1316. config.u.rx.psinfo_present = true;
  1317. config.u.rx.err_mode = DMA_DROP;
  1318. config.u.rx.desc_type = DMA_DESC_HOST;
  1319. config.u.rx.psinfo_at_sop = false;
  1320. config.u.rx.sop_offset = NETCP_SOP_OFFSET;
  1321. config.u.rx.dst_q = netcp->rx_queue_id;
  1322. config.u.rx.thresh = DMA_THRESH_NONE;
  1323. for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
  1324. if (netcp->rx_fdq[i])
  1325. last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
  1326. config.u.rx.fdq[i] = last_fdq;
  1327. }
  1328. netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
  1329. netcp->dma_chan_name, &config);
  1330. if (IS_ERR_OR_NULL(netcp->rx_channel)) {
  1331. dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
  1332. netcp->dma_chan_name);
  1333. goto fail;
  1334. }
  1335. dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
  1336. return 0;
  1337. fail:
  1338. netcp_free_navigator_resources(netcp);
  1339. return ret;
  1340. }
  1341. /* Open the device */
  1342. static int netcp_ndo_open(struct net_device *ndev)
  1343. {
  1344. struct netcp_intf *netcp = netdev_priv(ndev);
  1345. struct netcp_intf_modpriv *intf_modpriv;
  1346. struct netcp_module *module;
  1347. int ret;
  1348. netif_carrier_off(ndev);
  1349. ret = netcp_setup_navigator_resources(ndev);
  1350. if (ret) {
  1351. dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
  1352. goto fail;
  1353. }
  1354. mutex_lock(&netcp_modules_lock);
  1355. for_each_module(netcp, intf_modpriv) {
  1356. module = intf_modpriv->netcp_module;
  1357. if (module->open) {
  1358. ret = module->open(intf_modpriv->module_priv, ndev);
  1359. if (ret != 0) {
  1360. dev_err(netcp->ndev_dev, "module open failed\n");
  1361. goto fail_open;
  1362. }
  1363. }
  1364. }
  1365. mutex_unlock(&netcp_modules_lock);
  1366. netcp_rxpool_refill(netcp);
  1367. napi_enable(&netcp->rx_napi);
  1368. napi_enable(&netcp->tx_napi);
  1369. knav_queue_enable_notify(netcp->tx_compl_q);
  1370. knav_queue_enable_notify(netcp->rx_queue);
  1371. netif_tx_wake_all_queues(ndev);
  1372. dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
  1373. return 0;
  1374. fail_open:
  1375. for_each_module(netcp, intf_modpriv) {
  1376. module = intf_modpriv->netcp_module;
  1377. if (module->close)
  1378. module->close(intf_modpriv->module_priv, ndev);
  1379. }
  1380. mutex_unlock(&netcp_modules_lock);
  1381. fail:
  1382. netcp_free_navigator_resources(netcp);
  1383. return ret;
  1384. }
  1385. /* Close the device */
  1386. static int netcp_ndo_stop(struct net_device *ndev)
  1387. {
  1388. struct netcp_intf *netcp = netdev_priv(ndev);
  1389. struct netcp_intf_modpriv *intf_modpriv;
  1390. struct netcp_module *module;
  1391. int err = 0;
  1392. netif_tx_stop_all_queues(ndev);
  1393. netif_carrier_off(ndev);
  1394. netcp_addr_clear_mark(netcp);
  1395. netcp_addr_sweep_del(netcp);
  1396. knav_queue_disable_notify(netcp->rx_queue);
  1397. knav_queue_disable_notify(netcp->tx_compl_q);
  1398. napi_disable(&netcp->rx_napi);
  1399. napi_disable(&netcp->tx_napi);
  1400. mutex_lock(&netcp_modules_lock);
  1401. for_each_module(netcp, intf_modpriv) {
  1402. module = intf_modpriv->netcp_module;
  1403. if (module->close) {
  1404. err = module->close(intf_modpriv->module_priv, ndev);
  1405. if (err != 0)
  1406. dev_err(netcp->ndev_dev, "Close failed\n");
  1407. }
  1408. }
  1409. mutex_unlock(&netcp_modules_lock);
  1410. /* Recycle Rx descriptors from completion queue */
  1411. netcp_empty_rx_queue(netcp);
  1412. /* Recycle Tx descriptors from completion queue */
  1413. netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
  1414. if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
  1415. dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
  1416. netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
  1417. netcp_free_navigator_resources(netcp);
  1418. dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
  1419. return 0;
  1420. }
  1421. static int netcp_ndo_ioctl(struct net_device *ndev,
  1422. struct ifreq *req, int cmd)
  1423. {
  1424. struct netcp_intf *netcp = netdev_priv(ndev);
  1425. struct netcp_intf_modpriv *intf_modpriv;
  1426. struct netcp_module *module;
  1427. int ret = -1, err = -EOPNOTSUPP;
  1428. if (!netif_running(ndev))
  1429. return -EINVAL;
  1430. mutex_lock(&netcp_modules_lock);
  1431. for_each_module(netcp, intf_modpriv) {
  1432. module = intf_modpriv->netcp_module;
  1433. if (!module->ioctl)
  1434. continue;
  1435. err = module->ioctl(intf_modpriv->module_priv, req, cmd);
  1436. if ((err < 0) && (err != -EOPNOTSUPP)) {
  1437. ret = err;
  1438. goto out;
  1439. }
  1440. if (err == 0)
  1441. ret = err;
  1442. }
  1443. out:
  1444. mutex_unlock(&netcp_modules_lock);
  1445. return (ret == 0) ? 0 : err;
  1446. }
  1447. static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
  1448. {
  1449. struct netcp_intf *netcp = netdev_priv(ndev);
  1450. /* MTU < 68 is an error for IPv4 traffic */
  1451. if ((new_mtu < 68) ||
  1452. (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
  1453. dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
  1454. return -EINVAL;
  1455. }
  1456. ndev->mtu = new_mtu;
  1457. return 0;
  1458. }
  1459. static void netcp_ndo_tx_timeout(struct net_device *ndev)
  1460. {
  1461. struct netcp_intf *netcp = netdev_priv(ndev);
  1462. unsigned int descs = knav_pool_count(netcp->tx_pool);
  1463. dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
  1464. netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
  1465. ndev->trans_start = jiffies;
  1466. netif_tx_wake_all_queues(ndev);
  1467. }
  1468. static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  1469. {
  1470. struct netcp_intf *netcp = netdev_priv(ndev);
  1471. struct netcp_intf_modpriv *intf_modpriv;
  1472. struct netcp_module *module;
  1473. int err = 0;
  1474. dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
  1475. mutex_lock(&netcp_modules_lock);
  1476. for_each_module(netcp, intf_modpriv) {
  1477. module = intf_modpriv->netcp_module;
  1478. if ((module->add_vid) && (vid != 0)) {
  1479. err = module->add_vid(intf_modpriv->module_priv, vid);
  1480. if (err != 0) {
  1481. dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
  1482. vid);
  1483. break;
  1484. }
  1485. }
  1486. }
  1487. mutex_unlock(&netcp_modules_lock);
  1488. return err;
  1489. }
  1490. static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  1491. {
  1492. struct netcp_intf *netcp = netdev_priv(ndev);
  1493. struct netcp_intf_modpriv *intf_modpriv;
  1494. struct netcp_module *module;
  1495. int err = 0;
  1496. dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
  1497. mutex_lock(&netcp_modules_lock);
  1498. for_each_module(netcp, intf_modpriv) {
  1499. module = intf_modpriv->netcp_module;
  1500. if (module->del_vid) {
  1501. err = module->del_vid(intf_modpriv->module_priv, vid);
  1502. if (err != 0) {
  1503. dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
  1504. vid);
  1505. break;
  1506. }
  1507. }
  1508. }
  1509. mutex_unlock(&netcp_modules_lock);
  1510. return err;
  1511. }
  1512. static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
  1513. void *accel_priv,
  1514. select_queue_fallback_t fallback)
  1515. {
  1516. return 0;
  1517. }
  1518. static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
  1519. {
  1520. int i;
  1521. /* setup tc must be called under rtnl lock */
  1522. ASSERT_RTNL();
  1523. /* Sanity-check the number of traffic classes requested */
  1524. if ((dev->real_num_tx_queues <= 1) ||
  1525. (dev->real_num_tx_queues < num_tc))
  1526. return -EINVAL;
  1527. /* Configure traffic class to queue mappings */
  1528. if (num_tc) {
  1529. netdev_set_num_tc(dev, num_tc);
  1530. for (i = 0; i < num_tc; i++)
  1531. netdev_set_tc_queue(dev, i, 1, i);
  1532. } else {
  1533. netdev_reset_tc(dev);
  1534. }
  1535. return 0;
  1536. }
  1537. static const struct net_device_ops netcp_netdev_ops = {
  1538. .ndo_open = netcp_ndo_open,
  1539. .ndo_stop = netcp_ndo_stop,
  1540. .ndo_start_xmit = netcp_ndo_start_xmit,
  1541. .ndo_set_rx_mode = netcp_set_rx_mode,
  1542. .ndo_do_ioctl = netcp_ndo_ioctl,
  1543. .ndo_change_mtu = netcp_ndo_change_mtu,
  1544. .ndo_set_mac_address = eth_mac_addr,
  1545. .ndo_validate_addr = eth_validate_addr,
  1546. .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
  1547. .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
  1548. .ndo_tx_timeout = netcp_ndo_tx_timeout,
  1549. .ndo_select_queue = netcp_select_queue,
  1550. .ndo_setup_tc = netcp_setup_tc,
  1551. };
  1552. static int netcp_create_interface(struct netcp_device *netcp_device,
  1553. struct device_node *node_interface)
  1554. {
  1555. struct device *dev = netcp_device->device;
  1556. struct device_node *node = dev->of_node;
  1557. struct netcp_intf *netcp;
  1558. struct net_device *ndev;
  1559. resource_size_t size;
  1560. struct resource res;
  1561. void __iomem *efuse = NULL;
  1562. u32 efuse_mac = 0;
  1563. const void *mac_addr;
  1564. u8 efuse_mac_addr[6];
  1565. u32 temp[2];
  1566. int ret = 0;
  1567. ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
  1568. if (!ndev) {
  1569. dev_err(dev, "Error allocating netdev\n");
  1570. return -ENOMEM;
  1571. }
  1572. ndev->features |= NETIF_F_SG;
  1573. ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
  1574. ndev->hw_features = ndev->features;
  1575. ndev->vlan_features |= NETIF_F_SG;
  1576. netcp = netdev_priv(ndev);
  1577. spin_lock_init(&netcp->lock);
  1578. INIT_LIST_HEAD(&netcp->module_head);
  1579. INIT_LIST_HEAD(&netcp->txhook_list_head);
  1580. INIT_LIST_HEAD(&netcp->rxhook_list_head);
  1581. INIT_LIST_HEAD(&netcp->addr_list);
  1582. netcp->netcp_device = netcp_device;
  1583. netcp->dev = netcp_device->device;
  1584. netcp->ndev = ndev;
  1585. netcp->ndev_dev = &ndev->dev;
  1586. netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
  1587. netcp->tx_pause_threshold = MAX_SKB_FRAGS;
  1588. netcp->tx_resume_threshold = netcp->tx_pause_threshold;
  1589. netcp->node_interface = node_interface;
  1590. ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
  1591. if (efuse_mac) {
  1592. if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
  1593. dev_err(dev, "could not find efuse-mac reg resource\n");
  1594. ret = -ENODEV;
  1595. goto quit;
  1596. }
  1597. size = resource_size(&res);
  1598. if (!devm_request_mem_region(dev, res.start, size,
  1599. dev_name(dev))) {
  1600. dev_err(dev, "could not reserve resource\n");
  1601. ret = -ENOMEM;
  1602. goto quit;
  1603. }
  1604. efuse = devm_ioremap_nocache(dev, res.start, size);
  1605. if (!efuse) {
  1606. dev_err(dev, "could not map resource\n");
  1607. devm_release_mem_region(dev, res.start, size);
  1608. ret = -ENOMEM;
  1609. goto quit;
  1610. }
  1611. emac_arch_get_mac_addr(efuse_mac_addr, efuse);
  1612. if (is_valid_ether_addr(efuse_mac_addr))
  1613. ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
  1614. else
  1615. random_ether_addr(ndev->dev_addr);
  1616. devm_iounmap(dev, efuse);
  1617. devm_release_mem_region(dev, res.start, size);
  1618. } else {
  1619. mac_addr = of_get_mac_address(node_interface);
  1620. if (mac_addr)
  1621. ether_addr_copy(ndev->dev_addr, mac_addr);
  1622. else
  1623. random_ether_addr(ndev->dev_addr);
  1624. }
  1625. ret = of_property_read_string(node_interface, "rx-channel",
  1626. &netcp->dma_chan_name);
  1627. if (ret < 0) {
  1628. dev_err(dev, "missing \"rx-channel\" parameter\n");
  1629. ret = -ENODEV;
  1630. goto quit;
  1631. }
  1632. ret = of_property_read_u32(node_interface, "rx-queue",
  1633. &netcp->rx_queue_id);
  1634. if (ret < 0) {
  1635. dev_warn(dev, "missing \"rx-queue\" parameter\n");
  1636. netcp->rx_queue_id = KNAV_QUEUE_QPEND;
  1637. }
  1638. ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
  1639. netcp->rx_queue_depths,
  1640. KNAV_DMA_FDQ_PER_CHAN);
  1641. if (ret < 0) {
  1642. dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
  1643. netcp->rx_queue_depths[0] = 128;
  1644. }
  1645. ret = of_property_read_u32_array(node_interface, "rx-buffer-size",
  1646. netcp->rx_buffer_sizes,
  1647. KNAV_DMA_FDQ_PER_CHAN);
  1648. if (ret) {
  1649. dev_err(dev, "missing \"rx-buffer-size\" parameter\n");
  1650. netcp->rx_buffer_sizes[0] = 1536;
  1651. }
  1652. ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
  1653. if (ret < 0) {
  1654. dev_err(dev, "missing \"rx-pool\" parameter\n");
  1655. ret = -ENODEV;
  1656. goto quit;
  1657. }
  1658. netcp->rx_pool_size = temp[0];
  1659. netcp->rx_pool_region_id = temp[1];
  1660. ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
  1661. if (ret < 0) {
  1662. dev_err(dev, "missing \"tx-pool\" parameter\n");
  1663. ret = -ENODEV;
  1664. goto quit;
  1665. }
  1666. netcp->tx_pool_size = temp[0];
  1667. netcp->tx_pool_region_id = temp[1];
  1668. if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
  1669. dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
  1670. MAX_SKB_FRAGS);
  1671. ret = -ENODEV;
  1672. goto quit;
  1673. }
  1674. ret = of_property_read_u32(node_interface, "tx-completion-queue",
  1675. &netcp->tx_compl_qid);
  1676. if (ret < 0) {
  1677. dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
  1678. netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
  1679. }
  1680. /* NAPI register */
  1681. netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
  1682. netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
  1683. /* Register the network device */
  1684. ndev->dev_id = 0;
  1685. ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
  1686. ndev->netdev_ops = &netcp_netdev_ops;
  1687. SET_NETDEV_DEV(ndev, dev);
  1688. list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
  1689. return 0;
  1690. quit:
  1691. free_netdev(ndev);
  1692. return ret;
  1693. }
  1694. static void netcp_delete_interface(struct netcp_device *netcp_device,
  1695. struct net_device *ndev)
  1696. {
  1697. struct netcp_intf_modpriv *intf_modpriv, *tmp;
  1698. struct netcp_intf *netcp = netdev_priv(ndev);
  1699. struct netcp_module *module;
  1700. dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
  1701. ndev->name);
  1702. /* Notify each of the modules that the interface is going away */
  1703. list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
  1704. intf_list) {
  1705. module = intf_modpriv->netcp_module;
  1706. dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
  1707. module->name);
  1708. if (module->release)
  1709. module->release(intf_modpriv->module_priv);
  1710. list_del(&intf_modpriv->intf_list);
  1711. kfree(intf_modpriv);
  1712. }
  1713. WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
  1714. ndev->name);
  1715. list_del(&netcp->interface_list);
  1716. of_node_put(netcp->node_interface);
  1717. unregister_netdev(ndev);
  1718. netif_napi_del(&netcp->rx_napi);
  1719. free_netdev(ndev);
  1720. }
  1721. static int netcp_probe(struct platform_device *pdev)
  1722. {
  1723. struct device_node *node = pdev->dev.of_node;
  1724. struct netcp_intf *netcp_intf, *netcp_tmp;
  1725. struct device_node *child, *interfaces;
  1726. struct netcp_device *netcp_device;
  1727. struct device *dev = &pdev->dev;
  1728. struct netcp_module *module;
  1729. int ret;
  1730. if (!node) {
  1731. dev_err(dev, "could not find device info\n");
  1732. return -ENODEV;
  1733. }
  1734. /* Allocate a new NETCP device instance */
  1735. netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
  1736. if (!netcp_device)
  1737. return -ENOMEM;
  1738. pm_runtime_enable(&pdev->dev);
  1739. ret = pm_runtime_get_sync(&pdev->dev);
  1740. if (ret < 0) {
  1741. dev_err(dev, "Failed to enable NETCP power-domain\n");
  1742. pm_runtime_disable(&pdev->dev);
  1743. return ret;
  1744. }
  1745. /* Initialize the NETCP device instance */
  1746. INIT_LIST_HEAD(&netcp_device->interface_head);
  1747. INIT_LIST_HEAD(&netcp_device->modpriv_head);
  1748. netcp_device->device = dev;
  1749. platform_set_drvdata(pdev, netcp_device);
  1750. /* create interfaces */
  1751. interfaces = of_get_child_by_name(node, "netcp-interfaces");
  1752. if (!interfaces) {
  1753. dev_err(dev, "could not find netcp-interfaces node\n");
  1754. ret = -ENODEV;
  1755. goto probe_quit;
  1756. }
  1757. for_each_available_child_of_node(interfaces, child) {
  1758. ret = netcp_create_interface(netcp_device, child);
  1759. if (ret) {
  1760. dev_err(dev, "could not create interface(%s)\n",
  1761. child->name);
  1762. goto probe_quit_interface;
  1763. }
  1764. }
  1765. /* Add the device instance to the list */
  1766. list_add_tail(&netcp_device->device_list, &netcp_devices);
  1767. /* Probe & attach any modules already registered */
  1768. mutex_lock(&netcp_modules_lock);
  1769. for_each_netcp_module(module) {
  1770. ret = netcp_module_probe(netcp_device, module);
  1771. if (ret < 0)
  1772. dev_err(dev, "module(%s) probe failed\n", module->name);
  1773. }
  1774. mutex_unlock(&netcp_modules_lock);
  1775. return 0;
  1776. probe_quit_interface:
  1777. list_for_each_entry_safe(netcp_intf, netcp_tmp,
  1778. &netcp_device->interface_head,
  1779. interface_list) {
  1780. netcp_delete_interface(netcp_device, netcp_intf->ndev);
  1781. }
  1782. probe_quit:
  1783. pm_runtime_put_sync(&pdev->dev);
  1784. pm_runtime_disable(&pdev->dev);
  1785. platform_set_drvdata(pdev, NULL);
  1786. return ret;
  1787. }
  1788. static int netcp_remove(struct platform_device *pdev)
  1789. {
  1790. struct netcp_device *netcp_device = platform_get_drvdata(pdev);
  1791. struct netcp_inst_modpriv *inst_modpriv, *tmp;
  1792. struct netcp_module *module;
  1793. list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
  1794. inst_list) {
  1795. module = inst_modpriv->netcp_module;
  1796. dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
  1797. module->remove(netcp_device, inst_modpriv->module_priv);
  1798. list_del(&inst_modpriv->inst_list);
  1799. kfree(inst_modpriv);
  1800. }
  1801. WARN(!list_empty(&netcp_device->interface_head), "%s interface list not empty!\n",
  1802. pdev->name);
  1803. devm_kfree(&pdev->dev, netcp_device);
  1804. pm_runtime_put_sync(&pdev->dev);
  1805. pm_runtime_disable(&pdev->dev);
  1806. platform_set_drvdata(pdev, NULL);
  1807. return 0;
  1808. }
  1809. static const struct of_device_id of_match[] = {
  1810. { .compatible = "ti,netcp-1.0", },
  1811. {},
  1812. };
  1813. MODULE_DEVICE_TABLE(of, of_match);
  1814. static struct platform_driver netcp_driver = {
  1815. .driver = {
  1816. .name = "netcp-1.0",
  1817. .owner = THIS_MODULE,
  1818. .of_match_table = of_match,
  1819. },
  1820. .probe = netcp_probe,
  1821. .remove = netcp_remove,
  1822. };
  1823. module_platform_driver(netcp_driver);
  1824. MODULE_LICENSE("GPL v2");
  1825. MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
  1826. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");