sunxi-mmc.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. /*
  2. * Driver for sunxi SD/MMC host controllers
  3. * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
  4. * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
  5. * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
  6. * (C) Copyright 2013-2014 David Lanzend�rfer <david.lanzendoerfer@o2s.ch>
  7. * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation; either version 2 of
  12. * the License, or (at your option) any later version.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/io.h>
  17. #include <linux/device.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/err.h>
  21. #include <linux/clk.h>
  22. #include <linux/gpio.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/slab.h>
  28. #include <linux/reset.h>
  29. #include <linux/of_address.h>
  30. #include <linux/of_gpio.h>
  31. #include <linux/of_platform.h>
  32. #include <linux/mmc/host.h>
  33. #include <linux/mmc/sd.h>
  34. #include <linux/mmc/sdio.h>
  35. #include <linux/mmc/mmc.h>
  36. #include <linux/mmc/core.h>
  37. #include <linux/mmc/card.h>
  38. #include <linux/mmc/slot-gpio.h>
  39. /* register offset definitions */
  40. #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
  41. #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
  42. #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
  43. #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
  44. #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
  45. #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
  46. #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
  47. #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
  48. #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
  49. #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
  50. #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
  51. #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
  52. #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
  53. #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
  54. #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
  55. #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
  56. #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
  57. #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
  58. #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
  59. #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
  60. #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
  61. #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
  62. #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
  63. #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
  64. #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
  65. #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
  66. #define SDXC_REG_CHDA (0x90)
  67. #define SDXC_REG_CBDA (0x94)
  68. #define mmc_readl(host, reg) \
  69. readl((host)->reg_base + SDXC_##reg)
  70. #define mmc_writel(host, reg, value) \
  71. writel((value), (host)->reg_base + SDXC_##reg)
  72. /* global control register bits */
  73. #define SDXC_SOFT_RESET BIT(0)
  74. #define SDXC_FIFO_RESET BIT(1)
  75. #define SDXC_DMA_RESET BIT(2)
  76. #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
  77. #define SDXC_DMA_ENABLE_BIT BIT(5)
  78. #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
  79. #define SDXC_POSEDGE_LATCH_DATA BIT(9)
  80. #define SDXC_DDR_MODE BIT(10)
  81. #define SDXC_MEMORY_ACCESS_DONE BIT(29)
  82. #define SDXC_ACCESS_DONE_DIRECT BIT(30)
  83. #define SDXC_ACCESS_BY_AHB BIT(31)
  84. #define SDXC_ACCESS_BY_DMA (0 << 31)
  85. #define SDXC_HARDWARE_RESET \
  86. (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
  87. /* clock control bits */
  88. #define SDXC_CARD_CLOCK_ON BIT(16)
  89. #define SDXC_LOW_POWER_ON BIT(17)
  90. /* bus width */
  91. #define SDXC_WIDTH1 0
  92. #define SDXC_WIDTH4 1
  93. #define SDXC_WIDTH8 2
  94. /* smc command bits */
  95. #define SDXC_RESP_EXPIRE BIT(6)
  96. #define SDXC_LONG_RESPONSE BIT(7)
  97. #define SDXC_CHECK_RESPONSE_CRC BIT(8)
  98. #define SDXC_DATA_EXPIRE BIT(9)
  99. #define SDXC_WRITE BIT(10)
  100. #define SDXC_SEQUENCE_MODE BIT(11)
  101. #define SDXC_SEND_AUTO_STOP BIT(12)
  102. #define SDXC_WAIT_PRE_OVER BIT(13)
  103. #define SDXC_STOP_ABORT_CMD BIT(14)
  104. #define SDXC_SEND_INIT_SEQUENCE BIT(15)
  105. #define SDXC_UPCLK_ONLY BIT(21)
  106. #define SDXC_READ_CEATA_DEV BIT(22)
  107. #define SDXC_CCS_EXPIRE BIT(23)
  108. #define SDXC_ENABLE_BIT_BOOT BIT(24)
  109. #define SDXC_ALT_BOOT_OPTIONS BIT(25)
  110. #define SDXC_BOOT_ACK_EXPIRE BIT(26)
  111. #define SDXC_BOOT_ABORT BIT(27)
  112. #define SDXC_VOLTAGE_SWITCH BIT(28)
  113. #define SDXC_USE_HOLD_REGISTER BIT(29)
  114. #define SDXC_START BIT(31)
  115. /* interrupt bits */
  116. #define SDXC_RESP_ERROR BIT(1)
  117. #define SDXC_COMMAND_DONE BIT(2)
  118. #define SDXC_DATA_OVER BIT(3)
  119. #define SDXC_TX_DATA_REQUEST BIT(4)
  120. #define SDXC_RX_DATA_REQUEST BIT(5)
  121. #define SDXC_RESP_CRC_ERROR BIT(6)
  122. #define SDXC_DATA_CRC_ERROR BIT(7)
  123. #define SDXC_RESP_TIMEOUT BIT(8)
  124. #define SDXC_DATA_TIMEOUT BIT(9)
  125. #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
  126. #define SDXC_FIFO_RUN_ERROR BIT(11)
  127. #define SDXC_HARD_WARE_LOCKED BIT(12)
  128. #define SDXC_START_BIT_ERROR BIT(13)
  129. #define SDXC_AUTO_COMMAND_DONE BIT(14)
  130. #define SDXC_END_BIT_ERROR BIT(15)
  131. #define SDXC_SDIO_INTERRUPT BIT(16)
  132. #define SDXC_CARD_INSERT BIT(30)
  133. #define SDXC_CARD_REMOVE BIT(31)
  134. #define SDXC_INTERRUPT_ERROR_BIT \
  135. (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
  136. SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
  137. SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
  138. #define SDXC_INTERRUPT_DONE_BIT \
  139. (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
  140. SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
  141. /* status */
  142. #define SDXC_RXWL_FLAG BIT(0)
  143. #define SDXC_TXWL_FLAG BIT(1)
  144. #define SDXC_FIFO_EMPTY BIT(2)
  145. #define SDXC_FIFO_FULL BIT(3)
  146. #define SDXC_CARD_PRESENT BIT(8)
  147. #define SDXC_CARD_DATA_BUSY BIT(9)
  148. #define SDXC_DATA_FSM_BUSY BIT(10)
  149. #define SDXC_DMA_REQUEST BIT(31)
  150. #define SDXC_FIFO_SIZE 16
  151. /* Function select */
  152. #define SDXC_CEATA_ON (0xceaa << 16)
  153. #define SDXC_SEND_IRQ_RESPONSE BIT(0)
  154. #define SDXC_SDIO_READ_WAIT BIT(1)
  155. #define SDXC_ABORT_READ_DATA BIT(2)
  156. #define SDXC_SEND_CCSD BIT(8)
  157. #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
  158. #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
  159. /* IDMA controller bus mod bit field */
  160. #define SDXC_IDMAC_SOFT_RESET BIT(0)
  161. #define SDXC_IDMAC_FIX_BURST BIT(1)
  162. #define SDXC_IDMAC_IDMA_ON BIT(7)
  163. #define SDXC_IDMAC_REFETCH_DES BIT(31)
  164. /* IDMA status bit field */
  165. #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
  166. #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
  167. #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
  168. #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
  169. #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
  170. #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
  171. #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
  172. #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
  173. #define SDXC_IDMAC_IDLE (0 << 13)
  174. #define SDXC_IDMAC_SUSPEND (1 << 13)
  175. #define SDXC_IDMAC_DESC_READ (2 << 13)
  176. #define SDXC_IDMAC_DESC_CHECK (3 << 13)
  177. #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
  178. #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
  179. #define SDXC_IDMAC_READ (6 << 13)
  180. #define SDXC_IDMAC_WRITE (7 << 13)
  181. #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
  182. /*
  183. * If the idma-des-size-bits of property is ie 13, bufsize bits are:
  184. * Bits 0-12: buf1 size
  185. * Bits 13-25: buf2 size
  186. * Bits 26-31: not used
  187. * Since we only ever set buf1 size, we can simply store it directly.
  188. */
  189. #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
  190. #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
  191. #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
  192. #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
  193. #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
  194. #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
  195. #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
  196. struct sunxi_idma_des {
  197. u32 config;
  198. u32 buf_size;
  199. u32 buf_addr_ptr1;
  200. u32 buf_addr_ptr2;
  201. };
  202. struct sunxi_mmc_host {
  203. struct mmc_host *mmc;
  204. struct reset_control *reset;
  205. /* IO mapping base */
  206. void __iomem *reg_base;
  207. /* clock management */
  208. struct clk *clk_ahb;
  209. struct clk *clk_mmc;
  210. struct clk *clk_sample;
  211. struct clk *clk_output;
  212. /* irq */
  213. spinlock_t lock;
  214. int irq;
  215. u32 int_sum;
  216. u32 sdio_imask;
  217. /* dma */
  218. u32 idma_des_size_bits;
  219. dma_addr_t sg_dma;
  220. void *sg_cpu;
  221. bool wait_dma;
  222. struct mmc_request *mrq;
  223. struct mmc_request *manual_stop_mrq;
  224. int ferror;
  225. };
  226. static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
  227. {
  228. unsigned long expire = jiffies + msecs_to_jiffies(250);
  229. u32 rval;
  230. mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
  231. do {
  232. rval = mmc_readl(host, REG_GCTRL);
  233. } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
  234. if (rval & SDXC_HARDWARE_RESET) {
  235. dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
  236. return -EIO;
  237. }
  238. return 0;
  239. }
  240. static int sunxi_mmc_init_host(struct mmc_host *mmc)
  241. {
  242. u32 rval;
  243. struct sunxi_mmc_host *host = mmc_priv(mmc);
  244. if (sunxi_mmc_reset_host(host))
  245. return -EIO;
  246. mmc_writel(host, REG_FTRGL, 0x20070008);
  247. mmc_writel(host, REG_TMOUT, 0xffffffff);
  248. mmc_writel(host, REG_IMASK, host->sdio_imask);
  249. mmc_writel(host, REG_RINTR, 0xffffffff);
  250. mmc_writel(host, REG_DBGC, 0xdeb);
  251. mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
  252. mmc_writel(host, REG_DLBA, host->sg_dma);
  253. rval = mmc_readl(host, REG_GCTRL);
  254. rval |= SDXC_INTERRUPT_ENABLE_BIT;
  255. rval &= ~SDXC_ACCESS_DONE_DIRECT;
  256. mmc_writel(host, REG_GCTRL, rval);
  257. return 0;
  258. }
  259. static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
  260. struct mmc_data *data)
  261. {
  262. struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
  263. dma_addr_t next_desc = host->sg_dma;
  264. int i, max_len = (1 << host->idma_des_size_bits);
  265. for (i = 0; i < data->sg_len; i++) {
  266. pdes[i].config = SDXC_IDMAC_DES0_CH | SDXC_IDMAC_DES0_OWN |
  267. SDXC_IDMAC_DES0_DIC;
  268. if (data->sg[i].length == max_len)
  269. pdes[i].buf_size = 0; /* 0 == max_len */
  270. else
  271. pdes[i].buf_size = data->sg[i].length;
  272. next_desc += sizeof(struct sunxi_idma_des);
  273. pdes[i].buf_addr_ptr1 = sg_dma_address(&data->sg[i]);
  274. pdes[i].buf_addr_ptr2 = (u32)next_desc;
  275. }
  276. pdes[0].config |= SDXC_IDMAC_DES0_FD;
  277. pdes[i - 1].config |= SDXC_IDMAC_DES0_LD | SDXC_IDMAC_DES0_ER;
  278. pdes[i - 1].config &= ~SDXC_IDMAC_DES0_DIC;
  279. pdes[i - 1].buf_addr_ptr2 = 0;
  280. /*
  281. * Avoid the io-store starting the idmac hitting io-mem before the
  282. * descriptors hit the main-mem.
  283. */
  284. wmb();
  285. }
  286. static enum dma_data_direction sunxi_mmc_get_dma_dir(struct mmc_data *data)
  287. {
  288. if (data->flags & MMC_DATA_WRITE)
  289. return DMA_TO_DEVICE;
  290. else
  291. return DMA_FROM_DEVICE;
  292. }
  293. static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
  294. struct mmc_data *data)
  295. {
  296. u32 i, dma_len;
  297. struct scatterlist *sg;
  298. dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  299. sunxi_mmc_get_dma_dir(data));
  300. if (dma_len == 0) {
  301. dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
  302. return -ENOMEM;
  303. }
  304. for_each_sg(data->sg, sg, data->sg_len, i) {
  305. if (sg->offset & 3 || sg->length & 3) {
  306. dev_err(mmc_dev(host->mmc),
  307. "unaligned scatterlist: os %x length %d\n",
  308. sg->offset, sg->length);
  309. return -EINVAL;
  310. }
  311. }
  312. return 0;
  313. }
  314. static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
  315. struct mmc_data *data)
  316. {
  317. u32 rval;
  318. sunxi_mmc_init_idma_des(host, data);
  319. rval = mmc_readl(host, REG_GCTRL);
  320. rval |= SDXC_DMA_ENABLE_BIT;
  321. mmc_writel(host, REG_GCTRL, rval);
  322. rval |= SDXC_DMA_RESET;
  323. mmc_writel(host, REG_GCTRL, rval);
  324. mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
  325. if (!(data->flags & MMC_DATA_WRITE))
  326. mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
  327. mmc_writel(host, REG_DMAC,
  328. SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
  329. }
  330. static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
  331. struct mmc_request *req)
  332. {
  333. u32 arg, cmd_val, ri;
  334. unsigned long expire = jiffies + msecs_to_jiffies(1000);
  335. cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
  336. SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
  337. if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
  338. cmd_val |= SD_IO_RW_DIRECT;
  339. arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
  340. ((req->cmd->arg >> 28) & 0x7);
  341. } else {
  342. cmd_val |= MMC_STOP_TRANSMISSION;
  343. arg = 0;
  344. }
  345. mmc_writel(host, REG_CARG, arg);
  346. mmc_writel(host, REG_CMDR, cmd_val);
  347. do {
  348. ri = mmc_readl(host, REG_RINTR);
  349. } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
  350. time_before(jiffies, expire));
  351. if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
  352. dev_err(mmc_dev(host->mmc), "send stop command failed\n");
  353. if (req->stop)
  354. req->stop->resp[0] = -ETIMEDOUT;
  355. } else {
  356. if (req->stop)
  357. req->stop->resp[0] = mmc_readl(host, REG_RESP0);
  358. }
  359. mmc_writel(host, REG_RINTR, 0xffff);
  360. }
  361. static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
  362. {
  363. struct mmc_command *cmd = host->mrq->cmd;
  364. struct mmc_data *data = host->mrq->data;
  365. /* For some cmds timeout is normal with sd/mmc cards */
  366. if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
  367. SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
  368. cmd->opcode == SD_IO_RW_DIRECT))
  369. return;
  370. dev_err(mmc_dev(host->mmc),
  371. "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
  372. host->mmc->index, cmd->opcode,
  373. data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
  374. host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
  375. host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
  376. host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
  377. host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
  378. host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
  379. host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
  380. host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
  381. host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
  382. host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
  383. );
  384. }
  385. /* Called in interrupt context! */
  386. static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
  387. {
  388. struct mmc_request *mrq = host->mrq;
  389. struct mmc_data *data = mrq->data;
  390. u32 rval;
  391. mmc_writel(host, REG_IMASK, host->sdio_imask);
  392. mmc_writel(host, REG_IDIE, 0);
  393. if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
  394. sunxi_mmc_dump_errinfo(host);
  395. mrq->cmd->error = -ETIMEDOUT;
  396. if (data) {
  397. data->error = -ETIMEDOUT;
  398. host->manual_stop_mrq = mrq;
  399. }
  400. if (mrq->stop)
  401. mrq->stop->error = -ETIMEDOUT;
  402. } else {
  403. if (mrq->cmd->flags & MMC_RSP_136) {
  404. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
  405. mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
  406. mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
  407. mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
  408. } else {
  409. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
  410. }
  411. if (data)
  412. data->bytes_xfered = data->blocks * data->blksz;
  413. }
  414. if (data) {
  415. mmc_writel(host, REG_IDST, 0x337);
  416. mmc_writel(host, REG_DMAC, 0);
  417. rval = mmc_readl(host, REG_GCTRL);
  418. rval |= SDXC_DMA_RESET;
  419. mmc_writel(host, REG_GCTRL, rval);
  420. rval &= ~SDXC_DMA_ENABLE_BIT;
  421. mmc_writel(host, REG_GCTRL, rval);
  422. rval |= SDXC_FIFO_RESET;
  423. mmc_writel(host, REG_GCTRL, rval);
  424. dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  425. sunxi_mmc_get_dma_dir(data));
  426. }
  427. mmc_writel(host, REG_RINTR, 0xffff);
  428. host->mrq = NULL;
  429. host->int_sum = 0;
  430. host->wait_dma = false;
  431. return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
  432. }
  433. static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
  434. {
  435. struct sunxi_mmc_host *host = dev_id;
  436. struct mmc_request *mrq;
  437. u32 msk_int, idma_int;
  438. bool finalize = false;
  439. bool sdio_int = false;
  440. irqreturn_t ret = IRQ_HANDLED;
  441. spin_lock(&host->lock);
  442. idma_int = mmc_readl(host, REG_IDST);
  443. msk_int = mmc_readl(host, REG_MISTA);
  444. dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
  445. host->mrq, msk_int, idma_int);
  446. mrq = host->mrq;
  447. if (mrq) {
  448. if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
  449. host->wait_dma = false;
  450. host->int_sum |= msk_int;
  451. /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
  452. if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
  453. !(host->int_sum & SDXC_COMMAND_DONE))
  454. mmc_writel(host, REG_IMASK,
  455. host->sdio_imask | SDXC_COMMAND_DONE);
  456. /* Don't wait for dma on error */
  457. else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
  458. finalize = true;
  459. else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
  460. !host->wait_dma)
  461. finalize = true;
  462. }
  463. if (msk_int & SDXC_SDIO_INTERRUPT)
  464. sdio_int = true;
  465. mmc_writel(host, REG_RINTR, msk_int);
  466. mmc_writel(host, REG_IDST, idma_int);
  467. if (finalize)
  468. ret = sunxi_mmc_finalize_request(host);
  469. spin_unlock(&host->lock);
  470. if (finalize && ret == IRQ_HANDLED)
  471. mmc_request_done(host->mmc, mrq);
  472. if (sdio_int)
  473. mmc_signal_sdio_irq(host->mmc);
  474. return ret;
  475. }
  476. static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
  477. {
  478. struct sunxi_mmc_host *host = dev_id;
  479. struct mmc_request *mrq;
  480. unsigned long iflags;
  481. spin_lock_irqsave(&host->lock, iflags);
  482. mrq = host->manual_stop_mrq;
  483. spin_unlock_irqrestore(&host->lock, iflags);
  484. if (!mrq) {
  485. dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
  486. return IRQ_HANDLED;
  487. }
  488. dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
  489. /*
  490. * We will never have more than one outstanding request,
  491. * and we do not complete the request until after
  492. * we've cleared host->manual_stop_mrq so we do not need to
  493. * spin lock this function.
  494. * Additionally we have wait states within this function
  495. * so having it in a lock is a very bad idea.
  496. */
  497. sunxi_mmc_send_manual_stop(host, mrq);
  498. spin_lock_irqsave(&host->lock, iflags);
  499. host->manual_stop_mrq = NULL;
  500. spin_unlock_irqrestore(&host->lock, iflags);
  501. mmc_request_done(host->mmc, mrq);
  502. return IRQ_HANDLED;
  503. }
  504. static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
  505. {
  506. unsigned long expire = jiffies + msecs_to_jiffies(250);
  507. u32 rval;
  508. rval = mmc_readl(host, REG_CLKCR);
  509. rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON);
  510. if (oclk_en)
  511. rval |= SDXC_CARD_CLOCK_ON;
  512. mmc_writel(host, REG_CLKCR, rval);
  513. rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
  514. mmc_writel(host, REG_CMDR, rval);
  515. do {
  516. rval = mmc_readl(host, REG_CMDR);
  517. } while (time_before(jiffies, expire) && (rval & SDXC_START));
  518. /* clear irq status bits set by the command */
  519. mmc_writel(host, REG_RINTR,
  520. mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
  521. if (rval & SDXC_START) {
  522. dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
  523. return -EIO;
  524. }
  525. return 0;
  526. }
  527. static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
  528. struct mmc_ios *ios)
  529. {
  530. u32 rate, oclk_dly, rval, sclk_dly;
  531. int ret;
  532. rate = clk_round_rate(host->clk_mmc, ios->clock);
  533. dev_dbg(mmc_dev(host->mmc), "setting clk to %d, rounded %d\n",
  534. ios->clock, rate);
  535. /* setting clock rate */
  536. ret = clk_set_rate(host->clk_mmc, rate);
  537. if (ret) {
  538. dev_err(mmc_dev(host->mmc), "error setting clk to %d: %d\n",
  539. rate, ret);
  540. return ret;
  541. }
  542. ret = sunxi_mmc_oclk_onoff(host, 0);
  543. if (ret)
  544. return ret;
  545. /* clear internal divider */
  546. rval = mmc_readl(host, REG_CLKCR);
  547. rval &= ~0xff;
  548. mmc_writel(host, REG_CLKCR, rval);
  549. /* determine delays */
  550. if (rate <= 400000) {
  551. oclk_dly = 180;
  552. sclk_dly = 42;
  553. } else if (rate <= 25000000) {
  554. oclk_dly = 180;
  555. sclk_dly = 75;
  556. } else if (rate <= 50000000) {
  557. if (ios->timing == MMC_TIMING_UHS_DDR50) {
  558. oclk_dly = 60;
  559. sclk_dly = 120;
  560. } else {
  561. oclk_dly = 90;
  562. sclk_dly = 150;
  563. }
  564. } else if (rate <= 100000000) {
  565. oclk_dly = 6;
  566. sclk_dly = 24;
  567. } else if (rate <= 200000000) {
  568. oclk_dly = 3;
  569. sclk_dly = 12;
  570. } else {
  571. return -EINVAL;
  572. }
  573. clk_set_phase(host->clk_sample, sclk_dly);
  574. clk_set_phase(host->clk_output, oclk_dly);
  575. return sunxi_mmc_oclk_onoff(host, 1);
  576. }
  577. static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  578. {
  579. struct sunxi_mmc_host *host = mmc_priv(mmc);
  580. u32 rval;
  581. /* Set the power state */
  582. switch (ios->power_mode) {
  583. case MMC_POWER_ON:
  584. break;
  585. case MMC_POWER_UP:
  586. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
  587. host->ferror = sunxi_mmc_init_host(mmc);
  588. if (host->ferror)
  589. return;
  590. dev_dbg(mmc_dev(mmc), "power on!\n");
  591. break;
  592. case MMC_POWER_OFF:
  593. dev_dbg(mmc_dev(mmc), "power off!\n");
  594. sunxi_mmc_reset_host(host);
  595. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
  596. break;
  597. }
  598. /* set bus width */
  599. switch (ios->bus_width) {
  600. case MMC_BUS_WIDTH_1:
  601. mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
  602. break;
  603. case MMC_BUS_WIDTH_4:
  604. mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
  605. break;
  606. case MMC_BUS_WIDTH_8:
  607. mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
  608. break;
  609. }
  610. /* set ddr mode */
  611. rval = mmc_readl(host, REG_GCTRL);
  612. if (ios->timing == MMC_TIMING_UHS_DDR50)
  613. rval |= SDXC_DDR_MODE;
  614. else
  615. rval &= ~SDXC_DDR_MODE;
  616. mmc_writel(host, REG_GCTRL, rval);
  617. /* set up clock */
  618. if (ios->clock && ios->power_mode) {
  619. host->ferror = sunxi_mmc_clk_set_rate(host, ios);
  620. /* Android code had a usleep_range(50000, 55000); here */
  621. }
  622. }
  623. static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
  624. {
  625. struct sunxi_mmc_host *host = mmc_priv(mmc);
  626. unsigned long flags;
  627. u32 imask;
  628. spin_lock_irqsave(&host->lock, flags);
  629. imask = mmc_readl(host, REG_IMASK);
  630. if (enable) {
  631. host->sdio_imask = SDXC_SDIO_INTERRUPT;
  632. imask |= SDXC_SDIO_INTERRUPT;
  633. } else {
  634. host->sdio_imask = 0;
  635. imask &= ~SDXC_SDIO_INTERRUPT;
  636. }
  637. mmc_writel(host, REG_IMASK, imask);
  638. spin_unlock_irqrestore(&host->lock, flags);
  639. }
  640. static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
  641. {
  642. struct sunxi_mmc_host *host = mmc_priv(mmc);
  643. mmc_writel(host, REG_HWRST, 0);
  644. udelay(10);
  645. mmc_writel(host, REG_HWRST, 1);
  646. udelay(300);
  647. }
  648. static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
  649. {
  650. struct sunxi_mmc_host *host = mmc_priv(mmc);
  651. struct mmc_command *cmd = mrq->cmd;
  652. struct mmc_data *data = mrq->data;
  653. unsigned long iflags;
  654. u32 imask = SDXC_INTERRUPT_ERROR_BIT;
  655. u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
  656. bool wait_dma = host->wait_dma;
  657. int ret;
  658. /* Check for set_ios errors (should never happen) */
  659. if (host->ferror) {
  660. mrq->cmd->error = host->ferror;
  661. mmc_request_done(mmc, mrq);
  662. return;
  663. }
  664. if (data) {
  665. ret = sunxi_mmc_map_dma(host, data);
  666. if (ret < 0) {
  667. dev_err(mmc_dev(mmc), "map DMA failed\n");
  668. cmd->error = ret;
  669. data->error = ret;
  670. mmc_request_done(mmc, mrq);
  671. return;
  672. }
  673. }
  674. if (cmd->opcode == MMC_GO_IDLE_STATE) {
  675. cmd_val |= SDXC_SEND_INIT_SEQUENCE;
  676. imask |= SDXC_COMMAND_DONE;
  677. }
  678. if (cmd->flags & MMC_RSP_PRESENT) {
  679. cmd_val |= SDXC_RESP_EXPIRE;
  680. if (cmd->flags & MMC_RSP_136)
  681. cmd_val |= SDXC_LONG_RESPONSE;
  682. if (cmd->flags & MMC_RSP_CRC)
  683. cmd_val |= SDXC_CHECK_RESPONSE_CRC;
  684. if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
  685. cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
  686. if (cmd->data->flags & MMC_DATA_STREAM) {
  687. imask |= SDXC_AUTO_COMMAND_DONE;
  688. cmd_val |= SDXC_SEQUENCE_MODE |
  689. SDXC_SEND_AUTO_STOP;
  690. }
  691. if (cmd->data->stop) {
  692. imask |= SDXC_AUTO_COMMAND_DONE;
  693. cmd_val |= SDXC_SEND_AUTO_STOP;
  694. } else {
  695. imask |= SDXC_DATA_OVER;
  696. }
  697. if (cmd->data->flags & MMC_DATA_WRITE)
  698. cmd_val |= SDXC_WRITE;
  699. else
  700. wait_dma = true;
  701. } else {
  702. imask |= SDXC_COMMAND_DONE;
  703. }
  704. } else {
  705. imask |= SDXC_COMMAND_DONE;
  706. }
  707. dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
  708. cmd_val & 0x3f, cmd_val, cmd->arg, imask,
  709. mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
  710. spin_lock_irqsave(&host->lock, iflags);
  711. if (host->mrq || host->manual_stop_mrq) {
  712. spin_unlock_irqrestore(&host->lock, iflags);
  713. if (data)
  714. dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
  715. sunxi_mmc_get_dma_dir(data));
  716. dev_err(mmc_dev(mmc), "request already pending\n");
  717. mrq->cmd->error = -EBUSY;
  718. mmc_request_done(mmc, mrq);
  719. return;
  720. }
  721. if (data) {
  722. mmc_writel(host, REG_BLKSZ, data->blksz);
  723. mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
  724. sunxi_mmc_start_dma(host, data);
  725. }
  726. host->mrq = mrq;
  727. host->wait_dma = wait_dma;
  728. mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
  729. mmc_writel(host, REG_CARG, cmd->arg);
  730. mmc_writel(host, REG_CMDR, cmd_val);
  731. spin_unlock_irqrestore(&host->lock, iflags);
  732. }
  733. static const struct of_device_id sunxi_mmc_of_match[] = {
  734. { .compatible = "allwinner,sun4i-a10-mmc", },
  735. { .compatible = "allwinner,sun5i-a13-mmc", },
  736. { /* sentinel */ }
  737. };
  738. MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
  739. static struct mmc_host_ops sunxi_mmc_ops = {
  740. .request = sunxi_mmc_request,
  741. .set_ios = sunxi_mmc_set_ios,
  742. .get_ro = mmc_gpio_get_ro,
  743. .get_cd = mmc_gpio_get_cd,
  744. .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
  745. .hw_reset = sunxi_mmc_hw_reset,
  746. };
  747. static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
  748. struct platform_device *pdev)
  749. {
  750. struct device_node *np = pdev->dev.of_node;
  751. int ret;
  752. if (of_device_is_compatible(np, "allwinner,sun4i-a10-mmc"))
  753. host->idma_des_size_bits = 13;
  754. else
  755. host->idma_des_size_bits = 16;
  756. ret = mmc_regulator_get_supply(host->mmc);
  757. if (ret) {
  758. if (ret != -EPROBE_DEFER)
  759. dev_err(&pdev->dev, "Could not get vmmc supply\n");
  760. return ret;
  761. }
  762. host->reg_base = devm_ioremap_resource(&pdev->dev,
  763. platform_get_resource(pdev, IORESOURCE_MEM, 0));
  764. if (IS_ERR(host->reg_base))
  765. return PTR_ERR(host->reg_base);
  766. host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  767. if (IS_ERR(host->clk_ahb)) {
  768. dev_err(&pdev->dev, "Could not get ahb clock\n");
  769. return PTR_ERR(host->clk_ahb);
  770. }
  771. host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
  772. if (IS_ERR(host->clk_mmc)) {
  773. dev_err(&pdev->dev, "Could not get mmc clock\n");
  774. return PTR_ERR(host->clk_mmc);
  775. }
  776. host->clk_output = devm_clk_get(&pdev->dev, "output");
  777. if (IS_ERR(host->clk_output)) {
  778. dev_err(&pdev->dev, "Could not get output clock\n");
  779. return PTR_ERR(host->clk_output);
  780. }
  781. host->clk_sample = devm_clk_get(&pdev->dev, "sample");
  782. if (IS_ERR(host->clk_sample)) {
  783. dev_err(&pdev->dev, "Could not get sample clock\n");
  784. return PTR_ERR(host->clk_sample);
  785. }
  786. host->reset = devm_reset_control_get_optional(&pdev->dev, "ahb");
  787. if (PTR_ERR(host->reset) == -EPROBE_DEFER)
  788. return PTR_ERR(host->reset);
  789. ret = clk_prepare_enable(host->clk_ahb);
  790. if (ret) {
  791. dev_err(&pdev->dev, "Enable ahb clk err %d\n", ret);
  792. return ret;
  793. }
  794. ret = clk_prepare_enable(host->clk_mmc);
  795. if (ret) {
  796. dev_err(&pdev->dev, "Enable mmc clk err %d\n", ret);
  797. goto error_disable_clk_ahb;
  798. }
  799. ret = clk_prepare_enable(host->clk_output);
  800. if (ret) {
  801. dev_err(&pdev->dev, "Enable output clk err %d\n", ret);
  802. goto error_disable_clk_mmc;
  803. }
  804. ret = clk_prepare_enable(host->clk_sample);
  805. if (ret) {
  806. dev_err(&pdev->dev, "Enable sample clk err %d\n", ret);
  807. goto error_disable_clk_output;
  808. }
  809. if (!IS_ERR(host->reset)) {
  810. ret = reset_control_deassert(host->reset);
  811. if (ret) {
  812. dev_err(&pdev->dev, "reset err %d\n", ret);
  813. goto error_disable_clk_sample;
  814. }
  815. }
  816. /*
  817. * Sometimes the controller asserts the irq on boot for some reason,
  818. * make sure the controller is in a sane state before enabling irqs.
  819. */
  820. ret = sunxi_mmc_reset_host(host);
  821. if (ret)
  822. goto error_assert_reset;
  823. host->irq = platform_get_irq(pdev, 0);
  824. return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
  825. sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
  826. error_assert_reset:
  827. if (!IS_ERR(host->reset))
  828. reset_control_assert(host->reset);
  829. error_disable_clk_sample:
  830. clk_disable_unprepare(host->clk_sample);
  831. error_disable_clk_output:
  832. clk_disable_unprepare(host->clk_output);
  833. error_disable_clk_mmc:
  834. clk_disable_unprepare(host->clk_mmc);
  835. error_disable_clk_ahb:
  836. clk_disable_unprepare(host->clk_ahb);
  837. return ret;
  838. }
  839. static int sunxi_mmc_probe(struct platform_device *pdev)
  840. {
  841. struct sunxi_mmc_host *host;
  842. struct mmc_host *mmc;
  843. int ret;
  844. mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
  845. if (!mmc) {
  846. dev_err(&pdev->dev, "mmc alloc host failed\n");
  847. return -ENOMEM;
  848. }
  849. host = mmc_priv(mmc);
  850. host->mmc = mmc;
  851. spin_lock_init(&host->lock);
  852. ret = sunxi_mmc_resource_request(host, pdev);
  853. if (ret)
  854. goto error_free_host;
  855. host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  856. &host->sg_dma, GFP_KERNEL);
  857. if (!host->sg_cpu) {
  858. dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
  859. ret = -ENOMEM;
  860. goto error_free_host;
  861. }
  862. mmc->ops = &sunxi_mmc_ops;
  863. mmc->max_blk_count = 8192;
  864. mmc->max_blk_size = 4096;
  865. mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
  866. mmc->max_seg_size = (1 << host->idma_des_size_bits);
  867. mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
  868. /* 400kHz ~ 50MHz */
  869. mmc->f_min = 400000;
  870. mmc->f_max = 50000000;
  871. mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
  872. MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
  873. ret = mmc_of_parse(mmc);
  874. if (ret)
  875. goto error_free_dma;
  876. ret = mmc_add_host(mmc);
  877. if (ret)
  878. goto error_free_dma;
  879. dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
  880. platform_set_drvdata(pdev, mmc);
  881. return 0;
  882. error_free_dma:
  883. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  884. error_free_host:
  885. mmc_free_host(mmc);
  886. return ret;
  887. }
  888. static int sunxi_mmc_remove(struct platform_device *pdev)
  889. {
  890. struct mmc_host *mmc = platform_get_drvdata(pdev);
  891. struct sunxi_mmc_host *host = mmc_priv(mmc);
  892. mmc_remove_host(mmc);
  893. disable_irq(host->irq);
  894. sunxi_mmc_reset_host(host);
  895. if (!IS_ERR(host->reset))
  896. reset_control_assert(host->reset);
  897. clk_disable_unprepare(host->clk_mmc);
  898. clk_disable_unprepare(host->clk_ahb);
  899. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  900. mmc_free_host(mmc);
  901. return 0;
  902. }
  903. static struct platform_driver sunxi_mmc_driver = {
  904. .driver = {
  905. .name = "sunxi-mmc",
  906. .of_match_table = of_match_ptr(sunxi_mmc_of_match),
  907. },
  908. .probe = sunxi_mmc_probe,
  909. .remove = sunxi_mmc_remove,
  910. };
  911. module_platform_driver(sunxi_mmc_driver);
  912. MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
  913. MODULE_LICENSE("GPL v2");
  914. MODULE_AUTHOR("David Lanzend�rfer <david.lanzendoerfer@o2s.ch>");
  915. MODULE_ALIAS("platform:sunxi-mmc");