st_magn_core.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /*
  2. * STMicroelectronics magnetometers driver
  3. *
  4. * Copyright 2012-2013 STMicroelectronics Inc.
  5. *
  6. * Denis Ciocca <denis.ciocca@st.com>
  7. *
  8. * Licensed under the GPL-2.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/errno.h>
  14. #include <linux/types.h>
  15. #include <linux/mutex.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/i2c.h>
  18. #include <linux/gpio.h>
  19. #include <linux/irq.h>
  20. #include <linux/delay.h>
  21. #include <linux/iio/iio.h>
  22. #include <linux/iio/sysfs.h>
  23. #include <linux/iio/buffer.h>
  24. #include <linux/iio/common/st_sensors.h>
  25. #include "st_magn.h"
  26. #define ST_MAGN_NUMBER_DATA_CHANNELS 3
  27. /* DEFAULT VALUE FOR SENSORS */
  28. #define ST_MAGN_DEFAULT_OUT_X_H_ADDR 0X03
  29. #define ST_MAGN_DEFAULT_OUT_Y_H_ADDR 0X07
  30. #define ST_MAGN_DEFAULT_OUT_Z_H_ADDR 0X05
  31. /* FULLSCALE */
  32. #define ST_MAGN_FS_AVL_1300MG 1300
  33. #define ST_MAGN_FS_AVL_1900MG 1900
  34. #define ST_MAGN_FS_AVL_2500MG 2500
  35. #define ST_MAGN_FS_AVL_4000MG 4000
  36. #define ST_MAGN_FS_AVL_4700MG 4700
  37. #define ST_MAGN_FS_AVL_5600MG 5600
  38. #define ST_MAGN_FS_AVL_8000MG 8000
  39. #define ST_MAGN_FS_AVL_8100MG 8100
  40. #define ST_MAGN_FS_AVL_12000MG 12000
  41. #define ST_MAGN_FS_AVL_16000MG 16000
  42. /* CUSTOM VALUES FOR SENSOR 1 */
  43. #define ST_MAGN_1_WAI_EXP 0x3c
  44. #define ST_MAGN_1_ODR_ADDR 0x00
  45. #define ST_MAGN_1_ODR_MASK 0x1c
  46. #define ST_MAGN_1_ODR_AVL_1HZ_VAL 0x00
  47. #define ST_MAGN_1_ODR_AVL_2HZ_VAL 0x01
  48. #define ST_MAGN_1_ODR_AVL_3HZ_VAL 0x02
  49. #define ST_MAGN_1_ODR_AVL_8HZ_VAL 0x03
  50. #define ST_MAGN_1_ODR_AVL_15HZ_VAL 0x04
  51. #define ST_MAGN_1_ODR_AVL_30HZ_VAL 0x05
  52. #define ST_MAGN_1_ODR_AVL_75HZ_VAL 0x06
  53. #define ST_MAGN_1_ODR_AVL_220HZ_VAL 0x07
  54. #define ST_MAGN_1_PW_ADDR 0x02
  55. #define ST_MAGN_1_PW_MASK 0x03
  56. #define ST_MAGN_1_PW_ON 0x00
  57. #define ST_MAGN_1_PW_OFF 0x03
  58. #define ST_MAGN_1_FS_ADDR 0x01
  59. #define ST_MAGN_1_FS_MASK 0xe0
  60. #define ST_MAGN_1_FS_AVL_1300_VAL 0x01
  61. #define ST_MAGN_1_FS_AVL_1900_VAL 0x02
  62. #define ST_MAGN_1_FS_AVL_2500_VAL 0x03
  63. #define ST_MAGN_1_FS_AVL_4000_VAL 0x04
  64. #define ST_MAGN_1_FS_AVL_4700_VAL 0x05
  65. #define ST_MAGN_1_FS_AVL_5600_VAL 0x06
  66. #define ST_MAGN_1_FS_AVL_8100_VAL 0x07
  67. #define ST_MAGN_1_FS_AVL_1300_GAIN_XY 909
  68. #define ST_MAGN_1_FS_AVL_1900_GAIN_XY 1169
  69. #define ST_MAGN_1_FS_AVL_2500_GAIN_XY 1492
  70. #define ST_MAGN_1_FS_AVL_4000_GAIN_XY 2222
  71. #define ST_MAGN_1_FS_AVL_4700_GAIN_XY 2500
  72. #define ST_MAGN_1_FS_AVL_5600_GAIN_XY 3030
  73. #define ST_MAGN_1_FS_AVL_8100_GAIN_XY 4347
  74. #define ST_MAGN_1_FS_AVL_1300_GAIN_Z 1020
  75. #define ST_MAGN_1_FS_AVL_1900_GAIN_Z 1315
  76. #define ST_MAGN_1_FS_AVL_2500_GAIN_Z 1666
  77. #define ST_MAGN_1_FS_AVL_4000_GAIN_Z 2500
  78. #define ST_MAGN_1_FS_AVL_4700_GAIN_Z 2816
  79. #define ST_MAGN_1_FS_AVL_5600_GAIN_Z 3389
  80. #define ST_MAGN_1_FS_AVL_8100_GAIN_Z 4878
  81. #define ST_MAGN_1_MULTIREAD_BIT false
  82. /* CUSTOM VALUES FOR SENSOR 2 */
  83. #define ST_MAGN_2_WAI_EXP 0x3d
  84. #define ST_MAGN_2_ODR_ADDR 0x20
  85. #define ST_MAGN_2_ODR_MASK 0x1c
  86. #define ST_MAGN_2_ODR_AVL_1HZ_VAL 0x00
  87. #define ST_MAGN_2_ODR_AVL_2HZ_VAL 0x01
  88. #define ST_MAGN_2_ODR_AVL_3HZ_VAL 0x02
  89. #define ST_MAGN_2_ODR_AVL_5HZ_VAL 0x03
  90. #define ST_MAGN_2_ODR_AVL_10HZ_VAL 0x04
  91. #define ST_MAGN_2_ODR_AVL_20HZ_VAL 0x05
  92. #define ST_MAGN_2_ODR_AVL_40HZ_VAL 0x06
  93. #define ST_MAGN_2_ODR_AVL_80HZ_VAL 0x07
  94. #define ST_MAGN_2_PW_ADDR 0x22
  95. #define ST_MAGN_2_PW_MASK 0x03
  96. #define ST_MAGN_2_PW_ON 0x00
  97. #define ST_MAGN_2_PW_OFF 0x03
  98. #define ST_MAGN_2_FS_ADDR 0x21
  99. #define ST_MAGN_2_FS_MASK 0x60
  100. #define ST_MAGN_2_FS_AVL_4000_VAL 0x00
  101. #define ST_MAGN_2_FS_AVL_8000_VAL 0x01
  102. #define ST_MAGN_2_FS_AVL_12000_VAL 0x02
  103. #define ST_MAGN_2_FS_AVL_16000_VAL 0x03
  104. #define ST_MAGN_2_FS_AVL_4000_GAIN 146
  105. #define ST_MAGN_2_FS_AVL_8000_GAIN 292
  106. #define ST_MAGN_2_FS_AVL_12000_GAIN 438
  107. #define ST_MAGN_2_FS_AVL_16000_GAIN 584
  108. #define ST_MAGN_2_MULTIREAD_BIT false
  109. #define ST_MAGN_2_OUT_X_L_ADDR 0x28
  110. #define ST_MAGN_2_OUT_Y_L_ADDR 0x2a
  111. #define ST_MAGN_2_OUT_Z_L_ADDR 0x2c
  112. static const struct iio_chan_spec st_magn_16bit_channels[] = {
  113. ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
  114. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
  115. ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_BE, 16, 16,
  116. ST_MAGN_DEFAULT_OUT_X_H_ADDR),
  117. ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
  118. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
  119. ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_BE, 16, 16,
  120. ST_MAGN_DEFAULT_OUT_Y_H_ADDR),
  121. ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
  122. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
  123. ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_BE, 16, 16,
  124. ST_MAGN_DEFAULT_OUT_Z_H_ADDR),
  125. IIO_CHAN_SOFT_TIMESTAMP(3)
  126. };
  127. static const struct iio_chan_spec st_magn_2_16bit_channels[] = {
  128. ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
  129. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
  130. ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
  131. ST_MAGN_2_OUT_X_L_ADDR),
  132. ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
  133. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
  134. ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
  135. ST_MAGN_2_OUT_Y_L_ADDR),
  136. ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
  137. BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
  138. ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
  139. ST_MAGN_2_OUT_Z_L_ADDR),
  140. IIO_CHAN_SOFT_TIMESTAMP(3)
  141. };
  142. static const struct st_sensor_settings st_magn_sensors_settings[] = {
  143. {
  144. .wai = ST_MAGN_1_WAI_EXP,
  145. .sensors_supported = {
  146. [0] = LSM303DLHC_MAGN_DEV_NAME,
  147. [1] = LSM303DLM_MAGN_DEV_NAME,
  148. },
  149. .ch = (struct iio_chan_spec *)st_magn_16bit_channels,
  150. .odr = {
  151. .addr = ST_MAGN_1_ODR_ADDR,
  152. .mask = ST_MAGN_1_ODR_MASK,
  153. .odr_avl = {
  154. { 1, ST_MAGN_1_ODR_AVL_1HZ_VAL, },
  155. { 2, ST_MAGN_1_ODR_AVL_2HZ_VAL, },
  156. { 3, ST_MAGN_1_ODR_AVL_3HZ_VAL, },
  157. { 8, ST_MAGN_1_ODR_AVL_8HZ_VAL, },
  158. { 15, ST_MAGN_1_ODR_AVL_15HZ_VAL, },
  159. { 30, ST_MAGN_1_ODR_AVL_30HZ_VAL, },
  160. { 75, ST_MAGN_1_ODR_AVL_75HZ_VAL, },
  161. { 220, ST_MAGN_1_ODR_AVL_220HZ_VAL, },
  162. },
  163. },
  164. .pw = {
  165. .addr = ST_MAGN_1_PW_ADDR,
  166. .mask = ST_MAGN_1_PW_MASK,
  167. .value_on = ST_MAGN_1_PW_ON,
  168. .value_off = ST_MAGN_1_PW_OFF,
  169. },
  170. .fs = {
  171. .addr = ST_MAGN_1_FS_ADDR,
  172. .mask = ST_MAGN_1_FS_MASK,
  173. .fs_avl = {
  174. [0] = {
  175. .num = ST_MAGN_FS_AVL_1300MG,
  176. .value = ST_MAGN_1_FS_AVL_1300_VAL,
  177. .gain = ST_MAGN_1_FS_AVL_1300_GAIN_XY,
  178. .gain2 = ST_MAGN_1_FS_AVL_1300_GAIN_Z,
  179. },
  180. [1] = {
  181. .num = ST_MAGN_FS_AVL_1900MG,
  182. .value = ST_MAGN_1_FS_AVL_1900_VAL,
  183. .gain = ST_MAGN_1_FS_AVL_1900_GAIN_XY,
  184. .gain2 = ST_MAGN_1_FS_AVL_1900_GAIN_Z,
  185. },
  186. [2] = {
  187. .num = ST_MAGN_FS_AVL_2500MG,
  188. .value = ST_MAGN_1_FS_AVL_2500_VAL,
  189. .gain = ST_MAGN_1_FS_AVL_2500_GAIN_XY,
  190. .gain2 = ST_MAGN_1_FS_AVL_2500_GAIN_Z,
  191. },
  192. [3] = {
  193. .num = ST_MAGN_FS_AVL_4000MG,
  194. .value = ST_MAGN_1_FS_AVL_4000_VAL,
  195. .gain = ST_MAGN_1_FS_AVL_4000_GAIN_XY,
  196. .gain2 = ST_MAGN_1_FS_AVL_4000_GAIN_Z,
  197. },
  198. [4] = {
  199. .num = ST_MAGN_FS_AVL_4700MG,
  200. .value = ST_MAGN_1_FS_AVL_4700_VAL,
  201. .gain = ST_MAGN_1_FS_AVL_4700_GAIN_XY,
  202. .gain2 = ST_MAGN_1_FS_AVL_4700_GAIN_Z,
  203. },
  204. [5] = {
  205. .num = ST_MAGN_FS_AVL_5600MG,
  206. .value = ST_MAGN_1_FS_AVL_5600_VAL,
  207. .gain = ST_MAGN_1_FS_AVL_5600_GAIN_XY,
  208. .gain2 = ST_MAGN_1_FS_AVL_5600_GAIN_Z,
  209. },
  210. [6] = {
  211. .num = ST_MAGN_FS_AVL_8100MG,
  212. .value = ST_MAGN_1_FS_AVL_8100_VAL,
  213. .gain = ST_MAGN_1_FS_AVL_8100_GAIN_XY,
  214. .gain2 = ST_MAGN_1_FS_AVL_8100_GAIN_Z,
  215. },
  216. },
  217. },
  218. .multi_read_bit = ST_MAGN_1_MULTIREAD_BIT,
  219. .bootime = 2,
  220. },
  221. {
  222. .wai = ST_MAGN_2_WAI_EXP,
  223. .sensors_supported = {
  224. [0] = LIS3MDL_MAGN_DEV_NAME,
  225. },
  226. .ch = (struct iio_chan_spec *)st_magn_2_16bit_channels,
  227. .odr = {
  228. .addr = ST_MAGN_2_ODR_ADDR,
  229. .mask = ST_MAGN_2_ODR_MASK,
  230. .odr_avl = {
  231. { 1, ST_MAGN_2_ODR_AVL_1HZ_VAL, },
  232. { 2, ST_MAGN_2_ODR_AVL_2HZ_VAL, },
  233. { 3, ST_MAGN_2_ODR_AVL_3HZ_VAL, },
  234. { 5, ST_MAGN_2_ODR_AVL_5HZ_VAL, },
  235. { 10, ST_MAGN_2_ODR_AVL_10HZ_VAL, },
  236. { 20, ST_MAGN_2_ODR_AVL_20HZ_VAL, },
  237. { 40, ST_MAGN_2_ODR_AVL_40HZ_VAL, },
  238. { 80, ST_MAGN_2_ODR_AVL_80HZ_VAL, },
  239. },
  240. },
  241. .pw = {
  242. .addr = ST_MAGN_2_PW_ADDR,
  243. .mask = ST_MAGN_2_PW_MASK,
  244. .value_on = ST_MAGN_2_PW_ON,
  245. .value_off = ST_MAGN_2_PW_OFF,
  246. },
  247. .fs = {
  248. .addr = ST_MAGN_2_FS_ADDR,
  249. .mask = ST_MAGN_2_FS_MASK,
  250. .fs_avl = {
  251. [0] = {
  252. .num = ST_MAGN_FS_AVL_4000MG,
  253. .value = ST_MAGN_2_FS_AVL_4000_VAL,
  254. .gain = ST_MAGN_2_FS_AVL_4000_GAIN,
  255. },
  256. [1] = {
  257. .num = ST_MAGN_FS_AVL_8000MG,
  258. .value = ST_MAGN_2_FS_AVL_8000_VAL,
  259. .gain = ST_MAGN_2_FS_AVL_8000_GAIN,
  260. },
  261. [2] = {
  262. .num = ST_MAGN_FS_AVL_12000MG,
  263. .value = ST_MAGN_2_FS_AVL_12000_VAL,
  264. .gain = ST_MAGN_2_FS_AVL_12000_GAIN,
  265. },
  266. [3] = {
  267. .num = ST_MAGN_FS_AVL_16000MG,
  268. .value = ST_MAGN_2_FS_AVL_16000_VAL,
  269. .gain = ST_MAGN_2_FS_AVL_16000_GAIN,
  270. },
  271. },
  272. },
  273. .multi_read_bit = ST_MAGN_2_MULTIREAD_BIT,
  274. .bootime = 2,
  275. },
  276. };
  277. static int st_magn_read_raw(struct iio_dev *indio_dev,
  278. struct iio_chan_spec const *ch, int *val,
  279. int *val2, long mask)
  280. {
  281. int err;
  282. struct st_sensor_data *mdata = iio_priv(indio_dev);
  283. switch (mask) {
  284. case IIO_CHAN_INFO_RAW:
  285. err = st_sensors_read_info_raw(indio_dev, ch, val);
  286. if (err < 0)
  287. goto read_error;
  288. return IIO_VAL_INT;
  289. case IIO_CHAN_INFO_SCALE:
  290. *val = 0;
  291. if ((ch->scan_index == ST_SENSORS_SCAN_Z) &&
  292. (mdata->current_fullscale->gain2 != 0))
  293. *val2 = mdata->current_fullscale->gain2;
  294. else
  295. *val2 = mdata->current_fullscale->gain;
  296. return IIO_VAL_INT_PLUS_MICRO;
  297. case IIO_CHAN_INFO_SAMP_FREQ:
  298. *val = mdata->odr;
  299. return IIO_VAL_INT;
  300. default:
  301. return -EINVAL;
  302. }
  303. read_error:
  304. return err;
  305. }
  306. static int st_magn_write_raw(struct iio_dev *indio_dev,
  307. struct iio_chan_spec const *chan, int val, int val2, long mask)
  308. {
  309. int err;
  310. switch (mask) {
  311. case IIO_CHAN_INFO_SCALE:
  312. err = st_sensors_set_fullscale_by_gain(indio_dev, val2);
  313. break;
  314. case IIO_CHAN_INFO_SAMP_FREQ:
  315. if (val2)
  316. return -EINVAL;
  317. mutex_lock(&indio_dev->mlock);
  318. err = st_sensors_set_odr(indio_dev, val);
  319. mutex_unlock(&indio_dev->mlock);
  320. return err;
  321. default:
  322. err = -EINVAL;
  323. }
  324. return err;
  325. }
  326. static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
  327. static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_magn_scale_available);
  328. static struct attribute *st_magn_attributes[] = {
  329. &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
  330. &iio_dev_attr_in_magn_scale_available.dev_attr.attr,
  331. NULL,
  332. };
  333. static const struct attribute_group st_magn_attribute_group = {
  334. .attrs = st_magn_attributes,
  335. };
  336. static const struct iio_info magn_info = {
  337. .driver_module = THIS_MODULE,
  338. .attrs = &st_magn_attribute_group,
  339. .read_raw = &st_magn_read_raw,
  340. .write_raw = &st_magn_write_raw,
  341. };
  342. int st_magn_common_probe(struct iio_dev *indio_dev)
  343. {
  344. struct st_sensor_data *mdata = iio_priv(indio_dev);
  345. int irq = mdata->get_irq_data_ready(indio_dev);
  346. int err;
  347. indio_dev->modes = INDIO_DIRECT_MODE;
  348. indio_dev->info = &magn_info;
  349. mutex_init(&mdata->tb.buf_lock);
  350. st_sensors_power_enable(indio_dev);
  351. err = st_sensors_check_device_support(indio_dev,
  352. ARRAY_SIZE(st_magn_sensors_settings),
  353. st_magn_sensors_settings);
  354. if (err < 0)
  355. return err;
  356. mdata->num_data_channels = ST_MAGN_NUMBER_DATA_CHANNELS;
  357. mdata->multiread_bit = mdata->sensor_settings->multi_read_bit;
  358. indio_dev->channels = mdata->sensor_settings->ch;
  359. indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
  360. mdata->current_fullscale = (struct st_sensor_fullscale_avl *)
  361. &mdata->sensor_settings->fs.fs_avl[0];
  362. mdata->odr = mdata->sensor_settings->odr.odr_avl[0].hz;
  363. err = st_sensors_init_sensor(indio_dev, NULL);
  364. if (err < 0)
  365. return err;
  366. err = st_magn_allocate_ring(indio_dev);
  367. if (err < 0)
  368. return err;
  369. if (irq > 0) {
  370. err = st_sensors_allocate_trigger(indio_dev, NULL);
  371. if (err < 0)
  372. goto st_magn_probe_trigger_error;
  373. }
  374. err = iio_device_register(indio_dev);
  375. if (err)
  376. goto st_magn_device_register_error;
  377. dev_info(&indio_dev->dev, "registered magnetometer %s\n",
  378. indio_dev->name);
  379. return 0;
  380. st_magn_device_register_error:
  381. if (irq > 0)
  382. st_sensors_deallocate_trigger(indio_dev);
  383. st_magn_probe_trigger_error:
  384. st_magn_deallocate_ring(indio_dev);
  385. return err;
  386. }
  387. EXPORT_SYMBOL(st_magn_common_probe);
  388. void st_magn_common_remove(struct iio_dev *indio_dev)
  389. {
  390. struct st_sensor_data *mdata = iio_priv(indio_dev);
  391. st_sensors_power_disable(indio_dev);
  392. iio_device_unregister(indio_dev);
  393. if (mdata->get_irq_data_ready(indio_dev) > 0)
  394. st_sensors_deallocate_trigger(indio_dev);
  395. st_magn_deallocate_ring(indio_dev);
  396. }
  397. EXPORT_SYMBOL(st_magn_common_remove);
  398. MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
  399. MODULE_DESCRIPTION("STMicroelectronics magnetometers driver");
  400. MODULE_LICENSE("GPL v2");