xilinx-xadc-core.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /*
  2. * Xilinx XADC driver
  3. *
  4. * Copyright 2013-2014 Analog Devices Inc.
  5. * Author: Lars-Peter Clauen <lars@metafoo.de>
  6. *
  7. * Licensed under the GPL-2.
  8. *
  9. * Documentation for the parts can be found at:
  10. * - XADC hardmacro: Xilinx UG480
  11. * - ZYNQ XADC interface: Xilinx UG585
  12. * - AXI XADC interface: Xilinx PG019
  13. */
  14. #include <linux/clk.h>
  15. #include <linux/device.h>
  16. #include <linux/err.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/of.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/slab.h>
  24. #include <linux/sysfs.h>
  25. #include <linux/iio/buffer.h>
  26. #include <linux/iio/events.h>
  27. #include <linux/iio/iio.h>
  28. #include <linux/iio/sysfs.h>
  29. #include <linux/iio/trigger.h>
  30. #include <linux/iio/trigger_consumer.h>
  31. #include <linux/iio/triggered_buffer.h>
  32. #include "xilinx-xadc.h"
  33. static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  34. /* ZYNQ register definitions */
  35. #define XADC_ZYNQ_REG_CFG 0x00
  36. #define XADC_ZYNQ_REG_INTSTS 0x04
  37. #define XADC_ZYNQ_REG_INTMSK 0x08
  38. #define XADC_ZYNQ_REG_STATUS 0x0c
  39. #define XADC_ZYNQ_REG_CFIFO 0x10
  40. #define XADC_ZYNQ_REG_DFIFO 0x14
  41. #define XADC_ZYNQ_REG_CTL 0x18
  42. #define XADC_ZYNQ_CFG_ENABLE BIT(31)
  43. #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
  44. #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
  45. #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
  46. #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
  47. #define XADC_ZYNQ_CFG_WEDGE BIT(13)
  48. #define XADC_ZYNQ_CFG_REDGE BIT(12)
  49. #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
  50. #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
  51. #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
  52. #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
  53. #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
  54. #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
  55. #define XADC_ZYNQ_CFG_IGAP(x) (x)
  56. #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
  57. #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
  58. #define XADC_ZYNQ_INT_ALARM_MASK 0xff
  59. #define XADC_ZYNQ_INT_ALARM_OFFSET 0
  60. #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
  61. #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
  62. #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
  63. #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
  64. #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
  65. #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
  66. #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
  67. #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
  68. #define XADC_ZYNQ_STATUS_OT BIT(7)
  69. #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
  70. #define XADC_ZYNQ_CTL_RESET BIT(4)
  71. #define XADC_ZYNQ_CMD_NOP 0x00
  72. #define XADC_ZYNQ_CMD_READ 0x01
  73. #define XADC_ZYNQ_CMD_WRITE 0x02
  74. #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  75. /* AXI register definitions */
  76. #define XADC_AXI_REG_RESET 0x00
  77. #define XADC_AXI_REG_STATUS 0x04
  78. #define XADC_AXI_REG_ALARM_STATUS 0x08
  79. #define XADC_AXI_REG_CONVST 0x0c
  80. #define XADC_AXI_REG_XADC_RESET 0x10
  81. #define XADC_AXI_REG_GIER 0x5c
  82. #define XADC_AXI_REG_IPISR 0x60
  83. #define XADC_AXI_REG_IPIER 0x68
  84. #define XADC_AXI_ADC_REG_OFFSET 0x200
  85. #define XADC_AXI_RESET_MAGIC 0xa
  86. #define XADC_AXI_GIER_ENABLE BIT(31)
  87. #define XADC_AXI_INT_EOS BIT(4)
  88. #define XADC_AXI_INT_ALARM_MASK 0x3c0f
  89. #define XADC_FLAGS_BUFFERED BIT(0)
  90. static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
  91. uint32_t val)
  92. {
  93. writel(val, xadc->base + reg);
  94. }
  95. static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
  96. uint32_t *val)
  97. {
  98. *val = readl(xadc->base + reg);
  99. }
  100. /*
  101. * The ZYNQ interface uses two asynchronous FIFOs for communication with the
  102. * XADC. Reads and writes to the XADC register are performed by submitting a
  103. * request to the command FIFO (CFIFO), once the request has been completed the
  104. * result can be read from the data FIFO (DFIFO). The method currently used in
  105. * this driver is to submit the request for a read/write operation, then go to
  106. * sleep and wait for an interrupt that signals that a response is available in
  107. * the data FIFO.
  108. */
  109. static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
  110. unsigned int n)
  111. {
  112. unsigned int i;
  113. for (i = 0; i < n; i++)
  114. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
  115. }
  116. static void xadc_zynq_drain_fifo(struct xadc *xadc)
  117. {
  118. uint32_t status, tmp;
  119. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  120. while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
  121. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  122. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  123. }
  124. }
  125. static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
  126. unsigned int val)
  127. {
  128. xadc->zynq_intmask &= ~mask;
  129. xadc->zynq_intmask |= val;
  130. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
  131. xadc->zynq_intmask | xadc->zynq_masked_alarm);
  132. }
  133. static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
  134. uint16_t val)
  135. {
  136. uint32_t cmd[1];
  137. uint32_t tmp;
  138. int ret;
  139. spin_lock_irq(&xadc->lock);
  140. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  141. XADC_ZYNQ_INT_DFIFO_GTH);
  142. reinit_completion(&xadc->completion);
  143. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
  144. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  145. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  146. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  147. tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  148. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  149. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  150. spin_unlock_irq(&xadc->lock);
  151. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  152. if (ret == 0)
  153. ret = -EIO;
  154. else
  155. ret = 0;
  156. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  157. return ret;
  158. }
  159. static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
  160. uint16_t *val)
  161. {
  162. uint32_t cmd[2];
  163. uint32_t resp, tmp;
  164. int ret;
  165. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
  166. cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
  167. spin_lock_irq(&xadc->lock);
  168. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  169. XADC_ZYNQ_INT_DFIFO_GTH);
  170. xadc_zynq_drain_fifo(xadc);
  171. reinit_completion(&xadc->completion);
  172. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  173. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  174. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  175. tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  176. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  177. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  178. spin_unlock_irq(&xadc->lock);
  179. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  180. if (ret == 0)
  181. ret = -EIO;
  182. if (ret < 0)
  183. return ret;
  184. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  185. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  186. *val = resp & 0xffff;
  187. return 0;
  188. }
  189. static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
  190. {
  191. return ((alarm & 0x80) >> 4) |
  192. ((alarm & 0x78) << 1) |
  193. (alarm & 0x07);
  194. }
  195. /*
  196. * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
  197. * threshold condition go way from within the interrupt handler, this means as
  198. * soon as a threshold condition is present we would enter the interrupt handler
  199. * again and again. To work around this we mask all active thresholds interrupts
  200. * in the interrupt handler and start a timer. In this timer we poll the
  201. * interrupt status and only if the interrupt is inactive we unmask it again.
  202. */
  203. static void xadc_zynq_unmask_worker(struct work_struct *work)
  204. {
  205. struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
  206. unsigned int misc_sts, unmask;
  207. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
  208. misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
  209. spin_lock_irq(&xadc->lock);
  210. /* Clear those bits which are not active anymore */
  211. unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
  212. xadc->zynq_masked_alarm &= misc_sts;
  213. /* Also clear those which are masked out anyway */
  214. xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
  215. /* Clear the interrupts before we unmask them */
  216. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
  217. xadc_zynq_update_intmsk(xadc, 0, 0);
  218. spin_unlock_irq(&xadc->lock);
  219. /* if still pending some alarm re-trigger the timer */
  220. if (xadc->zynq_masked_alarm) {
  221. schedule_delayed_work(&xadc->zynq_unmask_work,
  222. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  223. }
  224. }
  225. static irqreturn_t xadc_zynq_threaded_interrupt_handler(int irq, void *devid)
  226. {
  227. struct iio_dev *indio_dev = devid;
  228. struct xadc *xadc = iio_priv(indio_dev);
  229. unsigned int alarm;
  230. spin_lock_irq(&xadc->lock);
  231. alarm = xadc->zynq_alarm;
  232. xadc->zynq_alarm = 0;
  233. spin_unlock_irq(&xadc->lock);
  234. xadc_handle_events(indio_dev, xadc_zynq_transform_alarm(alarm));
  235. /* unmask the required interrupts in timer. */
  236. schedule_delayed_work(&xadc->zynq_unmask_work,
  237. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  238. return IRQ_HANDLED;
  239. }
  240. static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
  241. {
  242. struct iio_dev *indio_dev = devid;
  243. struct xadc *xadc = iio_priv(indio_dev);
  244. irqreturn_t ret = IRQ_HANDLED;
  245. uint32_t status;
  246. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  247. status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
  248. if (!status)
  249. return IRQ_NONE;
  250. spin_lock(&xadc->lock);
  251. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
  252. if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
  253. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  254. XADC_ZYNQ_INT_DFIFO_GTH);
  255. complete(&xadc->completion);
  256. }
  257. status &= XADC_ZYNQ_INT_ALARM_MASK;
  258. if (status) {
  259. xadc->zynq_alarm |= status;
  260. xadc->zynq_masked_alarm |= status;
  261. /*
  262. * mask the current event interrupt,
  263. * unmask it when the interrupt is no more active.
  264. */
  265. xadc_zynq_update_intmsk(xadc, 0, 0);
  266. ret = IRQ_WAKE_THREAD;
  267. }
  268. spin_unlock(&xadc->lock);
  269. return ret;
  270. }
  271. #define XADC_ZYNQ_TCK_RATE_MAX 50000000
  272. #define XADC_ZYNQ_IGAP_DEFAULT 20
  273. static int xadc_zynq_setup(struct platform_device *pdev,
  274. struct iio_dev *indio_dev, int irq)
  275. {
  276. struct xadc *xadc = iio_priv(indio_dev);
  277. unsigned long pcap_rate;
  278. unsigned int tck_div;
  279. unsigned int div;
  280. unsigned int igap;
  281. unsigned int tck_rate;
  282. /* TODO: Figure out how to make igap and tck_rate configurable */
  283. igap = XADC_ZYNQ_IGAP_DEFAULT;
  284. tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
  285. xadc->zynq_intmask = ~0;
  286. pcap_rate = clk_get_rate(xadc->clk);
  287. if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
  288. tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
  289. if (tck_rate > pcap_rate / 2) {
  290. div = 2;
  291. } else {
  292. div = pcap_rate / tck_rate;
  293. if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
  294. div++;
  295. }
  296. if (div <= 3)
  297. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
  298. else if (div <= 7)
  299. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
  300. else if (div <= 15)
  301. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
  302. else
  303. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
  304. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
  305. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
  306. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
  307. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
  308. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
  309. XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
  310. tck_div | XADC_ZYNQ_CFG_IGAP(igap));
  311. return 0;
  312. }
  313. static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
  314. {
  315. unsigned int div;
  316. uint32_t val;
  317. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
  318. switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
  319. case XADC_ZYNQ_CFG_TCKRATE_DIV4:
  320. div = 4;
  321. break;
  322. case XADC_ZYNQ_CFG_TCKRATE_DIV8:
  323. div = 8;
  324. break;
  325. case XADC_ZYNQ_CFG_TCKRATE_DIV16:
  326. div = 16;
  327. break;
  328. default:
  329. div = 2;
  330. break;
  331. }
  332. return clk_get_rate(xadc->clk) / div;
  333. }
  334. static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
  335. {
  336. unsigned long flags;
  337. uint32_t status;
  338. /* Move OT to bit 7 */
  339. alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
  340. spin_lock_irqsave(&xadc->lock, flags);
  341. /* Clear previous interrupts if any. */
  342. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  343. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
  344. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
  345. ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
  346. spin_unlock_irqrestore(&xadc->lock, flags);
  347. }
  348. static const struct xadc_ops xadc_zynq_ops = {
  349. .read = xadc_zynq_read_adc_reg,
  350. .write = xadc_zynq_write_adc_reg,
  351. .setup = xadc_zynq_setup,
  352. .get_dclk_rate = xadc_zynq_get_dclk_rate,
  353. .interrupt_handler = xadc_zynq_interrupt_handler,
  354. .threaded_interrupt_handler = xadc_zynq_threaded_interrupt_handler,
  355. .update_alarm = xadc_zynq_update_alarm,
  356. };
  357. static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
  358. uint16_t *val)
  359. {
  360. uint32_t val32;
  361. xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
  362. *val = val32 & 0xffff;
  363. return 0;
  364. }
  365. static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
  366. uint16_t val)
  367. {
  368. xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
  369. return 0;
  370. }
  371. static int xadc_axi_setup(struct platform_device *pdev,
  372. struct iio_dev *indio_dev, int irq)
  373. {
  374. struct xadc *xadc = iio_priv(indio_dev);
  375. xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
  376. xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
  377. return 0;
  378. }
  379. static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
  380. {
  381. struct iio_dev *indio_dev = devid;
  382. struct xadc *xadc = iio_priv(indio_dev);
  383. uint32_t status, mask;
  384. unsigned int events;
  385. xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
  386. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
  387. status &= mask;
  388. if (!status)
  389. return IRQ_NONE;
  390. if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
  391. iio_trigger_poll(xadc->trigger);
  392. if (status & XADC_AXI_INT_ALARM_MASK) {
  393. /*
  394. * The order of the bits in the AXI-XADC status register does
  395. * not match the order of the bits in the XADC alarm enable
  396. * register. xadc_handle_events() expects the events to be in
  397. * the same order as the XADC alarm enable register.
  398. */
  399. events = (status & 0x000e) >> 1;
  400. events |= (status & 0x0001) << 3;
  401. events |= (status & 0x3c00) >> 6;
  402. xadc_handle_events(indio_dev, events);
  403. }
  404. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
  405. return IRQ_HANDLED;
  406. }
  407. static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
  408. {
  409. uint32_t val;
  410. unsigned long flags;
  411. /*
  412. * The order of the bits in the AXI-XADC status register does not match
  413. * the order of the bits in the XADC alarm enable register. We get
  414. * passed the alarm mask in the same order as in the XADC alarm enable
  415. * register.
  416. */
  417. alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
  418. ((alarm & 0xf0) << 6);
  419. spin_lock_irqsave(&xadc->lock, flags);
  420. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  421. val &= ~XADC_AXI_INT_ALARM_MASK;
  422. val |= alarm;
  423. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  424. spin_unlock_irqrestore(&xadc->lock, flags);
  425. }
  426. static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
  427. {
  428. return clk_get_rate(xadc->clk);
  429. }
  430. static const struct xadc_ops xadc_axi_ops = {
  431. .read = xadc_axi_read_adc_reg,
  432. .write = xadc_axi_write_adc_reg,
  433. .setup = xadc_axi_setup,
  434. .get_dclk_rate = xadc_axi_get_dclk,
  435. .update_alarm = xadc_axi_update_alarm,
  436. .interrupt_handler = xadc_axi_interrupt_handler,
  437. .flags = XADC_FLAGS_BUFFERED,
  438. };
  439. static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  440. uint16_t mask, uint16_t val)
  441. {
  442. uint16_t tmp;
  443. int ret;
  444. ret = _xadc_read_adc_reg(xadc, reg, &tmp);
  445. if (ret)
  446. return ret;
  447. return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
  448. }
  449. static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  450. uint16_t mask, uint16_t val)
  451. {
  452. int ret;
  453. mutex_lock(&xadc->mutex);
  454. ret = _xadc_update_adc_reg(xadc, reg, mask, val);
  455. mutex_unlock(&xadc->mutex);
  456. return ret;
  457. }
  458. static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
  459. {
  460. return xadc->ops->get_dclk_rate(xadc);
  461. }
  462. static int xadc_update_scan_mode(struct iio_dev *indio_dev,
  463. const unsigned long *mask)
  464. {
  465. struct xadc *xadc = iio_priv(indio_dev);
  466. unsigned int n;
  467. n = bitmap_weight(mask, indio_dev->masklength);
  468. kfree(xadc->data);
  469. xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
  470. if (!xadc->data)
  471. return -ENOMEM;
  472. return 0;
  473. }
  474. static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
  475. {
  476. switch (scan_index) {
  477. case 5:
  478. return XADC_REG_VCCPINT;
  479. case 6:
  480. return XADC_REG_VCCPAUX;
  481. case 7:
  482. return XADC_REG_VCCO_DDR;
  483. case 8:
  484. return XADC_REG_TEMP;
  485. case 9:
  486. return XADC_REG_VCCINT;
  487. case 10:
  488. return XADC_REG_VCCAUX;
  489. case 11:
  490. return XADC_REG_VPVN;
  491. case 12:
  492. return XADC_REG_VREFP;
  493. case 13:
  494. return XADC_REG_VREFN;
  495. case 14:
  496. return XADC_REG_VCCBRAM;
  497. default:
  498. return XADC_REG_VAUX(scan_index - 16);
  499. }
  500. }
  501. static irqreturn_t xadc_trigger_handler(int irq, void *p)
  502. {
  503. struct iio_poll_func *pf = p;
  504. struct iio_dev *indio_dev = pf->indio_dev;
  505. struct xadc *xadc = iio_priv(indio_dev);
  506. unsigned int chan;
  507. int i, j;
  508. if (!xadc->data)
  509. goto out;
  510. j = 0;
  511. for_each_set_bit(i, indio_dev->active_scan_mask,
  512. indio_dev->masklength) {
  513. chan = xadc_scan_index_to_channel(i);
  514. xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
  515. j++;
  516. }
  517. iio_push_to_buffers(indio_dev, xadc->data);
  518. out:
  519. iio_trigger_notify_done(indio_dev->trig);
  520. return IRQ_HANDLED;
  521. }
  522. static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
  523. {
  524. struct xadc *xadc = iio_trigger_get_drvdata(trigger);
  525. unsigned long flags;
  526. unsigned int convst;
  527. unsigned int val;
  528. int ret = 0;
  529. mutex_lock(&xadc->mutex);
  530. if (state) {
  531. /* Only one of the two triggers can be active at the a time. */
  532. if (xadc->trigger != NULL) {
  533. ret = -EBUSY;
  534. goto err_out;
  535. } else {
  536. xadc->trigger = trigger;
  537. if (trigger == xadc->convst_trigger)
  538. convst = XADC_CONF0_EC;
  539. else
  540. convst = 0;
  541. }
  542. ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
  543. convst);
  544. if (ret)
  545. goto err_out;
  546. } else {
  547. xadc->trigger = NULL;
  548. }
  549. spin_lock_irqsave(&xadc->lock, flags);
  550. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  551. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
  552. if (state)
  553. val |= XADC_AXI_INT_EOS;
  554. else
  555. val &= ~XADC_AXI_INT_EOS;
  556. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  557. spin_unlock_irqrestore(&xadc->lock, flags);
  558. err_out:
  559. mutex_unlock(&xadc->mutex);
  560. return ret;
  561. }
  562. static const struct iio_trigger_ops xadc_trigger_ops = {
  563. .owner = THIS_MODULE,
  564. .set_trigger_state = &xadc_trigger_set_state,
  565. };
  566. static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
  567. const char *name)
  568. {
  569. struct iio_trigger *trig;
  570. int ret;
  571. trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
  572. indio_dev->id, name);
  573. if (trig == NULL)
  574. return ERR_PTR(-ENOMEM);
  575. trig->dev.parent = indio_dev->dev.parent;
  576. trig->ops = &xadc_trigger_ops;
  577. iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
  578. ret = iio_trigger_register(trig);
  579. if (ret)
  580. goto error_free_trig;
  581. return trig;
  582. error_free_trig:
  583. iio_trigger_free(trig);
  584. return ERR_PTR(ret);
  585. }
  586. static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
  587. {
  588. uint16_t val;
  589. switch (seq_mode) {
  590. case XADC_CONF1_SEQ_SIMULTANEOUS:
  591. case XADC_CONF1_SEQ_INDEPENDENT:
  592. val = XADC_CONF2_PD_ADC_B;
  593. break;
  594. default:
  595. val = 0;
  596. break;
  597. }
  598. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
  599. val);
  600. }
  601. static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
  602. {
  603. unsigned int aux_scan_mode = scan_mode >> 16;
  604. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
  605. return XADC_CONF1_SEQ_SIMULTANEOUS;
  606. if ((aux_scan_mode & 0xff00) == 0 ||
  607. (aux_scan_mode & 0x00ff) == 0)
  608. return XADC_CONF1_SEQ_CONTINUOUS;
  609. return XADC_CONF1_SEQ_SIMULTANEOUS;
  610. }
  611. static int xadc_postdisable(struct iio_dev *indio_dev)
  612. {
  613. struct xadc *xadc = iio_priv(indio_dev);
  614. unsigned long scan_mask;
  615. int ret;
  616. int i;
  617. scan_mask = 1; /* Run calibration as part of the sequence */
  618. for (i = 0; i < indio_dev->num_channels; i++)
  619. scan_mask |= BIT(indio_dev->channels[i].scan_index);
  620. /* Enable all channels and calibration */
  621. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  622. if (ret)
  623. return ret;
  624. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  625. if (ret)
  626. return ret;
  627. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  628. XADC_CONF1_SEQ_CONTINUOUS);
  629. if (ret)
  630. return ret;
  631. return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
  632. }
  633. static int xadc_preenable(struct iio_dev *indio_dev)
  634. {
  635. struct xadc *xadc = iio_priv(indio_dev);
  636. unsigned long scan_mask;
  637. int seq_mode;
  638. int ret;
  639. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  640. XADC_CONF1_SEQ_DEFAULT);
  641. if (ret)
  642. goto err;
  643. scan_mask = *indio_dev->active_scan_mask;
  644. seq_mode = xadc_get_seq_mode(xadc, scan_mask);
  645. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  646. if (ret)
  647. goto err;
  648. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  649. if (ret)
  650. goto err;
  651. ret = xadc_power_adc_b(xadc, seq_mode);
  652. if (ret)
  653. goto err;
  654. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  655. seq_mode);
  656. if (ret)
  657. goto err;
  658. return 0;
  659. err:
  660. xadc_postdisable(indio_dev);
  661. return ret;
  662. }
  663. static struct iio_buffer_setup_ops xadc_buffer_ops = {
  664. .preenable = &xadc_preenable,
  665. .postenable = &iio_triggered_buffer_postenable,
  666. .predisable = &iio_triggered_buffer_predisable,
  667. .postdisable = &xadc_postdisable,
  668. };
  669. static int xadc_read_raw(struct iio_dev *indio_dev,
  670. struct iio_chan_spec const *chan, int *val, int *val2, long info)
  671. {
  672. struct xadc *xadc = iio_priv(indio_dev);
  673. unsigned int div;
  674. uint16_t val16;
  675. int ret;
  676. switch (info) {
  677. case IIO_CHAN_INFO_RAW:
  678. if (iio_buffer_enabled(indio_dev))
  679. return -EBUSY;
  680. ret = xadc_read_adc_reg(xadc, chan->address, &val16);
  681. if (ret < 0)
  682. return ret;
  683. val16 >>= 4;
  684. if (chan->scan_type.sign == 'u')
  685. *val = val16;
  686. else
  687. *val = sign_extend32(val16, 11);
  688. return IIO_VAL_INT;
  689. case IIO_CHAN_INFO_SCALE:
  690. switch (chan->type) {
  691. case IIO_VOLTAGE:
  692. /* V = (val * 3.0) / 4096 */
  693. switch (chan->address) {
  694. case XADC_REG_VCCINT:
  695. case XADC_REG_VCCAUX:
  696. case XADC_REG_VREFP:
  697. case XADC_REG_VCCBRAM:
  698. case XADC_REG_VCCPINT:
  699. case XADC_REG_VCCPAUX:
  700. case XADC_REG_VCCO_DDR:
  701. *val = 3000;
  702. break;
  703. default:
  704. *val = 1000;
  705. break;
  706. }
  707. *val2 = 12;
  708. return IIO_VAL_FRACTIONAL_LOG2;
  709. case IIO_TEMP:
  710. /* Temp in C = (val * 503.975) / 4096 - 273.15 */
  711. *val = 503975;
  712. *val2 = 12;
  713. return IIO_VAL_FRACTIONAL_LOG2;
  714. default:
  715. return -EINVAL;
  716. }
  717. case IIO_CHAN_INFO_OFFSET:
  718. /* Only the temperature channel has an offset */
  719. *val = -((273150 << 12) / 503975);
  720. return IIO_VAL_INT;
  721. case IIO_CHAN_INFO_SAMP_FREQ:
  722. ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
  723. if (ret)
  724. return ret;
  725. div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
  726. if (div < 2)
  727. div = 2;
  728. *val = xadc_get_dclk_rate(xadc) / div / 26;
  729. return IIO_VAL_INT;
  730. default:
  731. return -EINVAL;
  732. }
  733. }
  734. static int xadc_write_raw(struct iio_dev *indio_dev,
  735. struct iio_chan_spec const *chan, int val, int val2, long info)
  736. {
  737. struct xadc *xadc = iio_priv(indio_dev);
  738. unsigned long clk_rate = xadc_get_dclk_rate(xadc);
  739. unsigned int div;
  740. if (info != IIO_CHAN_INFO_SAMP_FREQ)
  741. return -EINVAL;
  742. if (val <= 0)
  743. return -EINVAL;
  744. /* Max. 150 kSPS */
  745. if (val > 150000)
  746. val = 150000;
  747. val *= 26;
  748. /* Min 1MHz */
  749. if (val < 1000000)
  750. val = 1000000;
  751. /*
  752. * We want to round down, but only if we do not exceed the 150 kSPS
  753. * limit.
  754. */
  755. div = clk_rate / val;
  756. if (clk_rate / div / 26 > 150000)
  757. div++;
  758. if (div < 2)
  759. div = 2;
  760. else if (div > 0xff)
  761. div = 0xff;
  762. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
  763. div << XADC_CONF2_DIV_OFFSET);
  764. }
  765. static const struct iio_event_spec xadc_temp_events[] = {
  766. {
  767. .type = IIO_EV_TYPE_THRESH,
  768. .dir = IIO_EV_DIR_RISING,
  769. .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
  770. BIT(IIO_EV_INFO_VALUE) |
  771. BIT(IIO_EV_INFO_HYSTERESIS),
  772. },
  773. };
  774. /* Separate values for upper and lower thresholds, but only a shared enabled */
  775. static const struct iio_event_spec xadc_voltage_events[] = {
  776. {
  777. .type = IIO_EV_TYPE_THRESH,
  778. .dir = IIO_EV_DIR_RISING,
  779. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  780. }, {
  781. .type = IIO_EV_TYPE_THRESH,
  782. .dir = IIO_EV_DIR_FALLING,
  783. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  784. }, {
  785. .type = IIO_EV_TYPE_THRESH,
  786. .dir = IIO_EV_DIR_EITHER,
  787. .mask_separate = BIT(IIO_EV_INFO_ENABLE),
  788. },
  789. };
  790. #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
  791. .type = IIO_TEMP, \
  792. .indexed = 1, \
  793. .channel = (_chan), \
  794. .address = (_addr), \
  795. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  796. BIT(IIO_CHAN_INFO_SCALE) | \
  797. BIT(IIO_CHAN_INFO_OFFSET), \
  798. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  799. .event_spec = xadc_temp_events, \
  800. .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
  801. .scan_index = (_scan_index), \
  802. .scan_type = { \
  803. .sign = 'u', \
  804. .realbits = 12, \
  805. .storagebits = 16, \
  806. .shift = 4, \
  807. .endianness = IIO_CPU, \
  808. }, \
  809. }
  810. #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
  811. .type = IIO_VOLTAGE, \
  812. .indexed = 1, \
  813. .channel = (_chan), \
  814. .address = (_addr), \
  815. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  816. BIT(IIO_CHAN_INFO_SCALE), \
  817. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  818. .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
  819. .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
  820. .scan_index = (_scan_index), \
  821. .scan_type = { \
  822. .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
  823. .realbits = 12, \
  824. .storagebits = 16, \
  825. .shift = 4, \
  826. .endianness = IIO_CPU, \
  827. }, \
  828. .extend_name = _ext, \
  829. }
  830. static const struct iio_chan_spec xadc_channels[] = {
  831. XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
  832. XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
  833. XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
  834. XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
  835. XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
  836. XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
  837. XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
  838. XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
  839. XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
  840. XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
  841. XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
  842. XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
  843. XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
  844. XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
  845. XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
  846. XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
  847. XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
  848. XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
  849. XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
  850. XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
  851. XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
  852. XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
  853. XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
  854. XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
  855. XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
  856. XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
  857. };
  858. static const struct iio_info xadc_info = {
  859. .read_raw = &xadc_read_raw,
  860. .write_raw = &xadc_write_raw,
  861. .read_event_config = &xadc_read_event_config,
  862. .write_event_config = &xadc_write_event_config,
  863. .read_event_value = &xadc_read_event_value,
  864. .write_event_value = &xadc_write_event_value,
  865. .update_scan_mode = &xadc_update_scan_mode,
  866. .driver_module = THIS_MODULE,
  867. };
  868. static const struct of_device_id xadc_of_match_table[] = {
  869. { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
  870. { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
  871. { },
  872. };
  873. MODULE_DEVICE_TABLE(of, xadc_of_match_table);
  874. static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
  875. unsigned int *conf)
  876. {
  877. struct xadc *xadc = iio_priv(indio_dev);
  878. struct iio_chan_spec *channels, *chan;
  879. struct device_node *chan_node, *child;
  880. unsigned int num_channels;
  881. const char *external_mux;
  882. u32 ext_mux_chan;
  883. int reg;
  884. int ret;
  885. *conf = 0;
  886. ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
  887. if (ret < 0 || strcasecmp(external_mux, "none") == 0)
  888. xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
  889. else if (strcasecmp(external_mux, "single") == 0)
  890. xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
  891. else if (strcasecmp(external_mux, "dual") == 0)
  892. xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
  893. else
  894. return -EINVAL;
  895. if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
  896. ret = of_property_read_u32(np, "xlnx,external-mux-channel",
  897. &ext_mux_chan);
  898. if (ret < 0)
  899. return ret;
  900. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
  901. if (ext_mux_chan == 0)
  902. ext_mux_chan = XADC_REG_VPVN;
  903. else if (ext_mux_chan <= 16)
  904. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  905. else
  906. return -EINVAL;
  907. } else {
  908. if (ext_mux_chan > 0 && ext_mux_chan <= 8)
  909. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  910. else
  911. return -EINVAL;
  912. }
  913. *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
  914. }
  915. channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
  916. if (!channels)
  917. return -ENOMEM;
  918. num_channels = 9;
  919. chan = &channels[9];
  920. chan_node = of_get_child_by_name(np, "xlnx,channels");
  921. if (chan_node) {
  922. for_each_child_of_node(chan_node, child) {
  923. if (num_channels >= ARRAY_SIZE(xadc_channels)) {
  924. of_node_put(child);
  925. break;
  926. }
  927. ret = of_property_read_u32(child, "reg", &reg);
  928. if (ret || reg > 16)
  929. continue;
  930. if (of_property_read_bool(child, "xlnx,bipolar"))
  931. chan->scan_type.sign = 's';
  932. if (reg == 0) {
  933. chan->scan_index = 11;
  934. chan->address = XADC_REG_VPVN;
  935. } else {
  936. chan->scan_index = 15 + reg;
  937. chan->address = XADC_REG_VAUX(reg - 1);
  938. }
  939. num_channels++;
  940. chan++;
  941. }
  942. }
  943. of_node_put(chan_node);
  944. indio_dev->num_channels = num_channels;
  945. indio_dev->channels = krealloc(channels, sizeof(*channels) *
  946. num_channels, GFP_KERNEL);
  947. /* If we can't resize the channels array, just use the original */
  948. if (!indio_dev->channels)
  949. indio_dev->channels = channels;
  950. return 0;
  951. }
  952. static int xadc_probe(struct platform_device *pdev)
  953. {
  954. const struct of_device_id *id;
  955. struct iio_dev *indio_dev;
  956. unsigned int bipolar_mask;
  957. struct resource *mem;
  958. unsigned int conf0;
  959. struct xadc *xadc;
  960. int ret;
  961. int irq;
  962. int i;
  963. if (!pdev->dev.of_node)
  964. return -ENODEV;
  965. id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
  966. if (!id)
  967. return -EINVAL;
  968. irq = platform_get_irq(pdev, 0);
  969. if (irq <= 0)
  970. return -ENXIO;
  971. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
  972. if (!indio_dev)
  973. return -ENOMEM;
  974. xadc = iio_priv(indio_dev);
  975. xadc->ops = id->data;
  976. init_completion(&xadc->completion);
  977. mutex_init(&xadc->mutex);
  978. spin_lock_init(&xadc->lock);
  979. INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
  980. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  981. xadc->base = devm_ioremap_resource(&pdev->dev, mem);
  982. if (IS_ERR(xadc->base))
  983. return PTR_ERR(xadc->base);
  984. indio_dev->dev.parent = &pdev->dev;
  985. indio_dev->dev.of_node = pdev->dev.of_node;
  986. indio_dev->name = "xadc";
  987. indio_dev->modes = INDIO_DIRECT_MODE;
  988. indio_dev->info = &xadc_info;
  989. ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
  990. if (ret)
  991. goto err_device_free;
  992. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  993. ret = iio_triggered_buffer_setup(indio_dev,
  994. &iio_pollfunc_store_time, &xadc_trigger_handler,
  995. &xadc_buffer_ops);
  996. if (ret)
  997. goto err_device_free;
  998. xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
  999. if (IS_ERR(xadc->convst_trigger)) {
  1000. ret = PTR_ERR(xadc->convst_trigger);
  1001. goto err_triggered_buffer_cleanup;
  1002. }
  1003. xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
  1004. "samplerate");
  1005. if (IS_ERR(xadc->samplerate_trigger)) {
  1006. ret = PTR_ERR(xadc->samplerate_trigger);
  1007. goto err_free_convst_trigger;
  1008. }
  1009. }
  1010. xadc->clk = devm_clk_get(&pdev->dev, NULL);
  1011. if (IS_ERR(xadc->clk)) {
  1012. ret = PTR_ERR(xadc->clk);
  1013. goto err_free_samplerate_trigger;
  1014. }
  1015. clk_prepare_enable(xadc->clk);
  1016. ret = xadc->ops->setup(pdev, indio_dev, irq);
  1017. if (ret)
  1018. goto err_free_samplerate_trigger;
  1019. ret = request_threaded_irq(irq, xadc->ops->interrupt_handler,
  1020. xadc->ops->threaded_interrupt_handler,
  1021. 0, dev_name(&pdev->dev), indio_dev);
  1022. if (ret)
  1023. goto err_clk_disable_unprepare;
  1024. for (i = 0; i < 16; i++)
  1025. xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1026. &xadc->threshold[i]);
  1027. ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
  1028. if (ret)
  1029. goto err_free_irq;
  1030. bipolar_mask = 0;
  1031. for (i = 0; i < indio_dev->num_channels; i++) {
  1032. if (indio_dev->channels[i].scan_type.sign == 's')
  1033. bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
  1034. }
  1035. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
  1036. if (ret)
  1037. goto err_free_irq;
  1038. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
  1039. bipolar_mask >> 16);
  1040. if (ret)
  1041. goto err_free_irq;
  1042. /* Disable all alarms */
  1043. xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
  1044. XADC_CONF1_ALARM_MASK);
  1045. /* Set thresholds to min/max */
  1046. for (i = 0; i < 16; i++) {
  1047. /*
  1048. * Set max voltage threshold and both temperature thresholds to
  1049. * 0xffff, min voltage threshold to 0.
  1050. */
  1051. if (i % 8 < 4 || i == 7)
  1052. xadc->threshold[i] = 0xffff;
  1053. else
  1054. xadc->threshold[i] = 0;
  1055. xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1056. xadc->threshold[i]);
  1057. }
  1058. /* Go to non-buffered mode */
  1059. xadc_postdisable(indio_dev);
  1060. ret = iio_device_register(indio_dev);
  1061. if (ret)
  1062. goto err_free_irq;
  1063. platform_set_drvdata(pdev, indio_dev);
  1064. return 0;
  1065. err_free_irq:
  1066. free_irq(irq, indio_dev);
  1067. err_free_samplerate_trigger:
  1068. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1069. iio_trigger_free(xadc->samplerate_trigger);
  1070. err_free_convst_trigger:
  1071. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1072. iio_trigger_free(xadc->convst_trigger);
  1073. err_triggered_buffer_cleanup:
  1074. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1075. iio_triggered_buffer_cleanup(indio_dev);
  1076. err_clk_disable_unprepare:
  1077. clk_disable_unprepare(xadc->clk);
  1078. err_device_free:
  1079. kfree(indio_dev->channels);
  1080. return ret;
  1081. }
  1082. static int xadc_remove(struct platform_device *pdev)
  1083. {
  1084. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  1085. struct xadc *xadc = iio_priv(indio_dev);
  1086. int irq = platform_get_irq(pdev, 0);
  1087. iio_device_unregister(indio_dev);
  1088. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  1089. iio_trigger_free(xadc->samplerate_trigger);
  1090. iio_trigger_free(xadc->convst_trigger);
  1091. iio_triggered_buffer_cleanup(indio_dev);
  1092. }
  1093. free_irq(irq, indio_dev);
  1094. clk_disable_unprepare(xadc->clk);
  1095. cancel_delayed_work(&xadc->zynq_unmask_work);
  1096. kfree(xadc->data);
  1097. kfree(indio_dev->channels);
  1098. return 0;
  1099. }
  1100. static struct platform_driver xadc_driver = {
  1101. .probe = xadc_probe,
  1102. .remove = xadc_remove,
  1103. .driver = {
  1104. .name = "xadc",
  1105. .of_match_table = xadc_of_match_table,
  1106. },
  1107. };
  1108. module_platform_driver(xadc_driver);
  1109. MODULE_LICENSE("GPL v2");
  1110. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  1111. MODULE_DESCRIPTION("Xilinx XADC IIO driver");