vmwgfx_buffer.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846
  1. /**************************************************************************
  2. *
  3. * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
  4. * All Rights Reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the
  8. * "Software"), to deal in the Software without restriction, including
  9. * without limitation the rights to use, copy, modify, merge, publish,
  10. * distribute, sub license, and/or sell copies of the Software, and to
  11. * permit persons to whom the Software is furnished to do so, subject to
  12. * the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the
  15. * next paragraph) shall be included in all copies or substantial portions
  16. * of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21. * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22. * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24. * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25. *
  26. **************************************************************************/
  27. #include "vmwgfx_drv.h"
  28. #include <drm/ttm/ttm_bo_driver.h>
  29. #include <drm/ttm/ttm_placement.h>
  30. #include <drm/ttm/ttm_page_alloc.h>
  31. static struct ttm_place vram_placement_flags = {
  32. .fpfn = 0,
  33. .lpfn = 0,
  34. .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  35. };
  36. static struct ttm_place vram_ne_placement_flags = {
  37. .fpfn = 0,
  38. .lpfn = 0,
  39. .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  40. };
  41. static struct ttm_place sys_placement_flags = {
  42. .fpfn = 0,
  43. .lpfn = 0,
  44. .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
  45. };
  46. static struct ttm_place sys_ne_placement_flags = {
  47. .fpfn = 0,
  48. .lpfn = 0,
  49. .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  50. };
  51. static struct ttm_place gmr_placement_flags = {
  52. .fpfn = 0,
  53. .lpfn = 0,
  54. .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  55. };
  56. static struct ttm_place gmr_ne_placement_flags = {
  57. .fpfn = 0,
  58. .lpfn = 0,
  59. .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  60. };
  61. static struct ttm_place mob_placement_flags = {
  62. .fpfn = 0,
  63. .lpfn = 0,
  64. .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
  65. };
  66. struct ttm_placement vmw_vram_placement = {
  67. .num_placement = 1,
  68. .placement = &vram_placement_flags,
  69. .num_busy_placement = 1,
  70. .busy_placement = &vram_placement_flags
  71. };
  72. static struct ttm_place vram_gmr_placement_flags[] = {
  73. {
  74. .fpfn = 0,
  75. .lpfn = 0,
  76. .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  77. }, {
  78. .fpfn = 0,
  79. .lpfn = 0,
  80. .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  81. }
  82. };
  83. static struct ttm_place gmr_vram_placement_flags[] = {
  84. {
  85. .fpfn = 0,
  86. .lpfn = 0,
  87. .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  88. }, {
  89. .fpfn = 0,
  90. .lpfn = 0,
  91. .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  92. }
  93. };
  94. struct ttm_placement vmw_vram_gmr_placement = {
  95. .num_placement = 2,
  96. .placement = vram_gmr_placement_flags,
  97. .num_busy_placement = 1,
  98. .busy_placement = &gmr_placement_flags
  99. };
  100. static struct ttm_place vram_gmr_ne_placement_flags[] = {
  101. {
  102. .fpfn = 0,
  103. .lpfn = 0,
  104. .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
  105. TTM_PL_FLAG_NO_EVICT
  106. }, {
  107. .fpfn = 0,
  108. .lpfn = 0,
  109. .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
  110. TTM_PL_FLAG_NO_EVICT
  111. }
  112. };
  113. struct ttm_placement vmw_vram_gmr_ne_placement = {
  114. .num_placement = 2,
  115. .placement = vram_gmr_ne_placement_flags,
  116. .num_busy_placement = 1,
  117. .busy_placement = &gmr_ne_placement_flags
  118. };
  119. struct ttm_placement vmw_vram_sys_placement = {
  120. .num_placement = 1,
  121. .placement = &vram_placement_flags,
  122. .num_busy_placement = 1,
  123. .busy_placement = &sys_placement_flags
  124. };
  125. struct ttm_placement vmw_vram_ne_placement = {
  126. .num_placement = 1,
  127. .placement = &vram_ne_placement_flags,
  128. .num_busy_placement = 1,
  129. .busy_placement = &vram_ne_placement_flags
  130. };
  131. struct ttm_placement vmw_sys_placement = {
  132. .num_placement = 1,
  133. .placement = &sys_placement_flags,
  134. .num_busy_placement = 1,
  135. .busy_placement = &sys_placement_flags
  136. };
  137. struct ttm_placement vmw_sys_ne_placement = {
  138. .num_placement = 1,
  139. .placement = &sys_ne_placement_flags,
  140. .num_busy_placement = 1,
  141. .busy_placement = &sys_ne_placement_flags
  142. };
  143. static struct ttm_place evictable_placement_flags[] = {
  144. {
  145. .fpfn = 0,
  146. .lpfn = 0,
  147. .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
  148. }, {
  149. .fpfn = 0,
  150. .lpfn = 0,
  151. .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  152. }, {
  153. .fpfn = 0,
  154. .lpfn = 0,
  155. .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  156. }, {
  157. .fpfn = 0,
  158. .lpfn = 0,
  159. .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
  160. }
  161. };
  162. struct ttm_placement vmw_evictable_placement = {
  163. .num_placement = 4,
  164. .placement = evictable_placement_flags,
  165. .num_busy_placement = 1,
  166. .busy_placement = &sys_placement_flags
  167. };
  168. struct ttm_placement vmw_srf_placement = {
  169. .num_placement = 1,
  170. .num_busy_placement = 2,
  171. .placement = &gmr_placement_flags,
  172. .busy_placement = gmr_vram_placement_flags
  173. };
  174. struct ttm_placement vmw_mob_placement = {
  175. .num_placement = 1,
  176. .num_busy_placement = 1,
  177. .placement = &mob_placement_flags,
  178. .busy_placement = &mob_placement_flags
  179. };
  180. struct vmw_ttm_tt {
  181. struct ttm_dma_tt dma_ttm;
  182. struct vmw_private *dev_priv;
  183. int gmr_id;
  184. struct vmw_mob *mob;
  185. int mem_type;
  186. struct sg_table sgt;
  187. struct vmw_sg_table vsgt;
  188. uint64_t sg_alloc_size;
  189. bool mapped;
  190. };
  191. const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
  192. /**
  193. * Helper functions to advance a struct vmw_piter iterator.
  194. *
  195. * @viter: Pointer to the iterator.
  196. *
  197. * These functions return false if past the end of the list,
  198. * true otherwise. Functions are selected depending on the current
  199. * DMA mapping mode.
  200. */
  201. static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
  202. {
  203. return ++(viter->i) < viter->num_pages;
  204. }
  205. static bool __vmw_piter_sg_next(struct vmw_piter *viter)
  206. {
  207. return __sg_page_iter_next(&viter->iter);
  208. }
  209. /**
  210. * Helper functions to return a pointer to the current page.
  211. *
  212. * @viter: Pointer to the iterator
  213. *
  214. * These functions return a pointer to the page currently
  215. * pointed to by @viter. Functions are selected depending on the
  216. * current mapping mode.
  217. */
  218. static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
  219. {
  220. return viter->pages[viter->i];
  221. }
  222. static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
  223. {
  224. return sg_page_iter_page(&viter->iter);
  225. }
  226. /**
  227. * Helper functions to return the DMA address of the current page.
  228. *
  229. * @viter: Pointer to the iterator
  230. *
  231. * These functions return the DMA address of the page currently
  232. * pointed to by @viter. Functions are selected depending on the
  233. * current mapping mode.
  234. */
  235. static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
  236. {
  237. return page_to_phys(viter->pages[viter->i]);
  238. }
  239. static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
  240. {
  241. return viter->addrs[viter->i];
  242. }
  243. static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
  244. {
  245. return sg_page_iter_dma_address(&viter->iter);
  246. }
  247. /**
  248. * vmw_piter_start - Initialize a struct vmw_piter.
  249. *
  250. * @viter: Pointer to the iterator to initialize
  251. * @vsgt: Pointer to a struct vmw_sg_table to initialize from
  252. *
  253. * Note that we're following the convention of __sg_page_iter_start, so that
  254. * the iterator doesn't point to a valid page after initialization; it has
  255. * to be advanced one step first.
  256. */
  257. void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
  258. unsigned long p_offset)
  259. {
  260. viter->i = p_offset - 1;
  261. viter->num_pages = vsgt->num_pages;
  262. switch (vsgt->mode) {
  263. case vmw_dma_phys:
  264. viter->next = &__vmw_piter_non_sg_next;
  265. viter->dma_address = &__vmw_piter_phys_addr;
  266. viter->page = &__vmw_piter_non_sg_page;
  267. viter->pages = vsgt->pages;
  268. break;
  269. case vmw_dma_alloc_coherent:
  270. viter->next = &__vmw_piter_non_sg_next;
  271. viter->dma_address = &__vmw_piter_dma_addr;
  272. viter->page = &__vmw_piter_non_sg_page;
  273. viter->addrs = vsgt->addrs;
  274. viter->pages = vsgt->pages;
  275. break;
  276. case vmw_dma_map_populate:
  277. case vmw_dma_map_bind:
  278. viter->next = &__vmw_piter_sg_next;
  279. viter->dma_address = &__vmw_piter_sg_addr;
  280. viter->page = &__vmw_piter_sg_page;
  281. __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
  282. vsgt->sgt->orig_nents, p_offset);
  283. break;
  284. default:
  285. BUG();
  286. }
  287. }
  288. /**
  289. * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
  290. * TTM pages
  291. *
  292. * @vmw_tt: Pointer to a struct vmw_ttm_backend
  293. *
  294. * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
  295. */
  296. static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
  297. {
  298. struct device *dev = vmw_tt->dev_priv->dev->dev;
  299. dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
  300. DMA_BIDIRECTIONAL);
  301. vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
  302. }
  303. /**
  304. * vmw_ttm_map_for_dma - map TTM pages to get device addresses
  305. *
  306. * @vmw_tt: Pointer to a struct vmw_ttm_backend
  307. *
  308. * This function is used to get device addresses from the kernel DMA layer.
  309. * However, it's violating the DMA API in that when this operation has been
  310. * performed, it's illegal for the CPU to write to the pages without first
  311. * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
  312. * therefore only legal to call this function if we know that the function
  313. * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
  314. * a CPU write buffer flush.
  315. */
  316. static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
  317. {
  318. struct device *dev = vmw_tt->dev_priv->dev->dev;
  319. int ret;
  320. ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
  321. DMA_BIDIRECTIONAL);
  322. if (unlikely(ret == 0))
  323. return -ENOMEM;
  324. vmw_tt->sgt.nents = ret;
  325. return 0;
  326. }
  327. /**
  328. * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
  329. *
  330. * @vmw_tt: Pointer to a struct vmw_ttm_tt
  331. *
  332. * Select the correct function for and make sure the TTM pages are
  333. * visible to the device. Allocate storage for the device mappings.
  334. * If a mapping has already been performed, indicated by the storage
  335. * pointer being non NULL, the function returns success.
  336. */
  337. static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
  338. {
  339. struct vmw_private *dev_priv = vmw_tt->dev_priv;
  340. struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
  341. struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
  342. struct vmw_piter iter;
  343. dma_addr_t old;
  344. int ret = 0;
  345. static size_t sgl_size;
  346. static size_t sgt_size;
  347. if (vmw_tt->mapped)
  348. return 0;
  349. vsgt->mode = dev_priv->map_mode;
  350. vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
  351. vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
  352. vsgt->addrs = vmw_tt->dma_ttm.dma_address;
  353. vsgt->sgt = &vmw_tt->sgt;
  354. switch (dev_priv->map_mode) {
  355. case vmw_dma_map_bind:
  356. case vmw_dma_map_populate:
  357. if (unlikely(!sgl_size)) {
  358. sgl_size = ttm_round_pot(sizeof(struct scatterlist));
  359. sgt_size = ttm_round_pot(sizeof(struct sg_table));
  360. }
  361. vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
  362. ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
  363. true);
  364. if (unlikely(ret != 0))
  365. return ret;
  366. ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
  367. vsgt->num_pages, 0,
  368. (unsigned long)
  369. vsgt->num_pages << PAGE_SHIFT,
  370. GFP_KERNEL);
  371. if (unlikely(ret != 0))
  372. goto out_sg_alloc_fail;
  373. if (vsgt->num_pages > vmw_tt->sgt.nents) {
  374. uint64_t over_alloc =
  375. sgl_size * (vsgt->num_pages -
  376. vmw_tt->sgt.nents);
  377. ttm_mem_global_free(glob, over_alloc);
  378. vmw_tt->sg_alloc_size -= over_alloc;
  379. }
  380. ret = vmw_ttm_map_for_dma(vmw_tt);
  381. if (unlikely(ret != 0))
  382. goto out_map_fail;
  383. break;
  384. default:
  385. break;
  386. }
  387. old = ~((dma_addr_t) 0);
  388. vmw_tt->vsgt.num_regions = 0;
  389. for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
  390. dma_addr_t cur = vmw_piter_dma_addr(&iter);
  391. if (cur != old + PAGE_SIZE)
  392. vmw_tt->vsgt.num_regions++;
  393. old = cur;
  394. }
  395. vmw_tt->mapped = true;
  396. return 0;
  397. out_map_fail:
  398. sg_free_table(vmw_tt->vsgt.sgt);
  399. vmw_tt->vsgt.sgt = NULL;
  400. out_sg_alloc_fail:
  401. ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
  402. return ret;
  403. }
  404. /**
  405. * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
  406. *
  407. * @vmw_tt: Pointer to a struct vmw_ttm_tt
  408. *
  409. * Tear down any previously set up device DMA mappings and free
  410. * any storage space allocated for them. If there are no mappings set up,
  411. * this function is a NOP.
  412. */
  413. static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
  414. {
  415. struct vmw_private *dev_priv = vmw_tt->dev_priv;
  416. if (!vmw_tt->vsgt.sgt)
  417. return;
  418. switch (dev_priv->map_mode) {
  419. case vmw_dma_map_bind:
  420. case vmw_dma_map_populate:
  421. vmw_ttm_unmap_from_dma(vmw_tt);
  422. sg_free_table(vmw_tt->vsgt.sgt);
  423. vmw_tt->vsgt.sgt = NULL;
  424. ttm_mem_global_free(vmw_mem_glob(dev_priv),
  425. vmw_tt->sg_alloc_size);
  426. break;
  427. default:
  428. break;
  429. }
  430. vmw_tt->mapped = false;
  431. }
  432. /**
  433. * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
  434. *
  435. * @bo: Pointer to a struct ttm_buffer_object
  436. *
  437. * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
  438. * instead of a pointer to a struct vmw_ttm_backend as argument.
  439. * Note that the buffer object must be either pinned or reserved before
  440. * calling this function.
  441. */
  442. int vmw_bo_map_dma(struct ttm_buffer_object *bo)
  443. {
  444. struct vmw_ttm_tt *vmw_tt =
  445. container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  446. return vmw_ttm_map_dma(vmw_tt);
  447. }
  448. /**
  449. * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
  450. *
  451. * @bo: Pointer to a struct ttm_buffer_object
  452. *
  453. * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
  454. * instead of a pointer to a struct vmw_ttm_backend as argument.
  455. */
  456. void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
  457. {
  458. struct vmw_ttm_tt *vmw_tt =
  459. container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  460. vmw_ttm_unmap_dma(vmw_tt);
  461. }
  462. /**
  463. * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
  464. * TTM buffer object
  465. *
  466. * @bo: Pointer to a struct ttm_buffer_object
  467. *
  468. * Returns a pointer to a struct vmw_sg_table object. The object should
  469. * not be freed after use.
  470. * Note that for the device addresses to be valid, the buffer object must
  471. * either be reserved or pinned.
  472. */
  473. const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
  474. {
  475. struct vmw_ttm_tt *vmw_tt =
  476. container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  477. return &vmw_tt->vsgt;
  478. }
  479. static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
  480. {
  481. struct vmw_ttm_tt *vmw_be =
  482. container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  483. int ret;
  484. ret = vmw_ttm_map_dma(vmw_be);
  485. if (unlikely(ret != 0))
  486. return ret;
  487. vmw_be->gmr_id = bo_mem->start;
  488. vmw_be->mem_type = bo_mem->mem_type;
  489. switch (bo_mem->mem_type) {
  490. case VMW_PL_GMR:
  491. return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
  492. ttm->num_pages, vmw_be->gmr_id);
  493. case VMW_PL_MOB:
  494. if (unlikely(vmw_be->mob == NULL)) {
  495. vmw_be->mob =
  496. vmw_mob_create(ttm->num_pages);
  497. if (unlikely(vmw_be->mob == NULL))
  498. return -ENOMEM;
  499. }
  500. return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
  501. &vmw_be->vsgt, ttm->num_pages,
  502. vmw_be->gmr_id);
  503. default:
  504. BUG();
  505. }
  506. return 0;
  507. }
  508. static int vmw_ttm_unbind(struct ttm_tt *ttm)
  509. {
  510. struct vmw_ttm_tt *vmw_be =
  511. container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  512. switch (vmw_be->mem_type) {
  513. case VMW_PL_GMR:
  514. vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
  515. break;
  516. case VMW_PL_MOB:
  517. vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
  518. break;
  519. default:
  520. BUG();
  521. }
  522. if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
  523. vmw_ttm_unmap_dma(vmw_be);
  524. return 0;
  525. }
  526. static void vmw_ttm_destroy(struct ttm_tt *ttm)
  527. {
  528. struct vmw_ttm_tt *vmw_be =
  529. container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  530. vmw_ttm_unmap_dma(vmw_be);
  531. if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
  532. ttm_dma_tt_fini(&vmw_be->dma_ttm);
  533. else
  534. ttm_tt_fini(ttm);
  535. if (vmw_be->mob)
  536. vmw_mob_destroy(vmw_be->mob);
  537. kfree(vmw_be);
  538. }
  539. static int vmw_ttm_populate(struct ttm_tt *ttm)
  540. {
  541. struct vmw_ttm_tt *vmw_tt =
  542. container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
  543. struct vmw_private *dev_priv = vmw_tt->dev_priv;
  544. struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
  545. int ret;
  546. if (ttm->state != tt_unpopulated)
  547. return 0;
  548. if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
  549. size_t size =
  550. ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
  551. ret = ttm_mem_global_alloc(glob, size, false, true);
  552. if (unlikely(ret != 0))
  553. return ret;
  554. ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
  555. if (unlikely(ret != 0))
  556. ttm_mem_global_free(glob, size);
  557. } else
  558. ret = ttm_pool_populate(ttm);
  559. return ret;
  560. }
  561. static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
  562. {
  563. struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
  564. dma_ttm.ttm);
  565. struct vmw_private *dev_priv = vmw_tt->dev_priv;
  566. struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
  567. if (vmw_tt->mob) {
  568. vmw_mob_destroy(vmw_tt->mob);
  569. vmw_tt->mob = NULL;
  570. }
  571. vmw_ttm_unmap_dma(vmw_tt);
  572. if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
  573. size_t size =
  574. ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
  575. ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
  576. ttm_mem_global_free(glob, size);
  577. } else
  578. ttm_pool_unpopulate(ttm);
  579. }
  580. static struct ttm_backend_func vmw_ttm_func = {
  581. .bind = vmw_ttm_bind,
  582. .unbind = vmw_ttm_unbind,
  583. .destroy = vmw_ttm_destroy,
  584. };
  585. static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
  586. unsigned long size, uint32_t page_flags,
  587. struct page *dummy_read_page)
  588. {
  589. struct vmw_ttm_tt *vmw_be;
  590. int ret;
  591. vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
  592. if (!vmw_be)
  593. return NULL;
  594. vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
  595. vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
  596. vmw_be->mob = NULL;
  597. if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
  598. ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
  599. dummy_read_page);
  600. else
  601. ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
  602. dummy_read_page);
  603. if (unlikely(ret != 0))
  604. goto out_no_init;
  605. return &vmw_be->dma_ttm.ttm;
  606. out_no_init:
  607. kfree(vmw_be);
  608. return NULL;
  609. }
  610. static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
  611. {
  612. return 0;
  613. }
  614. static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
  615. struct ttm_mem_type_manager *man)
  616. {
  617. switch (type) {
  618. case TTM_PL_SYSTEM:
  619. /* System memory */
  620. man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
  621. man->available_caching = TTM_PL_FLAG_CACHED;
  622. man->default_caching = TTM_PL_FLAG_CACHED;
  623. break;
  624. case TTM_PL_VRAM:
  625. /* "On-card" video ram */
  626. man->func = &ttm_bo_manager_func;
  627. man->gpu_offset = 0;
  628. man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
  629. man->available_caching = TTM_PL_FLAG_CACHED;
  630. man->default_caching = TTM_PL_FLAG_CACHED;
  631. break;
  632. case VMW_PL_GMR:
  633. case VMW_PL_MOB:
  634. /*
  635. * "Guest Memory Regions" is an aperture like feature with
  636. * one slot per bo. There is an upper limit of the number of
  637. * slots as well as the bo size.
  638. */
  639. man->func = &vmw_gmrid_manager_func;
  640. man->gpu_offset = 0;
  641. man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
  642. man->available_caching = TTM_PL_FLAG_CACHED;
  643. man->default_caching = TTM_PL_FLAG_CACHED;
  644. break;
  645. default:
  646. DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
  647. return -EINVAL;
  648. }
  649. return 0;
  650. }
  651. static void vmw_evict_flags(struct ttm_buffer_object *bo,
  652. struct ttm_placement *placement)
  653. {
  654. *placement = vmw_sys_placement;
  655. }
  656. static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
  657. {
  658. struct ttm_object_file *tfile =
  659. vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
  660. return vmw_user_dmabuf_verify_access(bo, tfile);
  661. }
  662. static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
  663. {
  664. struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
  665. struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
  666. mem->bus.addr = NULL;
  667. mem->bus.is_iomem = false;
  668. mem->bus.offset = 0;
  669. mem->bus.size = mem->num_pages << PAGE_SHIFT;
  670. mem->bus.base = 0;
  671. if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
  672. return -EINVAL;
  673. switch (mem->mem_type) {
  674. case TTM_PL_SYSTEM:
  675. case VMW_PL_GMR:
  676. case VMW_PL_MOB:
  677. return 0;
  678. case TTM_PL_VRAM:
  679. mem->bus.offset = mem->start << PAGE_SHIFT;
  680. mem->bus.base = dev_priv->vram_start;
  681. mem->bus.is_iomem = true;
  682. break;
  683. default:
  684. return -EINVAL;
  685. }
  686. return 0;
  687. }
  688. static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
  689. {
  690. }
  691. static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
  692. {
  693. return 0;
  694. }
  695. /**
  696. * vmw_move_notify - TTM move_notify_callback
  697. *
  698. * @bo: The TTM buffer object about to move.
  699. * @mem: The truct ttm_mem_reg indicating to what memory
  700. * region the move is taking place.
  701. *
  702. * Calls move_notify for all subsystems needing it.
  703. * (currently only resources).
  704. */
  705. static void vmw_move_notify(struct ttm_buffer_object *bo,
  706. struct ttm_mem_reg *mem)
  707. {
  708. vmw_resource_move_notify(bo, mem);
  709. }
  710. /**
  711. * vmw_swap_notify - TTM move_notify_callback
  712. *
  713. * @bo: The TTM buffer object about to be swapped out.
  714. */
  715. static void vmw_swap_notify(struct ttm_buffer_object *bo)
  716. {
  717. ttm_bo_wait(bo, false, false, false);
  718. }
  719. struct ttm_bo_driver vmw_bo_driver = {
  720. .ttm_tt_create = &vmw_ttm_tt_create,
  721. .ttm_tt_populate = &vmw_ttm_populate,
  722. .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
  723. .invalidate_caches = vmw_invalidate_caches,
  724. .init_mem_type = vmw_init_mem_type,
  725. .evict_flags = vmw_evict_flags,
  726. .move = NULL,
  727. .verify_access = vmw_verify_access,
  728. .move_notify = vmw_move_notify,
  729. .swap_notify = vmw_swap_notify,
  730. .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
  731. .io_mem_reserve = &vmw_ttm_io_mem_reserve,
  732. .io_mem_free = &vmw_ttm_io_mem_free,
  733. };