dc.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
  1. /*
  2. * Copyright (C) 2012 Avionic Design GmbH
  3. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/clk.h>
  10. #include <linux/debugfs.h>
  11. #include <linux/iommu.h>
  12. #include <linux/reset.h>
  13. #include <soc/tegra/pmc.h>
  14. #include "dc.h"
  15. #include "drm.h"
  16. #include "gem.h"
  17. #include <drm/drm_atomic.h>
  18. #include <drm/drm_atomic_helper.h>
  19. #include <drm/drm_plane_helper.h>
  20. struct tegra_dc_soc_info {
  21. bool supports_border_color;
  22. bool supports_interlacing;
  23. bool supports_cursor;
  24. bool supports_block_linear;
  25. unsigned int pitch_align;
  26. bool has_powergate;
  27. };
  28. struct tegra_plane {
  29. struct drm_plane base;
  30. unsigned int index;
  31. };
  32. static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  33. {
  34. return container_of(plane, struct tegra_plane, base);
  35. }
  36. struct tegra_dc_state {
  37. struct drm_crtc_state base;
  38. struct clk *clk;
  39. unsigned long pclk;
  40. unsigned int div;
  41. u32 planes;
  42. };
  43. static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  44. {
  45. if (state)
  46. return container_of(state, struct tegra_dc_state, base);
  47. return NULL;
  48. }
  49. struct tegra_plane_state {
  50. struct drm_plane_state base;
  51. struct tegra_bo_tiling tiling;
  52. u32 format;
  53. u32 swap;
  54. };
  55. static inline struct tegra_plane_state *
  56. to_tegra_plane_state(struct drm_plane_state *state)
  57. {
  58. if (state)
  59. return container_of(state, struct tegra_plane_state, base);
  60. return NULL;
  61. }
  62. /*
  63. * Reads the active copy of a register. This takes the dc->lock spinlock to
  64. * prevent races with the VBLANK processing which also needs access to the
  65. * active copy of some registers.
  66. */
  67. static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  68. {
  69. unsigned long flags;
  70. u32 value;
  71. spin_lock_irqsave(&dc->lock, flags);
  72. tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  73. value = tegra_dc_readl(dc, offset);
  74. tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  75. spin_unlock_irqrestore(&dc->lock, flags);
  76. return value;
  77. }
  78. /*
  79. * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  80. * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
  81. * Latching happens mmediately if the display controller is in STOP mode or
  82. * on the next frame boundary otherwise.
  83. *
  84. * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
  85. * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
  86. * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
  87. * into the ACTIVE copy, either immediately if the display controller is in
  88. * STOP mode, or at the next frame boundary otherwise.
  89. */
  90. void tegra_dc_commit(struct tegra_dc *dc)
  91. {
  92. tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
  93. tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
  94. }
  95. static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
  96. {
  97. /* assume no swapping of fetched data */
  98. if (swap)
  99. *swap = BYTE_SWAP_NOSWAP;
  100. switch (fourcc) {
  101. case DRM_FORMAT_XBGR8888:
  102. *format = WIN_COLOR_DEPTH_R8G8B8A8;
  103. break;
  104. case DRM_FORMAT_XRGB8888:
  105. *format = WIN_COLOR_DEPTH_B8G8R8A8;
  106. break;
  107. case DRM_FORMAT_RGB565:
  108. *format = WIN_COLOR_DEPTH_B5G6R5;
  109. break;
  110. case DRM_FORMAT_UYVY:
  111. *format = WIN_COLOR_DEPTH_YCbCr422;
  112. break;
  113. case DRM_FORMAT_YUYV:
  114. if (swap)
  115. *swap = BYTE_SWAP_SWAP2;
  116. *format = WIN_COLOR_DEPTH_YCbCr422;
  117. break;
  118. case DRM_FORMAT_YUV420:
  119. *format = WIN_COLOR_DEPTH_YCbCr420P;
  120. break;
  121. case DRM_FORMAT_YUV422:
  122. *format = WIN_COLOR_DEPTH_YCbCr422P;
  123. break;
  124. default:
  125. return -EINVAL;
  126. }
  127. return 0;
  128. }
  129. static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
  130. {
  131. switch (format) {
  132. case WIN_COLOR_DEPTH_YCbCr422:
  133. case WIN_COLOR_DEPTH_YUV422:
  134. if (planar)
  135. *planar = false;
  136. return true;
  137. case WIN_COLOR_DEPTH_YCbCr420P:
  138. case WIN_COLOR_DEPTH_YUV420P:
  139. case WIN_COLOR_DEPTH_YCbCr422P:
  140. case WIN_COLOR_DEPTH_YUV422P:
  141. case WIN_COLOR_DEPTH_YCbCr422R:
  142. case WIN_COLOR_DEPTH_YUV422R:
  143. case WIN_COLOR_DEPTH_YCbCr422RA:
  144. case WIN_COLOR_DEPTH_YUV422RA:
  145. if (planar)
  146. *planar = true;
  147. return true;
  148. }
  149. if (planar)
  150. *planar = false;
  151. return false;
  152. }
  153. static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
  154. unsigned int bpp)
  155. {
  156. fixed20_12 outf = dfixed_init(out);
  157. fixed20_12 inf = dfixed_init(in);
  158. u32 dda_inc;
  159. int max;
  160. if (v)
  161. max = 15;
  162. else {
  163. switch (bpp) {
  164. case 2:
  165. max = 8;
  166. break;
  167. default:
  168. WARN_ON_ONCE(1);
  169. /* fallthrough */
  170. case 4:
  171. max = 4;
  172. break;
  173. }
  174. }
  175. outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
  176. inf.full -= dfixed_const(1);
  177. dda_inc = dfixed_div(inf, outf);
  178. dda_inc = min_t(u32, dda_inc, dfixed_const(max));
  179. return dda_inc;
  180. }
  181. static inline u32 compute_initial_dda(unsigned int in)
  182. {
  183. fixed20_12 inf = dfixed_init(in);
  184. return dfixed_frac(inf);
  185. }
  186. static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
  187. const struct tegra_dc_window *window)
  188. {
  189. unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
  190. unsigned long value, flags;
  191. bool yuv, planar;
  192. /*
  193. * For YUV planar modes, the number of bytes per pixel takes into
  194. * account only the luma component and therefore is 1.
  195. */
  196. yuv = tegra_dc_format_is_yuv(window->format, &planar);
  197. if (!yuv)
  198. bpp = window->bits_per_pixel / 8;
  199. else
  200. bpp = planar ? 1 : 2;
  201. spin_lock_irqsave(&dc->lock, flags);
  202. value = WINDOW_A_SELECT << index;
  203. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  204. tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
  205. tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
  206. value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
  207. tegra_dc_writel(dc, value, DC_WIN_POSITION);
  208. value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
  209. tegra_dc_writel(dc, value, DC_WIN_SIZE);
  210. h_offset = window->src.x * bpp;
  211. v_offset = window->src.y;
  212. h_size = window->src.w * bpp;
  213. v_size = window->src.h;
  214. value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
  215. tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
  216. /*
  217. * For DDA computations the number of bytes per pixel for YUV planar
  218. * modes needs to take into account all Y, U and V components.
  219. */
  220. if (yuv && planar)
  221. bpp = 2;
  222. h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
  223. v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
  224. value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
  225. tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
  226. h_dda = compute_initial_dda(window->src.x);
  227. v_dda = compute_initial_dda(window->src.y);
  228. tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
  229. tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
  230. tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
  231. tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
  232. tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
  233. if (yuv && planar) {
  234. tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
  235. tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
  236. value = window->stride[1] << 16 | window->stride[0];
  237. tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
  238. } else {
  239. tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
  240. }
  241. if (window->bottom_up)
  242. v_offset += window->src.h - 1;
  243. tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
  244. tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
  245. if (dc->soc->supports_block_linear) {
  246. unsigned long height = window->tiling.value;
  247. switch (window->tiling.mode) {
  248. case TEGRA_BO_TILING_MODE_PITCH:
  249. value = DC_WINBUF_SURFACE_KIND_PITCH;
  250. break;
  251. case TEGRA_BO_TILING_MODE_TILED:
  252. value = DC_WINBUF_SURFACE_KIND_TILED;
  253. break;
  254. case TEGRA_BO_TILING_MODE_BLOCK:
  255. value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
  256. DC_WINBUF_SURFACE_KIND_BLOCK;
  257. break;
  258. }
  259. tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
  260. } else {
  261. switch (window->tiling.mode) {
  262. case TEGRA_BO_TILING_MODE_PITCH:
  263. value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
  264. DC_WIN_BUFFER_ADDR_MODE_LINEAR;
  265. break;
  266. case TEGRA_BO_TILING_MODE_TILED:
  267. value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
  268. DC_WIN_BUFFER_ADDR_MODE_TILE;
  269. break;
  270. case TEGRA_BO_TILING_MODE_BLOCK:
  271. /*
  272. * No need to handle this here because ->atomic_check
  273. * will already have filtered it out.
  274. */
  275. break;
  276. }
  277. tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
  278. }
  279. value = WIN_ENABLE;
  280. if (yuv) {
  281. /* setup default colorspace conversion coefficients */
  282. tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
  283. tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
  284. tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
  285. tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
  286. tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
  287. tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
  288. tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
  289. tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
  290. value |= CSC_ENABLE;
  291. } else if (window->bits_per_pixel < 24) {
  292. value |= COLOR_EXPAND;
  293. }
  294. if (window->bottom_up)
  295. value |= V_DIRECTION;
  296. tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
  297. /*
  298. * Disable blending and assume Window A is the bottom-most window,
  299. * Window C is the top-most window and Window B is in the middle.
  300. */
  301. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
  302. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
  303. switch (index) {
  304. case 0:
  305. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
  306. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
  307. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
  308. break;
  309. case 1:
  310. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
  311. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
  312. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
  313. break;
  314. case 2:
  315. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
  316. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
  317. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
  318. break;
  319. }
  320. spin_unlock_irqrestore(&dc->lock, flags);
  321. }
  322. static void tegra_plane_destroy(struct drm_plane *plane)
  323. {
  324. struct tegra_plane *p = to_tegra_plane(plane);
  325. drm_plane_cleanup(plane);
  326. kfree(p);
  327. }
  328. static const u32 tegra_primary_plane_formats[] = {
  329. DRM_FORMAT_XBGR8888,
  330. DRM_FORMAT_XRGB8888,
  331. DRM_FORMAT_RGB565,
  332. };
  333. static void tegra_primary_plane_destroy(struct drm_plane *plane)
  334. {
  335. tegra_plane_destroy(plane);
  336. }
  337. static void tegra_plane_reset(struct drm_plane *plane)
  338. {
  339. struct tegra_plane_state *state;
  340. if (plane->state)
  341. __drm_atomic_helper_plane_destroy_state(plane, plane->state);
  342. kfree(plane->state);
  343. plane->state = NULL;
  344. state = kzalloc(sizeof(*state), GFP_KERNEL);
  345. if (state) {
  346. plane->state = &state->base;
  347. plane->state->plane = plane;
  348. }
  349. }
  350. static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
  351. {
  352. struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
  353. struct tegra_plane_state *copy;
  354. copy = kmalloc(sizeof(*copy), GFP_KERNEL);
  355. if (!copy)
  356. return NULL;
  357. __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
  358. copy->tiling = state->tiling;
  359. copy->format = state->format;
  360. copy->swap = state->swap;
  361. return &copy->base;
  362. }
  363. static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
  364. struct drm_plane_state *state)
  365. {
  366. __drm_atomic_helper_plane_destroy_state(plane, state);
  367. kfree(state);
  368. }
  369. static const struct drm_plane_funcs tegra_primary_plane_funcs = {
  370. .update_plane = drm_atomic_helper_update_plane,
  371. .disable_plane = drm_atomic_helper_disable_plane,
  372. .destroy = tegra_primary_plane_destroy,
  373. .reset = tegra_plane_reset,
  374. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  375. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  376. };
  377. static int tegra_plane_prepare_fb(struct drm_plane *plane,
  378. struct drm_framebuffer *fb,
  379. const struct drm_plane_state *new_state)
  380. {
  381. return 0;
  382. }
  383. static void tegra_plane_cleanup_fb(struct drm_plane *plane,
  384. struct drm_framebuffer *fb,
  385. const struct drm_plane_state *old_fb)
  386. {
  387. }
  388. static int tegra_plane_state_add(struct tegra_plane *plane,
  389. struct drm_plane_state *state)
  390. {
  391. struct drm_crtc_state *crtc_state;
  392. struct tegra_dc_state *tegra;
  393. /* Propagate errors from allocation or locking failures. */
  394. crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
  395. if (IS_ERR(crtc_state))
  396. return PTR_ERR(crtc_state);
  397. tegra = to_dc_state(crtc_state);
  398. tegra->planes |= WIN_A_ACT_REQ << plane->index;
  399. return 0;
  400. }
  401. static int tegra_plane_atomic_check(struct drm_plane *plane,
  402. struct drm_plane_state *state)
  403. {
  404. struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
  405. struct tegra_bo_tiling *tiling = &plane_state->tiling;
  406. struct tegra_plane *tegra = to_tegra_plane(plane);
  407. struct tegra_dc *dc = to_tegra_dc(state->crtc);
  408. int err;
  409. /* no need for further checks if the plane is being disabled */
  410. if (!state->crtc)
  411. return 0;
  412. err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
  413. &plane_state->swap);
  414. if (err < 0)
  415. return err;
  416. err = tegra_fb_get_tiling(state->fb, tiling);
  417. if (err < 0)
  418. return err;
  419. if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
  420. !dc->soc->supports_block_linear) {
  421. DRM_ERROR("hardware doesn't support block linear mode\n");
  422. return -EINVAL;
  423. }
  424. /*
  425. * Tegra doesn't support different strides for U and V planes so we
  426. * error out if the user tries to display a framebuffer with such a
  427. * configuration.
  428. */
  429. if (drm_format_num_planes(state->fb->pixel_format) > 2) {
  430. if (state->fb->pitches[2] != state->fb->pitches[1]) {
  431. DRM_ERROR("unsupported UV-plane configuration\n");
  432. return -EINVAL;
  433. }
  434. }
  435. err = tegra_plane_state_add(tegra, state);
  436. if (err < 0)
  437. return err;
  438. return 0;
  439. }
  440. static void tegra_plane_atomic_update(struct drm_plane *plane,
  441. struct drm_plane_state *old_state)
  442. {
  443. struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
  444. struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
  445. struct drm_framebuffer *fb = plane->state->fb;
  446. struct tegra_plane *p = to_tegra_plane(plane);
  447. struct tegra_dc_window window;
  448. unsigned int i;
  449. /* rien ne va plus */
  450. if (!plane->state->crtc || !plane->state->fb)
  451. return;
  452. memset(&window, 0, sizeof(window));
  453. window.src.x = plane->state->src_x >> 16;
  454. window.src.y = plane->state->src_y >> 16;
  455. window.src.w = plane->state->src_w >> 16;
  456. window.src.h = plane->state->src_h >> 16;
  457. window.dst.x = plane->state->crtc_x;
  458. window.dst.y = plane->state->crtc_y;
  459. window.dst.w = plane->state->crtc_w;
  460. window.dst.h = plane->state->crtc_h;
  461. window.bits_per_pixel = fb->bits_per_pixel;
  462. window.bottom_up = tegra_fb_is_bottom_up(fb);
  463. /* copy from state */
  464. window.tiling = state->tiling;
  465. window.format = state->format;
  466. window.swap = state->swap;
  467. for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
  468. struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
  469. window.base[i] = bo->paddr + fb->offsets[i];
  470. window.stride[i] = fb->pitches[i];
  471. }
  472. tegra_dc_setup_window(dc, p->index, &window);
  473. }
  474. static void tegra_plane_atomic_disable(struct drm_plane *plane,
  475. struct drm_plane_state *old_state)
  476. {
  477. struct tegra_plane *p = to_tegra_plane(plane);
  478. struct tegra_dc *dc;
  479. unsigned long flags;
  480. u32 value;
  481. /* rien ne va plus */
  482. if (!old_state || !old_state->crtc)
  483. return;
  484. dc = to_tegra_dc(old_state->crtc);
  485. spin_lock_irqsave(&dc->lock, flags);
  486. value = WINDOW_A_SELECT << p->index;
  487. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  488. value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
  489. value &= ~WIN_ENABLE;
  490. tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
  491. spin_unlock_irqrestore(&dc->lock, flags);
  492. }
  493. static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
  494. .prepare_fb = tegra_plane_prepare_fb,
  495. .cleanup_fb = tegra_plane_cleanup_fb,
  496. .atomic_check = tegra_plane_atomic_check,
  497. .atomic_update = tegra_plane_atomic_update,
  498. .atomic_disable = tegra_plane_atomic_disable,
  499. };
  500. static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
  501. struct tegra_dc *dc)
  502. {
  503. /*
  504. * Ideally this would use drm_crtc_mask(), but that would require the
  505. * CRTC to already be in the mode_config's list of CRTCs. However, it
  506. * will only be added to that list in the drm_crtc_init_with_planes()
  507. * (in tegra_dc_init()), which in turn requires registration of these
  508. * planes. So we have ourselves a nice little chicken and egg problem
  509. * here.
  510. *
  511. * We work around this by manually creating the mask from the number
  512. * of CRTCs that have been registered, and should therefore always be
  513. * the same as drm_crtc_index() after registration.
  514. */
  515. unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
  516. struct tegra_plane *plane;
  517. unsigned int num_formats;
  518. const u32 *formats;
  519. int err;
  520. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  521. if (!plane)
  522. return ERR_PTR(-ENOMEM);
  523. num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
  524. formats = tegra_primary_plane_formats;
  525. err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
  526. &tegra_primary_plane_funcs, formats,
  527. num_formats, DRM_PLANE_TYPE_PRIMARY);
  528. if (err < 0) {
  529. kfree(plane);
  530. return ERR_PTR(err);
  531. }
  532. drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
  533. return &plane->base;
  534. }
  535. static const u32 tegra_cursor_plane_formats[] = {
  536. DRM_FORMAT_RGBA8888,
  537. };
  538. static int tegra_cursor_atomic_check(struct drm_plane *plane,
  539. struct drm_plane_state *state)
  540. {
  541. struct tegra_plane *tegra = to_tegra_plane(plane);
  542. int err;
  543. /* no need for further checks if the plane is being disabled */
  544. if (!state->crtc)
  545. return 0;
  546. /* scaling not supported for cursor */
  547. if ((state->src_w >> 16 != state->crtc_w) ||
  548. (state->src_h >> 16 != state->crtc_h))
  549. return -EINVAL;
  550. /* only square cursors supported */
  551. if (state->src_w != state->src_h)
  552. return -EINVAL;
  553. if (state->crtc_w != 32 && state->crtc_w != 64 &&
  554. state->crtc_w != 128 && state->crtc_w != 256)
  555. return -EINVAL;
  556. err = tegra_plane_state_add(tegra, state);
  557. if (err < 0)
  558. return err;
  559. return 0;
  560. }
  561. static void tegra_cursor_atomic_update(struct drm_plane *plane,
  562. struct drm_plane_state *old_state)
  563. {
  564. struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
  565. struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
  566. struct drm_plane_state *state = plane->state;
  567. u32 value = CURSOR_CLIP_DISPLAY;
  568. /* rien ne va plus */
  569. if (!plane->state->crtc || !plane->state->fb)
  570. return;
  571. switch (state->crtc_w) {
  572. case 32:
  573. value |= CURSOR_SIZE_32x32;
  574. break;
  575. case 64:
  576. value |= CURSOR_SIZE_64x64;
  577. break;
  578. case 128:
  579. value |= CURSOR_SIZE_128x128;
  580. break;
  581. case 256:
  582. value |= CURSOR_SIZE_256x256;
  583. break;
  584. default:
  585. WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
  586. state->crtc_h);
  587. return;
  588. }
  589. value |= (bo->paddr >> 10) & 0x3fffff;
  590. tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
  591. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  592. value = (bo->paddr >> 32) & 0x3;
  593. tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
  594. #endif
  595. /* enable cursor and set blend mode */
  596. value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
  597. value |= CURSOR_ENABLE;
  598. tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
  599. value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
  600. value &= ~CURSOR_DST_BLEND_MASK;
  601. value &= ~CURSOR_SRC_BLEND_MASK;
  602. value |= CURSOR_MODE_NORMAL;
  603. value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
  604. value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
  605. value |= CURSOR_ALPHA;
  606. tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
  607. /* position the cursor */
  608. value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
  609. tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
  610. }
  611. static void tegra_cursor_atomic_disable(struct drm_plane *plane,
  612. struct drm_plane_state *old_state)
  613. {
  614. struct tegra_dc *dc;
  615. u32 value;
  616. /* rien ne va plus */
  617. if (!old_state || !old_state->crtc)
  618. return;
  619. dc = to_tegra_dc(old_state->crtc);
  620. value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
  621. value &= ~CURSOR_ENABLE;
  622. tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
  623. }
  624. static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
  625. .update_plane = drm_atomic_helper_update_plane,
  626. .disable_plane = drm_atomic_helper_disable_plane,
  627. .destroy = tegra_plane_destroy,
  628. .reset = tegra_plane_reset,
  629. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  630. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  631. };
  632. static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
  633. .prepare_fb = tegra_plane_prepare_fb,
  634. .cleanup_fb = tegra_plane_cleanup_fb,
  635. .atomic_check = tegra_cursor_atomic_check,
  636. .atomic_update = tegra_cursor_atomic_update,
  637. .atomic_disable = tegra_cursor_atomic_disable,
  638. };
  639. static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
  640. struct tegra_dc *dc)
  641. {
  642. struct tegra_plane *plane;
  643. unsigned int num_formats;
  644. const u32 *formats;
  645. int err;
  646. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  647. if (!plane)
  648. return ERR_PTR(-ENOMEM);
  649. /*
  650. * We'll treat the cursor as an overlay plane with index 6 here so
  651. * that the update and activation request bits in DC_CMD_STATE_CONTROL
  652. * match up.
  653. */
  654. plane->index = 6;
  655. num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
  656. formats = tegra_cursor_plane_formats;
  657. err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
  658. &tegra_cursor_plane_funcs, formats,
  659. num_formats, DRM_PLANE_TYPE_CURSOR);
  660. if (err < 0) {
  661. kfree(plane);
  662. return ERR_PTR(err);
  663. }
  664. drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
  665. return &plane->base;
  666. }
  667. static void tegra_overlay_plane_destroy(struct drm_plane *plane)
  668. {
  669. tegra_plane_destroy(plane);
  670. }
  671. static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
  672. .update_plane = drm_atomic_helper_update_plane,
  673. .disable_plane = drm_atomic_helper_disable_plane,
  674. .destroy = tegra_overlay_plane_destroy,
  675. .reset = tegra_plane_reset,
  676. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  677. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  678. };
  679. static const uint32_t tegra_overlay_plane_formats[] = {
  680. DRM_FORMAT_XBGR8888,
  681. DRM_FORMAT_XRGB8888,
  682. DRM_FORMAT_RGB565,
  683. DRM_FORMAT_UYVY,
  684. DRM_FORMAT_YUYV,
  685. DRM_FORMAT_YUV420,
  686. DRM_FORMAT_YUV422,
  687. };
  688. static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
  689. .prepare_fb = tegra_plane_prepare_fb,
  690. .cleanup_fb = tegra_plane_cleanup_fb,
  691. .atomic_check = tegra_plane_atomic_check,
  692. .atomic_update = tegra_plane_atomic_update,
  693. .atomic_disable = tegra_plane_atomic_disable,
  694. };
  695. static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
  696. struct tegra_dc *dc,
  697. unsigned int index)
  698. {
  699. struct tegra_plane *plane;
  700. unsigned int num_formats;
  701. const u32 *formats;
  702. int err;
  703. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  704. if (!plane)
  705. return ERR_PTR(-ENOMEM);
  706. plane->index = index;
  707. num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
  708. formats = tegra_overlay_plane_formats;
  709. err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
  710. &tegra_overlay_plane_funcs, formats,
  711. num_formats, DRM_PLANE_TYPE_OVERLAY);
  712. if (err < 0) {
  713. kfree(plane);
  714. return ERR_PTR(err);
  715. }
  716. drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
  717. return &plane->base;
  718. }
  719. static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
  720. {
  721. struct drm_plane *plane;
  722. unsigned int i;
  723. for (i = 0; i < 2; i++) {
  724. plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
  725. if (IS_ERR(plane))
  726. return PTR_ERR(plane);
  727. }
  728. return 0;
  729. }
  730. u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
  731. {
  732. if (dc->syncpt)
  733. return host1x_syncpt_read(dc->syncpt);
  734. /* fallback to software emulated VBLANK counter */
  735. return drm_crtc_vblank_count(&dc->base);
  736. }
  737. void tegra_dc_enable_vblank(struct tegra_dc *dc)
  738. {
  739. unsigned long value, flags;
  740. spin_lock_irqsave(&dc->lock, flags);
  741. value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
  742. value |= VBLANK_INT;
  743. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  744. spin_unlock_irqrestore(&dc->lock, flags);
  745. }
  746. void tegra_dc_disable_vblank(struct tegra_dc *dc)
  747. {
  748. unsigned long value, flags;
  749. spin_lock_irqsave(&dc->lock, flags);
  750. value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
  751. value &= ~VBLANK_INT;
  752. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  753. spin_unlock_irqrestore(&dc->lock, flags);
  754. }
  755. static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
  756. {
  757. struct drm_device *drm = dc->base.dev;
  758. struct drm_crtc *crtc = &dc->base;
  759. unsigned long flags, base;
  760. struct tegra_bo *bo;
  761. spin_lock_irqsave(&drm->event_lock, flags);
  762. if (!dc->event) {
  763. spin_unlock_irqrestore(&drm->event_lock, flags);
  764. return;
  765. }
  766. bo = tegra_fb_get_plane(crtc->primary->fb, 0);
  767. spin_lock(&dc->lock);
  768. /* check if new start address has been latched */
  769. tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
  770. tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  771. base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
  772. tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  773. spin_unlock(&dc->lock);
  774. if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
  775. drm_crtc_send_vblank_event(crtc, dc->event);
  776. drm_crtc_vblank_put(crtc);
  777. dc->event = NULL;
  778. }
  779. spin_unlock_irqrestore(&drm->event_lock, flags);
  780. }
  781. void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
  782. {
  783. struct tegra_dc *dc = to_tegra_dc(crtc);
  784. struct drm_device *drm = crtc->dev;
  785. unsigned long flags;
  786. spin_lock_irqsave(&drm->event_lock, flags);
  787. if (dc->event && dc->event->base.file_priv == file) {
  788. dc->event->base.destroy(&dc->event->base);
  789. drm_crtc_vblank_put(crtc);
  790. dc->event = NULL;
  791. }
  792. spin_unlock_irqrestore(&drm->event_lock, flags);
  793. }
  794. static void tegra_dc_destroy(struct drm_crtc *crtc)
  795. {
  796. drm_crtc_cleanup(crtc);
  797. }
  798. static void tegra_crtc_reset(struct drm_crtc *crtc)
  799. {
  800. struct tegra_dc_state *state;
  801. if (crtc->state)
  802. __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
  803. kfree(crtc->state);
  804. crtc->state = NULL;
  805. state = kzalloc(sizeof(*state), GFP_KERNEL);
  806. if (state) {
  807. crtc->state = &state->base;
  808. crtc->state->crtc = crtc;
  809. }
  810. }
  811. static struct drm_crtc_state *
  812. tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
  813. {
  814. struct tegra_dc_state *state = to_dc_state(crtc->state);
  815. struct tegra_dc_state *copy;
  816. copy = kmalloc(sizeof(*copy), GFP_KERNEL);
  817. if (!copy)
  818. return NULL;
  819. __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
  820. copy->clk = state->clk;
  821. copy->pclk = state->pclk;
  822. copy->div = state->div;
  823. copy->planes = state->planes;
  824. return &copy->base;
  825. }
  826. static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  827. struct drm_crtc_state *state)
  828. {
  829. __drm_atomic_helper_crtc_destroy_state(crtc, state);
  830. kfree(state);
  831. }
  832. static const struct drm_crtc_funcs tegra_crtc_funcs = {
  833. .page_flip = drm_atomic_helper_page_flip,
  834. .set_config = drm_atomic_helper_set_config,
  835. .destroy = tegra_dc_destroy,
  836. .reset = tegra_crtc_reset,
  837. .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
  838. .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
  839. };
  840. static void tegra_dc_stop(struct tegra_dc *dc)
  841. {
  842. u32 value;
  843. /* stop the display controller */
  844. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
  845. value &= ~DISP_CTRL_MODE_MASK;
  846. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
  847. tegra_dc_commit(dc);
  848. }
  849. static bool tegra_dc_idle(struct tegra_dc *dc)
  850. {
  851. u32 value;
  852. value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
  853. return (value & DISP_CTRL_MODE_MASK) == 0;
  854. }
  855. static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
  856. {
  857. timeout = jiffies + msecs_to_jiffies(timeout);
  858. while (time_before(jiffies, timeout)) {
  859. if (tegra_dc_idle(dc))
  860. return 0;
  861. usleep_range(1000, 2000);
  862. }
  863. dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
  864. return -ETIMEDOUT;
  865. }
  866. static void tegra_crtc_disable(struct drm_crtc *crtc)
  867. {
  868. struct tegra_dc *dc = to_tegra_dc(crtc);
  869. u32 value;
  870. if (!tegra_dc_idle(dc)) {
  871. tegra_dc_stop(dc);
  872. /*
  873. * Ignore the return value, there isn't anything useful to do
  874. * in case this fails.
  875. */
  876. tegra_dc_wait_idle(dc, 100);
  877. }
  878. /*
  879. * This should really be part of the RGB encoder driver, but clearing
  880. * these bits has the side-effect of stopping the display controller.
  881. * When that happens no VBLANK interrupts will be raised. At the same
  882. * time the encoder is disabled before the display controller, so the
  883. * above code is always going to timeout waiting for the controller
  884. * to go idle.
  885. *
  886. * Given the close coupling between the RGB encoder and the display
  887. * controller doing it here is still kind of okay. None of the other
  888. * encoder drivers require these bits to be cleared.
  889. *
  890. * XXX: Perhaps given that the display controller is switched off at
  891. * this point anyway maybe clearing these bits isn't even useful for
  892. * the RGB encoder?
  893. */
  894. if (dc->rgb) {
  895. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
  896. value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
  897. PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
  898. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
  899. }
  900. drm_crtc_vblank_off(crtc);
  901. }
  902. static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
  903. const struct drm_display_mode *mode,
  904. struct drm_display_mode *adjusted)
  905. {
  906. return true;
  907. }
  908. static int tegra_dc_set_timings(struct tegra_dc *dc,
  909. struct drm_display_mode *mode)
  910. {
  911. unsigned int h_ref_to_sync = 1;
  912. unsigned int v_ref_to_sync = 1;
  913. unsigned long value;
  914. tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
  915. value = (v_ref_to_sync << 16) | h_ref_to_sync;
  916. tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
  917. value = ((mode->vsync_end - mode->vsync_start) << 16) |
  918. ((mode->hsync_end - mode->hsync_start) << 0);
  919. tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
  920. value = ((mode->vtotal - mode->vsync_end) << 16) |
  921. ((mode->htotal - mode->hsync_end) << 0);
  922. tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
  923. value = ((mode->vsync_start - mode->vdisplay) << 16) |
  924. ((mode->hsync_start - mode->hdisplay) << 0);
  925. tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
  926. value = (mode->vdisplay << 16) | mode->hdisplay;
  927. tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
  928. return 0;
  929. }
  930. /**
  931. * tegra_dc_state_setup_clock - check clock settings and store them in atomic
  932. * state
  933. * @dc: display controller
  934. * @crtc_state: CRTC atomic state
  935. * @clk: parent clock for display controller
  936. * @pclk: pixel clock
  937. * @div: shift clock divider
  938. *
  939. * Returns:
  940. * 0 on success or a negative error-code on failure.
  941. */
  942. int tegra_dc_state_setup_clock(struct tegra_dc *dc,
  943. struct drm_crtc_state *crtc_state,
  944. struct clk *clk, unsigned long pclk,
  945. unsigned int div)
  946. {
  947. struct tegra_dc_state *state = to_dc_state(crtc_state);
  948. if (!clk_has_parent(dc->clk, clk))
  949. return -EINVAL;
  950. state->clk = clk;
  951. state->pclk = pclk;
  952. state->div = div;
  953. return 0;
  954. }
  955. static void tegra_dc_commit_state(struct tegra_dc *dc,
  956. struct tegra_dc_state *state)
  957. {
  958. u32 value;
  959. int err;
  960. err = clk_set_parent(dc->clk, state->clk);
  961. if (err < 0)
  962. dev_err(dc->dev, "failed to set parent clock: %d\n", err);
  963. /*
  964. * Outputs may not want to change the parent clock rate. This is only
  965. * relevant to Tegra20 where only a single display PLL is available.
  966. * Since that PLL would typically be used for HDMI, an internal LVDS
  967. * panel would need to be driven by some other clock such as PLL_P
  968. * which is shared with other peripherals. Changing the clock rate
  969. * should therefore be avoided.
  970. */
  971. if (state->pclk > 0) {
  972. err = clk_set_rate(state->clk, state->pclk);
  973. if (err < 0)
  974. dev_err(dc->dev,
  975. "failed to set clock rate to %lu Hz\n",
  976. state->pclk);
  977. }
  978. DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
  979. state->div);
  980. DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
  981. value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
  982. tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
  983. }
  984. static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
  985. {
  986. struct drm_display_mode *mode = &crtc->state->adjusted_mode;
  987. struct tegra_dc_state *state = to_dc_state(crtc->state);
  988. struct tegra_dc *dc = to_tegra_dc(crtc);
  989. u32 value;
  990. tegra_dc_commit_state(dc, state);
  991. /* program display mode */
  992. tegra_dc_set_timings(dc, mode);
  993. /* interlacing isn't supported yet, so disable it */
  994. if (dc->soc->supports_interlacing) {
  995. value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
  996. value &= ~INTERLACE_ENABLE;
  997. tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
  998. }
  999. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
  1000. value &= ~DISP_CTRL_MODE_MASK;
  1001. value |= DISP_CTRL_MODE_C_DISPLAY;
  1002. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
  1003. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
  1004. value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
  1005. PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
  1006. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
  1007. tegra_dc_commit(dc);
  1008. }
  1009. static void tegra_crtc_prepare(struct drm_crtc *crtc)
  1010. {
  1011. drm_crtc_vblank_off(crtc);
  1012. }
  1013. static void tegra_crtc_commit(struct drm_crtc *crtc)
  1014. {
  1015. drm_crtc_vblank_on(crtc);
  1016. }
  1017. static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
  1018. struct drm_crtc_state *state)
  1019. {
  1020. return 0;
  1021. }
  1022. static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
  1023. {
  1024. struct tegra_dc *dc = to_tegra_dc(crtc);
  1025. if (crtc->state->event) {
  1026. crtc->state->event->pipe = drm_crtc_index(crtc);
  1027. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  1028. dc->event = crtc->state->event;
  1029. crtc->state->event = NULL;
  1030. }
  1031. }
  1032. static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
  1033. {
  1034. struct tegra_dc_state *state = to_dc_state(crtc->state);
  1035. struct tegra_dc *dc = to_tegra_dc(crtc);
  1036. tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
  1037. tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
  1038. }
  1039. static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
  1040. .disable = tegra_crtc_disable,
  1041. .mode_fixup = tegra_crtc_mode_fixup,
  1042. .mode_set_nofb = tegra_crtc_mode_set_nofb,
  1043. .prepare = tegra_crtc_prepare,
  1044. .commit = tegra_crtc_commit,
  1045. .atomic_check = tegra_crtc_atomic_check,
  1046. .atomic_begin = tegra_crtc_atomic_begin,
  1047. .atomic_flush = tegra_crtc_atomic_flush,
  1048. };
  1049. static irqreturn_t tegra_dc_irq(int irq, void *data)
  1050. {
  1051. struct tegra_dc *dc = data;
  1052. unsigned long status;
  1053. status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
  1054. tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
  1055. if (status & FRAME_END_INT) {
  1056. /*
  1057. dev_dbg(dc->dev, "%s(): frame end\n", __func__);
  1058. */
  1059. }
  1060. if (status & VBLANK_INT) {
  1061. /*
  1062. dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
  1063. */
  1064. drm_crtc_handle_vblank(&dc->base);
  1065. tegra_dc_finish_page_flip(dc);
  1066. }
  1067. if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
  1068. /*
  1069. dev_dbg(dc->dev, "%s(): underflow\n", __func__);
  1070. */
  1071. }
  1072. return IRQ_HANDLED;
  1073. }
  1074. static int tegra_dc_show_regs(struct seq_file *s, void *data)
  1075. {
  1076. struct drm_info_node *node = s->private;
  1077. struct tegra_dc *dc = node->info_ent->data;
  1078. #define DUMP_REG(name) \
  1079. seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
  1080. tegra_dc_readl(dc, name))
  1081. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
  1082. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
  1083. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
  1084. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
  1085. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
  1086. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
  1087. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
  1088. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
  1089. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
  1090. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
  1091. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
  1092. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
  1093. DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
  1094. DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
  1095. DUMP_REG(DC_CMD_DISPLAY_COMMAND);
  1096. DUMP_REG(DC_CMD_SIGNAL_RAISE);
  1097. DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
  1098. DUMP_REG(DC_CMD_INT_STATUS);
  1099. DUMP_REG(DC_CMD_INT_MASK);
  1100. DUMP_REG(DC_CMD_INT_ENABLE);
  1101. DUMP_REG(DC_CMD_INT_TYPE);
  1102. DUMP_REG(DC_CMD_INT_POLARITY);
  1103. DUMP_REG(DC_CMD_SIGNAL_RAISE1);
  1104. DUMP_REG(DC_CMD_SIGNAL_RAISE2);
  1105. DUMP_REG(DC_CMD_SIGNAL_RAISE3);
  1106. DUMP_REG(DC_CMD_STATE_ACCESS);
  1107. DUMP_REG(DC_CMD_STATE_CONTROL);
  1108. DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
  1109. DUMP_REG(DC_CMD_REG_ACT_CONTROL);
  1110. DUMP_REG(DC_COM_CRC_CONTROL);
  1111. DUMP_REG(DC_COM_CRC_CHECKSUM);
  1112. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
  1113. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
  1114. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
  1115. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
  1116. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
  1117. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
  1118. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
  1119. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
  1120. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
  1121. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
  1122. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
  1123. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
  1124. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
  1125. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
  1126. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
  1127. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
  1128. DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
  1129. DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
  1130. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
  1131. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
  1132. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
  1133. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
  1134. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
  1135. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
  1136. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
  1137. DUMP_REG(DC_COM_PIN_MISC_CONTROL);
  1138. DUMP_REG(DC_COM_PIN_PM0_CONTROL);
  1139. DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
  1140. DUMP_REG(DC_COM_PIN_PM1_CONTROL);
  1141. DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
  1142. DUMP_REG(DC_COM_SPI_CONTROL);
  1143. DUMP_REG(DC_COM_SPI_START_BYTE);
  1144. DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
  1145. DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
  1146. DUMP_REG(DC_COM_HSPI_CS_DC);
  1147. DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
  1148. DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
  1149. DUMP_REG(DC_COM_GPIO_CTRL);
  1150. DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
  1151. DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
  1152. DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
  1153. DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
  1154. DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
  1155. DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
  1156. DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
  1157. DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
  1158. DUMP_REG(DC_DISP_REF_TO_SYNC);
  1159. DUMP_REG(DC_DISP_SYNC_WIDTH);
  1160. DUMP_REG(DC_DISP_BACK_PORCH);
  1161. DUMP_REG(DC_DISP_ACTIVE);
  1162. DUMP_REG(DC_DISP_FRONT_PORCH);
  1163. DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
  1164. DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
  1165. DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
  1166. DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
  1167. DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
  1168. DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
  1169. DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
  1170. DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
  1171. DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
  1172. DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
  1173. DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
  1174. DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
  1175. DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
  1176. DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
  1177. DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
  1178. DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
  1179. DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
  1180. DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
  1181. DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
  1182. DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
  1183. DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
  1184. DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
  1185. DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
  1186. DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
  1187. DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
  1188. DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
  1189. DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
  1190. DUMP_REG(DC_DISP_M0_CONTROL);
  1191. DUMP_REG(DC_DISP_M1_CONTROL);
  1192. DUMP_REG(DC_DISP_DI_CONTROL);
  1193. DUMP_REG(DC_DISP_PP_CONTROL);
  1194. DUMP_REG(DC_DISP_PP_SELECT_A);
  1195. DUMP_REG(DC_DISP_PP_SELECT_B);
  1196. DUMP_REG(DC_DISP_PP_SELECT_C);
  1197. DUMP_REG(DC_DISP_PP_SELECT_D);
  1198. DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
  1199. DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
  1200. DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
  1201. DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
  1202. DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
  1203. DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
  1204. DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
  1205. DUMP_REG(DC_DISP_BORDER_COLOR);
  1206. DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
  1207. DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
  1208. DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
  1209. DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
  1210. DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
  1211. DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
  1212. DUMP_REG(DC_DISP_CURSOR_START_ADDR);
  1213. DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
  1214. DUMP_REG(DC_DISP_CURSOR_POSITION);
  1215. DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
  1216. DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
  1217. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
  1218. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
  1219. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
  1220. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
  1221. DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
  1222. DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
  1223. DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
  1224. DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
  1225. DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
  1226. DUMP_REG(DC_DISP_DAC_CRT_CTRL);
  1227. DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
  1228. DUMP_REG(DC_DISP_SD_CONTROL);
  1229. DUMP_REG(DC_DISP_SD_CSC_COEFF);
  1230. DUMP_REG(DC_DISP_SD_LUT(0));
  1231. DUMP_REG(DC_DISP_SD_LUT(1));
  1232. DUMP_REG(DC_DISP_SD_LUT(2));
  1233. DUMP_REG(DC_DISP_SD_LUT(3));
  1234. DUMP_REG(DC_DISP_SD_LUT(4));
  1235. DUMP_REG(DC_DISP_SD_LUT(5));
  1236. DUMP_REG(DC_DISP_SD_LUT(6));
  1237. DUMP_REG(DC_DISP_SD_LUT(7));
  1238. DUMP_REG(DC_DISP_SD_LUT(8));
  1239. DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
  1240. DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
  1241. DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
  1242. DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
  1243. DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
  1244. DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
  1245. DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
  1246. DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
  1247. DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
  1248. DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
  1249. DUMP_REG(DC_DISP_SD_BL_TF(0));
  1250. DUMP_REG(DC_DISP_SD_BL_TF(1));
  1251. DUMP_REG(DC_DISP_SD_BL_TF(2));
  1252. DUMP_REG(DC_DISP_SD_BL_TF(3));
  1253. DUMP_REG(DC_DISP_SD_BL_CONTROL);
  1254. DUMP_REG(DC_DISP_SD_HW_K_VALUES);
  1255. DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
  1256. DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
  1257. DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
  1258. DUMP_REG(DC_WIN_WIN_OPTIONS);
  1259. DUMP_REG(DC_WIN_BYTE_SWAP);
  1260. DUMP_REG(DC_WIN_BUFFER_CONTROL);
  1261. DUMP_REG(DC_WIN_COLOR_DEPTH);
  1262. DUMP_REG(DC_WIN_POSITION);
  1263. DUMP_REG(DC_WIN_SIZE);
  1264. DUMP_REG(DC_WIN_PRESCALED_SIZE);
  1265. DUMP_REG(DC_WIN_H_INITIAL_DDA);
  1266. DUMP_REG(DC_WIN_V_INITIAL_DDA);
  1267. DUMP_REG(DC_WIN_DDA_INC);
  1268. DUMP_REG(DC_WIN_LINE_STRIDE);
  1269. DUMP_REG(DC_WIN_BUF_STRIDE);
  1270. DUMP_REG(DC_WIN_UV_BUF_STRIDE);
  1271. DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
  1272. DUMP_REG(DC_WIN_DV_CONTROL);
  1273. DUMP_REG(DC_WIN_BLEND_NOKEY);
  1274. DUMP_REG(DC_WIN_BLEND_1WIN);
  1275. DUMP_REG(DC_WIN_BLEND_2WIN_X);
  1276. DUMP_REG(DC_WIN_BLEND_2WIN_Y);
  1277. DUMP_REG(DC_WIN_BLEND_3WIN_XY);
  1278. DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
  1279. DUMP_REG(DC_WINBUF_START_ADDR);
  1280. DUMP_REG(DC_WINBUF_START_ADDR_NS);
  1281. DUMP_REG(DC_WINBUF_START_ADDR_U);
  1282. DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
  1283. DUMP_REG(DC_WINBUF_START_ADDR_V);
  1284. DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
  1285. DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
  1286. DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
  1287. DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
  1288. DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
  1289. DUMP_REG(DC_WINBUF_UFLOW_STATUS);
  1290. DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
  1291. DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
  1292. DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
  1293. #undef DUMP_REG
  1294. return 0;
  1295. }
  1296. static struct drm_info_list debugfs_files[] = {
  1297. { "regs", tegra_dc_show_regs, 0, NULL },
  1298. };
  1299. static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
  1300. {
  1301. unsigned int i;
  1302. char *name;
  1303. int err;
  1304. name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
  1305. dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
  1306. kfree(name);
  1307. if (!dc->debugfs)
  1308. return -ENOMEM;
  1309. dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
  1310. GFP_KERNEL);
  1311. if (!dc->debugfs_files) {
  1312. err = -ENOMEM;
  1313. goto remove;
  1314. }
  1315. for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
  1316. dc->debugfs_files[i].data = dc;
  1317. err = drm_debugfs_create_files(dc->debugfs_files,
  1318. ARRAY_SIZE(debugfs_files),
  1319. dc->debugfs, minor);
  1320. if (err < 0)
  1321. goto free;
  1322. dc->minor = minor;
  1323. return 0;
  1324. free:
  1325. kfree(dc->debugfs_files);
  1326. dc->debugfs_files = NULL;
  1327. remove:
  1328. debugfs_remove(dc->debugfs);
  1329. dc->debugfs = NULL;
  1330. return err;
  1331. }
  1332. static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
  1333. {
  1334. drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
  1335. dc->minor);
  1336. dc->minor = NULL;
  1337. kfree(dc->debugfs_files);
  1338. dc->debugfs_files = NULL;
  1339. debugfs_remove(dc->debugfs);
  1340. dc->debugfs = NULL;
  1341. return 0;
  1342. }
  1343. static int tegra_dc_init(struct host1x_client *client)
  1344. {
  1345. struct drm_device *drm = dev_get_drvdata(client->parent);
  1346. struct tegra_dc *dc = host1x_client_to_dc(client);
  1347. struct tegra_drm *tegra = drm->dev_private;
  1348. struct drm_plane *primary = NULL;
  1349. struct drm_plane *cursor = NULL;
  1350. u32 value;
  1351. int err;
  1352. if (tegra->domain) {
  1353. err = iommu_attach_device(tegra->domain, dc->dev);
  1354. if (err < 0) {
  1355. dev_err(dc->dev, "failed to attach to domain: %d\n",
  1356. err);
  1357. return err;
  1358. }
  1359. dc->domain = tegra->domain;
  1360. }
  1361. primary = tegra_dc_primary_plane_create(drm, dc);
  1362. if (IS_ERR(primary)) {
  1363. err = PTR_ERR(primary);
  1364. goto cleanup;
  1365. }
  1366. if (dc->soc->supports_cursor) {
  1367. cursor = tegra_dc_cursor_plane_create(drm, dc);
  1368. if (IS_ERR(cursor)) {
  1369. err = PTR_ERR(cursor);
  1370. goto cleanup;
  1371. }
  1372. }
  1373. err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
  1374. &tegra_crtc_funcs);
  1375. if (err < 0)
  1376. goto cleanup;
  1377. drm_mode_crtc_set_gamma_size(&dc->base, 256);
  1378. drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
  1379. /*
  1380. * Keep track of the minimum pitch alignment across all display
  1381. * controllers.
  1382. */
  1383. if (dc->soc->pitch_align > tegra->pitch_align)
  1384. tegra->pitch_align = dc->soc->pitch_align;
  1385. err = tegra_dc_rgb_init(drm, dc);
  1386. if (err < 0 && err != -ENODEV) {
  1387. dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
  1388. goto cleanup;
  1389. }
  1390. err = tegra_dc_add_planes(drm, dc);
  1391. if (err < 0)
  1392. goto cleanup;
  1393. if (IS_ENABLED(CONFIG_DEBUG_FS)) {
  1394. err = tegra_dc_debugfs_init(dc, drm->primary);
  1395. if (err < 0)
  1396. dev_err(dc->dev, "debugfs setup failed: %d\n", err);
  1397. }
  1398. err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
  1399. dev_name(dc->dev), dc);
  1400. if (err < 0) {
  1401. dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
  1402. err);
  1403. goto cleanup;
  1404. }
  1405. /* initialize display controller */
  1406. if (dc->syncpt) {
  1407. u32 syncpt = host1x_syncpt_id(dc->syncpt);
  1408. value = SYNCPT_CNTRL_NO_STALL;
  1409. tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
  1410. value = SYNCPT_VSYNC_ENABLE | syncpt;
  1411. tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
  1412. }
  1413. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
  1414. tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
  1415. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1416. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1417. tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
  1418. /* initialize timer */
  1419. value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
  1420. WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
  1421. tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
  1422. value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
  1423. WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
  1424. tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
  1425. value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
  1426. tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
  1427. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
  1428. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  1429. if (dc->soc->supports_border_color)
  1430. tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
  1431. return 0;
  1432. cleanup:
  1433. if (cursor)
  1434. drm_plane_cleanup(cursor);
  1435. if (primary)
  1436. drm_plane_cleanup(primary);
  1437. if (tegra->domain) {
  1438. iommu_detach_device(tegra->domain, dc->dev);
  1439. dc->domain = NULL;
  1440. }
  1441. return err;
  1442. }
  1443. static int tegra_dc_exit(struct host1x_client *client)
  1444. {
  1445. struct tegra_dc *dc = host1x_client_to_dc(client);
  1446. int err;
  1447. devm_free_irq(dc->dev, dc->irq, dc);
  1448. if (IS_ENABLED(CONFIG_DEBUG_FS)) {
  1449. err = tegra_dc_debugfs_exit(dc);
  1450. if (err < 0)
  1451. dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
  1452. }
  1453. err = tegra_dc_rgb_exit(dc);
  1454. if (err) {
  1455. dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
  1456. return err;
  1457. }
  1458. if (dc->domain) {
  1459. iommu_detach_device(dc->domain, dc->dev);
  1460. dc->domain = NULL;
  1461. }
  1462. return 0;
  1463. }
  1464. static const struct host1x_client_ops dc_client_ops = {
  1465. .init = tegra_dc_init,
  1466. .exit = tegra_dc_exit,
  1467. };
  1468. static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
  1469. .supports_border_color = true,
  1470. .supports_interlacing = false,
  1471. .supports_cursor = false,
  1472. .supports_block_linear = false,
  1473. .pitch_align = 8,
  1474. .has_powergate = false,
  1475. };
  1476. static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
  1477. .supports_border_color = true,
  1478. .supports_interlacing = false,
  1479. .supports_cursor = false,
  1480. .supports_block_linear = false,
  1481. .pitch_align = 8,
  1482. .has_powergate = false,
  1483. };
  1484. static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
  1485. .supports_border_color = true,
  1486. .supports_interlacing = false,
  1487. .supports_cursor = false,
  1488. .supports_block_linear = false,
  1489. .pitch_align = 64,
  1490. .has_powergate = true,
  1491. };
  1492. static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
  1493. .supports_border_color = false,
  1494. .supports_interlacing = true,
  1495. .supports_cursor = true,
  1496. .supports_block_linear = true,
  1497. .pitch_align = 64,
  1498. .has_powergate = true,
  1499. };
  1500. static const struct of_device_id tegra_dc_of_match[] = {
  1501. {
  1502. .compatible = "nvidia,tegra124-dc",
  1503. .data = &tegra124_dc_soc_info,
  1504. }, {
  1505. .compatible = "nvidia,tegra114-dc",
  1506. .data = &tegra114_dc_soc_info,
  1507. }, {
  1508. .compatible = "nvidia,tegra30-dc",
  1509. .data = &tegra30_dc_soc_info,
  1510. }, {
  1511. .compatible = "nvidia,tegra20-dc",
  1512. .data = &tegra20_dc_soc_info,
  1513. }, {
  1514. /* sentinel */
  1515. }
  1516. };
  1517. MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
  1518. static int tegra_dc_parse_dt(struct tegra_dc *dc)
  1519. {
  1520. struct device_node *np;
  1521. u32 value = 0;
  1522. int err;
  1523. err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
  1524. if (err < 0) {
  1525. dev_err(dc->dev, "missing \"nvidia,head\" property\n");
  1526. /*
  1527. * If the nvidia,head property isn't present, try to find the
  1528. * correct head number by looking up the position of this
  1529. * display controller's node within the device tree. Assuming
  1530. * that the nodes are ordered properly in the DTS file and
  1531. * that the translation into a flattened device tree blob
  1532. * preserves that ordering this will actually yield the right
  1533. * head number.
  1534. *
  1535. * If those assumptions don't hold, this will still work for
  1536. * cases where only a single display controller is used.
  1537. */
  1538. for_each_matching_node(np, tegra_dc_of_match) {
  1539. if (np == dc->dev->of_node)
  1540. break;
  1541. value++;
  1542. }
  1543. }
  1544. dc->pipe = value;
  1545. return 0;
  1546. }
  1547. static int tegra_dc_probe(struct platform_device *pdev)
  1548. {
  1549. unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
  1550. const struct of_device_id *id;
  1551. struct resource *regs;
  1552. struct tegra_dc *dc;
  1553. int err;
  1554. dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
  1555. if (!dc)
  1556. return -ENOMEM;
  1557. id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
  1558. if (!id)
  1559. return -ENODEV;
  1560. spin_lock_init(&dc->lock);
  1561. INIT_LIST_HEAD(&dc->list);
  1562. dc->dev = &pdev->dev;
  1563. dc->soc = id->data;
  1564. err = tegra_dc_parse_dt(dc);
  1565. if (err < 0)
  1566. return err;
  1567. dc->clk = devm_clk_get(&pdev->dev, NULL);
  1568. if (IS_ERR(dc->clk)) {
  1569. dev_err(&pdev->dev, "failed to get clock\n");
  1570. return PTR_ERR(dc->clk);
  1571. }
  1572. dc->rst = devm_reset_control_get(&pdev->dev, "dc");
  1573. if (IS_ERR(dc->rst)) {
  1574. dev_err(&pdev->dev, "failed to get reset\n");
  1575. return PTR_ERR(dc->rst);
  1576. }
  1577. if (dc->soc->has_powergate) {
  1578. if (dc->pipe == 0)
  1579. dc->powergate = TEGRA_POWERGATE_DIS;
  1580. else
  1581. dc->powergate = TEGRA_POWERGATE_DISB;
  1582. err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
  1583. dc->rst);
  1584. if (err < 0) {
  1585. dev_err(&pdev->dev, "failed to power partition: %d\n",
  1586. err);
  1587. return err;
  1588. }
  1589. } else {
  1590. err = clk_prepare_enable(dc->clk);
  1591. if (err < 0) {
  1592. dev_err(&pdev->dev, "failed to enable clock: %d\n",
  1593. err);
  1594. return err;
  1595. }
  1596. err = reset_control_deassert(dc->rst);
  1597. if (err < 0) {
  1598. dev_err(&pdev->dev, "failed to deassert reset: %d\n",
  1599. err);
  1600. return err;
  1601. }
  1602. }
  1603. regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1604. dc->regs = devm_ioremap_resource(&pdev->dev, regs);
  1605. if (IS_ERR(dc->regs))
  1606. return PTR_ERR(dc->regs);
  1607. dc->irq = platform_get_irq(pdev, 0);
  1608. if (dc->irq < 0) {
  1609. dev_err(&pdev->dev, "failed to get IRQ\n");
  1610. return -ENXIO;
  1611. }
  1612. INIT_LIST_HEAD(&dc->client.list);
  1613. dc->client.ops = &dc_client_ops;
  1614. dc->client.dev = &pdev->dev;
  1615. err = tegra_dc_rgb_probe(dc);
  1616. if (err < 0 && err != -ENODEV) {
  1617. dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
  1618. return err;
  1619. }
  1620. err = host1x_client_register(&dc->client);
  1621. if (err < 0) {
  1622. dev_err(&pdev->dev, "failed to register host1x client: %d\n",
  1623. err);
  1624. return err;
  1625. }
  1626. dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
  1627. if (!dc->syncpt)
  1628. dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
  1629. platform_set_drvdata(pdev, dc);
  1630. return 0;
  1631. }
  1632. static int tegra_dc_remove(struct platform_device *pdev)
  1633. {
  1634. struct tegra_dc *dc = platform_get_drvdata(pdev);
  1635. int err;
  1636. host1x_syncpt_free(dc->syncpt);
  1637. err = host1x_client_unregister(&dc->client);
  1638. if (err < 0) {
  1639. dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
  1640. err);
  1641. return err;
  1642. }
  1643. err = tegra_dc_rgb_remove(dc);
  1644. if (err < 0) {
  1645. dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
  1646. return err;
  1647. }
  1648. reset_control_assert(dc->rst);
  1649. if (dc->soc->has_powergate)
  1650. tegra_powergate_power_off(dc->powergate);
  1651. clk_disable_unprepare(dc->clk);
  1652. return 0;
  1653. }
  1654. struct platform_driver tegra_dc_driver = {
  1655. .driver = {
  1656. .name = "tegra-dc",
  1657. .owner = THIS_MODULE,
  1658. .of_match_table = tegra_dc_of_match,
  1659. },
  1660. .probe = tegra_dc_probe,
  1661. .remove = tegra_dc_remove,
  1662. };