intel_pm.c 189 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * RC6 is a special power stage which allows the GPU to enter an very
  34. * low-voltage mode when idle, using down to 0V while at this stage. This
  35. * stage is entered automatically when the GPU is idle when RC6 support is
  36. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  37. *
  38. * There are different RC6 modes available in Intel GPU, which differentiate
  39. * among each other with the latency required to enter and leave RC6 and
  40. * voltage consumed by the GPU in different states.
  41. *
  42. * The combination of the following flags define which states GPU is allowed
  43. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  44. * RC6pp is deepest RC6. Their support by hardware varies according to the
  45. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  46. * which brings the most power savings; deeper states save more power, but
  47. * require higher latency to switch to and wake up.
  48. */
  49. #define INTEL_RC6_ENABLE (1<<0)
  50. #define INTEL_RC6p_ENABLE (1<<1)
  51. #define INTEL_RC6pp_ENABLE (1<<2)
  52. static void gen9_init_clock_gating(struct drm_device *dev)
  53. {
  54. struct drm_i915_private *dev_priv = dev->dev_private;
  55. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  56. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  57. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  58. }
  59. static void skl_init_clock_gating(struct drm_device *dev)
  60. {
  61. struct drm_i915_private *dev_priv = dev->dev_private;
  62. gen9_init_clock_gating(dev);
  63. if (INTEL_REVID(dev) == SKL_REVID_A0) {
  64. /*
  65. * WaDisableSDEUnitClockGating:skl
  66. * WaSetGAPSunitClckGateDisable:skl
  67. */
  68. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  69. GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
  70. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  71. }
  72. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  73. /* WaDisableHDCInvalidation:skl */
  74. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  75. BDW_DISABLE_HDC_INVALIDATION);
  76. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  77. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  78. I915_READ(FF_SLICE_CS_CHICKEN2) |
  79. GEN9_TSG_BARRIER_ACK_DISABLE);
  80. }
  81. if (INTEL_REVID(dev) <= SKL_REVID_E0)
  82. /* WaDisableLSQCROPERFforOCL:skl */
  83. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  84. GEN8_LQSC_RO_PERF_DIS);
  85. }
  86. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  87. {
  88. struct drm_i915_private *dev_priv = dev->dev_private;
  89. u32 tmp;
  90. tmp = I915_READ(CLKCFG);
  91. switch (tmp & CLKCFG_FSB_MASK) {
  92. case CLKCFG_FSB_533:
  93. dev_priv->fsb_freq = 533; /* 133*4 */
  94. break;
  95. case CLKCFG_FSB_800:
  96. dev_priv->fsb_freq = 800; /* 200*4 */
  97. break;
  98. case CLKCFG_FSB_667:
  99. dev_priv->fsb_freq = 667; /* 167*4 */
  100. break;
  101. case CLKCFG_FSB_400:
  102. dev_priv->fsb_freq = 400; /* 100*4 */
  103. break;
  104. }
  105. switch (tmp & CLKCFG_MEM_MASK) {
  106. case CLKCFG_MEM_533:
  107. dev_priv->mem_freq = 533;
  108. break;
  109. case CLKCFG_MEM_667:
  110. dev_priv->mem_freq = 667;
  111. break;
  112. case CLKCFG_MEM_800:
  113. dev_priv->mem_freq = 800;
  114. break;
  115. }
  116. /* detect pineview DDR3 setting */
  117. tmp = I915_READ(CSHRDDR3CTL);
  118. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  119. }
  120. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  121. {
  122. struct drm_i915_private *dev_priv = dev->dev_private;
  123. u16 ddrpll, csipll;
  124. ddrpll = I915_READ16(DDRMPLL1);
  125. csipll = I915_READ16(CSIPLL0);
  126. switch (ddrpll & 0xff) {
  127. case 0xc:
  128. dev_priv->mem_freq = 800;
  129. break;
  130. case 0x10:
  131. dev_priv->mem_freq = 1066;
  132. break;
  133. case 0x14:
  134. dev_priv->mem_freq = 1333;
  135. break;
  136. case 0x18:
  137. dev_priv->mem_freq = 1600;
  138. break;
  139. default:
  140. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  141. ddrpll & 0xff);
  142. dev_priv->mem_freq = 0;
  143. break;
  144. }
  145. dev_priv->ips.r_t = dev_priv->mem_freq;
  146. switch (csipll & 0x3ff) {
  147. case 0x00c:
  148. dev_priv->fsb_freq = 3200;
  149. break;
  150. case 0x00e:
  151. dev_priv->fsb_freq = 3733;
  152. break;
  153. case 0x010:
  154. dev_priv->fsb_freq = 4266;
  155. break;
  156. case 0x012:
  157. dev_priv->fsb_freq = 4800;
  158. break;
  159. case 0x014:
  160. dev_priv->fsb_freq = 5333;
  161. break;
  162. case 0x016:
  163. dev_priv->fsb_freq = 5866;
  164. break;
  165. case 0x018:
  166. dev_priv->fsb_freq = 6400;
  167. break;
  168. default:
  169. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  170. csipll & 0x3ff);
  171. dev_priv->fsb_freq = 0;
  172. break;
  173. }
  174. if (dev_priv->fsb_freq == 3200) {
  175. dev_priv->ips.c_m = 0;
  176. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  177. dev_priv->ips.c_m = 1;
  178. } else {
  179. dev_priv->ips.c_m = 2;
  180. }
  181. }
  182. static const struct cxsr_latency cxsr_latency_table[] = {
  183. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  184. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  185. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  186. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  187. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  188. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  189. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  190. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  191. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  192. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  193. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  194. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  195. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  196. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  197. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  198. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  199. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  200. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  201. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  202. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  203. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  204. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  205. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  206. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  207. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  208. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  209. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  210. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  211. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  212. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  213. };
  214. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  215. int is_ddr3,
  216. int fsb,
  217. int mem)
  218. {
  219. const struct cxsr_latency *latency;
  220. int i;
  221. if (fsb == 0 || mem == 0)
  222. return NULL;
  223. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  224. latency = &cxsr_latency_table[i];
  225. if (is_desktop == latency->is_desktop &&
  226. is_ddr3 == latency->is_ddr3 &&
  227. fsb == latency->fsb_freq && mem == latency->mem_freq)
  228. return latency;
  229. }
  230. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  231. return NULL;
  232. }
  233. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  234. {
  235. u32 val;
  236. mutex_lock(&dev_priv->rps.hw_lock);
  237. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  238. if (enable)
  239. val &= ~FORCE_DDR_HIGH_FREQ;
  240. else
  241. val |= FORCE_DDR_HIGH_FREQ;
  242. val &= ~FORCE_DDR_LOW_FREQ;
  243. val |= FORCE_DDR_FREQ_REQ_ACK;
  244. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  245. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  246. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  247. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  248. mutex_unlock(&dev_priv->rps.hw_lock);
  249. }
  250. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  251. {
  252. u32 val;
  253. mutex_lock(&dev_priv->rps.hw_lock);
  254. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  255. if (enable)
  256. val |= DSP_MAXFIFO_PM5_ENABLE;
  257. else
  258. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  259. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  260. mutex_unlock(&dev_priv->rps.hw_lock);
  261. }
  262. #define FW_WM(value, plane) \
  263. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  264. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  265. {
  266. struct drm_device *dev = dev_priv->dev;
  267. u32 val;
  268. if (IS_VALLEYVIEW(dev)) {
  269. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  270. if (IS_CHERRYVIEW(dev))
  271. chv_set_memory_pm5(dev_priv, enable);
  272. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  273. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  274. } else if (IS_PINEVIEW(dev)) {
  275. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  276. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  277. I915_WRITE(DSPFW3, val);
  278. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  279. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  280. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  281. I915_WRITE(FW_BLC_SELF, val);
  282. } else if (IS_I915GM(dev)) {
  283. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  284. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  285. I915_WRITE(INSTPM, val);
  286. } else {
  287. return;
  288. }
  289. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  290. enable ? "enabled" : "disabled");
  291. }
  292. /*
  293. * Latency for FIFO fetches is dependent on several factors:
  294. * - memory configuration (speed, channels)
  295. * - chipset
  296. * - current MCH state
  297. * It can be fairly high in some situations, so here we assume a fairly
  298. * pessimal value. It's a tradeoff between extra memory fetches (if we
  299. * set this value too high, the FIFO will fetch frequently to stay full)
  300. * and power consumption (set it too low to save power and we might see
  301. * FIFO underruns and display "flicker").
  302. *
  303. * A value of 5us seems to be a good balance; safe for very low end
  304. * platforms but not overly aggressive on lower latency configs.
  305. */
  306. static const int pessimal_latency_ns = 5000;
  307. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  308. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  309. static int vlv_get_fifo_size(struct drm_device *dev,
  310. enum pipe pipe, int plane)
  311. {
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. int sprite0_start, sprite1_start, size;
  314. switch (pipe) {
  315. uint32_t dsparb, dsparb2, dsparb3;
  316. case PIPE_A:
  317. dsparb = I915_READ(DSPARB);
  318. dsparb2 = I915_READ(DSPARB2);
  319. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  320. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  321. break;
  322. case PIPE_B:
  323. dsparb = I915_READ(DSPARB);
  324. dsparb2 = I915_READ(DSPARB2);
  325. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  326. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  327. break;
  328. case PIPE_C:
  329. dsparb2 = I915_READ(DSPARB2);
  330. dsparb3 = I915_READ(DSPARB3);
  331. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  332. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  333. break;
  334. default:
  335. return 0;
  336. }
  337. switch (plane) {
  338. case 0:
  339. size = sprite0_start;
  340. break;
  341. case 1:
  342. size = sprite1_start - sprite0_start;
  343. break;
  344. case 2:
  345. size = 512 - 1 - sprite1_start;
  346. break;
  347. default:
  348. return 0;
  349. }
  350. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  351. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  352. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  353. size);
  354. return size;
  355. }
  356. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  357. {
  358. struct drm_i915_private *dev_priv = dev->dev_private;
  359. uint32_t dsparb = I915_READ(DSPARB);
  360. int size;
  361. size = dsparb & 0x7f;
  362. if (plane)
  363. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  364. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  365. plane ? "B" : "A", size);
  366. return size;
  367. }
  368. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  369. {
  370. struct drm_i915_private *dev_priv = dev->dev_private;
  371. uint32_t dsparb = I915_READ(DSPARB);
  372. int size;
  373. size = dsparb & 0x1ff;
  374. if (plane)
  375. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  376. size >>= 1; /* Convert to cachelines */
  377. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  378. plane ? "B" : "A", size);
  379. return size;
  380. }
  381. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  382. {
  383. struct drm_i915_private *dev_priv = dev->dev_private;
  384. uint32_t dsparb = I915_READ(DSPARB);
  385. int size;
  386. size = dsparb & 0x7f;
  387. size >>= 2; /* Convert to cachelines */
  388. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  389. plane ? "B" : "A",
  390. size);
  391. return size;
  392. }
  393. /* Pineview has different values for various configs */
  394. static const struct intel_watermark_params pineview_display_wm = {
  395. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  396. .max_wm = PINEVIEW_MAX_WM,
  397. .default_wm = PINEVIEW_DFT_WM,
  398. .guard_size = PINEVIEW_GUARD_WM,
  399. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  400. };
  401. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  402. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  403. .max_wm = PINEVIEW_MAX_WM,
  404. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  405. .guard_size = PINEVIEW_GUARD_WM,
  406. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  407. };
  408. static const struct intel_watermark_params pineview_cursor_wm = {
  409. .fifo_size = PINEVIEW_CURSOR_FIFO,
  410. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  411. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  412. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  413. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  414. };
  415. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  416. .fifo_size = PINEVIEW_CURSOR_FIFO,
  417. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  418. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  419. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  420. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  421. };
  422. static const struct intel_watermark_params g4x_wm_info = {
  423. .fifo_size = G4X_FIFO_SIZE,
  424. .max_wm = G4X_MAX_WM,
  425. .default_wm = G4X_MAX_WM,
  426. .guard_size = 2,
  427. .cacheline_size = G4X_FIFO_LINE_SIZE,
  428. };
  429. static const struct intel_watermark_params g4x_cursor_wm_info = {
  430. .fifo_size = I965_CURSOR_FIFO,
  431. .max_wm = I965_CURSOR_MAX_WM,
  432. .default_wm = I965_CURSOR_DFT_WM,
  433. .guard_size = 2,
  434. .cacheline_size = G4X_FIFO_LINE_SIZE,
  435. };
  436. static const struct intel_watermark_params valleyview_wm_info = {
  437. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  438. .max_wm = VALLEYVIEW_MAX_WM,
  439. .default_wm = VALLEYVIEW_MAX_WM,
  440. .guard_size = 2,
  441. .cacheline_size = G4X_FIFO_LINE_SIZE,
  442. };
  443. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  444. .fifo_size = I965_CURSOR_FIFO,
  445. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  446. .default_wm = I965_CURSOR_DFT_WM,
  447. .guard_size = 2,
  448. .cacheline_size = G4X_FIFO_LINE_SIZE,
  449. };
  450. static const struct intel_watermark_params i965_cursor_wm_info = {
  451. .fifo_size = I965_CURSOR_FIFO,
  452. .max_wm = I965_CURSOR_MAX_WM,
  453. .default_wm = I965_CURSOR_DFT_WM,
  454. .guard_size = 2,
  455. .cacheline_size = I915_FIFO_LINE_SIZE,
  456. };
  457. static const struct intel_watermark_params i945_wm_info = {
  458. .fifo_size = I945_FIFO_SIZE,
  459. .max_wm = I915_MAX_WM,
  460. .default_wm = 1,
  461. .guard_size = 2,
  462. .cacheline_size = I915_FIFO_LINE_SIZE,
  463. };
  464. static const struct intel_watermark_params i915_wm_info = {
  465. .fifo_size = I915_FIFO_SIZE,
  466. .max_wm = I915_MAX_WM,
  467. .default_wm = 1,
  468. .guard_size = 2,
  469. .cacheline_size = I915_FIFO_LINE_SIZE,
  470. };
  471. static const struct intel_watermark_params i830_a_wm_info = {
  472. .fifo_size = I855GM_FIFO_SIZE,
  473. .max_wm = I915_MAX_WM,
  474. .default_wm = 1,
  475. .guard_size = 2,
  476. .cacheline_size = I830_FIFO_LINE_SIZE,
  477. };
  478. static const struct intel_watermark_params i830_bc_wm_info = {
  479. .fifo_size = I855GM_FIFO_SIZE,
  480. .max_wm = I915_MAX_WM/2,
  481. .default_wm = 1,
  482. .guard_size = 2,
  483. .cacheline_size = I830_FIFO_LINE_SIZE,
  484. };
  485. static const struct intel_watermark_params i845_wm_info = {
  486. .fifo_size = I830_FIFO_SIZE,
  487. .max_wm = I915_MAX_WM,
  488. .default_wm = 1,
  489. .guard_size = 2,
  490. .cacheline_size = I830_FIFO_LINE_SIZE,
  491. };
  492. /**
  493. * intel_calculate_wm - calculate watermark level
  494. * @clock_in_khz: pixel clock
  495. * @wm: chip FIFO params
  496. * @pixel_size: display pixel size
  497. * @latency_ns: memory latency for the platform
  498. *
  499. * Calculate the watermark level (the level at which the display plane will
  500. * start fetching from memory again). Each chip has a different display
  501. * FIFO size and allocation, so the caller needs to figure that out and pass
  502. * in the correct intel_watermark_params structure.
  503. *
  504. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  505. * on the pixel size. When it reaches the watermark level, it'll start
  506. * fetching FIFO line sized based chunks from memory until the FIFO fills
  507. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  508. * will occur, and a display engine hang could result.
  509. */
  510. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  511. const struct intel_watermark_params *wm,
  512. int fifo_size,
  513. int pixel_size,
  514. unsigned long latency_ns)
  515. {
  516. long entries_required, wm_size;
  517. /*
  518. * Note: we need to make sure we don't overflow for various clock &
  519. * latency values.
  520. * clocks go from a few thousand to several hundred thousand.
  521. * latency is usually a few thousand
  522. */
  523. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  524. 1000;
  525. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  526. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  527. wm_size = fifo_size - (entries_required + wm->guard_size);
  528. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  529. /* Don't promote wm_size to unsigned... */
  530. if (wm_size > (long)wm->max_wm)
  531. wm_size = wm->max_wm;
  532. if (wm_size <= 0)
  533. wm_size = wm->default_wm;
  534. /*
  535. * Bspec seems to indicate that the value shouldn't be lower than
  536. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  537. * Lets go for 8 which is the burst size since certain platforms
  538. * already use a hardcoded 8 (which is what the spec says should be
  539. * done).
  540. */
  541. if (wm_size <= 8)
  542. wm_size = 8;
  543. return wm_size;
  544. }
  545. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  546. {
  547. struct drm_crtc *crtc, *enabled = NULL;
  548. for_each_crtc(dev, crtc) {
  549. if (intel_crtc_active(crtc)) {
  550. if (enabled)
  551. return NULL;
  552. enabled = crtc;
  553. }
  554. }
  555. return enabled;
  556. }
  557. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  558. {
  559. struct drm_device *dev = unused_crtc->dev;
  560. struct drm_i915_private *dev_priv = dev->dev_private;
  561. struct drm_crtc *crtc;
  562. const struct cxsr_latency *latency;
  563. u32 reg;
  564. unsigned long wm;
  565. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  566. dev_priv->fsb_freq, dev_priv->mem_freq);
  567. if (!latency) {
  568. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  569. intel_set_memory_cxsr(dev_priv, false);
  570. return;
  571. }
  572. crtc = single_enabled_crtc(dev);
  573. if (crtc) {
  574. const struct drm_display_mode *adjusted_mode;
  575. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  576. int clock;
  577. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  578. clock = adjusted_mode->crtc_clock;
  579. /* Display SR */
  580. wm = intel_calculate_wm(clock, &pineview_display_wm,
  581. pineview_display_wm.fifo_size,
  582. pixel_size, latency->display_sr);
  583. reg = I915_READ(DSPFW1);
  584. reg &= ~DSPFW_SR_MASK;
  585. reg |= FW_WM(wm, SR);
  586. I915_WRITE(DSPFW1, reg);
  587. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  588. /* cursor SR */
  589. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  590. pineview_display_wm.fifo_size,
  591. pixel_size, latency->cursor_sr);
  592. reg = I915_READ(DSPFW3);
  593. reg &= ~DSPFW_CURSOR_SR_MASK;
  594. reg |= FW_WM(wm, CURSOR_SR);
  595. I915_WRITE(DSPFW3, reg);
  596. /* Display HPLL off SR */
  597. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  598. pineview_display_hplloff_wm.fifo_size,
  599. pixel_size, latency->display_hpll_disable);
  600. reg = I915_READ(DSPFW3);
  601. reg &= ~DSPFW_HPLL_SR_MASK;
  602. reg |= FW_WM(wm, HPLL_SR);
  603. I915_WRITE(DSPFW3, reg);
  604. /* cursor HPLL off SR */
  605. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  606. pineview_display_hplloff_wm.fifo_size,
  607. pixel_size, latency->cursor_hpll_disable);
  608. reg = I915_READ(DSPFW3);
  609. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  610. reg |= FW_WM(wm, HPLL_CURSOR);
  611. I915_WRITE(DSPFW3, reg);
  612. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  613. intel_set_memory_cxsr(dev_priv, true);
  614. } else {
  615. intel_set_memory_cxsr(dev_priv, false);
  616. }
  617. }
  618. static bool g4x_compute_wm0(struct drm_device *dev,
  619. int plane,
  620. const struct intel_watermark_params *display,
  621. int display_latency_ns,
  622. const struct intel_watermark_params *cursor,
  623. int cursor_latency_ns,
  624. int *plane_wm,
  625. int *cursor_wm)
  626. {
  627. struct drm_crtc *crtc;
  628. const struct drm_display_mode *adjusted_mode;
  629. int htotal, hdisplay, clock, pixel_size;
  630. int line_time_us, line_count;
  631. int entries, tlb_miss;
  632. crtc = intel_get_crtc_for_plane(dev, plane);
  633. if (!intel_crtc_active(crtc)) {
  634. *cursor_wm = cursor->guard_size;
  635. *plane_wm = display->guard_size;
  636. return false;
  637. }
  638. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  639. clock = adjusted_mode->crtc_clock;
  640. htotal = adjusted_mode->crtc_htotal;
  641. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  642. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  643. /* Use the small buffer method to calculate plane watermark */
  644. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  645. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  646. if (tlb_miss > 0)
  647. entries += tlb_miss;
  648. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  649. *plane_wm = entries + display->guard_size;
  650. if (*plane_wm > (int)display->max_wm)
  651. *plane_wm = display->max_wm;
  652. /* Use the large buffer method to calculate cursor watermark */
  653. line_time_us = max(htotal * 1000 / clock, 1);
  654. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  655. entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
  656. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  657. if (tlb_miss > 0)
  658. entries += tlb_miss;
  659. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  660. *cursor_wm = entries + cursor->guard_size;
  661. if (*cursor_wm > (int)cursor->max_wm)
  662. *cursor_wm = (int)cursor->max_wm;
  663. return true;
  664. }
  665. /*
  666. * Check the wm result.
  667. *
  668. * If any calculated watermark values is larger than the maximum value that
  669. * can be programmed into the associated watermark register, that watermark
  670. * must be disabled.
  671. */
  672. static bool g4x_check_srwm(struct drm_device *dev,
  673. int display_wm, int cursor_wm,
  674. const struct intel_watermark_params *display,
  675. const struct intel_watermark_params *cursor)
  676. {
  677. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  678. display_wm, cursor_wm);
  679. if (display_wm > display->max_wm) {
  680. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  681. display_wm, display->max_wm);
  682. return false;
  683. }
  684. if (cursor_wm > cursor->max_wm) {
  685. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  686. cursor_wm, cursor->max_wm);
  687. return false;
  688. }
  689. if (!(display_wm || cursor_wm)) {
  690. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  691. return false;
  692. }
  693. return true;
  694. }
  695. static bool g4x_compute_srwm(struct drm_device *dev,
  696. int plane,
  697. int latency_ns,
  698. const struct intel_watermark_params *display,
  699. const struct intel_watermark_params *cursor,
  700. int *display_wm, int *cursor_wm)
  701. {
  702. struct drm_crtc *crtc;
  703. const struct drm_display_mode *adjusted_mode;
  704. int hdisplay, htotal, pixel_size, clock;
  705. unsigned long line_time_us;
  706. int line_count, line_size;
  707. int small, large;
  708. int entries;
  709. if (!latency_ns) {
  710. *display_wm = *cursor_wm = 0;
  711. return false;
  712. }
  713. crtc = intel_get_crtc_for_plane(dev, plane);
  714. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  715. clock = adjusted_mode->crtc_clock;
  716. htotal = adjusted_mode->crtc_htotal;
  717. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  718. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  719. line_time_us = max(htotal * 1000 / clock, 1);
  720. line_count = (latency_ns / line_time_us + 1000) / 1000;
  721. line_size = hdisplay * pixel_size;
  722. /* Use the minimum of the small and large buffer method for primary */
  723. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  724. large = line_count * line_size;
  725. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  726. *display_wm = entries + display->guard_size;
  727. /* calculate the self-refresh watermark for display cursor */
  728. entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
  729. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  730. *cursor_wm = entries + cursor->guard_size;
  731. return g4x_check_srwm(dev,
  732. *display_wm, *cursor_wm,
  733. display, cursor);
  734. }
  735. #define FW_WM_VLV(value, plane) \
  736. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  737. static void vlv_write_wm_values(struct intel_crtc *crtc,
  738. const struct vlv_wm_values *wm)
  739. {
  740. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  741. enum pipe pipe = crtc->pipe;
  742. I915_WRITE(VLV_DDL(pipe),
  743. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  744. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  745. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  746. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  747. I915_WRITE(DSPFW1,
  748. FW_WM(wm->sr.plane, SR) |
  749. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  750. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  751. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  752. I915_WRITE(DSPFW2,
  753. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  754. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  755. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  756. I915_WRITE(DSPFW3,
  757. FW_WM(wm->sr.cursor, CURSOR_SR));
  758. if (IS_CHERRYVIEW(dev_priv)) {
  759. I915_WRITE(DSPFW7_CHV,
  760. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  761. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  762. I915_WRITE(DSPFW8_CHV,
  763. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  764. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  765. I915_WRITE(DSPFW9_CHV,
  766. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  767. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  768. I915_WRITE(DSPHOWM,
  769. FW_WM(wm->sr.plane >> 9, SR_HI) |
  770. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  771. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  772. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  773. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  774. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  775. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  776. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  777. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  778. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  779. } else {
  780. I915_WRITE(DSPFW7,
  781. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  782. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  783. I915_WRITE(DSPHOWM,
  784. FW_WM(wm->sr.plane >> 9, SR_HI) |
  785. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  786. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  787. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  788. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  789. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  790. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  791. }
  792. POSTING_READ(DSPFW1);
  793. dev_priv->wm.vlv = *wm;
  794. }
  795. #undef FW_WM_VLV
  796. static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
  797. struct drm_plane *plane)
  798. {
  799. struct drm_device *dev = crtc->dev;
  800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  801. int entries, prec_mult, drain_latency, pixel_size;
  802. int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
  803. const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
  804. /*
  805. * FIXME the plane might have an fb
  806. * but be invisible (eg. due to clipping)
  807. */
  808. if (!intel_crtc->active || !plane->state->fb)
  809. return 0;
  810. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  811. return 0;
  812. pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
  813. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  814. return 0;
  815. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  816. prec_mult = high_precision;
  817. drain_latency = 64 * prec_mult * 4 / entries;
  818. if (drain_latency > DRAIN_LATENCY_MASK) {
  819. prec_mult /= 2;
  820. drain_latency = 64 * prec_mult * 4 / entries;
  821. }
  822. if (drain_latency > DRAIN_LATENCY_MASK)
  823. drain_latency = DRAIN_LATENCY_MASK;
  824. return drain_latency | (prec_mult == high_precision ?
  825. DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
  826. }
  827. static int vlv_compute_wm(struct intel_crtc *crtc,
  828. struct intel_plane *plane,
  829. int fifo_size)
  830. {
  831. int clock, entries, pixel_size;
  832. /*
  833. * FIXME the plane might have an fb
  834. * but be invisible (eg. due to clipping)
  835. */
  836. if (!crtc->active || !plane->base.state->fb)
  837. return 0;
  838. pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
  839. clock = crtc->config->base.adjusted_mode.crtc_clock;
  840. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  841. /*
  842. * Set up the watermark such that we don't start issuing memory
  843. * requests until we are within PND's max deadline value (256us).
  844. * Idea being to be idle as long as possible while still taking
  845. * advatange of PND's deadline scheduling. The limit of 8
  846. * cachelines (used when the FIFO will anyway drain in less time
  847. * than 256us) should match what we would be done if trickle
  848. * feed were enabled.
  849. */
  850. return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
  851. }
  852. static bool vlv_compute_sr_wm(struct drm_device *dev,
  853. struct vlv_wm_values *wm)
  854. {
  855. struct drm_i915_private *dev_priv = to_i915(dev);
  856. struct drm_crtc *crtc;
  857. enum pipe pipe = INVALID_PIPE;
  858. int num_planes = 0;
  859. int fifo_size = 0;
  860. struct intel_plane *plane;
  861. wm->sr.cursor = wm->sr.plane = 0;
  862. crtc = single_enabled_crtc(dev);
  863. /* maxfifo not supported on pipe C */
  864. if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
  865. pipe = to_intel_crtc(crtc)->pipe;
  866. num_planes = !!wm->pipe[pipe].primary +
  867. !!wm->pipe[pipe].sprite[0] +
  868. !!wm->pipe[pipe].sprite[1];
  869. fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  870. }
  871. if (fifo_size == 0 || num_planes > 1)
  872. return false;
  873. wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
  874. to_intel_plane(crtc->cursor), 0x3f);
  875. list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
  876. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  877. continue;
  878. if (plane->pipe != pipe)
  879. continue;
  880. wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
  881. plane, fifo_size);
  882. if (wm->sr.plane != 0)
  883. break;
  884. }
  885. return true;
  886. }
  887. static void valleyview_update_wm(struct drm_crtc *crtc)
  888. {
  889. struct drm_device *dev = crtc->dev;
  890. struct drm_i915_private *dev_priv = dev->dev_private;
  891. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  892. enum pipe pipe = intel_crtc->pipe;
  893. bool cxsr_enabled;
  894. struct vlv_wm_values wm = dev_priv->wm.vlv;
  895. wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
  896. wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
  897. to_intel_plane(crtc->primary),
  898. vlv_get_fifo_size(dev, pipe, 0));
  899. wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
  900. wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
  901. to_intel_plane(crtc->cursor),
  902. 0x3f);
  903. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  904. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  905. return;
  906. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  907. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  908. wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  909. wm.sr.plane, wm.sr.cursor);
  910. /*
  911. * FIXME DDR DVFS introduces massive memory latencies which
  912. * are not known to system agent so any deadline specified
  913. * by the display may not be respected. To support DDR DVFS
  914. * the watermark code needs to be rewritten to essentially
  915. * bypass deadline mechanism and rely solely on the
  916. * watermarks. For now disable DDR DVFS.
  917. */
  918. if (IS_CHERRYVIEW(dev_priv))
  919. chv_set_memory_dvfs(dev_priv, false);
  920. if (!cxsr_enabled)
  921. intel_set_memory_cxsr(dev_priv, false);
  922. vlv_write_wm_values(intel_crtc, &wm);
  923. if (cxsr_enabled)
  924. intel_set_memory_cxsr(dev_priv, true);
  925. }
  926. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  927. struct drm_crtc *crtc,
  928. uint32_t sprite_width,
  929. uint32_t sprite_height,
  930. int pixel_size,
  931. bool enabled, bool scaled)
  932. {
  933. struct drm_device *dev = crtc->dev;
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  936. enum pipe pipe = intel_crtc->pipe;
  937. int sprite = to_intel_plane(plane)->plane;
  938. bool cxsr_enabled;
  939. struct vlv_wm_values wm = dev_priv->wm.vlv;
  940. if (enabled) {
  941. wm.ddl[pipe].sprite[sprite] =
  942. vlv_compute_drain_latency(crtc, plane);
  943. wm.pipe[pipe].sprite[sprite] =
  944. vlv_compute_wm(intel_crtc,
  945. to_intel_plane(plane),
  946. vlv_get_fifo_size(dev, pipe, sprite+1));
  947. } else {
  948. wm.ddl[pipe].sprite[sprite] = 0;
  949. wm.pipe[pipe].sprite[sprite] = 0;
  950. }
  951. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  952. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  953. return;
  954. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
  955. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  956. sprite_name(pipe, sprite),
  957. wm.pipe[pipe].sprite[sprite],
  958. wm.sr.plane, wm.sr.cursor);
  959. if (!cxsr_enabled)
  960. intel_set_memory_cxsr(dev_priv, false);
  961. vlv_write_wm_values(intel_crtc, &wm);
  962. if (cxsr_enabled)
  963. intel_set_memory_cxsr(dev_priv, true);
  964. }
  965. #define single_plane_enabled(mask) is_power_of_2(mask)
  966. static void g4x_update_wm(struct drm_crtc *crtc)
  967. {
  968. struct drm_device *dev = crtc->dev;
  969. static const int sr_latency_ns = 12000;
  970. struct drm_i915_private *dev_priv = dev->dev_private;
  971. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  972. int plane_sr, cursor_sr;
  973. unsigned int enabled = 0;
  974. bool cxsr_enabled;
  975. if (g4x_compute_wm0(dev, PIPE_A,
  976. &g4x_wm_info, pessimal_latency_ns,
  977. &g4x_cursor_wm_info, pessimal_latency_ns,
  978. &planea_wm, &cursora_wm))
  979. enabled |= 1 << PIPE_A;
  980. if (g4x_compute_wm0(dev, PIPE_B,
  981. &g4x_wm_info, pessimal_latency_ns,
  982. &g4x_cursor_wm_info, pessimal_latency_ns,
  983. &planeb_wm, &cursorb_wm))
  984. enabled |= 1 << PIPE_B;
  985. if (single_plane_enabled(enabled) &&
  986. g4x_compute_srwm(dev, ffs(enabled) - 1,
  987. sr_latency_ns,
  988. &g4x_wm_info,
  989. &g4x_cursor_wm_info,
  990. &plane_sr, &cursor_sr)) {
  991. cxsr_enabled = true;
  992. } else {
  993. cxsr_enabled = false;
  994. intel_set_memory_cxsr(dev_priv, false);
  995. plane_sr = cursor_sr = 0;
  996. }
  997. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  998. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  999. planea_wm, cursora_wm,
  1000. planeb_wm, cursorb_wm,
  1001. plane_sr, cursor_sr);
  1002. I915_WRITE(DSPFW1,
  1003. FW_WM(plane_sr, SR) |
  1004. FW_WM(cursorb_wm, CURSORB) |
  1005. FW_WM(planeb_wm, PLANEB) |
  1006. FW_WM(planea_wm, PLANEA));
  1007. I915_WRITE(DSPFW2,
  1008. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1009. FW_WM(cursora_wm, CURSORA));
  1010. /* HPLL off in SR has some issues on G4x... disable it */
  1011. I915_WRITE(DSPFW3,
  1012. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1013. FW_WM(cursor_sr, CURSOR_SR));
  1014. if (cxsr_enabled)
  1015. intel_set_memory_cxsr(dev_priv, true);
  1016. }
  1017. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1018. {
  1019. struct drm_device *dev = unused_crtc->dev;
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. struct drm_crtc *crtc;
  1022. int srwm = 1;
  1023. int cursor_sr = 16;
  1024. bool cxsr_enabled;
  1025. /* Calc sr entries for one plane configs */
  1026. crtc = single_enabled_crtc(dev);
  1027. if (crtc) {
  1028. /* self-refresh has much higher latency */
  1029. static const int sr_latency_ns = 12000;
  1030. const struct drm_display_mode *adjusted_mode =
  1031. &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1032. int clock = adjusted_mode->crtc_clock;
  1033. int htotal = adjusted_mode->crtc_htotal;
  1034. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1035. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  1036. unsigned long line_time_us;
  1037. int entries;
  1038. line_time_us = max(htotal * 1000 / clock, 1);
  1039. /* Use ns/us then divide to preserve precision */
  1040. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1041. pixel_size * hdisplay;
  1042. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1043. srwm = I965_FIFO_SIZE - entries;
  1044. if (srwm < 0)
  1045. srwm = 1;
  1046. srwm &= 0x1ff;
  1047. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1048. entries, srwm);
  1049. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1050. pixel_size * crtc->cursor->state->crtc_w;
  1051. entries = DIV_ROUND_UP(entries,
  1052. i965_cursor_wm_info.cacheline_size);
  1053. cursor_sr = i965_cursor_wm_info.fifo_size -
  1054. (entries + i965_cursor_wm_info.guard_size);
  1055. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1056. cursor_sr = i965_cursor_wm_info.max_wm;
  1057. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1058. "cursor %d\n", srwm, cursor_sr);
  1059. cxsr_enabled = true;
  1060. } else {
  1061. cxsr_enabled = false;
  1062. /* Turn off self refresh if both pipes are enabled */
  1063. intel_set_memory_cxsr(dev_priv, false);
  1064. }
  1065. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1066. srwm);
  1067. /* 965 has limitations... */
  1068. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1069. FW_WM(8, CURSORB) |
  1070. FW_WM(8, PLANEB) |
  1071. FW_WM(8, PLANEA));
  1072. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1073. FW_WM(8, PLANEC_OLD));
  1074. /* update cursor SR watermark */
  1075. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1076. if (cxsr_enabled)
  1077. intel_set_memory_cxsr(dev_priv, true);
  1078. }
  1079. #undef FW_WM
  1080. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1081. {
  1082. struct drm_device *dev = unused_crtc->dev;
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. const struct intel_watermark_params *wm_info;
  1085. uint32_t fwater_lo;
  1086. uint32_t fwater_hi;
  1087. int cwm, srwm = 1;
  1088. int fifo_size;
  1089. int planea_wm, planeb_wm;
  1090. struct drm_crtc *crtc, *enabled = NULL;
  1091. if (IS_I945GM(dev))
  1092. wm_info = &i945_wm_info;
  1093. else if (!IS_GEN2(dev))
  1094. wm_info = &i915_wm_info;
  1095. else
  1096. wm_info = &i830_a_wm_info;
  1097. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1098. crtc = intel_get_crtc_for_plane(dev, 0);
  1099. if (intel_crtc_active(crtc)) {
  1100. const struct drm_display_mode *adjusted_mode;
  1101. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1102. if (IS_GEN2(dev))
  1103. cpp = 4;
  1104. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1105. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1106. wm_info, fifo_size, cpp,
  1107. pessimal_latency_ns);
  1108. enabled = crtc;
  1109. } else {
  1110. planea_wm = fifo_size - wm_info->guard_size;
  1111. if (planea_wm > (long)wm_info->max_wm)
  1112. planea_wm = wm_info->max_wm;
  1113. }
  1114. if (IS_GEN2(dev))
  1115. wm_info = &i830_bc_wm_info;
  1116. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1117. crtc = intel_get_crtc_for_plane(dev, 1);
  1118. if (intel_crtc_active(crtc)) {
  1119. const struct drm_display_mode *adjusted_mode;
  1120. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1121. if (IS_GEN2(dev))
  1122. cpp = 4;
  1123. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1124. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1125. wm_info, fifo_size, cpp,
  1126. pessimal_latency_ns);
  1127. if (enabled == NULL)
  1128. enabled = crtc;
  1129. else
  1130. enabled = NULL;
  1131. } else {
  1132. planeb_wm = fifo_size - wm_info->guard_size;
  1133. if (planeb_wm > (long)wm_info->max_wm)
  1134. planeb_wm = wm_info->max_wm;
  1135. }
  1136. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1137. if (IS_I915GM(dev) && enabled) {
  1138. struct drm_i915_gem_object *obj;
  1139. obj = intel_fb_obj(enabled->primary->state->fb);
  1140. /* self-refresh seems busted with untiled */
  1141. if (obj->tiling_mode == I915_TILING_NONE)
  1142. enabled = NULL;
  1143. }
  1144. /*
  1145. * Overlay gets an aggressive default since video jitter is bad.
  1146. */
  1147. cwm = 2;
  1148. /* Play safe and disable self-refresh before adjusting watermarks. */
  1149. intel_set_memory_cxsr(dev_priv, false);
  1150. /* Calc sr entries for one plane configs */
  1151. if (HAS_FW_BLC(dev) && enabled) {
  1152. /* self-refresh has much higher latency */
  1153. static const int sr_latency_ns = 6000;
  1154. const struct drm_display_mode *adjusted_mode =
  1155. &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1156. int clock = adjusted_mode->crtc_clock;
  1157. int htotal = adjusted_mode->crtc_htotal;
  1158. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1159. int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
  1160. unsigned long line_time_us;
  1161. int entries;
  1162. line_time_us = max(htotal * 1000 / clock, 1);
  1163. /* Use ns/us then divide to preserve precision */
  1164. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1165. pixel_size * hdisplay;
  1166. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1167. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1168. srwm = wm_info->fifo_size - entries;
  1169. if (srwm < 0)
  1170. srwm = 1;
  1171. if (IS_I945G(dev) || IS_I945GM(dev))
  1172. I915_WRITE(FW_BLC_SELF,
  1173. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1174. else if (IS_I915GM(dev))
  1175. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1176. }
  1177. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1178. planea_wm, planeb_wm, cwm, srwm);
  1179. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1180. fwater_hi = (cwm & 0x1f);
  1181. /* Set request length to 8 cachelines per fetch */
  1182. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1183. fwater_hi = fwater_hi | (1 << 8);
  1184. I915_WRITE(FW_BLC, fwater_lo);
  1185. I915_WRITE(FW_BLC2, fwater_hi);
  1186. if (enabled)
  1187. intel_set_memory_cxsr(dev_priv, true);
  1188. }
  1189. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1190. {
  1191. struct drm_device *dev = unused_crtc->dev;
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. struct drm_crtc *crtc;
  1194. const struct drm_display_mode *adjusted_mode;
  1195. uint32_t fwater_lo;
  1196. int planea_wm;
  1197. crtc = single_enabled_crtc(dev);
  1198. if (crtc == NULL)
  1199. return;
  1200. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1201. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1202. &i845_wm_info,
  1203. dev_priv->display.get_fifo_size(dev, 0),
  1204. 4, pessimal_latency_ns);
  1205. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1206. fwater_lo |= (3<<8) | planea_wm;
  1207. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1208. I915_WRITE(FW_BLC, fwater_lo);
  1209. }
  1210. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1211. struct drm_crtc *crtc)
  1212. {
  1213. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1214. uint32_t pixel_rate;
  1215. pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
  1216. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1217. * adjust the pixel_rate here. */
  1218. if (intel_crtc->config->pch_pfit.enabled) {
  1219. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1220. uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
  1221. pipe_w = intel_crtc->config->pipe_src_w;
  1222. pipe_h = intel_crtc->config->pipe_src_h;
  1223. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1224. pfit_h = pfit_size & 0xFFFF;
  1225. if (pipe_w < pfit_w)
  1226. pipe_w = pfit_w;
  1227. if (pipe_h < pfit_h)
  1228. pipe_h = pfit_h;
  1229. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1230. pfit_w * pfit_h);
  1231. }
  1232. return pixel_rate;
  1233. }
  1234. /* latency must be in 0.1us units. */
  1235. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1236. uint32_t latency)
  1237. {
  1238. uint64_t ret;
  1239. if (WARN(latency == 0, "Latency value missing\n"))
  1240. return UINT_MAX;
  1241. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1242. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1243. return ret;
  1244. }
  1245. /* latency must be in 0.1us units. */
  1246. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1247. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1248. uint32_t latency)
  1249. {
  1250. uint32_t ret;
  1251. if (WARN(latency == 0, "Latency value missing\n"))
  1252. return UINT_MAX;
  1253. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1254. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1255. ret = DIV_ROUND_UP(ret, 64) + 2;
  1256. return ret;
  1257. }
  1258. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1259. uint8_t bytes_per_pixel)
  1260. {
  1261. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1262. }
  1263. struct skl_pipe_wm_parameters {
  1264. bool active;
  1265. uint32_t pipe_htotal;
  1266. uint32_t pixel_rate; /* in KHz */
  1267. struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
  1268. struct intel_plane_wm_parameters cursor;
  1269. };
  1270. struct ilk_pipe_wm_parameters {
  1271. bool active;
  1272. uint32_t pipe_htotal;
  1273. uint32_t pixel_rate;
  1274. struct intel_plane_wm_parameters pri;
  1275. struct intel_plane_wm_parameters spr;
  1276. struct intel_plane_wm_parameters cur;
  1277. };
  1278. struct ilk_wm_maximums {
  1279. uint16_t pri;
  1280. uint16_t spr;
  1281. uint16_t cur;
  1282. uint16_t fbc;
  1283. };
  1284. /* used in computing the new watermarks state */
  1285. struct intel_wm_config {
  1286. unsigned int num_pipes_active;
  1287. bool sprites_enabled;
  1288. bool sprites_scaled;
  1289. };
  1290. /*
  1291. * For both WM_PIPE and WM_LP.
  1292. * mem_value must be in 0.1us units.
  1293. */
  1294. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1295. uint32_t mem_value,
  1296. bool is_lp)
  1297. {
  1298. uint32_t method1, method2;
  1299. if (!params->active || !params->pri.enabled)
  1300. return 0;
  1301. method1 = ilk_wm_method1(params->pixel_rate,
  1302. params->pri.bytes_per_pixel,
  1303. mem_value);
  1304. if (!is_lp)
  1305. return method1;
  1306. method2 = ilk_wm_method2(params->pixel_rate,
  1307. params->pipe_htotal,
  1308. params->pri.horiz_pixels,
  1309. params->pri.bytes_per_pixel,
  1310. mem_value);
  1311. return min(method1, method2);
  1312. }
  1313. /*
  1314. * For both WM_PIPE and WM_LP.
  1315. * mem_value must be in 0.1us units.
  1316. */
  1317. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1318. uint32_t mem_value)
  1319. {
  1320. uint32_t method1, method2;
  1321. if (!params->active || !params->spr.enabled)
  1322. return 0;
  1323. method1 = ilk_wm_method1(params->pixel_rate,
  1324. params->spr.bytes_per_pixel,
  1325. mem_value);
  1326. method2 = ilk_wm_method2(params->pixel_rate,
  1327. params->pipe_htotal,
  1328. params->spr.horiz_pixels,
  1329. params->spr.bytes_per_pixel,
  1330. mem_value);
  1331. return min(method1, method2);
  1332. }
  1333. /*
  1334. * For both WM_PIPE and WM_LP.
  1335. * mem_value must be in 0.1us units.
  1336. */
  1337. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1338. uint32_t mem_value)
  1339. {
  1340. if (!params->active || !params->cur.enabled)
  1341. return 0;
  1342. return ilk_wm_method2(params->pixel_rate,
  1343. params->pipe_htotal,
  1344. params->cur.horiz_pixels,
  1345. params->cur.bytes_per_pixel,
  1346. mem_value);
  1347. }
  1348. /* Only for WM_LP. */
  1349. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1350. uint32_t pri_val)
  1351. {
  1352. if (!params->active || !params->pri.enabled)
  1353. return 0;
  1354. return ilk_wm_fbc(pri_val,
  1355. params->pri.horiz_pixels,
  1356. params->pri.bytes_per_pixel);
  1357. }
  1358. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1359. {
  1360. if (INTEL_INFO(dev)->gen >= 8)
  1361. return 3072;
  1362. else if (INTEL_INFO(dev)->gen >= 7)
  1363. return 768;
  1364. else
  1365. return 512;
  1366. }
  1367. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1368. int level, bool is_sprite)
  1369. {
  1370. if (INTEL_INFO(dev)->gen >= 8)
  1371. /* BDW primary/sprite plane watermarks */
  1372. return level == 0 ? 255 : 2047;
  1373. else if (INTEL_INFO(dev)->gen >= 7)
  1374. /* IVB/HSW primary/sprite plane watermarks */
  1375. return level == 0 ? 127 : 1023;
  1376. else if (!is_sprite)
  1377. /* ILK/SNB primary plane watermarks */
  1378. return level == 0 ? 127 : 511;
  1379. else
  1380. /* ILK/SNB sprite plane watermarks */
  1381. return level == 0 ? 63 : 255;
  1382. }
  1383. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1384. int level)
  1385. {
  1386. if (INTEL_INFO(dev)->gen >= 7)
  1387. return level == 0 ? 63 : 255;
  1388. else
  1389. return level == 0 ? 31 : 63;
  1390. }
  1391. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1392. {
  1393. if (INTEL_INFO(dev)->gen >= 8)
  1394. return 31;
  1395. else
  1396. return 15;
  1397. }
  1398. /* Calculate the maximum primary/sprite plane watermark */
  1399. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1400. int level,
  1401. const struct intel_wm_config *config,
  1402. enum intel_ddb_partitioning ddb_partitioning,
  1403. bool is_sprite)
  1404. {
  1405. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1406. /* if sprites aren't enabled, sprites get nothing */
  1407. if (is_sprite && !config->sprites_enabled)
  1408. return 0;
  1409. /* HSW allows LP1+ watermarks even with multiple pipes */
  1410. if (level == 0 || config->num_pipes_active > 1) {
  1411. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1412. /*
  1413. * For some reason the non self refresh
  1414. * FIFO size is only half of the self
  1415. * refresh FIFO size on ILK/SNB.
  1416. */
  1417. if (INTEL_INFO(dev)->gen <= 6)
  1418. fifo_size /= 2;
  1419. }
  1420. if (config->sprites_enabled) {
  1421. /* level 0 is always calculated with 1:1 split */
  1422. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1423. if (is_sprite)
  1424. fifo_size *= 5;
  1425. fifo_size /= 6;
  1426. } else {
  1427. fifo_size /= 2;
  1428. }
  1429. }
  1430. /* clamp to max that the registers can hold */
  1431. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1432. }
  1433. /* Calculate the maximum cursor plane watermark */
  1434. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1435. int level,
  1436. const struct intel_wm_config *config)
  1437. {
  1438. /* HSW LP1+ watermarks w/ multiple pipes */
  1439. if (level > 0 && config->num_pipes_active > 1)
  1440. return 64;
  1441. /* otherwise just report max that registers can hold */
  1442. return ilk_cursor_wm_reg_max(dev, level);
  1443. }
  1444. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1445. int level,
  1446. const struct intel_wm_config *config,
  1447. enum intel_ddb_partitioning ddb_partitioning,
  1448. struct ilk_wm_maximums *max)
  1449. {
  1450. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1451. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1452. max->cur = ilk_cursor_wm_max(dev, level, config);
  1453. max->fbc = ilk_fbc_wm_reg_max(dev);
  1454. }
  1455. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1456. int level,
  1457. struct ilk_wm_maximums *max)
  1458. {
  1459. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1460. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1461. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1462. max->fbc = ilk_fbc_wm_reg_max(dev);
  1463. }
  1464. static bool ilk_validate_wm_level(int level,
  1465. const struct ilk_wm_maximums *max,
  1466. struct intel_wm_level *result)
  1467. {
  1468. bool ret;
  1469. /* already determined to be invalid? */
  1470. if (!result->enable)
  1471. return false;
  1472. result->enable = result->pri_val <= max->pri &&
  1473. result->spr_val <= max->spr &&
  1474. result->cur_val <= max->cur;
  1475. ret = result->enable;
  1476. /*
  1477. * HACK until we can pre-compute everything,
  1478. * and thus fail gracefully if LP0 watermarks
  1479. * are exceeded...
  1480. */
  1481. if (level == 0 && !result->enable) {
  1482. if (result->pri_val > max->pri)
  1483. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1484. level, result->pri_val, max->pri);
  1485. if (result->spr_val > max->spr)
  1486. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1487. level, result->spr_val, max->spr);
  1488. if (result->cur_val > max->cur)
  1489. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1490. level, result->cur_val, max->cur);
  1491. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1492. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1493. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1494. result->enable = true;
  1495. }
  1496. return ret;
  1497. }
  1498. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1499. int level,
  1500. const struct ilk_pipe_wm_parameters *p,
  1501. struct intel_wm_level *result)
  1502. {
  1503. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1504. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1505. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1506. /* WM1+ latency values stored in 0.5us units */
  1507. if (level > 0) {
  1508. pri_latency *= 5;
  1509. spr_latency *= 5;
  1510. cur_latency *= 5;
  1511. }
  1512. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1513. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1514. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1515. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1516. result->enable = true;
  1517. }
  1518. static uint32_t
  1519. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1520. {
  1521. struct drm_i915_private *dev_priv = dev->dev_private;
  1522. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1523. struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
  1524. u32 linetime, ips_linetime;
  1525. if (!intel_crtc->active)
  1526. return 0;
  1527. /* The WM are computed with base on how long it takes to fill a single
  1528. * row at the given clock rate, multiplied by 8.
  1529. * */
  1530. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1531. mode->crtc_clock);
  1532. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1533. intel_ddi_get_cdclk_freq(dev_priv));
  1534. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1535. PIPE_WM_LINETIME_TIME(linetime);
  1536. }
  1537. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1538. {
  1539. struct drm_i915_private *dev_priv = dev->dev_private;
  1540. if (IS_GEN9(dev)) {
  1541. uint32_t val;
  1542. int ret, i;
  1543. int level, max_level = ilk_wm_max_level(dev);
  1544. /* read the first set of memory latencies[0:3] */
  1545. val = 0; /* data0 to be programmed to 0 for first set */
  1546. mutex_lock(&dev_priv->rps.hw_lock);
  1547. ret = sandybridge_pcode_read(dev_priv,
  1548. GEN9_PCODE_READ_MEM_LATENCY,
  1549. &val);
  1550. mutex_unlock(&dev_priv->rps.hw_lock);
  1551. if (ret) {
  1552. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1553. return;
  1554. }
  1555. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1556. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1557. GEN9_MEM_LATENCY_LEVEL_MASK;
  1558. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1559. GEN9_MEM_LATENCY_LEVEL_MASK;
  1560. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1561. GEN9_MEM_LATENCY_LEVEL_MASK;
  1562. /* read the second set of memory latencies[4:7] */
  1563. val = 1; /* data0 to be programmed to 1 for second set */
  1564. mutex_lock(&dev_priv->rps.hw_lock);
  1565. ret = sandybridge_pcode_read(dev_priv,
  1566. GEN9_PCODE_READ_MEM_LATENCY,
  1567. &val);
  1568. mutex_unlock(&dev_priv->rps.hw_lock);
  1569. if (ret) {
  1570. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1571. return;
  1572. }
  1573. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1574. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1575. GEN9_MEM_LATENCY_LEVEL_MASK;
  1576. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1577. GEN9_MEM_LATENCY_LEVEL_MASK;
  1578. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1579. GEN9_MEM_LATENCY_LEVEL_MASK;
  1580. /*
  1581. * WaWmMemoryReadLatency:skl
  1582. *
  1583. * punit doesn't take into account the read latency so we need
  1584. * to add 2us to the various latency levels we retrieve from
  1585. * the punit.
  1586. * - W0 is a bit special in that it's the only level that
  1587. * can't be disabled if we want to have display working, so
  1588. * we always add 2us there.
  1589. * - For levels >=1, punit returns 0us latency when they are
  1590. * disabled, so we respect that and don't add 2us then
  1591. *
  1592. * Additionally, if a level n (n > 1) has a 0us latency, all
  1593. * levels m (m >= n) need to be disabled. We make sure to
  1594. * sanitize the values out of the punit to satisfy this
  1595. * requirement.
  1596. */
  1597. wm[0] += 2;
  1598. for (level = 1; level <= max_level; level++)
  1599. if (wm[level] != 0)
  1600. wm[level] += 2;
  1601. else {
  1602. for (i = level + 1; i <= max_level; i++)
  1603. wm[i] = 0;
  1604. break;
  1605. }
  1606. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1607. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1608. wm[0] = (sskpd >> 56) & 0xFF;
  1609. if (wm[0] == 0)
  1610. wm[0] = sskpd & 0xF;
  1611. wm[1] = (sskpd >> 4) & 0xFF;
  1612. wm[2] = (sskpd >> 12) & 0xFF;
  1613. wm[3] = (sskpd >> 20) & 0x1FF;
  1614. wm[4] = (sskpd >> 32) & 0x1FF;
  1615. } else if (INTEL_INFO(dev)->gen >= 6) {
  1616. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1617. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1618. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1619. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1620. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1621. } else if (INTEL_INFO(dev)->gen >= 5) {
  1622. uint32_t mltr = I915_READ(MLTR_ILK);
  1623. /* ILK primary LP0 latency is 700 ns */
  1624. wm[0] = 7;
  1625. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1626. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1627. }
  1628. }
  1629. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1630. {
  1631. /* ILK sprite LP0 latency is 1300 ns */
  1632. if (INTEL_INFO(dev)->gen == 5)
  1633. wm[0] = 13;
  1634. }
  1635. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1636. {
  1637. /* ILK cursor LP0 latency is 1300 ns */
  1638. if (INTEL_INFO(dev)->gen == 5)
  1639. wm[0] = 13;
  1640. /* WaDoubleCursorLP3Latency:ivb */
  1641. if (IS_IVYBRIDGE(dev))
  1642. wm[3] *= 2;
  1643. }
  1644. int ilk_wm_max_level(const struct drm_device *dev)
  1645. {
  1646. /* how many WM levels are we expecting */
  1647. if (IS_GEN9(dev))
  1648. return 7;
  1649. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1650. return 4;
  1651. else if (INTEL_INFO(dev)->gen >= 6)
  1652. return 3;
  1653. else
  1654. return 2;
  1655. }
  1656. static void intel_print_wm_latency(struct drm_device *dev,
  1657. const char *name,
  1658. const uint16_t wm[8])
  1659. {
  1660. int level, max_level = ilk_wm_max_level(dev);
  1661. for (level = 0; level <= max_level; level++) {
  1662. unsigned int latency = wm[level];
  1663. if (latency == 0) {
  1664. DRM_ERROR("%s WM%d latency not provided\n",
  1665. name, level);
  1666. continue;
  1667. }
  1668. /*
  1669. * - latencies are in us on gen9.
  1670. * - before then, WM1+ latency values are in 0.5us units
  1671. */
  1672. if (IS_GEN9(dev))
  1673. latency *= 10;
  1674. else if (level > 0)
  1675. latency *= 5;
  1676. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1677. name, level, wm[level],
  1678. latency / 10, latency % 10);
  1679. }
  1680. }
  1681. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1682. uint16_t wm[5], uint16_t min)
  1683. {
  1684. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1685. if (wm[0] >= min)
  1686. return false;
  1687. wm[0] = max(wm[0], min);
  1688. for (level = 1; level <= max_level; level++)
  1689. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1690. return true;
  1691. }
  1692. static void snb_wm_latency_quirk(struct drm_device *dev)
  1693. {
  1694. struct drm_i915_private *dev_priv = dev->dev_private;
  1695. bool changed;
  1696. /*
  1697. * The BIOS provided WM memory latency values are often
  1698. * inadequate for high resolution displays. Adjust them.
  1699. */
  1700. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1701. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1702. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1703. if (!changed)
  1704. return;
  1705. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1706. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1707. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1708. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1709. }
  1710. static void ilk_setup_wm_latency(struct drm_device *dev)
  1711. {
  1712. struct drm_i915_private *dev_priv = dev->dev_private;
  1713. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1714. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1715. sizeof(dev_priv->wm.pri_latency));
  1716. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1717. sizeof(dev_priv->wm.pri_latency));
  1718. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1719. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1720. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1721. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1722. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1723. if (IS_GEN6(dev))
  1724. snb_wm_latency_quirk(dev);
  1725. }
  1726. static void skl_setup_wm_latency(struct drm_device *dev)
  1727. {
  1728. struct drm_i915_private *dev_priv = dev->dev_private;
  1729. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1730. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1731. }
  1732. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1733. struct ilk_pipe_wm_parameters *p)
  1734. {
  1735. struct drm_device *dev = crtc->dev;
  1736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1737. enum pipe pipe = intel_crtc->pipe;
  1738. struct drm_plane *plane;
  1739. if (!intel_crtc->active)
  1740. return;
  1741. p->active = true;
  1742. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  1743. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1744. if (crtc->primary->state->fb)
  1745. p->pri.bytes_per_pixel =
  1746. crtc->primary->state->fb->bits_per_pixel / 8;
  1747. else
  1748. p->pri.bytes_per_pixel = 4;
  1749. p->cur.bytes_per_pixel = 4;
  1750. /*
  1751. * TODO: for now, assume primary and cursor planes are always enabled.
  1752. * Setting them to false makes the screen flicker.
  1753. */
  1754. p->pri.enabled = true;
  1755. p->cur.enabled = true;
  1756. p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
  1757. p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
  1758. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1759. struct intel_plane *intel_plane = to_intel_plane(plane);
  1760. if (intel_plane->pipe == pipe) {
  1761. p->spr = intel_plane->wm;
  1762. break;
  1763. }
  1764. }
  1765. }
  1766. static void ilk_compute_wm_config(struct drm_device *dev,
  1767. struct intel_wm_config *config)
  1768. {
  1769. struct intel_crtc *intel_crtc;
  1770. /* Compute the currently _active_ config */
  1771. for_each_intel_crtc(dev, intel_crtc) {
  1772. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1773. if (!wm->pipe_enabled)
  1774. continue;
  1775. config->sprites_enabled |= wm->sprites_enabled;
  1776. config->sprites_scaled |= wm->sprites_scaled;
  1777. config->num_pipes_active++;
  1778. }
  1779. }
  1780. /* Compute new watermarks for the pipe */
  1781. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1782. const struct ilk_pipe_wm_parameters *params,
  1783. struct intel_pipe_wm *pipe_wm)
  1784. {
  1785. struct drm_device *dev = crtc->dev;
  1786. const struct drm_i915_private *dev_priv = dev->dev_private;
  1787. int level, max_level = ilk_wm_max_level(dev);
  1788. /* LP0 watermark maximums depend on this pipe alone */
  1789. struct intel_wm_config config = {
  1790. .num_pipes_active = 1,
  1791. .sprites_enabled = params->spr.enabled,
  1792. .sprites_scaled = params->spr.scaled,
  1793. };
  1794. struct ilk_wm_maximums max;
  1795. pipe_wm->pipe_enabled = params->active;
  1796. pipe_wm->sprites_enabled = params->spr.enabled;
  1797. pipe_wm->sprites_scaled = params->spr.scaled;
  1798. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1799. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1800. max_level = 1;
  1801. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1802. if (params->spr.scaled)
  1803. max_level = 0;
  1804. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1805. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1806. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1807. /* LP0 watermarks always use 1/2 DDB partitioning */
  1808. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1809. /* At least LP0 must be valid */
  1810. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1811. return false;
  1812. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1813. for (level = 1; level <= max_level; level++) {
  1814. struct intel_wm_level wm = {};
  1815. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1816. /*
  1817. * Disable any watermark level that exceeds the
  1818. * register maximums since such watermarks are
  1819. * always invalid.
  1820. */
  1821. if (!ilk_validate_wm_level(level, &max, &wm))
  1822. break;
  1823. pipe_wm->wm[level] = wm;
  1824. }
  1825. return true;
  1826. }
  1827. /*
  1828. * Merge the watermarks from all active pipes for a specific level.
  1829. */
  1830. static void ilk_merge_wm_level(struct drm_device *dev,
  1831. int level,
  1832. struct intel_wm_level *ret_wm)
  1833. {
  1834. const struct intel_crtc *intel_crtc;
  1835. ret_wm->enable = true;
  1836. for_each_intel_crtc(dev, intel_crtc) {
  1837. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1838. const struct intel_wm_level *wm = &active->wm[level];
  1839. if (!active->pipe_enabled)
  1840. continue;
  1841. /*
  1842. * The watermark values may have been used in the past,
  1843. * so we must maintain them in the registers for some
  1844. * time even if the level is now disabled.
  1845. */
  1846. if (!wm->enable)
  1847. ret_wm->enable = false;
  1848. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1849. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1850. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1851. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1852. }
  1853. }
  1854. /*
  1855. * Merge all low power watermarks for all active pipes.
  1856. */
  1857. static void ilk_wm_merge(struct drm_device *dev,
  1858. const struct intel_wm_config *config,
  1859. const struct ilk_wm_maximums *max,
  1860. struct intel_pipe_wm *merged)
  1861. {
  1862. int level, max_level = ilk_wm_max_level(dev);
  1863. int last_enabled_level = max_level;
  1864. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1865. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1866. config->num_pipes_active > 1)
  1867. return;
  1868. /* ILK: FBC WM must be disabled always */
  1869. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1870. /* merge each WM1+ level */
  1871. for (level = 1; level <= max_level; level++) {
  1872. struct intel_wm_level *wm = &merged->wm[level];
  1873. ilk_merge_wm_level(dev, level, wm);
  1874. if (level > last_enabled_level)
  1875. wm->enable = false;
  1876. else if (!ilk_validate_wm_level(level, max, wm))
  1877. /* make sure all following levels get disabled */
  1878. last_enabled_level = level - 1;
  1879. /*
  1880. * The spec says it is preferred to disable
  1881. * FBC WMs instead of disabling a WM level.
  1882. */
  1883. if (wm->fbc_val > max->fbc) {
  1884. if (wm->enable)
  1885. merged->fbc_wm_enabled = false;
  1886. wm->fbc_val = 0;
  1887. }
  1888. }
  1889. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  1890. /*
  1891. * FIXME this is racy. FBC might get enabled later.
  1892. * What we should check here is whether FBC can be
  1893. * enabled sometime later.
  1894. */
  1895. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  1896. for (level = 2; level <= max_level; level++) {
  1897. struct intel_wm_level *wm = &merged->wm[level];
  1898. wm->enable = false;
  1899. }
  1900. }
  1901. }
  1902. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  1903. {
  1904. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  1905. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  1906. }
  1907. /* The value we need to program into the WM_LPx latency field */
  1908. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  1909. {
  1910. struct drm_i915_private *dev_priv = dev->dev_private;
  1911. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1912. return 2 * level;
  1913. else
  1914. return dev_priv->wm.pri_latency[level];
  1915. }
  1916. static void ilk_compute_wm_results(struct drm_device *dev,
  1917. const struct intel_pipe_wm *merged,
  1918. enum intel_ddb_partitioning partitioning,
  1919. struct ilk_wm_values *results)
  1920. {
  1921. struct intel_crtc *intel_crtc;
  1922. int level, wm_lp;
  1923. results->enable_fbc_wm = merged->fbc_wm_enabled;
  1924. results->partitioning = partitioning;
  1925. /* LP1+ register values */
  1926. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  1927. const struct intel_wm_level *r;
  1928. level = ilk_wm_lp_to_level(wm_lp, merged);
  1929. r = &merged->wm[level];
  1930. /*
  1931. * Maintain the watermark values even if the level is
  1932. * disabled. Doing otherwise could cause underruns.
  1933. */
  1934. results->wm_lp[wm_lp - 1] =
  1935. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  1936. (r->pri_val << WM1_LP_SR_SHIFT) |
  1937. r->cur_val;
  1938. if (r->enable)
  1939. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  1940. if (INTEL_INFO(dev)->gen >= 8)
  1941. results->wm_lp[wm_lp - 1] |=
  1942. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  1943. else
  1944. results->wm_lp[wm_lp - 1] |=
  1945. r->fbc_val << WM1_LP_FBC_SHIFT;
  1946. /*
  1947. * Always set WM1S_LP_EN when spr_val != 0, even if the
  1948. * level is disabled. Doing otherwise could cause underruns.
  1949. */
  1950. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  1951. WARN_ON(wm_lp != 1);
  1952. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  1953. } else
  1954. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  1955. }
  1956. /* LP0 register values */
  1957. for_each_intel_crtc(dev, intel_crtc) {
  1958. enum pipe pipe = intel_crtc->pipe;
  1959. const struct intel_wm_level *r =
  1960. &intel_crtc->wm.active.wm[0];
  1961. if (WARN_ON(!r->enable))
  1962. continue;
  1963. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  1964. results->wm_pipe[pipe] =
  1965. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  1966. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  1967. r->cur_val;
  1968. }
  1969. }
  1970. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  1971. * case both are at the same level. Prefer r1 in case they're the same. */
  1972. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  1973. struct intel_pipe_wm *r1,
  1974. struct intel_pipe_wm *r2)
  1975. {
  1976. int level, max_level = ilk_wm_max_level(dev);
  1977. int level1 = 0, level2 = 0;
  1978. for (level = 1; level <= max_level; level++) {
  1979. if (r1->wm[level].enable)
  1980. level1 = level;
  1981. if (r2->wm[level].enable)
  1982. level2 = level;
  1983. }
  1984. if (level1 == level2) {
  1985. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  1986. return r2;
  1987. else
  1988. return r1;
  1989. } else if (level1 > level2) {
  1990. return r1;
  1991. } else {
  1992. return r2;
  1993. }
  1994. }
  1995. /* dirty bits used to track which watermarks need changes */
  1996. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  1997. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  1998. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  1999. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2000. #define WM_DIRTY_FBC (1 << 24)
  2001. #define WM_DIRTY_DDB (1 << 25)
  2002. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2003. const struct ilk_wm_values *old,
  2004. const struct ilk_wm_values *new)
  2005. {
  2006. unsigned int dirty = 0;
  2007. enum pipe pipe;
  2008. int wm_lp;
  2009. for_each_pipe(dev_priv, pipe) {
  2010. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2011. dirty |= WM_DIRTY_LINETIME(pipe);
  2012. /* Must disable LP1+ watermarks too */
  2013. dirty |= WM_DIRTY_LP_ALL;
  2014. }
  2015. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2016. dirty |= WM_DIRTY_PIPE(pipe);
  2017. /* Must disable LP1+ watermarks too */
  2018. dirty |= WM_DIRTY_LP_ALL;
  2019. }
  2020. }
  2021. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2022. dirty |= WM_DIRTY_FBC;
  2023. /* Must disable LP1+ watermarks too */
  2024. dirty |= WM_DIRTY_LP_ALL;
  2025. }
  2026. if (old->partitioning != new->partitioning) {
  2027. dirty |= WM_DIRTY_DDB;
  2028. /* Must disable LP1+ watermarks too */
  2029. dirty |= WM_DIRTY_LP_ALL;
  2030. }
  2031. /* LP1+ watermarks already deemed dirty, no need to continue */
  2032. if (dirty & WM_DIRTY_LP_ALL)
  2033. return dirty;
  2034. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2035. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2036. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2037. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2038. break;
  2039. }
  2040. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2041. for (; wm_lp <= 3; wm_lp++)
  2042. dirty |= WM_DIRTY_LP(wm_lp);
  2043. return dirty;
  2044. }
  2045. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2046. unsigned int dirty)
  2047. {
  2048. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2049. bool changed = false;
  2050. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2051. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2052. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2053. changed = true;
  2054. }
  2055. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2056. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2057. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2058. changed = true;
  2059. }
  2060. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2061. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2062. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2063. changed = true;
  2064. }
  2065. /*
  2066. * Don't touch WM1S_LP_EN here.
  2067. * Doing so could cause underruns.
  2068. */
  2069. return changed;
  2070. }
  2071. /*
  2072. * The spec says we shouldn't write when we don't need, because every write
  2073. * causes WMs to be re-evaluated, expending some power.
  2074. */
  2075. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2076. struct ilk_wm_values *results)
  2077. {
  2078. struct drm_device *dev = dev_priv->dev;
  2079. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2080. unsigned int dirty;
  2081. uint32_t val;
  2082. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2083. if (!dirty)
  2084. return;
  2085. _ilk_disable_lp_wm(dev_priv, dirty);
  2086. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2087. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2088. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2089. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2090. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2091. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2092. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2093. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2094. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2095. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2096. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2097. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2098. if (dirty & WM_DIRTY_DDB) {
  2099. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2100. val = I915_READ(WM_MISC);
  2101. if (results->partitioning == INTEL_DDB_PART_1_2)
  2102. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2103. else
  2104. val |= WM_MISC_DATA_PARTITION_5_6;
  2105. I915_WRITE(WM_MISC, val);
  2106. } else {
  2107. val = I915_READ(DISP_ARB_CTL2);
  2108. if (results->partitioning == INTEL_DDB_PART_1_2)
  2109. val &= ~DISP_DATA_PARTITION_5_6;
  2110. else
  2111. val |= DISP_DATA_PARTITION_5_6;
  2112. I915_WRITE(DISP_ARB_CTL2, val);
  2113. }
  2114. }
  2115. if (dirty & WM_DIRTY_FBC) {
  2116. val = I915_READ(DISP_ARB_CTL);
  2117. if (results->enable_fbc_wm)
  2118. val &= ~DISP_FBC_WM_DIS;
  2119. else
  2120. val |= DISP_FBC_WM_DIS;
  2121. I915_WRITE(DISP_ARB_CTL, val);
  2122. }
  2123. if (dirty & WM_DIRTY_LP(1) &&
  2124. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2125. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2126. if (INTEL_INFO(dev)->gen >= 7) {
  2127. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2128. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2129. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2130. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2131. }
  2132. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2133. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2134. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2135. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2136. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2137. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2138. dev_priv->wm.hw = *results;
  2139. }
  2140. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2141. {
  2142. struct drm_i915_private *dev_priv = dev->dev_private;
  2143. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2144. }
  2145. /*
  2146. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2147. * different active planes.
  2148. */
  2149. #define SKL_DDB_SIZE 896 /* in blocks */
  2150. static void
  2151. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2152. struct drm_crtc *for_crtc,
  2153. const struct intel_wm_config *config,
  2154. const struct skl_pipe_wm_parameters *params,
  2155. struct skl_ddb_entry *alloc /* out */)
  2156. {
  2157. struct drm_crtc *crtc;
  2158. unsigned int pipe_size, ddb_size;
  2159. int nth_active_pipe;
  2160. if (!params->active) {
  2161. alloc->start = 0;
  2162. alloc->end = 0;
  2163. return;
  2164. }
  2165. ddb_size = SKL_DDB_SIZE;
  2166. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2167. nth_active_pipe = 0;
  2168. for_each_crtc(dev, crtc) {
  2169. if (!to_intel_crtc(crtc)->active)
  2170. continue;
  2171. if (crtc == for_crtc)
  2172. break;
  2173. nth_active_pipe++;
  2174. }
  2175. pipe_size = ddb_size / config->num_pipes_active;
  2176. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2177. alloc->end = alloc->start + pipe_size;
  2178. }
  2179. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2180. {
  2181. if (config->num_pipes_active == 1)
  2182. return 32;
  2183. return 8;
  2184. }
  2185. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2186. {
  2187. entry->start = reg & 0x3ff;
  2188. entry->end = (reg >> 16) & 0x3ff;
  2189. if (entry->end)
  2190. entry->end += 1;
  2191. }
  2192. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2193. struct skl_ddb_allocation *ddb /* out */)
  2194. {
  2195. enum pipe pipe;
  2196. int plane;
  2197. u32 val;
  2198. for_each_pipe(dev_priv, pipe) {
  2199. for_each_plane(dev_priv, pipe, plane) {
  2200. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2201. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2202. val);
  2203. }
  2204. val = I915_READ(CUR_BUF_CFG(pipe));
  2205. skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
  2206. }
  2207. }
  2208. static unsigned int
  2209. skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
  2210. {
  2211. return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
  2212. }
  2213. /*
  2214. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2215. * a 8192x4096@32bpp framebuffer:
  2216. * 3 * 4096 * 8192 * 4 < 2^32
  2217. */
  2218. static unsigned int
  2219. skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
  2220. const struct skl_pipe_wm_parameters *params)
  2221. {
  2222. unsigned int total_data_rate = 0;
  2223. int plane;
  2224. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2225. const struct intel_plane_wm_parameters *p;
  2226. p = &params->plane[plane];
  2227. if (!p->enabled)
  2228. continue;
  2229. total_data_rate += skl_plane_relative_data_rate(p);
  2230. }
  2231. return total_data_rate;
  2232. }
  2233. static void
  2234. skl_allocate_pipe_ddb(struct drm_crtc *crtc,
  2235. const struct intel_wm_config *config,
  2236. const struct skl_pipe_wm_parameters *params,
  2237. struct skl_ddb_allocation *ddb /* out */)
  2238. {
  2239. struct drm_device *dev = crtc->dev;
  2240. struct drm_i915_private *dev_priv = dev->dev_private;
  2241. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2242. enum pipe pipe = intel_crtc->pipe;
  2243. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2244. uint16_t alloc_size, start, cursor_blocks;
  2245. uint16_t minimum[I915_MAX_PLANES];
  2246. unsigned int total_data_rate;
  2247. int plane;
  2248. skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
  2249. alloc_size = skl_ddb_entry_size(alloc);
  2250. if (alloc_size == 0) {
  2251. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2252. memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
  2253. return;
  2254. }
  2255. cursor_blocks = skl_cursor_allocation(config);
  2256. ddb->cursor[pipe].start = alloc->end - cursor_blocks;
  2257. ddb->cursor[pipe].end = alloc->end;
  2258. alloc_size -= cursor_blocks;
  2259. alloc->end -= cursor_blocks;
  2260. /* 1. Allocate the mininum required blocks for each active plane */
  2261. for_each_plane(dev_priv, pipe, plane) {
  2262. const struct intel_plane_wm_parameters *p;
  2263. p = &params->plane[plane];
  2264. if (!p->enabled)
  2265. continue;
  2266. minimum[plane] = 8;
  2267. alloc_size -= minimum[plane];
  2268. }
  2269. /*
  2270. * 2. Distribute the remaining space in proportion to the amount of
  2271. * data each plane needs to fetch from memory.
  2272. *
  2273. * FIXME: we may not allocate every single block here.
  2274. */
  2275. total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
  2276. start = alloc->start;
  2277. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2278. const struct intel_plane_wm_parameters *p;
  2279. unsigned int data_rate;
  2280. uint16_t plane_blocks;
  2281. p = &params->plane[plane];
  2282. if (!p->enabled)
  2283. continue;
  2284. data_rate = skl_plane_relative_data_rate(p);
  2285. /*
  2286. * promote the expression to 64 bits to avoid overflowing, the
  2287. * result is < available as data_rate / total_data_rate < 1
  2288. */
  2289. plane_blocks = minimum[plane];
  2290. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2291. total_data_rate);
  2292. ddb->plane[pipe][plane].start = start;
  2293. ddb->plane[pipe][plane].end = start + plane_blocks;
  2294. start += plane_blocks;
  2295. }
  2296. }
  2297. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2298. {
  2299. /* TODO: Take into account the scalers once we support them */
  2300. return config->base.adjusted_mode.crtc_clock;
  2301. }
  2302. /*
  2303. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2304. * for the read latency) and bytes_per_pixel should always be <= 8, so that
  2305. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2306. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2307. */
  2308. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  2309. uint32_t latency)
  2310. {
  2311. uint32_t wm_intermediate_val, ret;
  2312. if (latency == 0)
  2313. return UINT_MAX;
  2314. wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
  2315. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2316. return ret;
  2317. }
  2318. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2319. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  2320. uint64_t tiling, uint32_t latency)
  2321. {
  2322. uint32_t ret;
  2323. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2324. uint32_t wm_intermediate_val;
  2325. if (latency == 0)
  2326. return UINT_MAX;
  2327. plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
  2328. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2329. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2330. plane_bytes_per_line *= 4;
  2331. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2332. plane_blocks_per_line /= 4;
  2333. } else {
  2334. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2335. }
  2336. wm_intermediate_val = latency * pixel_rate;
  2337. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2338. plane_blocks_per_line;
  2339. return ret;
  2340. }
  2341. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2342. const struct intel_crtc *intel_crtc)
  2343. {
  2344. struct drm_device *dev = intel_crtc->base.dev;
  2345. struct drm_i915_private *dev_priv = dev->dev_private;
  2346. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2347. enum pipe pipe = intel_crtc->pipe;
  2348. if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
  2349. sizeof(new_ddb->plane[pipe])))
  2350. return true;
  2351. if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
  2352. sizeof(new_ddb->cursor[pipe])))
  2353. return true;
  2354. return false;
  2355. }
  2356. static void skl_compute_wm_global_parameters(struct drm_device *dev,
  2357. struct intel_wm_config *config)
  2358. {
  2359. struct drm_crtc *crtc;
  2360. struct drm_plane *plane;
  2361. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2362. config->num_pipes_active += to_intel_crtc(crtc)->active;
  2363. /* FIXME: I don't think we need those two global parameters on SKL */
  2364. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2365. struct intel_plane *intel_plane = to_intel_plane(plane);
  2366. config->sprites_enabled |= intel_plane->wm.enabled;
  2367. config->sprites_scaled |= intel_plane->wm.scaled;
  2368. }
  2369. }
  2370. static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
  2371. struct skl_pipe_wm_parameters *p)
  2372. {
  2373. struct drm_device *dev = crtc->dev;
  2374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2375. enum pipe pipe = intel_crtc->pipe;
  2376. struct drm_plane *plane;
  2377. struct drm_framebuffer *fb;
  2378. int i = 1; /* Index for sprite planes start */
  2379. p->active = intel_crtc->active;
  2380. if (p->active) {
  2381. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  2382. p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
  2383. fb = crtc->primary->state->fb;
  2384. if (fb) {
  2385. p->plane[0].enabled = true;
  2386. p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
  2387. p->plane[0].tiling = fb->modifier[0];
  2388. } else {
  2389. p->plane[0].enabled = false;
  2390. p->plane[0].bytes_per_pixel = 0;
  2391. p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
  2392. }
  2393. p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
  2394. p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
  2395. p->plane[0].rotation = crtc->primary->state->rotation;
  2396. fb = crtc->cursor->state->fb;
  2397. if (fb) {
  2398. p->cursor.enabled = true;
  2399. p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
  2400. p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
  2401. p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
  2402. } else {
  2403. p->cursor.enabled = false;
  2404. p->cursor.bytes_per_pixel = 0;
  2405. p->cursor.horiz_pixels = 64;
  2406. p->cursor.vert_pixels = 64;
  2407. }
  2408. }
  2409. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2410. struct intel_plane *intel_plane = to_intel_plane(plane);
  2411. if (intel_plane->pipe == pipe &&
  2412. plane->type == DRM_PLANE_TYPE_OVERLAY)
  2413. p->plane[i++] = intel_plane->wm;
  2414. }
  2415. }
  2416. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2417. struct skl_pipe_wm_parameters *p,
  2418. struct intel_plane_wm_parameters *p_params,
  2419. uint16_t ddb_allocation,
  2420. int level,
  2421. uint16_t *out_blocks, /* out */
  2422. uint8_t *out_lines /* out */)
  2423. {
  2424. uint32_t latency = dev_priv->wm.skl_latency[level];
  2425. uint32_t method1, method2;
  2426. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2427. uint32_t res_blocks, res_lines;
  2428. uint32_t selected_result;
  2429. if (latency == 0 || !p->active || !p_params->enabled)
  2430. return false;
  2431. method1 = skl_wm_method1(p->pixel_rate,
  2432. p_params->bytes_per_pixel,
  2433. latency);
  2434. method2 = skl_wm_method2(p->pixel_rate,
  2435. p->pipe_htotal,
  2436. p_params->horiz_pixels,
  2437. p_params->bytes_per_pixel,
  2438. p_params->tiling,
  2439. latency);
  2440. plane_bytes_per_line = p_params->horiz_pixels *
  2441. p_params->bytes_per_pixel;
  2442. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2443. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2444. p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
  2445. uint32_t min_scanlines = 4;
  2446. uint32_t y_tile_minimum;
  2447. if (intel_rotation_90_or_270(p_params->rotation)) {
  2448. switch (p_params->bytes_per_pixel) {
  2449. case 1:
  2450. min_scanlines = 16;
  2451. break;
  2452. case 2:
  2453. min_scanlines = 8;
  2454. break;
  2455. case 8:
  2456. WARN(1, "Unsupported pixel depth for rotation");
  2457. }
  2458. }
  2459. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2460. selected_result = max(method2, y_tile_minimum);
  2461. } else {
  2462. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2463. selected_result = min(method1, method2);
  2464. else
  2465. selected_result = method1;
  2466. }
  2467. res_blocks = selected_result + 1;
  2468. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2469. if (level >= 1 && level <= 7) {
  2470. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2471. p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
  2472. res_lines += 4;
  2473. else
  2474. res_blocks++;
  2475. }
  2476. if (res_blocks >= ddb_allocation || res_lines > 31)
  2477. return false;
  2478. *out_blocks = res_blocks;
  2479. *out_lines = res_lines;
  2480. return true;
  2481. }
  2482. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2483. struct skl_ddb_allocation *ddb,
  2484. struct skl_pipe_wm_parameters *p,
  2485. enum pipe pipe,
  2486. int level,
  2487. int num_planes,
  2488. struct skl_wm_level *result)
  2489. {
  2490. uint16_t ddb_blocks;
  2491. int i;
  2492. for (i = 0; i < num_planes; i++) {
  2493. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2494. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2495. p, &p->plane[i],
  2496. ddb_blocks,
  2497. level,
  2498. &result->plane_res_b[i],
  2499. &result->plane_res_l[i]);
  2500. }
  2501. ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
  2502. result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
  2503. ddb_blocks, level,
  2504. &result->cursor_res_b,
  2505. &result->cursor_res_l);
  2506. }
  2507. static uint32_t
  2508. skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
  2509. {
  2510. if (!to_intel_crtc(crtc)->active)
  2511. return 0;
  2512. return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
  2513. }
  2514. static void skl_compute_transition_wm(struct drm_crtc *crtc,
  2515. struct skl_pipe_wm_parameters *params,
  2516. struct skl_wm_level *trans_wm /* out */)
  2517. {
  2518. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2519. int i;
  2520. if (!params->active)
  2521. return;
  2522. /* Until we know more, just disable transition WMs */
  2523. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2524. trans_wm->plane_en[i] = false;
  2525. trans_wm->cursor_en = false;
  2526. }
  2527. static void skl_compute_pipe_wm(struct drm_crtc *crtc,
  2528. struct skl_ddb_allocation *ddb,
  2529. struct skl_pipe_wm_parameters *params,
  2530. struct skl_pipe_wm *pipe_wm)
  2531. {
  2532. struct drm_device *dev = crtc->dev;
  2533. const struct drm_i915_private *dev_priv = dev->dev_private;
  2534. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2535. int level, max_level = ilk_wm_max_level(dev);
  2536. for (level = 0; level <= max_level; level++) {
  2537. skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
  2538. level, intel_num_planes(intel_crtc),
  2539. &pipe_wm->wm[level]);
  2540. }
  2541. pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
  2542. skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
  2543. }
  2544. static void skl_compute_wm_results(struct drm_device *dev,
  2545. struct skl_pipe_wm_parameters *p,
  2546. struct skl_pipe_wm *p_wm,
  2547. struct skl_wm_values *r,
  2548. struct intel_crtc *intel_crtc)
  2549. {
  2550. int level, max_level = ilk_wm_max_level(dev);
  2551. enum pipe pipe = intel_crtc->pipe;
  2552. uint32_t temp;
  2553. int i;
  2554. for (level = 0; level <= max_level; level++) {
  2555. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2556. temp = 0;
  2557. temp |= p_wm->wm[level].plane_res_l[i] <<
  2558. PLANE_WM_LINES_SHIFT;
  2559. temp |= p_wm->wm[level].plane_res_b[i];
  2560. if (p_wm->wm[level].plane_en[i])
  2561. temp |= PLANE_WM_EN;
  2562. r->plane[pipe][i][level] = temp;
  2563. }
  2564. temp = 0;
  2565. temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
  2566. temp |= p_wm->wm[level].cursor_res_b;
  2567. if (p_wm->wm[level].cursor_en)
  2568. temp |= PLANE_WM_EN;
  2569. r->cursor[pipe][level] = temp;
  2570. }
  2571. /* transition WMs */
  2572. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2573. temp = 0;
  2574. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2575. temp |= p_wm->trans_wm.plane_res_b[i];
  2576. if (p_wm->trans_wm.plane_en[i])
  2577. temp |= PLANE_WM_EN;
  2578. r->plane_trans[pipe][i] = temp;
  2579. }
  2580. temp = 0;
  2581. temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
  2582. temp |= p_wm->trans_wm.cursor_res_b;
  2583. if (p_wm->trans_wm.cursor_en)
  2584. temp |= PLANE_WM_EN;
  2585. r->cursor_trans[pipe] = temp;
  2586. r->wm_linetime[pipe] = p_wm->linetime;
  2587. }
  2588. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
  2589. const struct skl_ddb_entry *entry)
  2590. {
  2591. if (entry->end)
  2592. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2593. else
  2594. I915_WRITE(reg, 0);
  2595. }
  2596. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2597. const struct skl_wm_values *new)
  2598. {
  2599. struct drm_device *dev = dev_priv->dev;
  2600. struct intel_crtc *crtc;
  2601. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  2602. int i, level, max_level = ilk_wm_max_level(dev);
  2603. enum pipe pipe = crtc->pipe;
  2604. if (!new->dirty[pipe])
  2605. continue;
  2606. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2607. for (level = 0; level <= max_level; level++) {
  2608. for (i = 0; i < intel_num_planes(crtc); i++)
  2609. I915_WRITE(PLANE_WM(pipe, i, level),
  2610. new->plane[pipe][i][level]);
  2611. I915_WRITE(CUR_WM(pipe, level),
  2612. new->cursor[pipe][level]);
  2613. }
  2614. for (i = 0; i < intel_num_planes(crtc); i++)
  2615. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2616. new->plane_trans[pipe][i]);
  2617. I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
  2618. for (i = 0; i < intel_num_planes(crtc); i++)
  2619. skl_ddb_entry_write(dev_priv,
  2620. PLANE_BUF_CFG(pipe, i),
  2621. &new->ddb.plane[pipe][i]);
  2622. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2623. &new->ddb.cursor[pipe]);
  2624. }
  2625. }
  2626. /*
  2627. * When setting up a new DDB allocation arrangement, we need to correctly
  2628. * sequence the times at which the new allocations for the pipes are taken into
  2629. * account or we'll have pipes fetching from space previously allocated to
  2630. * another pipe.
  2631. *
  2632. * Roughly the sequence looks like:
  2633. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2634. * overlapping with a previous light-up pipe (another way to put it is:
  2635. * pipes with their new allocation strickly included into their old ones).
  2636. * 2. re-allocate the other pipes that get their allocation reduced
  2637. * 3. allocate the pipes having their allocation increased
  2638. *
  2639. * Steps 1. and 2. are here to take care of the following case:
  2640. * - Initially DDB looks like this:
  2641. * | B | C |
  2642. * - enable pipe A.
  2643. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2644. * allocation
  2645. * | A | B | C |
  2646. *
  2647. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2648. */
  2649. static void
  2650. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2651. {
  2652. int plane;
  2653. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2654. for_each_plane(dev_priv, pipe, plane) {
  2655. I915_WRITE(PLANE_SURF(pipe, plane),
  2656. I915_READ(PLANE_SURF(pipe, plane)));
  2657. }
  2658. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2659. }
  2660. static bool
  2661. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2662. const struct skl_ddb_allocation *new,
  2663. enum pipe pipe)
  2664. {
  2665. uint16_t old_size, new_size;
  2666. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2667. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2668. return old_size != new_size &&
  2669. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2670. new->pipe[pipe].end <= old->pipe[pipe].end;
  2671. }
  2672. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2673. struct skl_wm_values *new_values)
  2674. {
  2675. struct drm_device *dev = dev_priv->dev;
  2676. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2677. bool reallocated[I915_MAX_PIPES] = {false, false, false};
  2678. struct intel_crtc *crtc;
  2679. enum pipe pipe;
  2680. new_ddb = &new_values->ddb;
  2681. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2682. /*
  2683. * First pass: flush the pipes with the new allocation contained into
  2684. * the old space.
  2685. *
  2686. * We'll wait for the vblank on those pipes to ensure we can safely
  2687. * re-allocate the freed space without this pipe fetching from it.
  2688. */
  2689. for_each_intel_crtc(dev, crtc) {
  2690. if (!crtc->active)
  2691. continue;
  2692. pipe = crtc->pipe;
  2693. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2694. continue;
  2695. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2696. intel_wait_for_vblank(dev, pipe);
  2697. reallocated[pipe] = true;
  2698. }
  2699. /*
  2700. * Second pass: flush the pipes that are having their allocation
  2701. * reduced, but overlapping with a previous allocation.
  2702. *
  2703. * Here as well we need to wait for the vblank to make sure the freed
  2704. * space is not used anymore.
  2705. */
  2706. for_each_intel_crtc(dev, crtc) {
  2707. if (!crtc->active)
  2708. continue;
  2709. pipe = crtc->pipe;
  2710. if (reallocated[pipe])
  2711. continue;
  2712. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2713. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2714. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2715. intel_wait_for_vblank(dev, pipe);
  2716. reallocated[pipe] = true;
  2717. }
  2718. }
  2719. /*
  2720. * Third pass: flush the pipes that got more space allocated.
  2721. *
  2722. * We don't need to actively wait for the update here, next vblank
  2723. * will just get more DDB space with the correct WM values.
  2724. */
  2725. for_each_intel_crtc(dev, crtc) {
  2726. if (!crtc->active)
  2727. continue;
  2728. pipe = crtc->pipe;
  2729. /*
  2730. * At this point, only the pipes more space than before are
  2731. * left to re-allocate.
  2732. */
  2733. if (reallocated[pipe])
  2734. continue;
  2735. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2736. }
  2737. }
  2738. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2739. struct skl_pipe_wm_parameters *params,
  2740. struct intel_wm_config *config,
  2741. struct skl_ddb_allocation *ddb, /* out */
  2742. struct skl_pipe_wm *pipe_wm /* out */)
  2743. {
  2744. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2745. skl_compute_wm_pipe_parameters(crtc, params);
  2746. skl_allocate_pipe_ddb(crtc, config, params, ddb);
  2747. skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
  2748. if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
  2749. return false;
  2750. intel_crtc->wm.skl_active = *pipe_wm;
  2751. return true;
  2752. }
  2753. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2754. struct drm_crtc *crtc,
  2755. struct intel_wm_config *config,
  2756. struct skl_wm_values *r)
  2757. {
  2758. struct intel_crtc *intel_crtc;
  2759. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2760. /*
  2761. * If the WM update hasn't changed the allocation for this_crtc (the
  2762. * crtc we are currently computing the new WM values for), other
  2763. * enabled crtcs will keep the same allocation and we don't need to
  2764. * recompute anything for them.
  2765. */
  2766. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2767. return;
  2768. /*
  2769. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2770. * other active pipes need new DDB allocation and WM values.
  2771. */
  2772. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  2773. base.head) {
  2774. struct skl_pipe_wm_parameters params = {};
  2775. struct skl_pipe_wm pipe_wm = {};
  2776. bool wm_changed;
  2777. if (this_crtc->pipe == intel_crtc->pipe)
  2778. continue;
  2779. if (!intel_crtc->active)
  2780. continue;
  2781. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  2782. &params, config,
  2783. &r->ddb, &pipe_wm);
  2784. /*
  2785. * If we end up re-computing the other pipe WM values, it's
  2786. * because it was really needed, so we expect the WM values to
  2787. * be different.
  2788. */
  2789. WARN_ON(!wm_changed);
  2790. skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
  2791. r->dirty[intel_crtc->pipe] = true;
  2792. }
  2793. }
  2794. static void skl_update_wm(struct drm_crtc *crtc)
  2795. {
  2796. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2797. struct drm_device *dev = crtc->dev;
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. struct skl_pipe_wm_parameters params = {};
  2800. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  2801. struct skl_pipe_wm pipe_wm = {};
  2802. struct intel_wm_config config = {};
  2803. memset(results, 0, sizeof(*results));
  2804. skl_compute_wm_global_parameters(dev, &config);
  2805. if (!skl_update_pipe_wm(crtc, &params, &config,
  2806. &results->ddb, &pipe_wm))
  2807. return;
  2808. skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
  2809. results->dirty[intel_crtc->pipe] = true;
  2810. skl_update_other_pipe_wm(dev, crtc, &config, results);
  2811. skl_write_wm_values(dev_priv, results);
  2812. skl_flush_wm_values(dev_priv, results);
  2813. /* store the new configuration */
  2814. dev_priv->wm.skl_hw = *results;
  2815. }
  2816. static void
  2817. skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
  2818. uint32_t sprite_width, uint32_t sprite_height,
  2819. int pixel_size, bool enabled, bool scaled)
  2820. {
  2821. struct intel_plane *intel_plane = to_intel_plane(plane);
  2822. struct drm_framebuffer *fb = plane->state->fb;
  2823. intel_plane->wm.enabled = enabled;
  2824. intel_plane->wm.scaled = scaled;
  2825. intel_plane->wm.horiz_pixels = sprite_width;
  2826. intel_plane->wm.vert_pixels = sprite_height;
  2827. intel_plane->wm.bytes_per_pixel = pixel_size;
  2828. intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
  2829. /*
  2830. * Framebuffer can be NULL on plane disable, but it does not
  2831. * matter for watermarks if we assume no tiling in that case.
  2832. */
  2833. if (fb)
  2834. intel_plane->wm.tiling = fb->modifier[0];
  2835. intel_plane->wm.rotation = plane->state->rotation;
  2836. skl_update_wm(crtc);
  2837. }
  2838. static void ilk_update_wm(struct drm_crtc *crtc)
  2839. {
  2840. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2841. struct drm_device *dev = crtc->dev;
  2842. struct drm_i915_private *dev_priv = dev->dev_private;
  2843. struct ilk_wm_maximums max;
  2844. struct ilk_pipe_wm_parameters params = {};
  2845. struct ilk_wm_values results = {};
  2846. enum intel_ddb_partitioning partitioning;
  2847. struct intel_pipe_wm pipe_wm = {};
  2848. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2849. struct intel_wm_config config = {};
  2850. ilk_compute_wm_parameters(crtc, &params);
  2851. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2852. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2853. return;
  2854. intel_crtc->wm.active = pipe_wm;
  2855. ilk_compute_wm_config(dev, &config);
  2856. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2857. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2858. /* 5/6 split only in single pipe config on IVB+ */
  2859. if (INTEL_INFO(dev)->gen >= 7 &&
  2860. config.num_pipes_active == 1 && config.sprites_enabled) {
  2861. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2862. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2863. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2864. } else {
  2865. best_lp_wm = &lp_wm_1_2;
  2866. }
  2867. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2868. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2869. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2870. ilk_write_wm_values(dev_priv, &results);
  2871. }
  2872. static void
  2873. ilk_update_sprite_wm(struct drm_plane *plane,
  2874. struct drm_crtc *crtc,
  2875. uint32_t sprite_width, uint32_t sprite_height,
  2876. int pixel_size, bool enabled, bool scaled)
  2877. {
  2878. struct drm_device *dev = plane->dev;
  2879. struct intel_plane *intel_plane = to_intel_plane(plane);
  2880. intel_plane->wm.enabled = enabled;
  2881. intel_plane->wm.scaled = scaled;
  2882. intel_plane->wm.horiz_pixels = sprite_width;
  2883. intel_plane->wm.vert_pixels = sprite_width;
  2884. intel_plane->wm.bytes_per_pixel = pixel_size;
  2885. /*
  2886. * IVB workaround: must disable low power watermarks for at least
  2887. * one frame before enabling scaling. LP watermarks can be re-enabled
  2888. * when scaling is disabled.
  2889. *
  2890. * WaCxSRDisabledForSpriteScaling:ivb
  2891. */
  2892. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2893. intel_wait_for_vblank(dev, intel_plane->pipe);
  2894. ilk_update_wm(crtc);
  2895. }
  2896. static void skl_pipe_wm_active_state(uint32_t val,
  2897. struct skl_pipe_wm *active,
  2898. bool is_transwm,
  2899. bool is_cursor,
  2900. int i,
  2901. int level)
  2902. {
  2903. bool is_enabled = (val & PLANE_WM_EN) != 0;
  2904. if (!is_transwm) {
  2905. if (!is_cursor) {
  2906. active->wm[level].plane_en[i] = is_enabled;
  2907. active->wm[level].plane_res_b[i] =
  2908. val & PLANE_WM_BLOCKS_MASK;
  2909. active->wm[level].plane_res_l[i] =
  2910. (val >> PLANE_WM_LINES_SHIFT) &
  2911. PLANE_WM_LINES_MASK;
  2912. } else {
  2913. active->wm[level].cursor_en = is_enabled;
  2914. active->wm[level].cursor_res_b =
  2915. val & PLANE_WM_BLOCKS_MASK;
  2916. active->wm[level].cursor_res_l =
  2917. (val >> PLANE_WM_LINES_SHIFT) &
  2918. PLANE_WM_LINES_MASK;
  2919. }
  2920. } else {
  2921. if (!is_cursor) {
  2922. active->trans_wm.plane_en[i] = is_enabled;
  2923. active->trans_wm.plane_res_b[i] =
  2924. val & PLANE_WM_BLOCKS_MASK;
  2925. active->trans_wm.plane_res_l[i] =
  2926. (val >> PLANE_WM_LINES_SHIFT) &
  2927. PLANE_WM_LINES_MASK;
  2928. } else {
  2929. active->trans_wm.cursor_en = is_enabled;
  2930. active->trans_wm.cursor_res_b =
  2931. val & PLANE_WM_BLOCKS_MASK;
  2932. active->trans_wm.cursor_res_l =
  2933. (val >> PLANE_WM_LINES_SHIFT) &
  2934. PLANE_WM_LINES_MASK;
  2935. }
  2936. }
  2937. }
  2938. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2939. {
  2940. struct drm_device *dev = crtc->dev;
  2941. struct drm_i915_private *dev_priv = dev->dev_private;
  2942. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  2943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2944. struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
  2945. enum pipe pipe = intel_crtc->pipe;
  2946. int level, i, max_level;
  2947. uint32_t temp;
  2948. max_level = ilk_wm_max_level(dev);
  2949. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2950. for (level = 0; level <= max_level; level++) {
  2951. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2952. hw->plane[pipe][i][level] =
  2953. I915_READ(PLANE_WM(pipe, i, level));
  2954. hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
  2955. }
  2956. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2957. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  2958. hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
  2959. if (!intel_crtc->active)
  2960. return;
  2961. hw->dirty[pipe] = true;
  2962. active->linetime = hw->wm_linetime[pipe];
  2963. for (level = 0; level <= max_level; level++) {
  2964. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2965. temp = hw->plane[pipe][i][level];
  2966. skl_pipe_wm_active_state(temp, active, false,
  2967. false, i, level);
  2968. }
  2969. temp = hw->cursor[pipe][level];
  2970. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  2971. }
  2972. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2973. temp = hw->plane_trans[pipe][i];
  2974. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  2975. }
  2976. temp = hw->cursor_trans[pipe];
  2977. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  2978. }
  2979. void skl_wm_get_hw_state(struct drm_device *dev)
  2980. {
  2981. struct drm_i915_private *dev_priv = dev->dev_private;
  2982. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  2983. struct drm_crtc *crtc;
  2984. skl_ddb_get_hw_state(dev_priv, ddb);
  2985. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2986. skl_pipe_wm_get_hw_state(crtc);
  2987. }
  2988. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2989. {
  2990. struct drm_device *dev = crtc->dev;
  2991. struct drm_i915_private *dev_priv = dev->dev_private;
  2992. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2993. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2994. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2995. enum pipe pipe = intel_crtc->pipe;
  2996. static const unsigned int wm0_pipe_reg[] = {
  2997. [PIPE_A] = WM0_PIPEA_ILK,
  2998. [PIPE_B] = WM0_PIPEB_ILK,
  2999. [PIPE_C] = WM0_PIPEC_IVB,
  3000. };
  3001. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3002. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3003. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3004. active->pipe_enabled = intel_crtc->active;
  3005. if (active->pipe_enabled) {
  3006. u32 tmp = hw->wm_pipe[pipe];
  3007. /*
  3008. * For active pipes LP0 watermark is marked as
  3009. * enabled, and LP1+ watermaks as disabled since
  3010. * we can't really reverse compute them in case
  3011. * multiple pipes are active.
  3012. */
  3013. active->wm[0].enable = true;
  3014. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3015. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3016. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3017. active->linetime = hw->wm_linetime[pipe];
  3018. } else {
  3019. int level, max_level = ilk_wm_max_level(dev);
  3020. /*
  3021. * For inactive pipes, all watermark levels
  3022. * should be marked as enabled but zeroed,
  3023. * which is what we'd compute them to.
  3024. */
  3025. for (level = 0; level <= max_level; level++)
  3026. active->wm[level].enable = true;
  3027. }
  3028. }
  3029. void ilk_wm_get_hw_state(struct drm_device *dev)
  3030. {
  3031. struct drm_i915_private *dev_priv = dev->dev_private;
  3032. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3033. struct drm_crtc *crtc;
  3034. for_each_crtc(dev, crtc)
  3035. ilk_pipe_wm_get_hw_state(crtc);
  3036. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3037. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3038. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3039. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3040. if (INTEL_INFO(dev)->gen >= 7) {
  3041. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3042. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3043. }
  3044. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3045. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3046. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3047. else if (IS_IVYBRIDGE(dev))
  3048. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3049. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3050. hw->enable_fbc_wm =
  3051. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3052. }
  3053. /**
  3054. * intel_update_watermarks - update FIFO watermark values based on current modes
  3055. *
  3056. * Calculate watermark values for the various WM regs based on current mode
  3057. * and plane configuration.
  3058. *
  3059. * There are several cases to deal with here:
  3060. * - normal (i.e. non-self-refresh)
  3061. * - self-refresh (SR) mode
  3062. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3063. * - lines are small relative to FIFO size (buffer can hold more than 2
  3064. * lines), so need to account for TLB latency
  3065. *
  3066. * The normal calculation is:
  3067. * watermark = dotclock * bytes per pixel * latency
  3068. * where latency is platform & configuration dependent (we assume pessimal
  3069. * values here).
  3070. *
  3071. * The SR calculation is:
  3072. * watermark = (trunc(latency/line time)+1) * surface width *
  3073. * bytes per pixel
  3074. * where
  3075. * line time = htotal / dotclock
  3076. * surface width = hdisplay for normal plane and 64 for cursor
  3077. * and latency is assumed to be high, as above.
  3078. *
  3079. * The final value programmed to the register should always be rounded up,
  3080. * and include an extra 2 entries to account for clock crossings.
  3081. *
  3082. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3083. * to set the non-SR watermarks to 8.
  3084. */
  3085. void intel_update_watermarks(struct drm_crtc *crtc)
  3086. {
  3087. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3088. if (dev_priv->display.update_wm)
  3089. dev_priv->display.update_wm(crtc);
  3090. }
  3091. void intel_update_sprite_watermarks(struct drm_plane *plane,
  3092. struct drm_crtc *crtc,
  3093. uint32_t sprite_width,
  3094. uint32_t sprite_height,
  3095. int pixel_size,
  3096. bool enabled, bool scaled)
  3097. {
  3098. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  3099. if (dev_priv->display.update_sprite_wm)
  3100. dev_priv->display.update_sprite_wm(plane, crtc,
  3101. sprite_width, sprite_height,
  3102. pixel_size, enabled, scaled);
  3103. }
  3104. /**
  3105. * Lock protecting IPS related data structures
  3106. */
  3107. DEFINE_SPINLOCK(mchdev_lock);
  3108. /* Global for IPS driver to get at the current i915 device. Protected by
  3109. * mchdev_lock. */
  3110. static struct drm_i915_private *i915_mch_dev;
  3111. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3112. {
  3113. struct drm_i915_private *dev_priv = dev->dev_private;
  3114. u16 rgvswctl;
  3115. assert_spin_locked(&mchdev_lock);
  3116. rgvswctl = I915_READ16(MEMSWCTL);
  3117. if (rgvswctl & MEMCTL_CMD_STS) {
  3118. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3119. return false; /* still busy with another command */
  3120. }
  3121. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3122. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3123. I915_WRITE16(MEMSWCTL, rgvswctl);
  3124. POSTING_READ16(MEMSWCTL);
  3125. rgvswctl |= MEMCTL_CMD_STS;
  3126. I915_WRITE16(MEMSWCTL, rgvswctl);
  3127. return true;
  3128. }
  3129. static void ironlake_enable_drps(struct drm_device *dev)
  3130. {
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. u32 rgvmodectl = I915_READ(MEMMODECTL);
  3133. u8 fmax, fmin, fstart, vstart;
  3134. spin_lock_irq(&mchdev_lock);
  3135. /* Enable temp reporting */
  3136. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3137. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3138. /* 100ms RC evaluation intervals */
  3139. I915_WRITE(RCUPEI, 100000);
  3140. I915_WRITE(RCDNEI, 100000);
  3141. /* Set max/min thresholds to 90ms and 80ms respectively */
  3142. I915_WRITE(RCBMAXAVG, 90000);
  3143. I915_WRITE(RCBMINAVG, 80000);
  3144. I915_WRITE(MEMIHYST, 1);
  3145. /* Set up min, max, and cur for interrupt handling */
  3146. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3147. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3148. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3149. MEMMODE_FSTART_SHIFT;
  3150. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  3151. PXVFREQ_PX_SHIFT;
  3152. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3153. dev_priv->ips.fstart = fstart;
  3154. dev_priv->ips.max_delay = fstart;
  3155. dev_priv->ips.min_delay = fmin;
  3156. dev_priv->ips.cur_delay = fstart;
  3157. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3158. fmax, fmin, fstart);
  3159. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3160. /*
  3161. * Interrupts will be enabled in ironlake_irq_postinstall
  3162. */
  3163. I915_WRITE(VIDSTART, vstart);
  3164. POSTING_READ(VIDSTART);
  3165. rgvmodectl |= MEMMODE_SWMODE_EN;
  3166. I915_WRITE(MEMMODECTL, rgvmodectl);
  3167. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3168. DRM_ERROR("stuck trying to change perf mode\n");
  3169. mdelay(1);
  3170. ironlake_set_drps(dev, fstart);
  3171. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  3172. I915_READ(0x112e0);
  3173. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3174. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  3175. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3176. spin_unlock_irq(&mchdev_lock);
  3177. }
  3178. static void ironlake_disable_drps(struct drm_device *dev)
  3179. {
  3180. struct drm_i915_private *dev_priv = dev->dev_private;
  3181. u16 rgvswctl;
  3182. spin_lock_irq(&mchdev_lock);
  3183. rgvswctl = I915_READ16(MEMSWCTL);
  3184. /* Ack interrupts, disable EFC interrupt */
  3185. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3186. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3187. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3188. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3189. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3190. /* Go back to the starting frequency */
  3191. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3192. mdelay(1);
  3193. rgvswctl |= MEMCTL_CMD_STS;
  3194. I915_WRITE(MEMSWCTL, rgvswctl);
  3195. mdelay(1);
  3196. spin_unlock_irq(&mchdev_lock);
  3197. }
  3198. /* There's a funny hw issue where the hw returns all 0 when reading from
  3199. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3200. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3201. * all limits and the gpu stuck at whatever frequency it is at atm).
  3202. */
  3203. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3204. {
  3205. u32 limits;
  3206. /* Only set the down limit when we've reached the lowest level to avoid
  3207. * getting more interrupts, otherwise leave this clear. This prevents a
  3208. * race in the hw when coming out of rc6: There's a tiny window where
  3209. * the hw runs at the minimal clock before selecting the desired
  3210. * frequency, if the down threshold expires in that window we will not
  3211. * receive a down interrupt. */
  3212. if (IS_GEN9(dev_priv->dev)) {
  3213. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3214. if (val <= dev_priv->rps.min_freq_softlimit)
  3215. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3216. } else {
  3217. limits = dev_priv->rps.max_freq_softlimit << 24;
  3218. if (val <= dev_priv->rps.min_freq_softlimit)
  3219. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3220. }
  3221. return limits;
  3222. }
  3223. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3224. {
  3225. int new_power;
  3226. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3227. u32 ei_up = 0, ei_down = 0;
  3228. new_power = dev_priv->rps.power;
  3229. switch (dev_priv->rps.power) {
  3230. case LOW_POWER:
  3231. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3232. new_power = BETWEEN;
  3233. break;
  3234. case BETWEEN:
  3235. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3236. new_power = LOW_POWER;
  3237. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3238. new_power = HIGH_POWER;
  3239. break;
  3240. case HIGH_POWER:
  3241. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3242. new_power = BETWEEN;
  3243. break;
  3244. }
  3245. /* Max/min bins are special */
  3246. if (val <= dev_priv->rps.min_freq_softlimit)
  3247. new_power = LOW_POWER;
  3248. if (val >= dev_priv->rps.max_freq_softlimit)
  3249. new_power = HIGH_POWER;
  3250. if (new_power == dev_priv->rps.power)
  3251. return;
  3252. /* Note the units here are not exactly 1us, but 1280ns. */
  3253. switch (new_power) {
  3254. case LOW_POWER:
  3255. /* Upclock if more than 95% busy over 16ms */
  3256. ei_up = 16000;
  3257. threshold_up = 95;
  3258. /* Downclock if less than 85% busy over 32ms */
  3259. ei_down = 32000;
  3260. threshold_down = 85;
  3261. break;
  3262. case BETWEEN:
  3263. /* Upclock if more than 90% busy over 13ms */
  3264. ei_up = 13000;
  3265. threshold_up = 90;
  3266. /* Downclock if less than 75% busy over 32ms */
  3267. ei_down = 32000;
  3268. threshold_down = 75;
  3269. break;
  3270. case HIGH_POWER:
  3271. /* Upclock if more than 85% busy over 10ms */
  3272. ei_up = 10000;
  3273. threshold_up = 85;
  3274. /* Downclock if less than 60% busy over 32ms */
  3275. ei_down = 32000;
  3276. threshold_down = 60;
  3277. break;
  3278. }
  3279. I915_WRITE(GEN6_RP_UP_EI,
  3280. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3281. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3282. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3283. I915_WRITE(GEN6_RP_DOWN_EI,
  3284. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3285. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3286. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3287. I915_WRITE(GEN6_RP_CONTROL,
  3288. GEN6_RP_MEDIA_TURBO |
  3289. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3290. GEN6_RP_MEDIA_IS_GFX |
  3291. GEN6_RP_ENABLE |
  3292. GEN6_RP_UP_BUSY_AVG |
  3293. GEN6_RP_DOWN_IDLE_AVG);
  3294. dev_priv->rps.power = new_power;
  3295. dev_priv->rps.last_adj = 0;
  3296. }
  3297. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3298. {
  3299. u32 mask = 0;
  3300. if (val > dev_priv->rps.min_freq_softlimit)
  3301. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3302. if (val < dev_priv->rps.max_freq_softlimit)
  3303. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3304. mask &= dev_priv->pm_rps_events;
  3305. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3306. }
  3307. /* gen6_set_rps is called to update the frequency request, but should also be
  3308. * called when the range (min_delay and max_delay) is modified so that we can
  3309. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3310. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3311. {
  3312. struct drm_i915_private *dev_priv = dev->dev_private;
  3313. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3314. WARN_ON(val > dev_priv->rps.max_freq);
  3315. WARN_ON(val < dev_priv->rps.min_freq);
  3316. /* min/max delay may still have been modified so be sure to
  3317. * write the limits value.
  3318. */
  3319. if (val != dev_priv->rps.cur_freq) {
  3320. gen6_set_rps_thresholds(dev_priv, val);
  3321. if (IS_GEN9(dev))
  3322. I915_WRITE(GEN6_RPNSWREQ,
  3323. GEN9_FREQUENCY(val));
  3324. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3325. I915_WRITE(GEN6_RPNSWREQ,
  3326. HSW_FREQUENCY(val));
  3327. else
  3328. I915_WRITE(GEN6_RPNSWREQ,
  3329. GEN6_FREQUENCY(val) |
  3330. GEN6_OFFSET(0) |
  3331. GEN6_AGGRESSIVE_TURBO);
  3332. }
  3333. /* Make sure we continue to get interrupts
  3334. * until we hit the minimum or maximum frequencies.
  3335. */
  3336. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3337. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3338. POSTING_READ(GEN6_RPNSWREQ);
  3339. dev_priv->rps.cur_freq = val;
  3340. trace_intel_gpu_freq_change(val * 50);
  3341. }
  3342. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3343. {
  3344. struct drm_i915_private *dev_priv = dev->dev_private;
  3345. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3346. WARN_ON(val > dev_priv->rps.max_freq);
  3347. WARN_ON(val < dev_priv->rps.min_freq);
  3348. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3349. "Odd GPU freq value\n"))
  3350. val &= ~1;
  3351. if (val != dev_priv->rps.cur_freq)
  3352. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3353. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3354. dev_priv->rps.cur_freq = val;
  3355. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3356. }
  3357. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  3358. *
  3359. * * If Gfx is Idle, then
  3360. * 1. Mask Turbo interrupts
  3361. * 2. Bring up Gfx clock
  3362. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  3363. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  3364. * 5. Unmask Turbo interrupts
  3365. */
  3366. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3367. {
  3368. struct drm_device *dev = dev_priv->dev;
  3369. u32 val = dev_priv->rps.idle_freq;
  3370. /* CHV and latest VLV don't need to force the gfx clock */
  3371. if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
  3372. valleyview_set_rps(dev_priv->dev, val);
  3373. return;
  3374. }
  3375. /*
  3376. * When we are idle. Drop to min voltage state.
  3377. */
  3378. if (dev_priv->rps.cur_freq <= val)
  3379. return;
  3380. /* Mask turbo interrupt so that they will not come in between */
  3381. I915_WRITE(GEN6_PMINTRMSK,
  3382. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  3383. vlv_force_gfx_clock(dev_priv, true);
  3384. dev_priv->rps.cur_freq = val;
  3385. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3386. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  3387. & GENFREQSTATUS) == 0, 100))
  3388. DRM_ERROR("timed out waiting for Punit\n");
  3389. vlv_force_gfx_clock(dev_priv, false);
  3390. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3391. }
  3392. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3393. {
  3394. mutex_lock(&dev_priv->rps.hw_lock);
  3395. if (dev_priv->rps.enabled) {
  3396. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3397. gen6_rps_reset_ei(dev_priv);
  3398. I915_WRITE(GEN6_PMINTRMSK,
  3399. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3400. }
  3401. mutex_unlock(&dev_priv->rps.hw_lock);
  3402. }
  3403. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3404. {
  3405. struct drm_device *dev = dev_priv->dev;
  3406. mutex_lock(&dev_priv->rps.hw_lock);
  3407. if (dev_priv->rps.enabled) {
  3408. if (IS_VALLEYVIEW(dev))
  3409. vlv_set_rps_idle(dev_priv);
  3410. else
  3411. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3412. dev_priv->rps.last_adj = 0;
  3413. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3414. }
  3415. mutex_unlock(&dev_priv->rps.hw_lock);
  3416. }
  3417. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3418. {
  3419. u32 val;
  3420. mutex_lock(&dev_priv->rps.hw_lock);
  3421. val = dev_priv->rps.max_freq_softlimit;
  3422. if (dev_priv->rps.enabled &&
  3423. dev_priv->mm.busy &&
  3424. dev_priv->rps.cur_freq < val) {
  3425. intel_set_rps(dev_priv->dev, val);
  3426. dev_priv->rps.last_adj = 0;
  3427. }
  3428. mutex_unlock(&dev_priv->rps.hw_lock);
  3429. }
  3430. void intel_set_rps(struct drm_device *dev, u8 val)
  3431. {
  3432. if (IS_VALLEYVIEW(dev))
  3433. valleyview_set_rps(dev, val);
  3434. else
  3435. gen6_set_rps(dev, val);
  3436. }
  3437. static void gen9_disable_rps(struct drm_device *dev)
  3438. {
  3439. struct drm_i915_private *dev_priv = dev->dev_private;
  3440. I915_WRITE(GEN6_RC_CONTROL, 0);
  3441. I915_WRITE(GEN9_PG_ENABLE, 0);
  3442. }
  3443. static void gen6_disable_rps(struct drm_device *dev)
  3444. {
  3445. struct drm_i915_private *dev_priv = dev->dev_private;
  3446. I915_WRITE(GEN6_RC_CONTROL, 0);
  3447. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3448. }
  3449. static void cherryview_disable_rps(struct drm_device *dev)
  3450. {
  3451. struct drm_i915_private *dev_priv = dev->dev_private;
  3452. I915_WRITE(GEN6_RC_CONTROL, 0);
  3453. }
  3454. static void valleyview_disable_rps(struct drm_device *dev)
  3455. {
  3456. struct drm_i915_private *dev_priv = dev->dev_private;
  3457. /* we're doing forcewake before Disabling RC6,
  3458. * This what the BIOS expects when going into suspend */
  3459. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3460. I915_WRITE(GEN6_RC_CONTROL, 0);
  3461. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3462. }
  3463. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3464. {
  3465. if (IS_VALLEYVIEW(dev)) {
  3466. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3467. mode = GEN6_RC_CTL_RC6_ENABLE;
  3468. else
  3469. mode = 0;
  3470. }
  3471. if (HAS_RC6p(dev))
  3472. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3473. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3474. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3475. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3476. else
  3477. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3478. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3479. }
  3480. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3481. {
  3482. /* No RC6 before Ironlake */
  3483. if (INTEL_INFO(dev)->gen < 5)
  3484. return 0;
  3485. /* RC6 is only on Ironlake mobile not on desktop */
  3486. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3487. return 0;
  3488. /* Respect the kernel parameter if it is set */
  3489. if (enable_rc6 >= 0) {
  3490. int mask;
  3491. if (HAS_RC6p(dev))
  3492. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3493. INTEL_RC6pp_ENABLE;
  3494. else
  3495. mask = INTEL_RC6_ENABLE;
  3496. if ((enable_rc6 & mask) != enable_rc6)
  3497. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3498. enable_rc6 & mask, enable_rc6, mask);
  3499. return enable_rc6 & mask;
  3500. }
  3501. /* Disable RC6 on Ironlake */
  3502. if (INTEL_INFO(dev)->gen == 5)
  3503. return 0;
  3504. if (IS_IVYBRIDGE(dev))
  3505. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3506. return INTEL_RC6_ENABLE;
  3507. }
  3508. int intel_enable_rc6(const struct drm_device *dev)
  3509. {
  3510. return i915.enable_rc6;
  3511. }
  3512. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3513. {
  3514. struct drm_i915_private *dev_priv = dev->dev_private;
  3515. uint32_t rp_state_cap;
  3516. u32 ddcc_status = 0;
  3517. int ret;
  3518. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3519. /* All of these values are in units of 50MHz */
  3520. dev_priv->rps.cur_freq = 0;
  3521. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3522. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3523. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3524. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3525. if (IS_SKYLAKE(dev)) {
  3526. /* Store the frequency values in 16.66 MHZ units, which is
  3527. the natural hardware unit for SKL */
  3528. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3529. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3530. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3531. }
  3532. /* hw_max = RP0 until we check for overclocking */
  3533. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3534. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3535. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  3536. ret = sandybridge_pcode_read(dev_priv,
  3537. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3538. &ddcc_status);
  3539. if (0 == ret)
  3540. dev_priv->rps.efficient_freq =
  3541. clamp_t(u8,
  3542. ((ddcc_status >> 8) & 0xff),
  3543. dev_priv->rps.min_freq,
  3544. dev_priv->rps.max_freq);
  3545. }
  3546. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3547. /* Preserve min/max settings in case of re-init */
  3548. if (dev_priv->rps.max_freq_softlimit == 0)
  3549. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3550. if (dev_priv->rps.min_freq_softlimit == 0) {
  3551. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3552. dev_priv->rps.min_freq_softlimit =
  3553. /* max(RPe, 450 MHz) */
  3554. max(dev_priv->rps.efficient_freq, (u8) 9);
  3555. else
  3556. dev_priv->rps.min_freq_softlimit =
  3557. dev_priv->rps.min_freq;
  3558. }
  3559. }
  3560. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3561. static void gen9_enable_rps(struct drm_device *dev)
  3562. {
  3563. struct drm_i915_private *dev_priv = dev->dev_private;
  3564. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3565. gen6_init_rps_frequencies(dev);
  3566. /* Program defaults and thresholds for RPS*/
  3567. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3568. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3569. /* 1 second timeout*/
  3570. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3571. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3572. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3573. /* Leaning on the below call to gen6_set_rps to program/setup the
  3574. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3575. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3576. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3577. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3578. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3579. }
  3580. static void gen9_enable_rc6(struct drm_device *dev)
  3581. {
  3582. struct drm_i915_private *dev_priv = dev->dev_private;
  3583. struct intel_engine_cs *ring;
  3584. uint32_t rc6_mask = 0;
  3585. int unused;
  3586. /* 1a: Software RC state - RC0 */
  3587. I915_WRITE(GEN6_RC_STATE, 0);
  3588. /* 1b: Get forcewake during program sequence. Although the driver
  3589. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3590. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3591. /* 2a: Disable RC states. */
  3592. I915_WRITE(GEN6_RC_CONTROL, 0);
  3593. /* 2b: Program RC6 thresholds.*/
  3594. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3595. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3596. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3597. for_each_ring(ring, dev_priv, unused)
  3598. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3599. I915_WRITE(GEN6_RC_SLEEP, 0);
  3600. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  3601. /* 2c: Program Coarse Power Gating Policies. */
  3602. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  3603. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  3604. /* 3a: Enable RC6 */
  3605. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3606. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3607. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  3608. "on" : "off");
  3609. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3610. GEN6_RC_CTL_EI_MODE(1) |
  3611. rc6_mask);
  3612. /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
  3613. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
  3614. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3615. }
  3616. static void gen8_enable_rps(struct drm_device *dev)
  3617. {
  3618. struct drm_i915_private *dev_priv = dev->dev_private;
  3619. struct intel_engine_cs *ring;
  3620. uint32_t rc6_mask = 0;
  3621. int unused;
  3622. /* 1a: Software RC state - RC0 */
  3623. I915_WRITE(GEN6_RC_STATE, 0);
  3624. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3625. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3626. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3627. /* 2a: Disable RC states. */
  3628. I915_WRITE(GEN6_RC_CONTROL, 0);
  3629. /* Initialize rps frequencies */
  3630. gen6_init_rps_frequencies(dev);
  3631. /* 2b: Program RC6 thresholds.*/
  3632. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3633. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3634. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3635. for_each_ring(ring, dev_priv, unused)
  3636. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3637. I915_WRITE(GEN6_RC_SLEEP, 0);
  3638. if (IS_BROADWELL(dev))
  3639. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3640. else
  3641. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3642. /* 3: Enable RC6 */
  3643. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3644. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3645. intel_print_rc6_info(dev, rc6_mask);
  3646. if (IS_BROADWELL(dev))
  3647. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3648. GEN7_RC_CTL_TO_MODE |
  3649. rc6_mask);
  3650. else
  3651. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3652. GEN6_RC_CTL_EI_MODE(1) |
  3653. rc6_mask);
  3654. /* 4 Program defaults and thresholds for RPS*/
  3655. I915_WRITE(GEN6_RPNSWREQ,
  3656. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3657. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3658. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3659. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3660. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3661. /* Docs recommend 900MHz, and 300 MHz respectively */
  3662. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3663. dev_priv->rps.max_freq_softlimit << 24 |
  3664. dev_priv->rps.min_freq_softlimit << 16);
  3665. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3666. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3667. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3668. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3669. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3670. /* 5: Enable RPS */
  3671. I915_WRITE(GEN6_RP_CONTROL,
  3672. GEN6_RP_MEDIA_TURBO |
  3673. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3674. GEN6_RP_MEDIA_IS_GFX |
  3675. GEN6_RP_ENABLE |
  3676. GEN6_RP_UP_BUSY_AVG |
  3677. GEN6_RP_DOWN_IDLE_AVG);
  3678. /* 6: Ring frequency + overclocking (our driver does this later */
  3679. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3680. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3681. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3682. }
  3683. static void gen6_enable_rps(struct drm_device *dev)
  3684. {
  3685. struct drm_i915_private *dev_priv = dev->dev_private;
  3686. struct intel_engine_cs *ring;
  3687. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3688. u32 gtfifodbg;
  3689. int rc6_mode;
  3690. int i, ret;
  3691. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3692. /* Here begins a magic sequence of register writes to enable
  3693. * auto-downclocking.
  3694. *
  3695. * Perhaps there might be some value in exposing these to
  3696. * userspace...
  3697. */
  3698. I915_WRITE(GEN6_RC_STATE, 0);
  3699. /* Clear the DBG now so we don't confuse earlier errors */
  3700. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3701. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3702. I915_WRITE(GTFIFODBG, gtfifodbg);
  3703. }
  3704. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3705. /* Initialize rps frequencies */
  3706. gen6_init_rps_frequencies(dev);
  3707. /* disable the counters and set deterministic thresholds */
  3708. I915_WRITE(GEN6_RC_CONTROL, 0);
  3709. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3710. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3711. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3712. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3713. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3714. for_each_ring(ring, dev_priv, i)
  3715. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3716. I915_WRITE(GEN6_RC_SLEEP, 0);
  3717. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3718. if (IS_IVYBRIDGE(dev))
  3719. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3720. else
  3721. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3722. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3723. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3724. /* Check if we are enabling RC6 */
  3725. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3726. if (rc6_mode & INTEL_RC6_ENABLE)
  3727. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3728. /* We don't use those on Haswell */
  3729. if (!IS_HASWELL(dev)) {
  3730. if (rc6_mode & INTEL_RC6p_ENABLE)
  3731. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3732. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3733. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3734. }
  3735. intel_print_rc6_info(dev, rc6_mask);
  3736. I915_WRITE(GEN6_RC_CONTROL,
  3737. rc6_mask |
  3738. GEN6_RC_CTL_EI_MODE(1) |
  3739. GEN6_RC_CTL_HW_ENABLE);
  3740. /* Power down if completely idle for over 50ms */
  3741. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3742. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3743. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3744. if (ret)
  3745. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3746. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3747. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3748. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3749. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3750. (pcu_mbox & 0xff) * 50);
  3751. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3752. }
  3753. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3754. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3755. rc6vids = 0;
  3756. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3757. if (IS_GEN6(dev) && ret) {
  3758. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3759. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3760. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3761. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3762. rc6vids &= 0xffff00;
  3763. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3764. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3765. if (ret)
  3766. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3767. }
  3768. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3769. }
  3770. static void __gen6_update_ring_freq(struct drm_device *dev)
  3771. {
  3772. struct drm_i915_private *dev_priv = dev->dev_private;
  3773. int min_freq = 15;
  3774. unsigned int gpu_freq;
  3775. unsigned int max_ia_freq, min_ring_freq;
  3776. int scaling_factor = 180;
  3777. struct cpufreq_policy *policy;
  3778. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3779. policy = cpufreq_cpu_get(0);
  3780. if (policy) {
  3781. max_ia_freq = policy->cpuinfo.max_freq;
  3782. cpufreq_cpu_put(policy);
  3783. } else {
  3784. /*
  3785. * Default to measured freq if none found, PCU will ensure we
  3786. * don't go over
  3787. */
  3788. max_ia_freq = tsc_khz;
  3789. }
  3790. /* Convert from kHz to MHz */
  3791. max_ia_freq /= 1000;
  3792. min_ring_freq = I915_READ(DCLK) & 0xf;
  3793. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3794. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3795. /*
  3796. * For each potential GPU frequency, load a ring frequency we'd like
  3797. * to use for memory access. We do this by specifying the IA frequency
  3798. * the PCU should use as a reference to determine the ring frequency.
  3799. */
  3800. for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
  3801. gpu_freq--) {
  3802. int diff = dev_priv->rps.max_freq - gpu_freq;
  3803. unsigned int ia_freq = 0, ring_freq = 0;
  3804. if (INTEL_INFO(dev)->gen >= 8) {
  3805. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3806. ring_freq = max(min_ring_freq, gpu_freq);
  3807. } else if (IS_HASWELL(dev)) {
  3808. ring_freq = mult_frac(gpu_freq, 5, 4);
  3809. ring_freq = max(min_ring_freq, ring_freq);
  3810. /* leave ia_freq as the default, chosen by cpufreq */
  3811. } else {
  3812. /* On older processors, there is no separate ring
  3813. * clock domain, so in order to boost the bandwidth
  3814. * of the ring, we need to upclock the CPU (ia_freq).
  3815. *
  3816. * For GPU frequencies less than 750MHz,
  3817. * just use the lowest ring freq.
  3818. */
  3819. if (gpu_freq < min_freq)
  3820. ia_freq = 800;
  3821. else
  3822. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3823. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3824. }
  3825. sandybridge_pcode_write(dev_priv,
  3826. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3827. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3828. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3829. gpu_freq);
  3830. }
  3831. }
  3832. void gen6_update_ring_freq(struct drm_device *dev)
  3833. {
  3834. struct drm_i915_private *dev_priv = dev->dev_private;
  3835. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3836. return;
  3837. mutex_lock(&dev_priv->rps.hw_lock);
  3838. __gen6_update_ring_freq(dev);
  3839. mutex_unlock(&dev_priv->rps.hw_lock);
  3840. }
  3841. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3842. {
  3843. struct drm_device *dev = dev_priv->dev;
  3844. u32 val, rp0;
  3845. if (dev->pdev->revision >= 0x20) {
  3846. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3847. switch (INTEL_INFO(dev)->eu_total) {
  3848. case 8:
  3849. /* (2 * 4) config */
  3850. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  3851. break;
  3852. case 12:
  3853. /* (2 * 6) config */
  3854. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  3855. break;
  3856. case 16:
  3857. /* (2 * 8) config */
  3858. default:
  3859. /* Setting (2 * 8) Min RP0 for any other combination */
  3860. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  3861. break;
  3862. }
  3863. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  3864. } else {
  3865. /* For pre-production hardware */
  3866. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3867. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3868. PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3869. }
  3870. return rp0;
  3871. }
  3872. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3873. {
  3874. u32 val, rpe;
  3875. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3876. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3877. return rpe;
  3878. }
  3879. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3880. {
  3881. struct drm_device *dev = dev_priv->dev;
  3882. u32 val, rp1;
  3883. if (dev->pdev->revision >= 0x20) {
  3884. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3885. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  3886. } else {
  3887. /* For pre-production hardware */
  3888. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3889. rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3890. PUNIT_GPU_STATUS_MAX_FREQ_MASK);
  3891. }
  3892. return rp1;
  3893. }
  3894. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3895. {
  3896. struct drm_device *dev = dev_priv->dev;
  3897. u32 val, rpn;
  3898. if (dev->pdev->revision >= 0x20) {
  3899. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  3900. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  3901. FB_GFX_FREQ_FUSE_MASK);
  3902. } else { /* For pre-production hardware */
  3903. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3904. rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
  3905. PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
  3906. }
  3907. return rpn;
  3908. }
  3909. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3910. {
  3911. u32 val, rp1;
  3912. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3913. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3914. return rp1;
  3915. }
  3916. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3917. {
  3918. u32 val, rp0;
  3919. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3920. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3921. /* Clamp to max */
  3922. rp0 = min_t(u32, rp0, 0xea);
  3923. return rp0;
  3924. }
  3925. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3926. {
  3927. u32 val, rpe;
  3928. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3929. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3930. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3931. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3932. return rpe;
  3933. }
  3934. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3935. {
  3936. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3937. }
  3938. /* Check that the pctx buffer wasn't move under us. */
  3939. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3940. {
  3941. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3942. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3943. dev_priv->vlv_pctx->stolen->start);
  3944. }
  3945. /* Check that the pcbr address is not empty. */
  3946. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3947. {
  3948. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3949. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3950. }
  3951. static void cherryview_setup_pctx(struct drm_device *dev)
  3952. {
  3953. struct drm_i915_private *dev_priv = dev->dev_private;
  3954. unsigned long pctx_paddr, paddr;
  3955. struct i915_gtt *gtt = &dev_priv->gtt;
  3956. u32 pcbr;
  3957. int pctx_size = 32*1024;
  3958. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3959. pcbr = I915_READ(VLV_PCBR);
  3960. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3961. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  3962. paddr = (dev_priv->mm.stolen_base +
  3963. (gtt->stolen_size - pctx_size));
  3964. pctx_paddr = (paddr & (~4095));
  3965. I915_WRITE(VLV_PCBR, pctx_paddr);
  3966. }
  3967. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  3968. }
  3969. static void valleyview_setup_pctx(struct drm_device *dev)
  3970. {
  3971. struct drm_i915_private *dev_priv = dev->dev_private;
  3972. struct drm_i915_gem_object *pctx;
  3973. unsigned long pctx_paddr;
  3974. u32 pcbr;
  3975. int pctx_size = 24*1024;
  3976. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3977. pcbr = I915_READ(VLV_PCBR);
  3978. if (pcbr) {
  3979. /* BIOS set it up already, grab the pre-alloc'd space */
  3980. int pcbr_offset;
  3981. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3982. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3983. pcbr_offset,
  3984. I915_GTT_OFFSET_NONE,
  3985. pctx_size);
  3986. goto out;
  3987. }
  3988. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  3989. /*
  3990. * From the Gunit register HAS:
  3991. * The Gfx driver is expected to program this register and ensure
  3992. * proper allocation within Gfx stolen memory. For example, this
  3993. * register should be programmed such than the PCBR range does not
  3994. * overlap with other ranges, such as the frame buffer, protected
  3995. * memory, or any other relevant ranges.
  3996. */
  3997. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3998. if (!pctx) {
  3999. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4000. return;
  4001. }
  4002. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4003. I915_WRITE(VLV_PCBR, pctx_paddr);
  4004. out:
  4005. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4006. dev_priv->vlv_pctx = pctx;
  4007. }
  4008. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4009. {
  4010. struct drm_i915_private *dev_priv = dev->dev_private;
  4011. if (WARN_ON(!dev_priv->vlv_pctx))
  4012. return;
  4013. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  4014. dev_priv->vlv_pctx = NULL;
  4015. }
  4016. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4017. {
  4018. struct drm_i915_private *dev_priv = dev->dev_private;
  4019. u32 val;
  4020. valleyview_setup_pctx(dev);
  4021. mutex_lock(&dev_priv->rps.hw_lock);
  4022. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4023. switch ((val >> 6) & 3) {
  4024. case 0:
  4025. case 1:
  4026. dev_priv->mem_freq = 800;
  4027. break;
  4028. case 2:
  4029. dev_priv->mem_freq = 1066;
  4030. break;
  4031. case 3:
  4032. dev_priv->mem_freq = 1333;
  4033. break;
  4034. }
  4035. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4036. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4037. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4038. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4039. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4040. dev_priv->rps.max_freq);
  4041. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4042. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4043. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4044. dev_priv->rps.efficient_freq);
  4045. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4046. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4047. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4048. dev_priv->rps.rp1_freq);
  4049. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4050. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4051. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4052. dev_priv->rps.min_freq);
  4053. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4054. /* Preserve min/max settings in case of re-init */
  4055. if (dev_priv->rps.max_freq_softlimit == 0)
  4056. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4057. if (dev_priv->rps.min_freq_softlimit == 0)
  4058. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4059. mutex_unlock(&dev_priv->rps.hw_lock);
  4060. }
  4061. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4062. {
  4063. struct drm_i915_private *dev_priv = dev->dev_private;
  4064. u32 val;
  4065. cherryview_setup_pctx(dev);
  4066. mutex_lock(&dev_priv->rps.hw_lock);
  4067. mutex_lock(&dev_priv->dpio_lock);
  4068. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4069. mutex_unlock(&dev_priv->dpio_lock);
  4070. switch ((val >> 2) & 0x7) {
  4071. case 0:
  4072. case 1:
  4073. dev_priv->rps.cz_freq = 200;
  4074. dev_priv->mem_freq = 1600;
  4075. break;
  4076. case 2:
  4077. dev_priv->rps.cz_freq = 267;
  4078. dev_priv->mem_freq = 1600;
  4079. break;
  4080. case 3:
  4081. dev_priv->rps.cz_freq = 333;
  4082. dev_priv->mem_freq = 2000;
  4083. break;
  4084. case 4:
  4085. dev_priv->rps.cz_freq = 320;
  4086. dev_priv->mem_freq = 1600;
  4087. break;
  4088. case 5:
  4089. dev_priv->rps.cz_freq = 400;
  4090. dev_priv->mem_freq = 1600;
  4091. break;
  4092. }
  4093. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4094. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4095. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4096. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4097. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4098. dev_priv->rps.max_freq);
  4099. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4100. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4101. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4102. dev_priv->rps.efficient_freq);
  4103. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4104. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4105. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4106. dev_priv->rps.rp1_freq);
  4107. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  4108. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4109. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4110. dev_priv->rps.min_freq);
  4111. WARN_ONCE((dev_priv->rps.max_freq |
  4112. dev_priv->rps.efficient_freq |
  4113. dev_priv->rps.rp1_freq |
  4114. dev_priv->rps.min_freq) & 1,
  4115. "Odd GPU freq values\n");
  4116. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4117. /* Preserve min/max settings in case of re-init */
  4118. if (dev_priv->rps.max_freq_softlimit == 0)
  4119. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4120. if (dev_priv->rps.min_freq_softlimit == 0)
  4121. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4122. mutex_unlock(&dev_priv->rps.hw_lock);
  4123. }
  4124. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4125. {
  4126. valleyview_cleanup_pctx(dev);
  4127. }
  4128. static void cherryview_enable_rps(struct drm_device *dev)
  4129. {
  4130. struct drm_i915_private *dev_priv = dev->dev_private;
  4131. struct intel_engine_cs *ring;
  4132. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4133. int i;
  4134. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4135. gtfifodbg = I915_READ(GTFIFODBG);
  4136. if (gtfifodbg) {
  4137. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4138. gtfifodbg);
  4139. I915_WRITE(GTFIFODBG, gtfifodbg);
  4140. }
  4141. cherryview_check_pctx(dev_priv);
  4142. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4143. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4144. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4145. /* Disable RC states. */
  4146. I915_WRITE(GEN6_RC_CONTROL, 0);
  4147. /* 2a: Program RC6 thresholds.*/
  4148. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4149. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4150. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4151. for_each_ring(ring, dev_priv, i)
  4152. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4153. I915_WRITE(GEN6_RC_SLEEP, 0);
  4154. /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
  4155. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4156. /* allows RC6 residency counter to work */
  4157. I915_WRITE(VLV_COUNTER_CONTROL,
  4158. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4159. VLV_MEDIA_RC6_COUNT_EN |
  4160. VLV_RENDER_RC6_COUNT_EN));
  4161. /* For now we assume BIOS is allocating and populating the PCBR */
  4162. pcbr = I915_READ(VLV_PCBR);
  4163. /* 3: Enable RC6 */
  4164. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4165. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4166. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4167. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4168. /* 4 Program defaults and thresholds for RPS*/
  4169. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4170. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4171. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4172. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4173. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4174. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4175. /* 5: Enable RPS */
  4176. I915_WRITE(GEN6_RP_CONTROL,
  4177. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4178. GEN6_RP_MEDIA_IS_GFX |
  4179. GEN6_RP_ENABLE |
  4180. GEN6_RP_UP_BUSY_AVG |
  4181. GEN6_RP_DOWN_IDLE_AVG);
  4182. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4183. /* RPS code assumes GPLL is used */
  4184. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4185. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4186. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4187. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4188. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4189. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4190. dev_priv->rps.cur_freq);
  4191. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4192. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4193. dev_priv->rps.efficient_freq);
  4194. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4195. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4196. }
  4197. static void valleyview_enable_rps(struct drm_device *dev)
  4198. {
  4199. struct drm_i915_private *dev_priv = dev->dev_private;
  4200. struct intel_engine_cs *ring;
  4201. u32 gtfifodbg, val, rc6_mode = 0;
  4202. int i;
  4203. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4204. valleyview_check_pctx(dev_priv);
  4205. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4206. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4207. gtfifodbg);
  4208. I915_WRITE(GTFIFODBG, gtfifodbg);
  4209. }
  4210. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4211. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4212. /* Disable RC states. */
  4213. I915_WRITE(GEN6_RC_CONTROL, 0);
  4214. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4215. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4216. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4217. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4218. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4219. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4220. I915_WRITE(GEN6_RP_CONTROL,
  4221. GEN6_RP_MEDIA_TURBO |
  4222. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4223. GEN6_RP_MEDIA_IS_GFX |
  4224. GEN6_RP_ENABLE |
  4225. GEN6_RP_UP_BUSY_AVG |
  4226. GEN6_RP_DOWN_IDLE_CONT);
  4227. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4228. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4229. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4230. for_each_ring(ring, dev_priv, i)
  4231. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4232. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4233. /* allows RC6 residency counter to work */
  4234. I915_WRITE(VLV_COUNTER_CONTROL,
  4235. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4236. VLV_RENDER_RC0_COUNT_EN |
  4237. VLV_MEDIA_RC6_COUNT_EN |
  4238. VLV_RENDER_RC6_COUNT_EN));
  4239. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4240. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4241. intel_print_rc6_info(dev, rc6_mode);
  4242. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4243. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4244. /* RPS code assumes GPLL is used */
  4245. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4246. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4247. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4248. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4249. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4250. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4251. dev_priv->rps.cur_freq);
  4252. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4253. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4254. dev_priv->rps.efficient_freq);
  4255. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4256. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4257. }
  4258. static unsigned long intel_pxfreq(u32 vidfreq)
  4259. {
  4260. unsigned long freq;
  4261. int div = (vidfreq & 0x3f0000) >> 16;
  4262. int post = (vidfreq & 0x3000) >> 12;
  4263. int pre = (vidfreq & 0x7);
  4264. if (!pre)
  4265. return 0;
  4266. freq = ((div * 133333) / ((1<<post) * pre));
  4267. return freq;
  4268. }
  4269. static const struct cparams {
  4270. u16 i;
  4271. u16 t;
  4272. u16 m;
  4273. u16 c;
  4274. } cparams[] = {
  4275. { 1, 1333, 301, 28664 },
  4276. { 1, 1066, 294, 24460 },
  4277. { 1, 800, 294, 25192 },
  4278. { 0, 1333, 276, 27605 },
  4279. { 0, 1066, 276, 27605 },
  4280. { 0, 800, 231, 23784 },
  4281. };
  4282. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4283. {
  4284. u64 total_count, diff, ret;
  4285. u32 count1, count2, count3, m = 0, c = 0;
  4286. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4287. int i;
  4288. assert_spin_locked(&mchdev_lock);
  4289. diff1 = now - dev_priv->ips.last_time1;
  4290. /* Prevent division-by-zero if we are asking too fast.
  4291. * Also, we don't get interesting results if we are polling
  4292. * faster than once in 10ms, so just return the saved value
  4293. * in such cases.
  4294. */
  4295. if (diff1 <= 10)
  4296. return dev_priv->ips.chipset_power;
  4297. count1 = I915_READ(DMIEC);
  4298. count2 = I915_READ(DDREC);
  4299. count3 = I915_READ(CSIEC);
  4300. total_count = count1 + count2 + count3;
  4301. /* FIXME: handle per-counter overflow */
  4302. if (total_count < dev_priv->ips.last_count1) {
  4303. diff = ~0UL - dev_priv->ips.last_count1;
  4304. diff += total_count;
  4305. } else {
  4306. diff = total_count - dev_priv->ips.last_count1;
  4307. }
  4308. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4309. if (cparams[i].i == dev_priv->ips.c_m &&
  4310. cparams[i].t == dev_priv->ips.r_t) {
  4311. m = cparams[i].m;
  4312. c = cparams[i].c;
  4313. break;
  4314. }
  4315. }
  4316. diff = div_u64(diff, diff1);
  4317. ret = ((m * diff) + c);
  4318. ret = div_u64(ret, 10);
  4319. dev_priv->ips.last_count1 = total_count;
  4320. dev_priv->ips.last_time1 = now;
  4321. dev_priv->ips.chipset_power = ret;
  4322. return ret;
  4323. }
  4324. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4325. {
  4326. struct drm_device *dev = dev_priv->dev;
  4327. unsigned long val;
  4328. if (INTEL_INFO(dev)->gen != 5)
  4329. return 0;
  4330. spin_lock_irq(&mchdev_lock);
  4331. val = __i915_chipset_val(dev_priv);
  4332. spin_unlock_irq(&mchdev_lock);
  4333. return val;
  4334. }
  4335. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4336. {
  4337. unsigned long m, x, b;
  4338. u32 tsfs;
  4339. tsfs = I915_READ(TSFS);
  4340. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4341. x = I915_READ8(TR1);
  4342. b = tsfs & TSFS_INTR_MASK;
  4343. return ((m * x) / 127) - b;
  4344. }
  4345. static int _pxvid_to_vd(u8 pxvid)
  4346. {
  4347. if (pxvid == 0)
  4348. return 0;
  4349. if (pxvid >= 8 && pxvid < 31)
  4350. pxvid = 31;
  4351. return (pxvid + 2) * 125;
  4352. }
  4353. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4354. {
  4355. struct drm_device *dev = dev_priv->dev;
  4356. const int vd = _pxvid_to_vd(pxvid);
  4357. const int vm = vd - 1125;
  4358. if (INTEL_INFO(dev)->is_mobile)
  4359. return vm > 0 ? vm : 0;
  4360. return vd;
  4361. }
  4362. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4363. {
  4364. u64 now, diff, diffms;
  4365. u32 count;
  4366. assert_spin_locked(&mchdev_lock);
  4367. now = ktime_get_raw_ns();
  4368. diffms = now - dev_priv->ips.last_time2;
  4369. do_div(diffms, NSEC_PER_MSEC);
  4370. /* Don't divide by 0 */
  4371. if (!diffms)
  4372. return;
  4373. count = I915_READ(GFXEC);
  4374. if (count < dev_priv->ips.last_count2) {
  4375. diff = ~0UL - dev_priv->ips.last_count2;
  4376. diff += count;
  4377. } else {
  4378. diff = count - dev_priv->ips.last_count2;
  4379. }
  4380. dev_priv->ips.last_count2 = count;
  4381. dev_priv->ips.last_time2 = now;
  4382. /* More magic constants... */
  4383. diff = diff * 1181;
  4384. diff = div_u64(diff, diffms * 10);
  4385. dev_priv->ips.gfx_power = diff;
  4386. }
  4387. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4388. {
  4389. struct drm_device *dev = dev_priv->dev;
  4390. if (INTEL_INFO(dev)->gen != 5)
  4391. return;
  4392. spin_lock_irq(&mchdev_lock);
  4393. __i915_update_gfx_val(dev_priv);
  4394. spin_unlock_irq(&mchdev_lock);
  4395. }
  4396. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4397. {
  4398. unsigned long t, corr, state1, corr2, state2;
  4399. u32 pxvid, ext_v;
  4400. assert_spin_locked(&mchdev_lock);
  4401. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4402. pxvid = (pxvid >> 24) & 0x7f;
  4403. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4404. state1 = ext_v;
  4405. t = i915_mch_val(dev_priv);
  4406. /* Revel in the empirically derived constants */
  4407. /* Correction factor in 1/100000 units */
  4408. if (t > 80)
  4409. corr = ((t * 2349) + 135940);
  4410. else if (t >= 50)
  4411. corr = ((t * 964) + 29317);
  4412. else /* < 50 */
  4413. corr = ((t * 301) + 1004);
  4414. corr = corr * ((150142 * state1) / 10000 - 78642);
  4415. corr /= 100000;
  4416. corr2 = (corr * dev_priv->ips.corr);
  4417. state2 = (corr2 * state1) / 10000;
  4418. state2 /= 100; /* convert to mW */
  4419. __i915_update_gfx_val(dev_priv);
  4420. return dev_priv->ips.gfx_power + state2;
  4421. }
  4422. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4423. {
  4424. struct drm_device *dev = dev_priv->dev;
  4425. unsigned long val;
  4426. if (INTEL_INFO(dev)->gen != 5)
  4427. return 0;
  4428. spin_lock_irq(&mchdev_lock);
  4429. val = __i915_gfx_val(dev_priv);
  4430. spin_unlock_irq(&mchdev_lock);
  4431. return val;
  4432. }
  4433. /**
  4434. * i915_read_mch_val - return value for IPS use
  4435. *
  4436. * Calculate and return a value for the IPS driver to use when deciding whether
  4437. * we have thermal and power headroom to increase CPU or GPU power budget.
  4438. */
  4439. unsigned long i915_read_mch_val(void)
  4440. {
  4441. struct drm_i915_private *dev_priv;
  4442. unsigned long chipset_val, graphics_val, ret = 0;
  4443. spin_lock_irq(&mchdev_lock);
  4444. if (!i915_mch_dev)
  4445. goto out_unlock;
  4446. dev_priv = i915_mch_dev;
  4447. chipset_val = __i915_chipset_val(dev_priv);
  4448. graphics_val = __i915_gfx_val(dev_priv);
  4449. ret = chipset_val + graphics_val;
  4450. out_unlock:
  4451. spin_unlock_irq(&mchdev_lock);
  4452. return ret;
  4453. }
  4454. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4455. /**
  4456. * i915_gpu_raise - raise GPU frequency limit
  4457. *
  4458. * Raise the limit; IPS indicates we have thermal headroom.
  4459. */
  4460. bool i915_gpu_raise(void)
  4461. {
  4462. struct drm_i915_private *dev_priv;
  4463. bool ret = true;
  4464. spin_lock_irq(&mchdev_lock);
  4465. if (!i915_mch_dev) {
  4466. ret = false;
  4467. goto out_unlock;
  4468. }
  4469. dev_priv = i915_mch_dev;
  4470. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4471. dev_priv->ips.max_delay--;
  4472. out_unlock:
  4473. spin_unlock_irq(&mchdev_lock);
  4474. return ret;
  4475. }
  4476. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4477. /**
  4478. * i915_gpu_lower - lower GPU frequency limit
  4479. *
  4480. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4481. * frequency maximum.
  4482. */
  4483. bool i915_gpu_lower(void)
  4484. {
  4485. struct drm_i915_private *dev_priv;
  4486. bool ret = true;
  4487. spin_lock_irq(&mchdev_lock);
  4488. if (!i915_mch_dev) {
  4489. ret = false;
  4490. goto out_unlock;
  4491. }
  4492. dev_priv = i915_mch_dev;
  4493. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4494. dev_priv->ips.max_delay++;
  4495. out_unlock:
  4496. spin_unlock_irq(&mchdev_lock);
  4497. return ret;
  4498. }
  4499. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4500. /**
  4501. * i915_gpu_busy - indicate GPU business to IPS
  4502. *
  4503. * Tell the IPS driver whether or not the GPU is busy.
  4504. */
  4505. bool i915_gpu_busy(void)
  4506. {
  4507. struct drm_i915_private *dev_priv;
  4508. struct intel_engine_cs *ring;
  4509. bool ret = false;
  4510. int i;
  4511. spin_lock_irq(&mchdev_lock);
  4512. if (!i915_mch_dev)
  4513. goto out_unlock;
  4514. dev_priv = i915_mch_dev;
  4515. for_each_ring(ring, dev_priv, i)
  4516. ret |= !list_empty(&ring->request_list);
  4517. out_unlock:
  4518. spin_unlock_irq(&mchdev_lock);
  4519. return ret;
  4520. }
  4521. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4522. /**
  4523. * i915_gpu_turbo_disable - disable graphics turbo
  4524. *
  4525. * Disable graphics turbo by resetting the max frequency and setting the
  4526. * current frequency to the default.
  4527. */
  4528. bool i915_gpu_turbo_disable(void)
  4529. {
  4530. struct drm_i915_private *dev_priv;
  4531. bool ret = true;
  4532. spin_lock_irq(&mchdev_lock);
  4533. if (!i915_mch_dev) {
  4534. ret = false;
  4535. goto out_unlock;
  4536. }
  4537. dev_priv = i915_mch_dev;
  4538. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4539. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4540. ret = false;
  4541. out_unlock:
  4542. spin_unlock_irq(&mchdev_lock);
  4543. return ret;
  4544. }
  4545. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4546. /**
  4547. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4548. * IPS got loaded first.
  4549. *
  4550. * This awkward dance is so that neither module has to depend on the
  4551. * other in order for IPS to do the appropriate communication of
  4552. * GPU turbo limits to i915.
  4553. */
  4554. static void
  4555. ips_ping_for_i915_load(void)
  4556. {
  4557. void (*link)(void);
  4558. link = symbol_get(ips_link_to_i915_driver);
  4559. if (link) {
  4560. link();
  4561. symbol_put(ips_link_to_i915_driver);
  4562. }
  4563. }
  4564. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4565. {
  4566. /* We only register the i915 ips part with intel-ips once everything is
  4567. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4568. spin_lock_irq(&mchdev_lock);
  4569. i915_mch_dev = dev_priv;
  4570. spin_unlock_irq(&mchdev_lock);
  4571. ips_ping_for_i915_load();
  4572. }
  4573. void intel_gpu_ips_teardown(void)
  4574. {
  4575. spin_lock_irq(&mchdev_lock);
  4576. i915_mch_dev = NULL;
  4577. spin_unlock_irq(&mchdev_lock);
  4578. }
  4579. static void intel_init_emon(struct drm_device *dev)
  4580. {
  4581. struct drm_i915_private *dev_priv = dev->dev_private;
  4582. u32 lcfuse;
  4583. u8 pxw[16];
  4584. int i;
  4585. /* Disable to program */
  4586. I915_WRITE(ECR, 0);
  4587. POSTING_READ(ECR);
  4588. /* Program energy weights for various events */
  4589. I915_WRITE(SDEW, 0x15040d00);
  4590. I915_WRITE(CSIEW0, 0x007f0000);
  4591. I915_WRITE(CSIEW1, 0x1e220004);
  4592. I915_WRITE(CSIEW2, 0x04000004);
  4593. for (i = 0; i < 5; i++)
  4594. I915_WRITE(PEW + (i * 4), 0);
  4595. for (i = 0; i < 3; i++)
  4596. I915_WRITE(DEW + (i * 4), 0);
  4597. /* Program P-state weights to account for frequency power adjustment */
  4598. for (i = 0; i < 16; i++) {
  4599. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4600. unsigned long freq = intel_pxfreq(pxvidfreq);
  4601. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4602. PXVFREQ_PX_SHIFT;
  4603. unsigned long val;
  4604. val = vid * vid;
  4605. val *= (freq / 1000);
  4606. val *= 255;
  4607. val /= (127*127*900);
  4608. if (val > 0xff)
  4609. DRM_ERROR("bad pxval: %ld\n", val);
  4610. pxw[i] = val;
  4611. }
  4612. /* Render standby states get 0 weight */
  4613. pxw[14] = 0;
  4614. pxw[15] = 0;
  4615. for (i = 0; i < 4; i++) {
  4616. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4617. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4618. I915_WRITE(PXW + (i * 4), val);
  4619. }
  4620. /* Adjust magic regs to magic values (more experimental results) */
  4621. I915_WRITE(OGW0, 0);
  4622. I915_WRITE(OGW1, 0);
  4623. I915_WRITE(EG0, 0x00007f00);
  4624. I915_WRITE(EG1, 0x0000000e);
  4625. I915_WRITE(EG2, 0x000e0000);
  4626. I915_WRITE(EG3, 0x68000300);
  4627. I915_WRITE(EG4, 0x42000000);
  4628. I915_WRITE(EG5, 0x00140031);
  4629. I915_WRITE(EG6, 0);
  4630. I915_WRITE(EG7, 0);
  4631. for (i = 0; i < 8; i++)
  4632. I915_WRITE(PXWL + (i * 4), 0);
  4633. /* Enable PMON + select events */
  4634. I915_WRITE(ECR, 0x80000019);
  4635. lcfuse = I915_READ(LCFUSE02);
  4636. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4637. }
  4638. void intel_init_gt_powersave(struct drm_device *dev)
  4639. {
  4640. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4641. if (IS_CHERRYVIEW(dev))
  4642. cherryview_init_gt_powersave(dev);
  4643. else if (IS_VALLEYVIEW(dev))
  4644. valleyview_init_gt_powersave(dev);
  4645. }
  4646. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4647. {
  4648. if (IS_CHERRYVIEW(dev))
  4649. return;
  4650. else if (IS_VALLEYVIEW(dev))
  4651. valleyview_cleanup_gt_powersave(dev);
  4652. }
  4653. static void gen6_suspend_rps(struct drm_device *dev)
  4654. {
  4655. struct drm_i915_private *dev_priv = dev->dev_private;
  4656. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4657. gen6_disable_rps_interrupts(dev);
  4658. }
  4659. /**
  4660. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4661. * @dev: drm device
  4662. *
  4663. * We don't want to disable RC6 or other features here, we just want
  4664. * to make sure any work we've queued has finished and won't bother
  4665. * us while we're suspended.
  4666. */
  4667. void intel_suspend_gt_powersave(struct drm_device *dev)
  4668. {
  4669. struct drm_i915_private *dev_priv = dev->dev_private;
  4670. if (INTEL_INFO(dev)->gen < 6)
  4671. return;
  4672. gen6_suspend_rps(dev);
  4673. /* Force GPU to min freq during suspend */
  4674. gen6_rps_idle(dev_priv);
  4675. }
  4676. void intel_disable_gt_powersave(struct drm_device *dev)
  4677. {
  4678. struct drm_i915_private *dev_priv = dev->dev_private;
  4679. if (IS_IRONLAKE_M(dev)) {
  4680. ironlake_disable_drps(dev);
  4681. } else if (INTEL_INFO(dev)->gen >= 6) {
  4682. intel_suspend_gt_powersave(dev);
  4683. mutex_lock(&dev_priv->rps.hw_lock);
  4684. if (INTEL_INFO(dev)->gen >= 9)
  4685. gen9_disable_rps(dev);
  4686. else if (IS_CHERRYVIEW(dev))
  4687. cherryview_disable_rps(dev);
  4688. else if (IS_VALLEYVIEW(dev))
  4689. valleyview_disable_rps(dev);
  4690. else
  4691. gen6_disable_rps(dev);
  4692. dev_priv->rps.enabled = false;
  4693. mutex_unlock(&dev_priv->rps.hw_lock);
  4694. }
  4695. }
  4696. static void intel_gen6_powersave_work(struct work_struct *work)
  4697. {
  4698. struct drm_i915_private *dev_priv =
  4699. container_of(work, struct drm_i915_private,
  4700. rps.delayed_resume_work.work);
  4701. struct drm_device *dev = dev_priv->dev;
  4702. mutex_lock(&dev_priv->rps.hw_lock);
  4703. gen6_reset_rps_interrupts(dev);
  4704. if (IS_CHERRYVIEW(dev)) {
  4705. cherryview_enable_rps(dev);
  4706. } else if (IS_VALLEYVIEW(dev)) {
  4707. valleyview_enable_rps(dev);
  4708. } else if (INTEL_INFO(dev)->gen >= 9) {
  4709. gen9_enable_rc6(dev);
  4710. gen9_enable_rps(dev);
  4711. __gen6_update_ring_freq(dev);
  4712. } else if (IS_BROADWELL(dev)) {
  4713. gen8_enable_rps(dev);
  4714. __gen6_update_ring_freq(dev);
  4715. } else {
  4716. gen6_enable_rps(dev);
  4717. __gen6_update_ring_freq(dev);
  4718. }
  4719. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  4720. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  4721. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  4722. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  4723. dev_priv->rps.enabled = true;
  4724. gen6_enable_rps_interrupts(dev);
  4725. mutex_unlock(&dev_priv->rps.hw_lock);
  4726. intel_runtime_pm_put(dev_priv);
  4727. }
  4728. void intel_enable_gt_powersave(struct drm_device *dev)
  4729. {
  4730. struct drm_i915_private *dev_priv = dev->dev_private;
  4731. /* Powersaving is controlled by the host when inside a VM */
  4732. if (intel_vgpu_active(dev))
  4733. return;
  4734. if (IS_IRONLAKE_M(dev)) {
  4735. mutex_lock(&dev->struct_mutex);
  4736. ironlake_enable_drps(dev);
  4737. intel_init_emon(dev);
  4738. mutex_unlock(&dev->struct_mutex);
  4739. } else if (INTEL_INFO(dev)->gen >= 6) {
  4740. /*
  4741. * PCU communication is slow and this doesn't need to be
  4742. * done at any specific time, so do this out of our fast path
  4743. * to make resume and init faster.
  4744. *
  4745. * We depend on the HW RC6 power context save/restore
  4746. * mechanism when entering D3 through runtime PM suspend. So
  4747. * disable RPM until RPS/RC6 is properly setup. We can only
  4748. * get here via the driver load/system resume/runtime resume
  4749. * paths, so the _noresume version is enough (and in case of
  4750. * runtime resume it's necessary).
  4751. */
  4752. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4753. round_jiffies_up_relative(HZ)))
  4754. intel_runtime_pm_get_noresume(dev_priv);
  4755. }
  4756. }
  4757. void intel_reset_gt_powersave(struct drm_device *dev)
  4758. {
  4759. struct drm_i915_private *dev_priv = dev->dev_private;
  4760. if (INTEL_INFO(dev)->gen < 6)
  4761. return;
  4762. gen6_suspend_rps(dev);
  4763. dev_priv->rps.enabled = false;
  4764. }
  4765. static void ibx_init_clock_gating(struct drm_device *dev)
  4766. {
  4767. struct drm_i915_private *dev_priv = dev->dev_private;
  4768. /*
  4769. * On Ibex Peak and Cougar Point, we need to disable clock
  4770. * gating for the panel power sequencer or it will fail to
  4771. * start up when no ports are active.
  4772. */
  4773. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4774. }
  4775. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4776. {
  4777. struct drm_i915_private *dev_priv = dev->dev_private;
  4778. int pipe;
  4779. for_each_pipe(dev_priv, pipe) {
  4780. I915_WRITE(DSPCNTR(pipe),
  4781. I915_READ(DSPCNTR(pipe)) |
  4782. DISPPLANE_TRICKLE_FEED_DISABLE);
  4783. intel_flush_primary_plane(dev_priv, pipe);
  4784. }
  4785. }
  4786. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4787. {
  4788. struct drm_i915_private *dev_priv = dev->dev_private;
  4789. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4790. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4791. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4792. /*
  4793. * Don't touch WM1S_LP_EN here.
  4794. * Doing so could cause underruns.
  4795. */
  4796. }
  4797. static void ironlake_init_clock_gating(struct drm_device *dev)
  4798. {
  4799. struct drm_i915_private *dev_priv = dev->dev_private;
  4800. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4801. /*
  4802. * Required for FBC
  4803. * WaFbcDisableDpfcClockGating:ilk
  4804. */
  4805. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4806. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4807. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4808. I915_WRITE(PCH_3DCGDIS0,
  4809. MARIUNIT_CLOCK_GATE_DISABLE |
  4810. SVSMUNIT_CLOCK_GATE_DISABLE);
  4811. I915_WRITE(PCH_3DCGDIS1,
  4812. VFMUNIT_CLOCK_GATE_DISABLE);
  4813. /*
  4814. * According to the spec the following bits should be set in
  4815. * order to enable memory self-refresh
  4816. * The bit 22/21 of 0x42004
  4817. * The bit 5 of 0x42020
  4818. * The bit 15 of 0x45000
  4819. */
  4820. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4821. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4822. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4823. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4824. I915_WRITE(DISP_ARB_CTL,
  4825. (I915_READ(DISP_ARB_CTL) |
  4826. DISP_FBC_WM_DIS));
  4827. ilk_init_lp_watermarks(dev);
  4828. /*
  4829. * Based on the document from hardware guys the following bits
  4830. * should be set unconditionally in order to enable FBC.
  4831. * The bit 22 of 0x42000
  4832. * The bit 22 of 0x42004
  4833. * The bit 7,8,9 of 0x42020.
  4834. */
  4835. if (IS_IRONLAKE_M(dev)) {
  4836. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4837. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4838. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4839. ILK_FBCQ_DIS);
  4840. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4841. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4842. ILK_DPARB_GATE);
  4843. }
  4844. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4845. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4846. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4847. ILK_ELPIN_409_SELECT);
  4848. I915_WRITE(_3D_CHICKEN2,
  4849. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4850. _3D_CHICKEN2_WM_READ_PIPELINED);
  4851. /* WaDisableRenderCachePipelinedFlush:ilk */
  4852. I915_WRITE(CACHE_MODE_0,
  4853. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4854. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4855. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4856. g4x_disable_trickle_feed(dev);
  4857. ibx_init_clock_gating(dev);
  4858. }
  4859. static void cpt_init_clock_gating(struct drm_device *dev)
  4860. {
  4861. struct drm_i915_private *dev_priv = dev->dev_private;
  4862. int pipe;
  4863. uint32_t val;
  4864. /*
  4865. * On Ibex Peak and Cougar Point, we need to disable clock
  4866. * gating for the panel power sequencer or it will fail to
  4867. * start up when no ports are active.
  4868. */
  4869. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4870. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4871. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4872. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4873. DPLS_EDP_PPS_FIX_DIS);
  4874. /* The below fixes the weird display corruption, a few pixels shifted
  4875. * downward, on (only) LVDS of some HP laptops with IVY.
  4876. */
  4877. for_each_pipe(dev_priv, pipe) {
  4878. val = I915_READ(TRANS_CHICKEN2(pipe));
  4879. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4880. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4881. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4882. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4883. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4884. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4885. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4886. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4887. }
  4888. /* WADP0ClockGatingDisable */
  4889. for_each_pipe(dev_priv, pipe) {
  4890. I915_WRITE(TRANS_CHICKEN1(pipe),
  4891. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4892. }
  4893. }
  4894. static void gen6_check_mch_setup(struct drm_device *dev)
  4895. {
  4896. struct drm_i915_private *dev_priv = dev->dev_private;
  4897. uint32_t tmp;
  4898. tmp = I915_READ(MCH_SSKPD);
  4899. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4900. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4901. tmp);
  4902. }
  4903. static void gen6_init_clock_gating(struct drm_device *dev)
  4904. {
  4905. struct drm_i915_private *dev_priv = dev->dev_private;
  4906. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4907. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4908. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4909. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4910. ILK_ELPIN_409_SELECT);
  4911. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4912. I915_WRITE(_3D_CHICKEN,
  4913. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4914. /* WaDisable_RenderCache_OperationalFlush:snb */
  4915. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4916. /*
  4917. * BSpec recoomends 8x4 when MSAA is used,
  4918. * however in practice 16x4 seems fastest.
  4919. *
  4920. * Note that PS/WM thread counts depend on the WIZ hashing
  4921. * disable bit, which we don't touch here, but it's good
  4922. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4923. */
  4924. I915_WRITE(GEN6_GT_MODE,
  4925. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  4926. ilk_init_lp_watermarks(dev);
  4927. I915_WRITE(CACHE_MODE_0,
  4928. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4929. I915_WRITE(GEN6_UCGCTL1,
  4930. I915_READ(GEN6_UCGCTL1) |
  4931. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4932. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4933. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4934. * gating disable must be set. Failure to set it results in
  4935. * flickering pixels due to Z write ordering failures after
  4936. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4937. * Sanctuary and Tropics, and apparently anything else with
  4938. * alpha test or pixel discard.
  4939. *
  4940. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4941. * but we didn't debug actual testcases to find it out.
  4942. *
  4943. * WaDisableRCCUnitClockGating:snb
  4944. * WaDisableRCPBUnitClockGating:snb
  4945. */
  4946. I915_WRITE(GEN6_UCGCTL2,
  4947. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4948. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4949. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4950. I915_WRITE(_3D_CHICKEN3,
  4951. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4952. /*
  4953. * Bspec says:
  4954. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4955. * 3DSTATE_SF number of SF output attributes is more than 16."
  4956. */
  4957. I915_WRITE(_3D_CHICKEN3,
  4958. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4959. /*
  4960. * According to the spec the following bits should be
  4961. * set in order to enable memory self-refresh and fbc:
  4962. * The bit21 and bit22 of 0x42000
  4963. * The bit21 and bit22 of 0x42004
  4964. * The bit5 and bit7 of 0x42020
  4965. * The bit14 of 0x70180
  4966. * The bit14 of 0x71180
  4967. *
  4968. * WaFbcAsynchFlipDisableFbcQueue:snb
  4969. */
  4970. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4971. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4972. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4973. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4974. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4975. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4976. I915_WRITE(ILK_DSPCLK_GATE_D,
  4977. I915_READ(ILK_DSPCLK_GATE_D) |
  4978. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4979. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4980. g4x_disable_trickle_feed(dev);
  4981. cpt_init_clock_gating(dev);
  4982. gen6_check_mch_setup(dev);
  4983. }
  4984. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4985. {
  4986. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4987. /*
  4988. * WaVSThreadDispatchOverride:ivb,vlv
  4989. *
  4990. * This actually overrides the dispatch
  4991. * mode for all thread types.
  4992. */
  4993. reg &= ~GEN7_FF_SCHED_MASK;
  4994. reg |= GEN7_FF_TS_SCHED_HW;
  4995. reg |= GEN7_FF_VS_SCHED_HW;
  4996. reg |= GEN7_FF_DS_SCHED_HW;
  4997. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4998. }
  4999. static void lpt_init_clock_gating(struct drm_device *dev)
  5000. {
  5001. struct drm_i915_private *dev_priv = dev->dev_private;
  5002. /*
  5003. * TODO: this bit should only be enabled when really needed, then
  5004. * disabled when not needed anymore in order to save power.
  5005. */
  5006. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  5007. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5008. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5009. PCH_LP_PARTITION_LEVEL_DISABLE);
  5010. /* WADPOClockGatingDisable:hsw */
  5011. I915_WRITE(_TRANSA_CHICKEN1,
  5012. I915_READ(_TRANSA_CHICKEN1) |
  5013. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5014. }
  5015. static void lpt_suspend_hw(struct drm_device *dev)
  5016. {
  5017. struct drm_i915_private *dev_priv = dev->dev_private;
  5018. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5019. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5020. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5021. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5022. }
  5023. }
  5024. static void broadwell_init_clock_gating(struct drm_device *dev)
  5025. {
  5026. struct drm_i915_private *dev_priv = dev->dev_private;
  5027. enum pipe pipe;
  5028. I915_WRITE(WM3_LP_ILK, 0);
  5029. I915_WRITE(WM2_LP_ILK, 0);
  5030. I915_WRITE(WM1_LP_ILK, 0);
  5031. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5032. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5033. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5034. I915_WRITE(CHICKEN_PAR1_1,
  5035. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5036. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5037. for_each_pipe(dev_priv, pipe) {
  5038. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5039. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5040. BDW_DPRS_MASK_VBLANK_SRD);
  5041. }
  5042. /* WaVSRefCountFullforceMissDisable:bdw */
  5043. /* WaDSRefCountFullforceMissDisable:bdw */
  5044. I915_WRITE(GEN7_FF_THREAD_MODE,
  5045. I915_READ(GEN7_FF_THREAD_MODE) &
  5046. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5047. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5048. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5049. /* WaDisableSDEUnitClockGating:bdw */
  5050. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5051. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5052. lpt_init_clock_gating(dev);
  5053. }
  5054. static void haswell_init_clock_gating(struct drm_device *dev)
  5055. {
  5056. struct drm_i915_private *dev_priv = dev->dev_private;
  5057. ilk_init_lp_watermarks(dev);
  5058. /* L3 caching of data atomics doesn't work -- disable it. */
  5059. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5060. I915_WRITE(HSW_ROW_CHICKEN3,
  5061. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5062. /* This is required by WaCatErrorRejectionIssue:hsw */
  5063. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5064. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5065. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5066. /* WaVSRefCountFullforceMissDisable:hsw */
  5067. I915_WRITE(GEN7_FF_THREAD_MODE,
  5068. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5069. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5070. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5071. /* enable HiZ Raw Stall Optimization */
  5072. I915_WRITE(CACHE_MODE_0_GEN7,
  5073. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5074. /* WaDisable4x2SubspanOptimization:hsw */
  5075. I915_WRITE(CACHE_MODE_1,
  5076. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5077. /*
  5078. * BSpec recommends 8x4 when MSAA is used,
  5079. * however in practice 16x4 seems fastest.
  5080. *
  5081. * Note that PS/WM thread counts depend on the WIZ hashing
  5082. * disable bit, which we don't touch here, but it's good
  5083. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5084. */
  5085. I915_WRITE(GEN7_GT_MODE,
  5086. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5087. /* WaSampleCChickenBitEnable:hsw */
  5088. I915_WRITE(HALF_SLICE_CHICKEN3,
  5089. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5090. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5091. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5092. /* WaRsPkgCStateDisplayPMReq:hsw */
  5093. I915_WRITE(CHICKEN_PAR1_1,
  5094. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5095. lpt_init_clock_gating(dev);
  5096. }
  5097. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5098. {
  5099. struct drm_i915_private *dev_priv = dev->dev_private;
  5100. uint32_t snpcr;
  5101. ilk_init_lp_watermarks(dev);
  5102. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5103. /* WaDisableEarlyCull:ivb */
  5104. I915_WRITE(_3D_CHICKEN3,
  5105. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5106. /* WaDisableBackToBackFlipFix:ivb */
  5107. I915_WRITE(IVB_CHICKEN3,
  5108. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5109. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5110. /* WaDisablePSDDualDispatchEnable:ivb */
  5111. if (IS_IVB_GT1(dev))
  5112. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5113. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5114. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5115. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5116. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5117. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5118. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5119. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5120. I915_WRITE(GEN7_L3CNTLREG1,
  5121. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5122. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5123. GEN7_WA_L3_CHICKEN_MODE);
  5124. if (IS_IVB_GT1(dev))
  5125. I915_WRITE(GEN7_ROW_CHICKEN2,
  5126. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5127. else {
  5128. /* must write both registers */
  5129. I915_WRITE(GEN7_ROW_CHICKEN2,
  5130. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5131. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5132. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5133. }
  5134. /* WaForceL3Serialization:ivb */
  5135. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5136. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5137. /*
  5138. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5139. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5140. */
  5141. I915_WRITE(GEN6_UCGCTL2,
  5142. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5143. /* This is required by WaCatErrorRejectionIssue:ivb */
  5144. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5145. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5146. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5147. g4x_disable_trickle_feed(dev);
  5148. gen7_setup_fixed_func_scheduler(dev_priv);
  5149. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5150. /* enable HiZ Raw Stall Optimization */
  5151. I915_WRITE(CACHE_MODE_0_GEN7,
  5152. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5153. }
  5154. /* WaDisable4x2SubspanOptimization:ivb */
  5155. I915_WRITE(CACHE_MODE_1,
  5156. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5157. /*
  5158. * BSpec recommends 8x4 when MSAA is used,
  5159. * however in practice 16x4 seems fastest.
  5160. *
  5161. * Note that PS/WM thread counts depend on the WIZ hashing
  5162. * disable bit, which we don't touch here, but it's good
  5163. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5164. */
  5165. I915_WRITE(GEN7_GT_MODE,
  5166. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5167. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5168. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5169. snpcr |= GEN6_MBC_SNPCR_MED;
  5170. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5171. if (!HAS_PCH_NOP(dev))
  5172. cpt_init_clock_gating(dev);
  5173. gen6_check_mch_setup(dev);
  5174. }
  5175. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5176. {
  5177. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5178. /*
  5179. * Disable trickle feed and enable pnd deadline calculation
  5180. */
  5181. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5182. I915_WRITE(CBR1_VLV, 0);
  5183. }
  5184. static void valleyview_init_clock_gating(struct drm_device *dev)
  5185. {
  5186. struct drm_i915_private *dev_priv = dev->dev_private;
  5187. vlv_init_display_clock_gating(dev_priv);
  5188. /* WaDisableEarlyCull:vlv */
  5189. I915_WRITE(_3D_CHICKEN3,
  5190. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5191. /* WaDisableBackToBackFlipFix:vlv */
  5192. I915_WRITE(IVB_CHICKEN3,
  5193. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5194. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5195. /* WaPsdDispatchEnable:vlv */
  5196. /* WaDisablePSDDualDispatchEnable:vlv */
  5197. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5198. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5199. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5200. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5201. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5202. /* WaForceL3Serialization:vlv */
  5203. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5204. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5205. /* WaDisableDopClockGating:vlv */
  5206. I915_WRITE(GEN7_ROW_CHICKEN2,
  5207. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5208. /* This is required by WaCatErrorRejectionIssue:vlv */
  5209. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5210. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5211. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5212. gen7_setup_fixed_func_scheduler(dev_priv);
  5213. /*
  5214. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5215. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5216. */
  5217. I915_WRITE(GEN6_UCGCTL2,
  5218. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5219. /* WaDisableL3Bank2xClockGate:vlv
  5220. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5221. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5222. I915_WRITE(GEN7_UCGCTL4,
  5223. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5224. /*
  5225. * BSpec says this must be set, even though
  5226. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5227. */
  5228. I915_WRITE(CACHE_MODE_1,
  5229. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5230. /*
  5231. * BSpec recommends 8x4 when MSAA is used,
  5232. * however in practice 16x4 seems fastest.
  5233. *
  5234. * Note that PS/WM thread counts depend on the WIZ hashing
  5235. * disable bit, which we don't touch here, but it's good
  5236. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5237. */
  5238. I915_WRITE(GEN7_GT_MODE,
  5239. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5240. /*
  5241. * WaIncreaseL3CreditsForVLVB0:vlv
  5242. * This is the hardware default actually.
  5243. */
  5244. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5245. /*
  5246. * WaDisableVLVClockGating_VBIIssue:vlv
  5247. * Disable clock gating on th GCFG unit to prevent a delay
  5248. * in the reporting of vblank events.
  5249. */
  5250. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5251. }
  5252. static void cherryview_init_clock_gating(struct drm_device *dev)
  5253. {
  5254. struct drm_i915_private *dev_priv = dev->dev_private;
  5255. vlv_init_display_clock_gating(dev_priv);
  5256. /* WaVSRefCountFullforceMissDisable:chv */
  5257. /* WaDSRefCountFullforceMissDisable:chv */
  5258. I915_WRITE(GEN7_FF_THREAD_MODE,
  5259. I915_READ(GEN7_FF_THREAD_MODE) &
  5260. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5261. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5262. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5263. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5264. /* WaDisableCSUnitClockGating:chv */
  5265. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5266. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5267. /* WaDisableSDEUnitClockGating:chv */
  5268. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5269. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5270. }
  5271. static void g4x_init_clock_gating(struct drm_device *dev)
  5272. {
  5273. struct drm_i915_private *dev_priv = dev->dev_private;
  5274. uint32_t dspclk_gate;
  5275. I915_WRITE(RENCLK_GATE_D1, 0);
  5276. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5277. GS_UNIT_CLOCK_GATE_DISABLE |
  5278. CL_UNIT_CLOCK_GATE_DISABLE);
  5279. I915_WRITE(RAMCLK_GATE_D, 0);
  5280. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5281. OVRUNIT_CLOCK_GATE_DISABLE |
  5282. OVCUNIT_CLOCK_GATE_DISABLE;
  5283. if (IS_GM45(dev))
  5284. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5285. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5286. /* WaDisableRenderCachePipelinedFlush */
  5287. I915_WRITE(CACHE_MODE_0,
  5288. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5289. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5290. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5291. g4x_disable_trickle_feed(dev);
  5292. }
  5293. static void crestline_init_clock_gating(struct drm_device *dev)
  5294. {
  5295. struct drm_i915_private *dev_priv = dev->dev_private;
  5296. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5297. I915_WRITE(RENCLK_GATE_D2, 0);
  5298. I915_WRITE(DSPCLK_GATE_D, 0);
  5299. I915_WRITE(RAMCLK_GATE_D, 0);
  5300. I915_WRITE16(DEUC, 0);
  5301. I915_WRITE(MI_ARB_STATE,
  5302. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5303. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5304. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5305. }
  5306. static void broadwater_init_clock_gating(struct drm_device *dev)
  5307. {
  5308. struct drm_i915_private *dev_priv = dev->dev_private;
  5309. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5310. I965_RCC_CLOCK_GATE_DISABLE |
  5311. I965_RCPB_CLOCK_GATE_DISABLE |
  5312. I965_ISC_CLOCK_GATE_DISABLE |
  5313. I965_FBC_CLOCK_GATE_DISABLE);
  5314. I915_WRITE(RENCLK_GATE_D2, 0);
  5315. I915_WRITE(MI_ARB_STATE,
  5316. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5317. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5318. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5319. }
  5320. static void gen3_init_clock_gating(struct drm_device *dev)
  5321. {
  5322. struct drm_i915_private *dev_priv = dev->dev_private;
  5323. u32 dstate = I915_READ(D_STATE);
  5324. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5325. DSTATE_DOT_CLOCK_GATING;
  5326. I915_WRITE(D_STATE, dstate);
  5327. if (IS_PINEVIEW(dev))
  5328. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5329. /* IIR "flip pending" means done if this bit is set */
  5330. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5331. /* interrupts should cause a wake up from C3 */
  5332. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5333. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5334. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5335. I915_WRITE(MI_ARB_STATE,
  5336. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5337. }
  5338. static void i85x_init_clock_gating(struct drm_device *dev)
  5339. {
  5340. struct drm_i915_private *dev_priv = dev->dev_private;
  5341. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5342. /* interrupts should cause a wake up from C3 */
  5343. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5344. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5345. I915_WRITE(MEM_MODE,
  5346. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5347. }
  5348. static void i830_init_clock_gating(struct drm_device *dev)
  5349. {
  5350. struct drm_i915_private *dev_priv = dev->dev_private;
  5351. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5352. I915_WRITE(MEM_MODE,
  5353. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5354. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5355. }
  5356. void intel_init_clock_gating(struct drm_device *dev)
  5357. {
  5358. struct drm_i915_private *dev_priv = dev->dev_private;
  5359. if (dev_priv->display.init_clock_gating)
  5360. dev_priv->display.init_clock_gating(dev);
  5361. }
  5362. void intel_suspend_hw(struct drm_device *dev)
  5363. {
  5364. if (HAS_PCH_LPT(dev))
  5365. lpt_suspend_hw(dev);
  5366. }
  5367. /* Set up chip specific power management-related functions */
  5368. void intel_init_pm(struct drm_device *dev)
  5369. {
  5370. struct drm_i915_private *dev_priv = dev->dev_private;
  5371. intel_fbc_init(dev_priv);
  5372. /* For cxsr */
  5373. if (IS_PINEVIEW(dev))
  5374. i915_pineview_get_mem_freq(dev);
  5375. else if (IS_GEN5(dev))
  5376. i915_ironlake_get_mem_freq(dev);
  5377. /* For FIFO watermark updates */
  5378. if (INTEL_INFO(dev)->gen >= 9) {
  5379. skl_setup_wm_latency(dev);
  5380. dev_priv->display.init_clock_gating = skl_init_clock_gating;
  5381. dev_priv->display.update_wm = skl_update_wm;
  5382. dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
  5383. } else if (HAS_PCH_SPLIT(dev)) {
  5384. ilk_setup_wm_latency(dev);
  5385. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5386. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5387. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5388. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5389. dev_priv->display.update_wm = ilk_update_wm;
  5390. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5391. } else {
  5392. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5393. "Disable CxSR\n");
  5394. }
  5395. if (IS_GEN5(dev))
  5396. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5397. else if (IS_GEN6(dev))
  5398. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5399. else if (IS_IVYBRIDGE(dev))
  5400. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5401. else if (IS_HASWELL(dev))
  5402. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5403. else if (INTEL_INFO(dev)->gen == 8)
  5404. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5405. } else if (IS_CHERRYVIEW(dev)) {
  5406. dev_priv->display.update_wm = valleyview_update_wm;
  5407. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5408. dev_priv->display.init_clock_gating =
  5409. cherryview_init_clock_gating;
  5410. } else if (IS_VALLEYVIEW(dev)) {
  5411. dev_priv->display.update_wm = valleyview_update_wm;
  5412. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5413. dev_priv->display.init_clock_gating =
  5414. valleyview_init_clock_gating;
  5415. } else if (IS_PINEVIEW(dev)) {
  5416. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5417. dev_priv->is_ddr3,
  5418. dev_priv->fsb_freq,
  5419. dev_priv->mem_freq)) {
  5420. DRM_INFO("failed to find known CxSR latency "
  5421. "(found ddr%s fsb freq %d, mem freq %d), "
  5422. "disabling CxSR\n",
  5423. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5424. dev_priv->fsb_freq, dev_priv->mem_freq);
  5425. /* Disable CxSR and never update its watermark again */
  5426. intel_set_memory_cxsr(dev_priv, false);
  5427. dev_priv->display.update_wm = NULL;
  5428. } else
  5429. dev_priv->display.update_wm = pineview_update_wm;
  5430. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5431. } else if (IS_G4X(dev)) {
  5432. dev_priv->display.update_wm = g4x_update_wm;
  5433. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5434. } else if (IS_GEN4(dev)) {
  5435. dev_priv->display.update_wm = i965_update_wm;
  5436. if (IS_CRESTLINE(dev))
  5437. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5438. else if (IS_BROADWATER(dev))
  5439. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5440. } else if (IS_GEN3(dev)) {
  5441. dev_priv->display.update_wm = i9xx_update_wm;
  5442. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5443. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5444. } else if (IS_GEN2(dev)) {
  5445. if (INTEL_INFO(dev)->num_pipes == 1) {
  5446. dev_priv->display.update_wm = i845_update_wm;
  5447. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5448. } else {
  5449. dev_priv->display.update_wm = i9xx_update_wm;
  5450. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5451. }
  5452. if (IS_I85X(dev) || IS_I865G(dev))
  5453. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5454. else
  5455. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5456. } else {
  5457. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5458. }
  5459. }
  5460. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5461. {
  5462. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5463. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5464. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5465. return -EAGAIN;
  5466. }
  5467. I915_WRITE(GEN6_PCODE_DATA, *val);
  5468. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5469. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5470. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5471. 500)) {
  5472. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5473. return -ETIMEDOUT;
  5474. }
  5475. *val = I915_READ(GEN6_PCODE_DATA);
  5476. I915_WRITE(GEN6_PCODE_DATA, 0);
  5477. return 0;
  5478. }
  5479. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5480. {
  5481. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5482. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5483. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5484. return -EAGAIN;
  5485. }
  5486. I915_WRITE(GEN6_PCODE_DATA, val);
  5487. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5488. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5489. 500)) {
  5490. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5491. return -ETIMEDOUT;
  5492. }
  5493. I915_WRITE(GEN6_PCODE_DATA, 0);
  5494. return 0;
  5495. }
  5496. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5497. {
  5498. switch (czclk_freq) {
  5499. case 200:
  5500. return 10;
  5501. case 267:
  5502. return 12;
  5503. case 320:
  5504. case 333:
  5505. return 16;
  5506. case 400:
  5507. return 20;
  5508. default:
  5509. return -1;
  5510. }
  5511. }
  5512. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5513. {
  5514. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5515. div = vlv_gpu_freq_div(czclk_freq);
  5516. if (div < 0)
  5517. return div;
  5518. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5519. }
  5520. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5521. {
  5522. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5523. mul = vlv_gpu_freq_div(czclk_freq);
  5524. if (mul < 0)
  5525. return mul;
  5526. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5527. }
  5528. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5529. {
  5530. int div, czclk_freq = dev_priv->rps.cz_freq;
  5531. div = vlv_gpu_freq_div(czclk_freq) / 2;
  5532. if (div < 0)
  5533. return div;
  5534. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5535. }
  5536. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5537. {
  5538. int mul, czclk_freq = dev_priv->rps.cz_freq;
  5539. mul = vlv_gpu_freq_div(czclk_freq) / 2;
  5540. if (mul < 0)
  5541. return mul;
  5542. /* CHV needs even values */
  5543. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5544. }
  5545. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5546. {
  5547. if (IS_GEN9(dev_priv->dev))
  5548. return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
  5549. else if (IS_CHERRYVIEW(dev_priv->dev))
  5550. return chv_gpu_freq(dev_priv, val);
  5551. else if (IS_VALLEYVIEW(dev_priv->dev))
  5552. return byt_gpu_freq(dev_priv, val);
  5553. else
  5554. return val * GT_FREQUENCY_MULTIPLIER;
  5555. }
  5556. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5557. {
  5558. if (IS_GEN9(dev_priv->dev))
  5559. return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
  5560. else if (IS_CHERRYVIEW(dev_priv->dev))
  5561. return chv_freq_opcode(dev_priv, val);
  5562. else if (IS_VALLEYVIEW(dev_priv->dev))
  5563. return byt_freq_opcode(dev_priv, val);
  5564. else
  5565. return val / GT_FREQUENCY_MULTIPLIER;
  5566. }
  5567. void intel_pm_setup(struct drm_device *dev)
  5568. {
  5569. struct drm_i915_private *dev_priv = dev->dev_private;
  5570. mutex_init(&dev_priv->rps.hw_lock);
  5571. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5572. intel_gen6_powersave_work);
  5573. dev_priv->pm.suspended = false;
  5574. }