intel_lrc.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068
  1. /*
  2. * Copyright © 2014 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. * Michel Thierry <michel.thierry@intel.com>
  26. * Thomas Daniel <thomas.daniel@intel.com>
  27. * Oscar Mateo <oscar.mateo@intel.com>
  28. *
  29. */
  30. /**
  31. * DOC: Logical Rings, Logical Ring Contexts and Execlists
  32. *
  33. * Motivation:
  34. * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  35. * These expanded contexts enable a number of new abilities, especially
  36. * "Execlists" (also implemented in this file).
  37. *
  38. * One of the main differences with the legacy HW contexts is that logical
  39. * ring contexts incorporate many more things to the context's state, like
  40. * PDPs or ringbuffer control registers:
  41. *
  42. * The reason why PDPs are included in the context is straightforward: as
  43. * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  44. * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  45. * instead, the GPU will do it for you on the context switch.
  46. *
  47. * But, what about the ringbuffer control registers (head, tail, etc..)?
  48. * shouldn't we just need a set of those per engine command streamer? This is
  49. * where the name "Logical Rings" starts to make sense: by virtualizing the
  50. * rings, the engine cs shifts to a new "ring buffer" with every context
  51. * switch. When you want to submit a workload to the GPU you: A) choose your
  52. * context, B) find its appropriate virtualized ring, C) write commands to it
  53. * and then, finally, D) tell the GPU to switch to that context.
  54. *
  55. * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  56. * to a contexts is via a context execution list, ergo "Execlists".
  57. *
  58. * LRC implementation:
  59. * Regarding the creation of contexts, we have:
  60. *
  61. * - One global default context.
  62. * - One local default context for each opened fd.
  63. * - One local extra context for each context create ioctl call.
  64. *
  65. * Now that ringbuffers belong per-context (and not per-engine, like before)
  66. * and that contexts are uniquely tied to a given engine (and not reusable,
  67. * like before) we need:
  68. *
  69. * - One ringbuffer per-engine inside each context.
  70. * - One backing object per-engine inside each context.
  71. *
  72. * The global default context starts its life with these new objects fully
  73. * allocated and populated. The local default context for each opened fd is
  74. * more complex, because we don't know at creation time which engine is going
  75. * to use them. To handle this, we have implemented a deferred creation of LR
  76. * contexts:
  77. *
  78. * The local context starts its life as a hollow or blank holder, that only
  79. * gets populated for a given engine once we receive an execbuffer. If later
  80. * on we receive another execbuffer ioctl for the same context but a different
  81. * engine, we allocate/populate a new ringbuffer and context backing object and
  82. * so on.
  83. *
  84. * Finally, regarding local contexts created using the ioctl call: as they are
  85. * only allowed with the render ring, we can allocate & populate them right
  86. * away (no need to defer anything, at least for now).
  87. *
  88. * Execlists implementation:
  89. * Execlists are the new method by which, on gen8+ hardware, workloads are
  90. * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  91. * This method works as follows:
  92. *
  93. * When a request is committed, its commands (the BB start and any leading or
  94. * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  95. * for the appropriate context. The tail pointer in the hardware context is not
  96. * updated at this time, but instead, kept by the driver in the ringbuffer
  97. * structure. A structure representing this request is added to a request queue
  98. * for the appropriate engine: this structure contains a copy of the context's
  99. * tail after the request was written to the ring buffer and a pointer to the
  100. * context itself.
  101. *
  102. * If the engine's request queue was empty before the request was added, the
  103. * queue is processed immediately. Otherwise the queue will be processed during
  104. * a context switch interrupt. In any case, elements on the queue will get sent
  105. * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
  106. * globally unique 20-bits submission ID.
  107. *
  108. * When execution of a request completes, the GPU updates the context status
  109. * buffer with a context complete event and generates a context switch interrupt.
  110. * During the interrupt handling, the driver examines the events in the buffer:
  111. * for each context complete event, if the announced ID matches that on the head
  112. * of the request queue, then that request is retired and removed from the queue.
  113. *
  114. * After processing, if any requests were retired and the queue is not empty
  115. * then a new execution list can be submitted. The two requests at the front of
  116. * the queue are next to be submitted but since a context may not occur twice in
  117. * an execution list, if subsequent requests have the same ID as the first then
  118. * the two requests must be combined. This is done simply by discarding requests
  119. * at the head of the queue until either only one requests is left (in which case
  120. * we use a NULL second context) or the first two requests have unique IDs.
  121. *
  122. * By always executing the first two requests in the queue the driver ensures
  123. * that the GPU is kept as busy as possible. In the case where a single context
  124. * completes but a second context is still executing, the request for this second
  125. * context will be at the head of the queue when we remove the first one. This
  126. * request will then be resubmitted along with a new request for a different context,
  127. * which will cause the hardware to continue executing the second request and queue
  128. * the new request (the GPU detects the condition of a context getting preempted
  129. * with the same context and optimizes the context switch flow by not doing
  130. * preemption, but just sampling the new tail pointer).
  131. *
  132. */
  133. #include <drm/drmP.h>
  134. #include <drm/i915_drm.h>
  135. #include "i915_drv.h"
  136. #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
  137. #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
  138. #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
  139. #define RING_EXECLIST_QFULL (1 << 0x2)
  140. #define RING_EXECLIST1_VALID (1 << 0x3)
  141. #define RING_EXECLIST0_VALID (1 << 0x4)
  142. #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
  143. #define RING_EXECLIST1_ACTIVE (1 << 0x11)
  144. #define RING_EXECLIST0_ACTIVE (1 << 0x12)
  145. #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
  146. #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
  147. #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
  148. #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
  149. #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
  150. #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
  151. #define CTX_LRI_HEADER_0 0x01
  152. #define CTX_CONTEXT_CONTROL 0x02
  153. #define CTX_RING_HEAD 0x04
  154. #define CTX_RING_TAIL 0x06
  155. #define CTX_RING_BUFFER_START 0x08
  156. #define CTX_RING_BUFFER_CONTROL 0x0a
  157. #define CTX_BB_HEAD_U 0x0c
  158. #define CTX_BB_HEAD_L 0x0e
  159. #define CTX_BB_STATE 0x10
  160. #define CTX_SECOND_BB_HEAD_U 0x12
  161. #define CTX_SECOND_BB_HEAD_L 0x14
  162. #define CTX_SECOND_BB_STATE 0x16
  163. #define CTX_BB_PER_CTX_PTR 0x18
  164. #define CTX_RCS_INDIRECT_CTX 0x1a
  165. #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
  166. #define CTX_LRI_HEADER_1 0x21
  167. #define CTX_CTX_TIMESTAMP 0x22
  168. #define CTX_PDP3_UDW 0x24
  169. #define CTX_PDP3_LDW 0x26
  170. #define CTX_PDP2_UDW 0x28
  171. #define CTX_PDP2_LDW 0x2a
  172. #define CTX_PDP1_UDW 0x2c
  173. #define CTX_PDP1_LDW 0x2e
  174. #define CTX_PDP0_UDW 0x30
  175. #define CTX_PDP0_LDW 0x32
  176. #define CTX_LRI_HEADER_2 0x41
  177. #define CTX_R_PWR_CLK_STATE 0x42
  178. #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
  179. #define GEN8_CTX_VALID (1<<0)
  180. #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
  181. #define GEN8_CTX_FORCE_RESTORE (1<<2)
  182. #define GEN8_CTX_L3LLC_COHERENT (1<<5)
  183. #define GEN8_CTX_PRIVILEGE (1<<8)
  184. enum {
  185. ADVANCED_CONTEXT = 0,
  186. LEGACY_CONTEXT,
  187. ADVANCED_AD_CONTEXT,
  188. LEGACY_64B_CONTEXT
  189. };
  190. #define GEN8_CTX_MODE_SHIFT 3
  191. enum {
  192. FAULT_AND_HANG = 0,
  193. FAULT_AND_HALT, /* Debug only */
  194. FAULT_AND_STREAM,
  195. FAULT_AND_CONTINUE /* Unsupported */
  196. };
  197. #define GEN8_CTX_ID_SHIFT 32
  198. static int intel_lr_context_pin(struct intel_engine_cs *ring,
  199. struct intel_context *ctx);
  200. /**
  201. * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
  202. * @dev: DRM device.
  203. * @enable_execlists: value of i915.enable_execlists module parameter.
  204. *
  205. * Only certain platforms support Execlists (the prerequisites being
  206. * support for Logical Ring Contexts and Aliasing PPGTT or better).
  207. *
  208. * Return: 1 if Execlists is supported and has to be enabled.
  209. */
  210. int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
  211. {
  212. WARN_ON(i915.enable_ppgtt == -1);
  213. if (INTEL_INFO(dev)->gen >= 9)
  214. return 1;
  215. if (enable_execlists == 0)
  216. return 0;
  217. if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
  218. i915.use_mmio_flip >= 0)
  219. return 1;
  220. return 0;
  221. }
  222. /**
  223. * intel_execlists_ctx_id() - get the Execlists Context ID
  224. * @ctx_obj: Logical Ring Context backing object.
  225. *
  226. * Do not confuse with ctx->id! Unfortunately we have a name overload
  227. * here: the old context ID we pass to userspace as a handler so that
  228. * they can refer to a context, and the new context ID we pass to the
  229. * ELSP so that the GPU can inform us of the context status via
  230. * interrupts.
  231. *
  232. * Return: 20-bits globally unique context ID.
  233. */
  234. u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
  235. {
  236. u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
  237. /* LRCA is required to be 4K aligned so the more significant 20 bits
  238. * are globally unique */
  239. return lrca >> 12;
  240. }
  241. static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
  242. struct drm_i915_gem_object *ctx_obj)
  243. {
  244. struct drm_device *dev = ring->dev;
  245. uint64_t desc;
  246. uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
  247. WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
  248. desc = GEN8_CTX_VALID;
  249. desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
  250. desc |= GEN8_CTX_L3LLC_COHERENT;
  251. desc |= GEN8_CTX_PRIVILEGE;
  252. desc |= lrca;
  253. desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
  254. /* TODO: WaDisableLiteRestore when we start using semaphore
  255. * signalling between Command Streamers */
  256. /* desc |= GEN8_CTX_FORCE_RESTORE; */
  257. /* WaEnableForceRestoreInCtxtDescForVCS:skl */
  258. if (IS_GEN9(dev) &&
  259. INTEL_REVID(dev) <= SKL_REVID_B0 &&
  260. (ring->id == BCS || ring->id == VCS ||
  261. ring->id == VECS || ring->id == VCS2))
  262. desc |= GEN8_CTX_FORCE_RESTORE;
  263. return desc;
  264. }
  265. static void execlists_elsp_write(struct intel_engine_cs *ring,
  266. struct drm_i915_gem_object *ctx_obj0,
  267. struct drm_i915_gem_object *ctx_obj1)
  268. {
  269. struct drm_device *dev = ring->dev;
  270. struct drm_i915_private *dev_priv = dev->dev_private;
  271. uint64_t temp = 0;
  272. uint32_t desc[4];
  273. /* XXX: You must always write both descriptors in the order below. */
  274. if (ctx_obj1)
  275. temp = execlists_ctx_descriptor(ring, ctx_obj1);
  276. else
  277. temp = 0;
  278. desc[1] = (u32)(temp >> 32);
  279. desc[0] = (u32)temp;
  280. temp = execlists_ctx_descriptor(ring, ctx_obj0);
  281. desc[3] = (u32)(temp >> 32);
  282. desc[2] = (u32)temp;
  283. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  284. I915_WRITE(RING_ELSP(ring), desc[1]);
  285. I915_WRITE(RING_ELSP(ring), desc[0]);
  286. I915_WRITE(RING_ELSP(ring), desc[3]);
  287. /* The context is automatically loaded after the following */
  288. I915_WRITE(RING_ELSP(ring), desc[2]);
  289. /* ELSP is a wo register, so use another nearby reg for posting instead */
  290. POSTING_READ(RING_EXECLIST_STATUS(ring));
  291. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  292. }
  293. static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
  294. struct drm_i915_gem_object *ring_obj,
  295. u32 tail)
  296. {
  297. struct page *page;
  298. uint32_t *reg_state;
  299. page = i915_gem_object_get_page(ctx_obj, 1);
  300. reg_state = kmap_atomic(page);
  301. reg_state[CTX_RING_TAIL+1] = tail;
  302. reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
  303. kunmap_atomic(reg_state);
  304. return 0;
  305. }
  306. static void execlists_submit_contexts(struct intel_engine_cs *ring,
  307. struct intel_context *to0, u32 tail0,
  308. struct intel_context *to1, u32 tail1)
  309. {
  310. struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
  311. struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
  312. struct drm_i915_gem_object *ctx_obj1 = NULL;
  313. struct intel_ringbuffer *ringbuf1 = NULL;
  314. BUG_ON(!ctx_obj0);
  315. WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
  316. WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
  317. execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
  318. if (to1) {
  319. ringbuf1 = to1->engine[ring->id].ringbuf;
  320. ctx_obj1 = to1->engine[ring->id].state;
  321. BUG_ON(!ctx_obj1);
  322. WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
  323. WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
  324. execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
  325. }
  326. execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
  327. }
  328. static void execlists_context_unqueue(struct intel_engine_cs *ring)
  329. {
  330. struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
  331. struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
  332. assert_spin_locked(&ring->execlist_lock);
  333. if (list_empty(&ring->execlist_queue))
  334. return;
  335. /* Try to read in pairs */
  336. list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
  337. execlist_link) {
  338. if (!req0) {
  339. req0 = cursor;
  340. } else if (req0->ctx == cursor->ctx) {
  341. /* Same ctx: ignore first request, as second request
  342. * will update tail past first request's workload */
  343. cursor->elsp_submitted = req0->elsp_submitted;
  344. list_del(&req0->execlist_link);
  345. list_add_tail(&req0->execlist_link,
  346. &ring->execlist_retired_req_list);
  347. req0 = cursor;
  348. } else {
  349. req1 = cursor;
  350. break;
  351. }
  352. }
  353. if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
  354. /*
  355. * WaIdleLiteRestore: make sure we never cause a lite
  356. * restore with HEAD==TAIL
  357. */
  358. if (req0 && req0->elsp_submitted) {
  359. /*
  360. * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
  361. * as we resubmit the request. See gen8_emit_request()
  362. * for where we prepare the padding after the end of the
  363. * request.
  364. */
  365. struct intel_ringbuffer *ringbuf;
  366. ringbuf = req0->ctx->engine[ring->id].ringbuf;
  367. req0->tail += 8;
  368. req0->tail &= ringbuf->size - 1;
  369. }
  370. }
  371. WARN_ON(req1 && req1->elsp_submitted);
  372. execlists_submit_contexts(ring, req0->ctx, req0->tail,
  373. req1 ? req1->ctx : NULL,
  374. req1 ? req1->tail : 0);
  375. req0->elsp_submitted++;
  376. if (req1)
  377. req1->elsp_submitted++;
  378. }
  379. static bool execlists_check_remove_request(struct intel_engine_cs *ring,
  380. u32 request_id)
  381. {
  382. struct drm_i915_gem_request *head_req;
  383. assert_spin_locked(&ring->execlist_lock);
  384. head_req = list_first_entry_or_null(&ring->execlist_queue,
  385. struct drm_i915_gem_request,
  386. execlist_link);
  387. if (head_req != NULL) {
  388. struct drm_i915_gem_object *ctx_obj =
  389. head_req->ctx->engine[ring->id].state;
  390. if (intel_execlists_ctx_id(ctx_obj) == request_id) {
  391. WARN(head_req->elsp_submitted == 0,
  392. "Never submitted head request\n");
  393. if (--head_req->elsp_submitted <= 0) {
  394. list_del(&head_req->execlist_link);
  395. list_add_tail(&head_req->execlist_link,
  396. &ring->execlist_retired_req_list);
  397. return true;
  398. }
  399. }
  400. }
  401. return false;
  402. }
  403. /**
  404. * intel_lrc_irq_handler() - handle Context Switch interrupts
  405. * @ring: Engine Command Streamer to handle.
  406. *
  407. * Check the unread Context Status Buffers and manage the submission of new
  408. * contexts to the ELSP accordingly.
  409. */
  410. void intel_lrc_irq_handler(struct intel_engine_cs *ring)
  411. {
  412. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  413. u32 status_pointer;
  414. u8 read_pointer;
  415. u8 write_pointer;
  416. u32 status;
  417. u32 status_id;
  418. u32 submit_contexts = 0;
  419. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  420. read_pointer = ring->next_context_status_buffer;
  421. write_pointer = status_pointer & 0x07;
  422. if (read_pointer > write_pointer)
  423. write_pointer += 6;
  424. spin_lock(&ring->execlist_lock);
  425. while (read_pointer < write_pointer) {
  426. read_pointer++;
  427. status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
  428. (read_pointer % 6) * 8);
  429. status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
  430. (read_pointer % 6) * 8 + 4);
  431. if (status & GEN8_CTX_STATUS_PREEMPTED) {
  432. if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
  433. if (execlists_check_remove_request(ring, status_id))
  434. WARN(1, "Lite Restored request removed from queue\n");
  435. } else
  436. WARN(1, "Preemption without Lite Restore\n");
  437. }
  438. if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
  439. (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
  440. if (execlists_check_remove_request(ring, status_id))
  441. submit_contexts++;
  442. }
  443. }
  444. if (submit_contexts != 0)
  445. execlists_context_unqueue(ring);
  446. spin_unlock(&ring->execlist_lock);
  447. WARN(submit_contexts > 2, "More than two context complete events?\n");
  448. ring->next_context_status_buffer = write_pointer % 6;
  449. I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
  450. ((u32)ring->next_context_status_buffer & 0x07) << 8);
  451. }
  452. static int execlists_context_queue(struct intel_engine_cs *ring,
  453. struct intel_context *to,
  454. u32 tail,
  455. struct drm_i915_gem_request *request)
  456. {
  457. struct drm_i915_gem_request *cursor;
  458. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  459. unsigned long flags;
  460. int num_elements = 0;
  461. if (to != ring->default_context)
  462. intel_lr_context_pin(ring, to);
  463. if (!request) {
  464. /*
  465. * If there isn't a request associated with this submission,
  466. * create one as a temporary holder.
  467. */
  468. request = kzalloc(sizeof(*request), GFP_KERNEL);
  469. if (request == NULL)
  470. return -ENOMEM;
  471. request->ring = ring;
  472. request->ctx = to;
  473. kref_init(&request->ref);
  474. request->uniq = dev_priv->request_uniq++;
  475. i915_gem_context_reference(request->ctx);
  476. } else {
  477. i915_gem_request_reference(request);
  478. WARN_ON(to != request->ctx);
  479. }
  480. request->tail = tail;
  481. intel_runtime_pm_get(dev_priv);
  482. spin_lock_irqsave(&ring->execlist_lock, flags);
  483. list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
  484. if (++num_elements > 2)
  485. break;
  486. if (num_elements > 2) {
  487. struct drm_i915_gem_request *tail_req;
  488. tail_req = list_last_entry(&ring->execlist_queue,
  489. struct drm_i915_gem_request,
  490. execlist_link);
  491. if (to == tail_req->ctx) {
  492. WARN(tail_req->elsp_submitted != 0,
  493. "More than 2 already-submitted reqs queued\n");
  494. list_del(&tail_req->execlist_link);
  495. list_add_tail(&tail_req->execlist_link,
  496. &ring->execlist_retired_req_list);
  497. }
  498. }
  499. list_add_tail(&request->execlist_link, &ring->execlist_queue);
  500. if (num_elements == 0)
  501. execlists_context_unqueue(ring);
  502. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  503. return 0;
  504. }
  505. static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
  506. struct intel_context *ctx)
  507. {
  508. struct intel_engine_cs *ring = ringbuf->ring;
  509. uint32_t flush_domains;
  510. int ret;
  511. flush_domains = 0;
  512. if (ring->gpu_caches_dirty)
  513. flush_domains = I915_GEM_GPU_DOMAINS;
  514. ret = ring->emit_flush(ringbuf, ctx,
  515. I915_GEM_GPU_DOMAINS, flush_domains);
  516. if (ret)
  517. return ret;
  518. ring->gpu_caches_dirty = false;
  519. return 0;
  520. }
  521. static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
  522. struct intel_context *ctx,
  523. struct list_head *vmas)
  524. {
  525. struct intel_engine_cs *ring = ringbuf->ring;
  526. struct i915_vma *vma;
  527. uint32_t flush_domains = 0;
  528. bool flush_chipset = false;
  529. int ret;
  530. list_for_each_entry(vma, vmas, exec_list) {
  531. struct drm_i915_gem_object *obj = vma->obj;
  532. ret = i915_gem_object_sync(obj, ring);
  533. if (ret)
  534. return ret;
  535. if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
  536. flush_chipset |= i915_gem_clflush_object(obj, false);
  537. flush_domains |= obj->base.write_domain;
  538. }
  539. if (flush_domains & I915_GEM_DOMAIN_GTT)
  540. wmb();
  541. /* Unconditionally invalidate gpu caches and ensure that we do flush
  542. * any residual writes from the previous batch.
  543. */
  544. return logical_ring_invalidate_all_caches(ringbuf, ctx);
  545. }
  546. /**
  547. * execlists_submission() - submit a batchbuffer for execution, Execlists style
  548. * @dev: DRM device.
  549. * @file: DRM file.
  550. * @ring: Engine Command Streamer to submit to.
  551. * @ctx: Context to employ for this submission.
  552. * @args: execbuffer call arguments.
  553. * @vmas: list of vmas.
  554. * @batch_obj: the batchbuffer to submit.
  555. * @exec_start: batchbuffer start virtual address pointer.
  556. * @dispatch_flags: translated execbuffer call flags.
  557. *
  558. * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
  559. * away the submission details of the execbuffer ioctl call.
  560. *
  561. * Return: non-zero if the submission fails.
  562. */
  563. int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
  564. struct intel_engine_cs *ring,
  565. struct intel_context *ctx,
  566. struct drm_i915_gem_execbuffer2 *args,
  567. struct list_head *vmas,
  568. struct drm_i915_gem_object *batch_obj,
  569. u64 exec_start, u32 dispatch_flags)
  570. {
  571. struct drm_i915_private *dev_priv = dev->dev_private;
  572. struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
  573. int instp_mode;
  574. u32 instp_mask;
  575. int ret;
  576. instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
  577. instp_mask = I915_EXEC_CONSTANTS_MASK;
  578. switch (instp_mode) {
  579. case I915_EXEC_CONSTANTS_REL_GENERAL:
  580. case I915_EXEC_CONSTANTS_ABSOLUTE:
  581. case I915_EXEC_CONSTANTS_REL_SURFACE:
  582. if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
  583. DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
  584. return -EINVAL;
  585. }
  586. if (instp_mode != dev_priv->relative_constants_mode) {
  587. if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
  588. DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
  589. return -EINVAL;
  590. }
  591. /* The HW changed the meaning on this bit on gen6 */
  592. instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
  593. }
  594. break;
  595. default:
  596. DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
  597. return -EINVAL;
  598. }
  599. if (args->num_cliprects != 0) {
  600. DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
  601. return -EINVAL;
  602. } else {
  603. if (args->DR4 == 0xffffffff) {
  604. DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
  605. args->DR4 = 0;
  606. }
  607. if (args->DR1 || args->DR4 || args->cliprects_ptr) {
  608. DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
  609. return -EINVAL;
  610. }
  611. }
  612. if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
  613. DRM_DEBUG("sol reset is gen7 only\n");
  614. return -EINVAL;
  615. }
  616. ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
  617. if (ret)
  618. return ret;
  619. if (ring == &dev_priv->ring[RCS] &&
  620. instp_mode != dev_priv->relative_constants_mode) {
  621. ret = intel_logical_ring_begin(ringbuf, ctx, 4);
  622. if (ret)
  623. return ret;
  624. intel_logical_ring_emit(ringbuf, MI_NOOP);
  625. intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
  626. intel_logical_ring_emit(ringbuf, INSTPM);
  627. intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
  628. intel_logical_ring_advance(ringbuf);
  629. dev_priv->relative_constants_mode = instp_mode;
  630. }
  631. ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
  632. if (ret)
  633. return ret;
  634. trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
  635. i915_gem_execbuffer_move_to_active(vmas, ring);
  636. i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
  637. return 0;
  638. }
  639. void intel_execlists_retire_requests(struct intel_engine_cs *ring)
  640. {
  641. struct drm_i915_gem_request *req, *tmp;
  642. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  643. unsigned long flags;
  644. struct list_head retired_list;
  645. WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  646. if (list_empty(&ring->execlist_retired_req_list))
  647. return;
  648. INIT_LIST_HEAD(&retired_list);
  649. spin_lock_irqsave(&ring->execlist_lock, flags);
  650. list_replace_init(&ring->execlist_retired_req_list, &retired_list);
  651. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  652. list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
  653. struct intel_context *ctx = req->ctx;
  654. struct drm_i915_gem_object *ctx_obj =
  655. ctx->engine[ring->id].state;
  656. if (ctx_obj && (ctx != ring->default_context))
  657. intel_lr_context_unpin(ring, ctx);
  658. intel_runtime_pm_put(dev_priv);
  659. list_del(&req->execlist_link);
  660. i915_gem_request_unreference(req);
  661. }
  662. }
  663. void intel_logical_ring_stop(struct intel_engine_cs *ring)
  664. {
  665. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  666. int ret;
  667. if (!intel_ring_initialized(ring))
  668. return;
  669. ret = intel_ring_idle(ring);
  670. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  671. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  672. ring->name, ret);
  673. /* TODO: Is this correct with Execlists enabled? */
  674. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  675. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  676. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  677. return;
  678. }
  679. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  680. }
  681. int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
  682. struct intel_context *ctx)
  683. {
  684. struct intel_engine_cs *ring = ringbuf->ring;
  685. int ret;
  686. if (!ring->gpu_caches_dirty)
  687. return 0;
  688. ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
  689. if (ret)
  690. return ret;
  691. ring->gpu_caches_dirty = false;
  692. return 0;
  693. }
  694. /*
  695. * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
  696. * @ringbuf: Logical Ringbuffer to advance.
  697. *
  698. * The tail is updated in our logical ringbuffer struct, not in the actual context. What
  699. * really happens during submission is that the context and current tail will be placed
  700. * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
  701. * point, the tail *inside* the context is updated and the ELSP written to.
  702. */
  703. static void
  704. intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
  705. struct intel_context *ctx,
  706. struct drm_i915_gem_request *request)
  707. {
  708. struct intel_engine_cs *ring = ringbuf->ring;
  709. intel_logical_ring_advance(ringbuf);
  710. if (intel_ring_stopped(ring))
  711. return;
  712. execlists_context_queue(ring, ctx, ringbuf->tail, request);
  713. }
  714. static int intel_lr_context_pin(struct intel_engine_cs *ring,
  715. struct intel_context *ctx)
  716. {
  717. struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
  718. struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
  719. int ret = 0;
  720. WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  721. if (ctx->engine[ring->id].pin_count++ == 0) {
  722. ret = i915_gem_obj_ggtt_pin(ctx_obj,
  723. GEN8_LR_CONTEXT_ALIGN, 0);
  724. if (ret)
  725. goto reset_pin_count;
  726. ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
  727. if (ret)
  728. goto unpin_ctx_obj;
  729. }
  730. return ret;
  731. unpin_ctx_obj:
  732. i915_gem_object_ggtt_unpin(ctx_obj);
  733. reset_pin_count:
  734. ctx->engine[ring->id].pin_count = 0;
  735. return ret;
  736. }
  737. void intel_lr_context_unpin(struct intel_engine_cs *ring,
  738. struct intel_context *ctx)
  739. {
  740. struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
  741. struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
  742. if (ctx_obj) {
  743. WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  744. if (--ctx->engine[ring->id].pin_count == 0) {
  745. intel_unpin_ringbuffer_obj(ringbuf);
  746. i915_gem_object_ggtt_unpin(ctx_obj);
  747. }
  748. }
  749. }
  750. static int logical_ring_alloc_request(struct intel_engine_cs *ring,
  751. struct intel_context *ctx)
  752. {
  753. struct drm_i915_gem_request *request;
  754. struct drm_i915_private *dev_private = ring->dev->dev_private;
  755. int ret;
  756. if (ring->outstanding_lazy_request)
  757. return 0;
  758. request = kzalloc(sizeof(*request), GFP_KERNEL);
  759. if (request == NULL)
  760. return -ENOMEM;
  761. if (ctx != ring->default_context) {
  762. ret = intel_lr_context_pin(ring, ctx);
  763. if (ret) {
  764. kfree(request);
  765. return ret;
  766. }
  767. }
  768. kref_init(&request->ref);
  769. request->ring = ring;
  770. request->uniq = dev_private->request_uniq++;
  771. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  772. if (ret) {
  773. intel_lr_context_unpin(ring, ctx);
  774. kfree(request);
  775. return ret;
  776. }
  777. request->ctx = ctx;
  778. i915_gem_context_reference(request->ctx);
  779. request->ringbuf = ctx->engine[ring->id].ringbuf;
  780. ring->outstanding_lazy_request = request;
  781. return 0;
  782. }
  783. static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
  784. int bytes)
  785. {
  786. struct intel_engine_cs *ring = ringbuf->ring;
  787. struct drm_i915_gem_request *request;
  788. int ret;
  789. if (intel_ring_space(ringbuf) >= bytes)
  790. return 0;
  791. list_for_each_entry(request, &ring->request_list, list) {
  792. /*
  793. * The request queue is per-engine, so can contain requests
  794. * from multiple ringbuffers. Here, we must ignore any that
  795. * aren't from the ringbuffer we're considering.
  796. */
  797. struct intel_context *ctx = request->ctx;
  798. if (ctx->engine[ring->id].ringbuf != ringbuf)
  799. continue;
  800. /* Would completion of this request free enough space? */
  801. if (__intel_ring_space(request->tail, ringbuf->tail,
  802. ringbuf->size) >= bytes) {
  803. break;
  804. }
  805. }
  806. if (&request->list == &ring->request_list)
  807. return -ENOSPC;
  808. ret = i915_wait_request(request);
  809. if (ret)
  810. return ret;
  811. i915_gem_retire_requests_ring(ring);
  812. return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
  813. }
  814. static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
  815. struct intel_context *ctx,
  816. int bytes)
  817. {
  818. struct intel_engine_cs *ring = ringbuf->ring;
  819. struct drm_device *dev = ring->dev;
  820. struct drm_i915_private *dev_priv = dev->dev_private;
  821. unsigned long end;
  822. int ret;
  823. ret = logical_ring_wait_request(ringbuf, bytes);
  824. if (ret != -ENOSPC)
  825. return ret;
  826. /* Force the context submission in case we have been skipping it */
  827. intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
  828. /* With GEM the hangcheck timer should kick us out of the loop,
  829. * leaving it early runs the risk of corrupting GEM state (due
  830. * to running on almost untested codepaths). But on resume
  831. * timers don't work yet, so prevent a complete hang in that
  832. * case by choosing an insanely large timeout. */
  833. end = jiffies + 60 * HZ;
  834. ret = 0;
  835. do {
  836. if (intel_ring_space(ringbuf) >= bytes)
  837. break;
  838. msleep(1);
  839. if (dev_priv->mm.interruptible && signal_pending(current)) {
  840. ret = -ERESTARTSYS;
  841. break;
  842. }
  843. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  844. dev_priv->mm.interruptible);
  845. if (ret)
  846. break;
  847. if (time_after(jiffies, end)) {
  848. ret = -EBUSY;
  849. break;
  850. }
  851. } while (1);
  852. return ret;
  853. }
  854. static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
  855. struct intel_context *ctx)
  856. {
  857. uint32_t __iomem *virt;
  858. int rem = ringbuf->size - ringbuf->tail;
  859. if (ringbuf->space < rem) {
  860. int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
  861. if (ret)
  862. return ret;
  863. }
  864. virt = ringbuf->virtual_start + ringbuf->tail;
  865. rem /= 4;
  866. while (rem--)
  867. iowrite32(MI_NOOP, virt++);
  868. ringbuf->tail = 0;
  869. intel_ring_update_space(ringbuf);
  870. return 0;
  871. }
  872. static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
  873. struct intel_context *ctx, int bytes)
  874. {
  875. int ret;
  876. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  877. ret = logical_ring_wrap_buffer(ringbuf, ctx);
  878. if (unlikely(ret))
  879. return ret;
  880. }
  881. if (unlikely(ringbuf->space < bytes)) {
  882. ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
  883. if (unlikely(ret))
  884. return ret;
  885. }
  886. return 0;
  887. }
  888. /**
  889. * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
  890. *
  891. * @ringbuf: Logical ringbuffer.
  892. * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
  893. *
  894. * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
  895. * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
  896. * and also preallocates a request (every workload submission is still mediated through
  897. * requests, same as it did with legacy ringbuffer submission).
  898. *
  899. * Return: non-zero if the ringbuffer is not ready to be written to.
  900. */
  901. int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
  902. struct intel_context *ctx, int num_dwords)
  903. {
  904. struct intel_engine_cs *ring = ringbuf->ring;
  905. struct drm_device *dev = ring->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. int ret;
  908. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  909. dev_priv->mm.interruptible);
  910. if (ret)
  911. return ret;
  912. ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
  913. if (ret)
  914. return ret;
  915. /* Preallocate the olr before touching the ring */
  916. ret = logical_ring_alloc_request(ring, ctx);
  917. if (ret)
  918. return ret;
  919. ringbuf->space -= num_dwords * sizeof(uint32_t);
  920. return 0;
  921. }
  922. static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
  923. struct intel_context *ctx)
  924. {
  925. int ret, i;
  926. struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
  927. struct drm_device *dev = ring->dev;
  928. struct drm_i915_private *dev_priv = dev->dev_private;
  929. struct i915_workarounds *w = &dev_priv->workarounds;
  930. if (WARN_ON_ONCE(w->count == 0))
  931. return 0;
  932. ring->gpu_caches_dirty = true;
  933. ret = logical_ring_flush_all_caches(ringbuf, ctx);
  934. if (ret)
  935. return ret;
  936. ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
  937. if (ret)
  938. return ret;
  939. intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
  940. for (i = 0; i < w->count; i++) {
  941. intel_logical_ring_emit(ringbuf, w->reg[i].addr);
  942. intel_logical_ring_emit(ringbuf, w->reg[i].value);
  943. }
  944. intel_logical_ring_emit(ringbuf, MI_NOOP);
  945. intel_logical_ring_advance(ringbuf);
  946. ring->gpu_caches_dirty = true;
  947. ret = logical_ring_flush_all_caches(ringbuf, ctx);
  948. if (ret)
  949. return ret;
  950. return 0;
  951. }
  952. static int gen8_init_common_ring(struct intel_engine_cs *ring)
  953. {
  954. struct drm_device *dev = ring->dev;
  955. struct drm_i915_private *dev_priv = dev->dev_private;
  956. I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
  957. I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
  958. if (ring->status_page.obj) {
  959. I915_WRITE(RING_HWS_PGA(ring->mmio_base),
  960. (u32)ring->status_page.gfx_addr);
  961. POSTING_READ(RING_HWS_PGA(ring->mmio_base));
  962. }
  963. I915_WRITE(RING_MODE_GEN7(ring),
  964. _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
  965. _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
  966. POSTING_READ(RING_MODE_GEN7(ring));
  967. ring->next_context_status_buffer = 0;
  968. DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
  969. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  970. return 0;
  971. }
  972. static int gen8_init_render_ring(struct intel_engine_cs *ring)
  973. {
  974. struct drm_device *dev = ring->dev;
  975. struct drm_i915_private *dev_priv = dev->dev_private;
  976. int ret;
  977. ret = gen8_init_common_ring(ring);
  978. if (ret)
  979. return ret;
  980. /* We need to disable the AsyncFlip performance optimisations in order
  981. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  982. * programmed to '1' on all products.
  983. *
  984. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  985. */
  986. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  987. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  988. return init_workarounds_ring(ring);
  989. }
  990. static int gen9_init_render_ring(struct intel_engine_cs *ring)
  991. {
  992. int ret;
  993. ret = gen8_init_common_ring(ring);
  994. if (ret)
  995. return ret;
  996. return init_workarounds_ring(ring);
  997. }
  998. static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
  999. struct intel_context *ctx,
  1000. u64 offset, unsigned dispatch_flags)
  1001. {
  1002. bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
  1003. int ret;
  1004. ret = intel_logical_ring_begin(ringbuf, ctx, 4);
  1005. if (ret)
  1006. return ret;
  1007. /* FIXME(BDW): Address space and security selectors. */
  1008. intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1009. intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
  1010. intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
  1011. intel_logical_ring_emit(ringbuf, MI_NOOP);
  1012. intel_logical_ring_advance(ringbuf);
  1013. return 0;
  1014. }
  1015. static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
  1016. {
  1017. struct drm_device *dev = ring->dev;
  1018. struct drm_i915_private *dev_priv = dev->dev_private;
  1019. unsigned long flags;
  1020. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1021. return false;
  1022. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1023. if (ring->irq_refcount++ == 0) {
  1024. I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
  1025. POSTING_READ(RING_IMR(ring->mmio_base));
  1026. }
  1027. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1028. return true;
  1029. }
  1030. static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
  1031. {
  1032. struct drm_device *dev = ring->dev;
  1033. struct drm_i915_private *dev_priv = dev->dev_private;
  1034. unsigned long flags;
  1035. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1036. if (--ring->irq_refcount == 0) {
  1037. I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
  1038. POSTING_READ(RING_IMR(ring->mmio_base));
  1039. }
  1040. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1041. }
  1042. static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
  1043. struct intel_context *ctx,
  1044. u32 invalidate_domains,
  1045. u32 unused)
  1046. {
  1047. struct intel_engine_cs *ring = ringbuf->ring;
  1048. struct drm_device *dev = ring->dev;
  1049. struct drm_i915_private *dev_priv = dev->dev_private;
  1050. uint32_t cmd;
  1051. int ret;
  1052. ret = intel_logical_ring_begin(ringbuf, ctx, 4);
  1053. if (ret)
  1054. return ret;
  1055. cmd = MI_FLUSH_DW + 1;
  1056. /* We always require a command barrier so that subsequent
  1057. * commands, such as breadcrumb interrupts, are strictly ordered
  1058. * wrt the contents of the write cache being flushed to memory
  1059. * (and thus being coherent from the CPU).
  1060. */
  1061. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1062. if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
  1063. cmd |= MI_INVALIDATE_TLB;
  1064. if (ring == &dev_priv->ring[VCS])
  1065. cmd |= MI_INVALIDATE_BSD;
  1066. }
  1067. intel_logical_ring_emit(ringbuf, cmd);
  1068. intel_logical_ring_emit(ringbuf,
  1069. I915_GEM_HWS_SCRATCH_ADDR |
  1070. MI_FLUSH_DW_USE_GTT);
  1071. intel_logical_ring_emit(ringbuf, 0); /* upper addr */
  1072. intel_logical_ring_emit(ringbuf, 0); /* value */
  1073. intel_logical_ring_advance(ringbuf);
  1074. return 0;
  1075. }
  1076. static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
  1077. struct intel_context *ctx,
  1078. u32 invalidate_domains,
  1079. u32 flush_domains)
  1080. {
  1081. struct intel_engine_cs *ring = ringbuf->ring;
  1082. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1083. u32 flags = 0;
  1084. int ret;
  1085. flags |= PIPE_CONTROL_CS_STALL;
  1086. if (flush_domains) {
  1087. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  1088. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  1089. }
  1090. if (invalidate_domains) {
  1091. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  1092. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  1093. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  1094. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  1095. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  1096. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  1097. flags |= PIPE_CONTROL_QW_WRITE;
  1098. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  1099. }
  1100. ret = intel_logical_ring_begin(ringbuf, ctx, 6);
  1101. if (ret)
  1102. return ret;
  1103. intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
  1104. intel_logical_ring_emit(ringbuf, flags);
  1105. intel_logical_ring_emit(ringbuf, scratch_addr);
  1106. intel_logical_ring_emit(ringbuf, 0);
  1107. intel_logical_ring_emit(ringbuf, 0);
  1108. intel_logical_ring_emit(ringbuf, 0);
  1109. intel_logical_ring_advance(ringbuf);
  1110. return 0;
  1111. }
  1112. static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1113. {
  1114. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1115. }
  1116. static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1117. {
  1118. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1119. }
  1120. static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
  1121. struct drm_i915_gem_request *request)
  1122. {
  1123. struct intel_engine_cs *ring = ringbuf->ring;
  1124. u32 cmd;
  1125. int ret;
  1126. /*
  1127. * Reserve space for 2 NOOPs at the end of each request to be
  1128. * used as a workaround for not being allowed to do lite
  1129. * restore with HEAD==TAIL (WaIdleLiteRestore).
  1130. */
  1131. ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
  1132. if (ret)
  1133. return ret;
  1134. cmd = MI_STORE_DWORD_IMM_GEN4;
  1135. cmd |= MI_GLOBAL_GTT;
  1136. intel_logical_ring_emit(ringbuf, cmd);
  1137. intel_logical_ring_emit(ringbuf,
  1138. (ring->status_page.gfx_addr +
  1139. (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
  1140. intel_logical_ring_emit(ringbuf, 0);
  1141. intel_logical_ring_emit(ringbuf,
  1142. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1143. intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
  1144. intel_logical_ring_emit(ringbuf, MI_NOOP);
  1145. intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
  1146. /*
  1147. * Here we add two extra NOOPs as padding to avoid
  1148. * lite restore of a context with HEAD==TAIL.
  1149. */
  1150. intel_logical_ring_emit(ringbuf, MI_NOOP);
  1151. intel_logical_ring_emit(ringbuf, MI_NOOP);
  1152. intel_logical_ring_advance(ringbuf);
  1153. return 0;
  1154. }
  1155. static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
  1156. struct intel_context *ctx)
  1157. {
  1158. struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
  1159. struct render_state so;
  1160. struct drm_i915_file_private *file_priv = ctx->file_priv;
  1161. struct drm_file *file = file_priv ? file_priv->file : NULL;
  1162. int ret;
  1163. ret = i915_gem_render_state_prepare(ring, &so);
  1164. if (ret)
  1165. return ret;
  1166. if (so.rodata == NULL)
  1167. return 0;
  1168. ret = ring->emit_bb_start(ringbuf,
  1169. ctx,
  1170. so.ggtt_offset,
  1171. I915_DISPATCH_SECURE);
  1172. if (ret)
  1173. goto out;
  1174. i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
  1175. ret = __i915_add_request(ring, file, so.obj);
  1176. /* intel_logical_ring_add_request moves object to inactive if it
  1177. * fails */
  1178. out:
  1179. i915_gem_render_state_fini(&so);
  1180. return ret;
  1181. }
  1182. static int gen8_init_rcs_context(struct intel_engine_cs *ring,
  1183. struct intel_context *ctx)
  1184. {
  1185. int ret;
  1186. ret = intel_logical_ring_workarounds_emit(ring, ctx);
  1187. if (ret)
  1188. return ret;
  1189. return intel_lr_context_render_state_init(ring, ctx);
  1190. }
  1191. /**
  1192. * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
  1193. *
  1194. * @ring: Engine Command Streamer.
  1195. *
  1196. */
  1197. void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
  1198. {
  1199. struct drm_i915_private *dev_priv;
  1200. if (!intel_ring_initialized(ring))
  1201. return;
  1202. dev_priv = ring->dev->dev_private;
  1203. intel_logical_ring_stop(ring);
  1204. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1205. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1206. if (ring->cleanup)
  1207. ring->cleanup(ring);
  1208. i915_cmd_parser_fini_ring(ring);
  1209. if (ring->status_page.obj) {
  1210. kunmap(sg_page(ring->status_page.obj->pages->sgl));
  1211. ring->status_page.obj = NULL;
  1212. }
  1213. }
  1214. static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
  1215. {
  1216. int ret;
  1217. /* Intentionally left blank. */
  1218. ring->buffer = NULL;
  1219. ring->dev = dev;
  1220. INIT_LIST_HEAD(&ring->active_list);
  1221. INIT_LIST_HEAD(&ring->request_list);
  1222. init_waitqueue_head(&ring->irq_queue);
  1223. INIT_LIST_HEAD(&ring->execlist_queue);
  1224. INIT_LIST_HEAD(&ring->execlist_retired_req_list);
  1225. spin_lock_init(&ring->execlist_lock);
  1226. ret = i915_cmd_parser_init_ring(ring);
  1227. if (ret)
  1228. return ret;
  1229. ret = intel_lr_context_deferred_create(ring->default_context, ring);
  1230. return ret;
  1231. }
  1232. static int logical_render_ring_init(struct drm_device *dev)
  1233. {
  1234. struct drm_i915_private *dev_priv = dev->dev_private;
  1235. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1236. int ret;
  1237. ring->name = "render ring";
  1238. ring->id = RCS;
  1239. ring->mmio_base = RENDER_RING_BASE;
  1240. ring->irq_enable_mask =
  1241. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
  1242. ring->irq_keep_mask =
  1243. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
  1244. if (HAS_L3_DPF(dev))
  1245. ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  1246. if (INTEL_INFO(dev)->gen >= 9)
  1247. ring->init_hw = gen9_init_render_ring;
  1248. else
  1249. ring->init_hw = gen8_init_render_ring;
  1250. ring->init_context = gen8_init_rcs_context;
  1251. ring->cleanup = intel_fini_pipe_control;
  1252. ring->get_seqno = gen8_get_seqno;
  1253. ring->set_seqno = gen8_set_seqno;
  1254. ring->emit_request = gen8_emit_request;
  1255. ring->emit_flush = gen8_emit_flush_render;
  1256. ring->irq_get = gen8_logical_ring_get_irq;
  1257. ring->irq_put = gen8_logical_ring_put_irq;
  1258. ring->emit_bb_start = gen8_emit_bb_start;
  1259. ring->dev = dev;
  1260. ret = logical_ring_init(dev, ring);
  1261. if (ret)
  1262. return ret;
  1263. return intel_init_pipe_control(ring);
  1264. }
  1265. static int logical_bsd_ring_init(struct drm_device *dev)
  1266. {
  1267. struct drm_i915_private *dev_priv = dev->dev_private;
  1268. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1269. ring->name = "bsd ring";
  1270. ring->id = VCS;
  1271. ring->mmio_base = GEN6_BSD_RING_BASE;
  1272. ring->irq_enable_mask =
  1273. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1274. ring->irq_keep_mask =
  1275. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1276. ring->init_hw = gen8_init_common_ring;
  1277. ring->get_seqno = gen8_get_seqno;
  1278. ring->set_seqno = gen8_set_seqno;
  1279. ring->emit_request = gen8_emit_request;
  1280. ring->emit_flush = gen8_emit_flush;
  1281. ring->irq_get = gen8_logical_ring_get_irq;
  1282. ring->irq_put = gen8_logical_ring_put_irq;
  1283. ring->emit_bb_start = gen8_emit_bb_start;
  1284. return logical_ring_init(dev, ring);
  1285. }
  1286. static int logical_bsd2_ring_init(struct drm_device *dev)
  1287. {
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  1290. ring->name = "bds2 ring";
  1291. ring->id = VCS2;
  1292. ring->mmio_base = GEN8_BSD2_RING_BASE;
  1293. ring->irq_enable_mask =
  1294. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  1295. ring->irq_keep_mask =
  1296. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  1297. ring->init_hw = gen8_init_common_ring;
  1298. ring->get_seqno = gen8_get_seqno;
  1299. ring->set_seqno = gen8_set_seqno;
  1300. ring->emit_request = gen8_emit_request;
  1301. ring->emit_flush = gen8_emit_flush;
  1302. ring->irq_get = gen8_logical_ring_get_irq;
  1303. ring->irq_put = gen8_logical_ring_put_irq;
  1304. ring->emit_bb_start = gen8_emit_bb_start;
  1305. return logical_ring_init(dev, ring);
  1306. }
  1307. static int logical_blt_ring_init(struct drm_device *dev)
  1308. {
  1309. struct drm_i915_private *dev_priv = dev->dev_private;
  1310. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  1311. ring->name = "blitter ring";
  1312. ring->id = BCS;
  1313. ring->mmio_base = BLT_RING_BASE;
  1314. ring->irq_enable_mask =
  1315. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1316. ring->irq_keep_mask =
  1317. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1318. ring->init_hw = gen8_init_common_ring;
  1319. ring->get_seqno = gen8_get_seqno;
  1320. ring->set_seqno = gen8_set_seqno;
  1321. ring->emit_request = gen8_emit_request;
  1322. ring->emit_flush = gen8_emit_flush;
  1323. ring->irq_get = gen8_logical_ring_get_irq;
  1324. ring->irq_put = gen8_logical_ring_put_irq;
  1325. ring->emit_bb_start = gen8_emit_bb_start;
  1326. return logical_ring_init(dev, ring);
  1327. }
  1328. static int logical_vebox_ring_init(struct drm_device *dev)
  1329. {
  1330. struct drm_i915_private *dev_priv = dev->dev_private;
  1331. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  1332. ring->name = "video enhancement ring";
  1333. ring->id = VECS;
  1334. ring->mmio_base = VEBOX_RING_BASE;
  1335. ring->irq_enable_mask =
  1336. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1337. ring->irq_keep_mask =
  1338. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1339. ring->init_hw = gen8_init_common_ring;
  1340. ring->get_seqno = gen8_get_seqno;
  1341. ring->set_seqno = gen8_set_seqno;
  1342. ring->emit_request = gen8_emit_request;
  1343. ring->emit_flush = gen8_emit_flush;
  1344. ring->irq_get = gen8_logical_ring_get_irq;
  1345. ring->irq_put = gen8_logical_ring_put_irq;
  1346. ring->emit_bb_start = gen8_emit_bb_start;
  1347. return logical_ring_init(dev, ring);
  1348. }
  1349. /**
  1350. * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
  1351. * @dev: DRM device.
  1352. *
  1353. * This function inits the engines for an Execlists submission style (the equivalent in the
  1354. * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
  1355. * those engines that are present in the hardware.
  1356. *
  1357. * Return: non-zero if the initialization failed.
  1358. */
  1359. int intel_logical_rings_init(struct drm_device *dev)
  1360. {
  1361. struct drm_i915_private *dev_priv = dev->dev_private;
  1362. int ret;
  1363. ret = logical_render_ring_init(dev);
  1364. if (ret)
  1365. return ret;
  1366. if (HAS_BSD(dev)) {
  1367. ret = logical_bsd_ring_init(dev);
  1368. if (ret)
  1369. goto cleanup_render_ring;
  1370. }
  1371. if (HAS_BLT(dev)) {
  1372. ret = logical_blt_ring_init(dev);
  1373. if (ret)
  1374. goto cleanup_bsd_ring;
  1375. }
  1376. if (HAS_VEBOX(dev)) {
  1377. ret = logical_vebox_ring_init(dev);
  1378. if (ret)
  1379. goto cleanup_blt_ring;
  1380. }
  1381. if (HAS_BSD2(dev)) {
  1382. ret = logical_bsd2_ring_init(dev);
  1383. if (ret)
  1384. goto cleanup_vebox_ring;
  1385. }
  1386. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  1387. if (ret)
  1388. goto cleanup_bsd2_ring;
  1389. return 0;
  1390. cleanup_bsd2_ring:
  1391. intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
  1392. cleanup_vebox_ring:
  1393. intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
  1394. cleanup_blt_ring:
  1395. intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
  1396. cleanup_bsd_ring:
  1397. intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
  1398. cleanup_render_ring:
  1399. intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
  1400. return ret;
  1401. }
  1402. static u32
  1403. make_rpcs(struct drm_device *dev)
  1404. {
  1405. u32 rpcs = 0;
  1406. /*
  1407. * No explicit RPCS request is needed to ensure full
  1408. * slice/subslice/EU enablement prior to Gen9.
  1409. */
  1410. if (INTEL_INFO(dev)->gen < 9)
  1411. return 0;
  1412. /*
  1413. * Starting in Gen9, render power gating can leave
  1414. * slice/subslice/EU in a partially enabled state. We
  1415. * must make an explicit request through RPCS for full
  1416. * enablement.
  1417. */
  1418. if (INTEL_INFO(dev)->has_slice_pg) {
  1419. rpcs |= GEN8_RPCS_S_CNT_ENABLE;
  1420. rpcs |= INTEL_INFO(dev)->slice_total <<
  1421. GEN8_RPCS_S_CNT_SHIFT;
  1422. rpcs |= GEN8_RPCS_ENABLE;
  1423. }
  1424. if (INTEL_INFO(dev)->has_subslice_pg) {
  1425. rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
  1426. rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
  1427. GEN8_RPCS_SS_CNT_SHIFT;
  1428. rpcs |= GEN8_RPCS_ENABLE;
  1429. }
  1430. if (INTEL_INFO(dev)->has_eu_pg) {
  1431. rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
  1432. GEN8_RPCS_EU_MIN_SHIFT;
  1433. rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
  1434. GEN8_RPCS_EU_MAX_SHIFT;
  1435. rpcs |= GEN8_RPCS_ENABLE;
  1436. }
  1437. return rpcs;
  1438. }
  1439. static int
  1440. populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
  1441. struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
  1442. {
  1443. struct drm_device *dev = ring->dev;
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1446. struct page *page;
  1447. uint32_t *reg_state;
  1448. int ret;
  1449. if (!ppgtt)
  1450. ppgtt = dev_priv->mm.aliasing_ppgtt;
  1451. ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
  1452. if (ret) {
  1453. DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
  1454. return ret;
  1455. }
  1456. ret = i915_gem_object_get_pages(ctx_obj);
  1457. if (ret) {
  1458. DRM_DEBUG_DRIVER("Could not get object pages\n");
  1459. return ret;
  1460. }
  1461. i915_gem_object_pin_pages(ctx_obj);
  1462. /* The second page of the context object contains some fields which must
  1463. * be set up prior to the first execution. */
  1464. page = i915_gem_object_get_page(ctx_obj, 1);
  1465. reg_state = kmap_atomic(page);
  1466. /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
  1467. * commands followed by (reg, value) pairs. The values we are setting here are
  1468. * only for the first context restore: on a subsequent save, the GPU will
  1469. * recreate this batchbuffer with new values (including all the missing
  1470. * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
  1471. if (ring->id == RCS)
  1472. reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
  1473. else
  1474. reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
  1475. reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
  1476. reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
  1477. reg_state[CTX_CONTEXT_CONTROL+1] =
  1478. _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
  1479. CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
  1480. reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
  1481. reg_state[CTX_RING_HEAD+1] = 0;
  1482. reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
  1483. reg_state[CTX_RING_TAIL+1] = 0;
  1484. reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
  1485. /* Ring buffer start address is not known until the buffer is pinned.
  1486. * It is written to the context image in execlists_update_context()
  1487. */
  1488. reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
  1489. reg_state[CTX_RING_BUFFER_CONTROL+1] =
  1490. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
  1491. reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
  1492. reg_state[CTX_BB_HEAD_U+1] = 0;
  1493. reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
  1494. reg_state[CTX_BB_HEAD_L+1] = 0;
  1495. reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
  1496. reg_state[CTX_BB_STATE+1] = (1<<5);
  1497. reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
  1498. reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
  1499. reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
  1500. reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
  1501. reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
  1502. reg_state[CTX_SECOND_BB_STATE+1] = 0;
  1503. if (ring->id == RCS) {
  1504. /* TODO: according to BSpec, the register state context
  1505. * for CHV does not have these. OTOH, these registers do
  1506. * exist in CHV. I'm waiting for a clarification */
  1507. reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
  1508. reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
  1509. reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
  1510. reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
  1511. reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
  1512. reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
  1513. }
  1514. reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
  1515. reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
  1516. reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
  1517. reg_state[CTX_CTX_TIMESTAMP+1] = 0;
  1518. reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
  1519. reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
  1520. reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
  1521. reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
  1522. reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
  1523. reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
  1524. reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
  1525. reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
  1526. reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
  1527. reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
  1528. reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
  1529. reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
  1530. reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
  1531. reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
  1532. reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
  1533. reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
  1534. if (ring->id == RCS) {
  1535. reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
  1536. reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
  1537. reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
  1538. }
  1539. kunmap_atomic(reg_state);
  1540. ctx_obj->dirty = 1;
  1541. set_page_dirty(page);
  1542. i915_gem_object_unpin_pages(ctx_obj);
  1543. return 0;
  1544. }
  1545. /**
  1546. * intel_lr_context_free() - free the LRC specific bits of a context
  1547. * @ctx: the LR context to free.
  1548. *
  1549. * The real context freeing is done in i915_gem_context_free: this only
  1550. * takes care of the bits that are LRC related: the per-engine backing
  1551. * objects and the logical ringbuffer.
  1552. */
  1553. void intel_lr_context_free(struct intel_context *ctx)
  1554. {
  1555. int i;
  1556. for (i = 0; i < I915_NUM_RINGS; i++) {
  1557. struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
  1558. if (ctx_obj) {
  1559. struct intel_ringbuffer *ringbuf =
  1560. ctx->engine[i].ringbuf;
  1561. struct intel_engine_cs *ring = ringbuf->ring;
  1562. if (ctx == ring->default_context) {
  1563. intel_unpin_ringbuffer_obj(ringbuf);
  1564. i915_gem_object_ggtt_unpin(ctx_obj);
  1565. }
  1566. WARN_ON(ctx->engine[ring->id].pin_count);
  1567. intel_destroy_ringbuffer_obj(ringbuf);
  1568. kfree(ringbuf);
  1569. drm_gem_object_unreference(&ctx_obj->base);
  1570. }
  1571. }
  1572. }
  1573. static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
  1574. {
  1575. int ret = 0;
  1576. WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
  1577. switch (ring->id) {
  1578. case RCS:
  1579. if (INTEL_INFO(ring->dev)->gen >= 9)
  1580. ret = GEN9_LR_CONTEXT_RENDER_SIZE;
  1581. else
  1582. ret = GEN8_LR_CONTEXT_RENDER_SIZE;
  1583. break;
  1584. case VCS:
  1585. case BCS:
  1586. case VECS:
  1587. case VCS2:
  1588. ret = GEN8_LR_CONTEXT_OTHER_SIZE;
  1589. break;
  1590. }
  1591. return ret;
  1592. }
  1593. static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
  1594. struct drm_i915_gem_object *default_ctx_obj)
  1595. {
  1596. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1597. /* The status page is offset 0 from the default context object
  1598. * in LRC mode. */
  1599. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
  1600. ring->status_page.page_addr =
  1601. kmap(sg_page(default_ctx_obj->pages->sgl));
  1602. ring->status_page.obj = default_ctx_obj;
  1603. I915_WRITE(RING_HWS_PGA(ring->mmio_base),
  1604. (u32)ring->status_page.gfx_addr);
  1605. POSTING_READ(RING_HWS_PGA(ring->mmio_base));
  1606. }
  1607. /**
  1608. * intel_lr_context_deferred_create() - create the LRC specific bits of a context
  1609. * @ctx: LR context to create.
  1610. * @ring: engine to be used with the context.
  1611. *
  1612. * This function can be called more than once, with different engines, if we plan
  1613. * to use the context with them. The context backing objects and the ringbuffers
  1614. * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
  1615. * the creation is a deferred call: it's better to make sure first that we need to use
  1616. * a given ring with the context.
  1617. *
  1618. * Return: non-zero on error.
  1619. */
  1620. int intel_lr_context_deferred_create(struct intel_context *ctx,
  1621. struct intel_engine_cs *ring)
  1622. {
  1623. const bool is_global_default_ctx = (ctx == ring->default_context);
  1624. struct drm_device *dev = ring->dev;
  1625. struct drm_i915_gem_object *ctx_obj;
  1626. uint32_t context_size;
  1627. struct intel_ringbuffer *ringbuf;
  1628. int ret;
  1629. WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
  1630. WARN_ON(ctx->engine[ring->id].state);
  1631. context_size = round_up(get_lr_context_size(ring), 4096);
  1632. ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
  1633. if (IS_ERR(ctx_obj)) {
  1634. ret = PTR_ERR(ctx_obj);
  1635. DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
  1636. return ret;
  1637. }
  1638. if (is_global_default_ctx) {
  1639. ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
  1640. if (ret) {
  1641. DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
  1642. ret);
  1643. drm_gem_object_unreference(&ctx_obj->base);
  1644. return ret;
  1645. }
  1646. }
  1647. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1648. if (!ringbuf) {
  1649. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1650. ring->name);
  1651. ret = -ENOMEM;
  1652. goto error_unpin_ctx;
  1653. }
  1654. ringbuf->ring = ring;
  1655. ringbuf->size = 32 * PAGE_SIZE;
  1656. ringbuf->effective_size = ringbuf->size;
  1657. ringbuf->head = 0;
  1658. ringbuf->tail = 0;
  1659. ringbuf->last_retired_head = -1;
  1660. intel_ring_update_space(ringbuf);
  1661. if (ringbuf->obj == NULL) {
  1662. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1663. if (ret) {
  1664. DRM_DEBUG_DRIVER(
  1665. "Failed to allocate ringbuffer obj %s: %d\n",
  1666. ring->name, ret);
  1667. goto error_free_rbuf;
  1668. }
  1669. if (is_global_default_ctx) {
  1670. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1671. if (ret) {
  1672. DRM_ERROR(
  1673. "Failed to pin and map ringbuffer %s: %d\n",
  1674. ring->name, ret);
  1675. goto error_destroy_rbuf;
  1676. }
  1677. }
  1678. }
  1679. ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
  1680. if (ret) {
  1681. DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
  1682. goto error;
  1683. }
  1684. ctx->engine[ring->id].ringbuf = ringbuf;
  1685. ctx->engine[ring->id].state = ctx_obj;
  1686. if (ctx == ring->default_context)
  1687. lrc_setup_hardware_status_page(ring, ctx_obj);
  1688. else if (ring->id == RCS && !ctx->rcs_initialized) {
  1689. if (ring->init_context) {
  1690. ret = ring->init_context(ring, ctx);
  1691. if (ret) {
  1692. DRM_ERROR("ring init context: %d\n", ret);
  1693. ctx->engine[ring->id].ringbuf = NULL;
  1694. ctx->engine[ring->id].state = NULL;
  1695. goto error;
  1696. }
  1697. }
  1698. ctx->rcs_initialized = true;
  1699. }
  1700. return 0;
  1701. error:
  1702. if (is_global_default_ctx)
  1703. intel_unpin_ringbuffer_obj(ringbuf);
  1704. error_destroy_rbuf:
  1705. intel_destroy_ringbuffer_obj(ringbuf);
  1706. error_free_rbuf:
  1707. kfree(ringbuf);
  1708. error_unpin_ctx:
  1709. if (is_global_default_ctx)
  1710. i915_gem_object_ggtt_unpin(ctx_obj);
  1711. drm_gem_object_unreference(&ctx_obj->base);
  1712. return ret;
  1713. }
  1714. void intel_lr_context_reset(struct drm_device *dev,
  1715. struct intel_context *ctx)
  1716. {
  1717. struct drm_i915_private *dev_priv = dev->dev_private;
  1718. struct intel_engine_cs *ring;
  1719. int i;
  1720. for_each_ring(ring, dev_priv, i) {
  1721. struct drm_i915_gem_object *ctx_obj =
  1722. ctx->engine[ring->id].state;
  1723. struct intel_ringbuffer *ringbuf =
  1724. ctx->engine[ring->id].ringbuf;
  1725. uint32_t *reg_state;
  1726. struct page *page;
  1727. if (!ctx_obj)
  1728. continue;
  1729. if (i915_gem_object_get_pages(ctx_obj)) {
  1730. WARN(1, "Failed get_pages for context obj\n");
  1731. continue;
  1732. }
  1733. page = i915_gem_object_get_page(ctx_obj, 1);
  1734. reg_state = kmap_atomic(page);
  1735. reg_state[CTX_RING_HEAD+1] = 0;
  1736. reg_state[CTX_RING_TAIL+1] = 0;
  1737. kunmap_atomic(reg_state);
  1738. ringbuf->head = 0;
  1739. ringbuf->tail = 0;
  1740. }
  1741. }