i915_gem_gtt.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. /*
  2. * Copyright © 2014 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Please try to maintain the following order within this file unless it makes
  24. * sense to do otherwise. From top to bottom:
  25. * 1. typedefs
  26. * 2. #defines, and macros
  27. * 3. structure definitions
  28. * 4. function prototypes
  29. *
  30. * Within each section, please try to order by generation in ascending order,
  31. * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
  32. */
  33. #ifndef __I915_GEM_GTT_H__
  34. #define __I915_GEM_GTT_H__
  35. struct drm_i915_file_private;
  36. typedef uint32_t gen6_pte_t;
  37. typedef uint64_t gen8_pte_t;
  38. typedef uint64_t gen8_pde_t;
  39. #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
  40. /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
  41. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  42. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  43. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  44. #define GEN6_PTE_CACHE_LLC (2 << 1)
  45. #define GEN6_PTE_UNCACHED (1 << 1)
  46. #define GEN6_PTE_VALID (1 << 0)
  47. #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
  48. #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
  49. #define I915_PDES 512
  50. #define I915_PDE_MASK (I915_PDES - 1)
  51. #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
  52. #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
  53. #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
  54. #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
  55. #define GEN6_PDE_SHIFT 22
  56. #define GEN6_PDE_VALID (1 << 0)
  57. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  58. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  59. #define BYT_PTE_WRITEABLE (1 << 1)
  60. /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
  61. * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  62. */
  63. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  64. (((bits) & 0x8) << (11 - 3)))
  65. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  66. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  67. #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
  68. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  69. #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
  70. #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
  71. #define HSW_PTE_UNCACHED (0)
  72. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  73. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  74. /* GEN8 legacy style address is defined as a 3 level page table:
  75. * 31:30 | 29:21 | 20:12 | 11:0
  76. * PDPE | PDE | PTE | offset
  77. * The difference as compared to normal x86 3 level page table is the PDPEs are
  78. * programmed via register.
  79. */
  80. #define GEN8_PDPE_SHIFT 30
  81. #define GEN8_PDPE_MASK 0x3
  82. #define GEN8_PDE_SHIFT 21
  83. #define GEN8_PDE_MASK 0x1ff
  84. #define GEN8_PTE_SHIFT 12
  85. #define GEN8_PTE_MASK 0x1ff
  86. #define GEN8_LEGACY_PDPES 4
  87. #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
  88. #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
  89. #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
  90. #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
  91. #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
  92. #define CHV_PPAT_SNOOP (1<<6)
  93. #define GEN8_PPAT_AGE(x) (x<<4)
  94. #define GEN8_PPAT_LLCeLLC (3<<2)
  95. #define GEN8_PPAT_LLCELLC (2<<2)
  96. #define GEN8_PPAT_LLC (1<<2)
  97. #define GEN8_PPAT_WB (3<<0)
  98. #define GEN8_PPAT_WT (2<<0)
  99. #define GEN8_PPAT_WC (1<<0)
  100. #define GEN8_PPAT_UC (0<<0)
  101. #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
  102. #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
  103. enum i915_ggtt_view_type {
  104. I915_GGTT_VIEW_NORMAL = 0,
  105. I915_GGTT_VIEW_ROTATED
  106. };
  107. struct intel_rotation_info {
  108. unsigned int height;
  109. unsigned int pitch;
  110. uint32_t pixel_format;
  111. uint64_t fb_modifier;
  112. };
  113. struct i915_ggtt_view {
  114. enum i915_ggtt_view_type type;
  115. struct sg_table *pages;
  116. union {
  117. struct intel_rotation_info rotation_info;
  118. };
  119. };
  120. extern const struct i915_ggtt_view i915_ggtt_view_normal;
  121. extern const struct i915_ggtt_view i915_ggtt_view_rotated;
  122. enum i915_cache_level;
  123. /**
  124. * A VMA represents a GEM BO that is bound into an address space. Therefore, a
  125. * VMA's presence cannot be guaranteed before binding, or after unbinding the
  126. * object into/from the address space.
  127. *
  128. * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
  129. * will always be <= an objects lifetime. So object refcounting should cover us.
  130. */
  131. struct i915_vma {
  132. struct drm_mm_node node;
  133. struct drm_i915_gem_object *obj;
  134. struct i915_address_space *vm;
  135. /** Flags and address space this VMA is bound to */
  136. #define GLOBAL_BIND (1<<0)
  137. #define LOCAL_BIND (1<<1)
  138. #define PTE_READ_ONLY (1<<2)
  139. unsigned int bound : 4;
  140. /**
  141. * Support different GGTT views into the same object.
  142. * This means there can be multiple VMA mappings per object and per VM.
  143. * i915_ggtt_view_type is used to distinguish between those entries.
  144. * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
  145. * assumed in GEM functions which take no ggtt view parameter.
  146. */
  147. struct i915_ggtt_view ggtt_view;
  148. /** This object's place on the active/inactive lists */
  149. struct list_head mm_list;
  150. struct list_head vma_link; /* Link in the object's VMA list */
  151. /** This vma's place in the batchbuffer or on the eviction list */
  152. struct list_head exec_list;
  153. /**
  154. * Used for performing relocations during execbuffer insertion.
  155. */
  156. struct hlist_node exec_node;
  157. unsigned long exec_handle;
  158. struct drm_i915_gem_exec_object2 *exec_entry;
  159. /**
  160. * How many users have pinned this object in GTT space. The following
  161. * users can each hold at most one reference: pwrite/pread, execbuffer
  162. * (objects are not allowed multiple times for the same batchbuffer),
  163. * and the framebuffer code. When switching/pageflipping, the
  164. * framebuffer code has at most two buffers pinned per crtc.
  165. *
  166. * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
  167. * bits with absolutely no headroom. So use 4 bits. */
  168. unsigned int pin_count:4;
  169. #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
  170. /** Unmap an object from an address space. This usually consists of
  171. * setting the valid PTE entries to a reserved scratch page. */
  172. void (*unbind_vma)(struct i915_vma *vma);
  173. /* Map an object into an address space with the given cache flags. */
  174. void (*bind_vma)(struct i915_vma *vma,
  175. enum i915_cache_level cache_level,
  176. u32 flags);
  177. };
  178. struct i915_page_table_entry {
  179. struct page *page;
  180. dma_addr_t daddr;
  181. unsigned long *used_ptes;
  182. };
  183. struct i915_page_directory_entry {
  184. struct page *page; /* NULL for GEN6-GEN7 */
  185. union {
  186. uint32_t pd_offset;
  187. dma_addr_t daddr;
  188. };
  189. struct i915_page_table_entry *page_table[I915_PDES]; /* PDEs */
  190. };
  191. struct i915_page_directory_pointer_entry {
  192. /* struct page *page; */
  193. struct i915_page_directory_entry *page_directory[GEN8_LEGACY_PDPES];
  194. };
  195. struct i915_address_space {
  196. struct drm_mm mm;
  197. struct drm_device *dev;
  198. struct list_head global_link;
  199. unsigned long start; /* Start offset always 0 for dri2 */
  200. size_t total; /* size addr space maps (ex. 2GB for ggtt) */
  201. struct {
  202. dma_addr_t addr;
  203. struct page *page;
  204. } scratch;
  205. /**
  206. * List of objects currently involved in rendering.
  207. *
  208. * Includes buffers having the contents of their GPU caches
  209. * flushed, not necessarily primitives. last_read_req
  210. * represents when the rendering involved will be completed.
  211. *
  212. * A reference is held on the buffer while on this list.
  213. */
  214. struct list_head active_list;
  215. /**
  216. * LRU list of objects which are not in the ringbuffer and
  217. * are ready to unbind, but are still in the GTT.
  218. *
  219. * last_read_req is NULL while an object is in this list.
  220. *
  221. * A reference is not held on the buffer while on this list,
  222. * as merely being GTT-bound shouldn't prevent its being
  223. * freed, and we'll pull it off the list in the free path.
  224. */
  225. struct list_head inactive_list;
  226. /* FIXME: Need a more generic return type */
  227. gen6_pte_t (*pte_encode)(dma_addr_t addr,
  228. enum i915_cache_level level,
  229. bool valid, u32 flags); /* Create a valid PTE */
  230. int (*allocate_va_range)(struct i915_address_space *vm,
  231. uint64_t start,
  232. uint64_t length);
  233. void (*clear_range)(struct i915_address_space *vm,
  234. uint64_t start,
  235. uint64_t length,
  236. bool use_scratch);
  237. void (*insert_entries)(struct i915_address_space *vm,
  238. struct sg_table *st,
  239. uint64_t start,
  240. enum i915_cache_level cache_level, u32 flags);
  241. void (*cleanup)(struct i915_address_space *vm);
  242. };
  243. /* The Graphics Translation Table is the way in which GEN hardware translates a
  244. * Graphics Virtual Address into a Physical Address. In addition to the normal
  245. * collateral associated with any va->pa translations GEN hardware also has a
  246. * portion of the GTT which can be mapped by the CPU and remain both coherent
  247. * and correct (in cases like swizzling). That region is referred to as GMADR in
  248. * the spec.
  249. */
  250. struct i915_gtt {
  251. struct i915_address_space base;
  252. size_t stolen_size; /* Total size of stolen memory */
  253. unsigned long mappable_end; /* End offset that we can CPU map */
  254. struct io_mapping *mappable; /* Mapping to our CPU mappable region */
  255. phys_addr_t mappable_base; /* PA of our GMADR */
  256. /** "Graphics Stolen Memory" holds the global PTEs */
  257. void __iomem *gsm;
  258. bool do_idle_maps;
  259. int mtrr;
  260. /* global gtt ops */
  261. int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
  262. size_t *stolen, phys_addr_t *mappable_base,
  263. unsigned long *mappable_end);
  264. };
  265. struct i915_hw_ppgtt {
  266. struct i915_address_space base;
  267. struct kref ref;
  268. struct drm_mm_node node;
  269. unsigned long pd_dirty_rings;
  270. unsigned num_pd_entries;
  271. unsigned num_pd_pages; /* gen8+ */
  272. union {
  273. struct i915_page_directory_pointer_entry pdp;
  274. struct i915_page_directory_entry pd;
  275. };
  276. struct i915_page_table_entry *scratch_pt;
  277. struct drm_i915_file_private *file_priv;
  278. gen6_pte_t __iomem *pd_addr;
  279. int (*enable)(struct i915_hw_ppgtt *ppgtt);
  280. int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
  281. struct intel_engine_cs *ring);
  282. void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
  283. };
  284. /* For each pde iterates over every pde between from start until start + length.
  285. * If start, and start+length are not perfectly divisible, the macro will round
  286. * down, and up as needed. The macro modifies pde, start, and length. Dev is
  287. * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
  288. * and length = 2G effectively iterates over every PDE in the system.
  289. *
  290. * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
  291. */
  292. #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
  293. for (iter = gen6_pde_index(start); \
  294. pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
  295. iter++, \
  296. temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
  297. temp = min_t(unsigned, temp, length), \
  298. start += temp, length -= temp)
  299. static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
  300. {
  301. const uint32_t mask = NUM_PTE(pde_shift) - 1;
  302. return (address >> PAGE_SHIFT) & mask;
  303. }
  304. /* Helper to counts the number of PTEs within the given length. This count
  305. * does not cross a page table boundary, so the max value would be
  306. * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
  307. */
  308. static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
  309. uint32_t pde_shift)
  310. {
  311. const uint64_t mask = ~((1 << pde_shift) - 1);
  312. uint64_t end;
  313. WARN_ON(length == 0);
  314. WARN_ON(offset_in_page(addr|length));
  315. end = addr + length;
  316. if ((addr & mask) != (end & mask))
  317. return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
  318. return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
  319. }
  320. static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
  321. {
  322. return (addr >> shift) & I915_PDE_MASK;
  323. }
  324. static inline uint32_t gen6_pte_index(uint32_t addr)
  325. {
  326. return i915_pte_index(addr, GEN6_PDE_SHIFT);
  327. }
  328. static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
  329. {
  330. return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
  331. }
  332. static inline uint32_t gen6_pde_index(uint32_t addr)
  333. {
  334. return i915_pde_index(addr, GEN6_PDE_SHIFT);
  335. }
  336. int i915_gem_gtt_init(struct drm_device *dev);
  337. void i915_gem_init_global_gtt(struct drm_device *dev);
  338. void i915_global_gtt_cleanup(struct drm_device *dev);
  339. int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
  340. int i915_ppgtt_init_hw(struct drm_device *dev);
  341. void i915_ppgtt_release(struct kref *kref);
  342. struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
  343. struct drm_i915_file_private *fpriv);
  344. static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
  345. {
  346. if (ppgtt)
  347. kref_get(&ppgtt->ref);
  348. }
  349. static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
  350. {
  351. if (ppgtt)
  352. kref_put(&ppgtt->ref, i915_ppgtt_release);
  353. }
  354. void i915_check_and_clear_faults(struct drm_device *dev);
  355. void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
  356. void i915_gem_restore_gtt_mappings(struct drm_device *dev);
  357. int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
  358. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
  359. static inline bool
  360. i915_ggtt_view_equal(const struct i915_ggtt_view *a,
  361. const struct i915_ggtt_view *b)
  362. {
  363. if (WARN_ON(!a || !b))
  364. return false;
  365. return a->type == b->type;
  366. }
  367. #endif