i915_gem.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201
  1. /*
  2. * Copyright © 2008-2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/drm_vma_manager.h>
  29. #include <drm/i915_drm.h>
  30. #include "i915_drv.h"
  31. #include "i915_vgpu.h"
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. #include <linux/shmem_fs.h>
  35. #include <linux/slab.h>
  36. #include <linux/swap.h>
  37. #include <linux/pci.h>
  38. #include <linux/dma-buf.h>
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  41. static __must_check int
  42. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  43. bool readonly);
  44. static void
  45. i915_gem_object_retire(struct drm_i915_gem_object *obj);
  46. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  47. struct drm_i915_gem_object *obj);
  48. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  49. struct drm_i915_fence_reg *fence,
  50. bool enable);
  51. static bool cpu_cache_is_coherent(struct drm_device *dev,
  52. enum i915_cache_level level)
  53. {
  54. return HAS_LLC(dev) || level != I915_CACHE_NONE;
  55. }
  56. static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  57. {
  58. if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  59. return true;
  60. return obj->pin_display;
  61. }
  62. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  63. {
  64. if (obj->tiling_mode)
  65. i915_gem_release_mmap(obj);
  66. /* As we do not have an associated fence register, we will force
  67. * a tiling change if we ever need to acquire one.
  68. */
  69. obj->fence_dirty = false;
  70. obj->fence_reg = I915_FENCE_REG_NONE;
  71. }
  72. /* some bookkeeping */
  73. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  74. size_t size)
  75. {
  76. spin_lock(&dev_priv->mm.object_stat_lock);
  77. dev_priv->mm.object_count++;
  78. dev_priv->mm.object_memory += size;
  79. spin_unlock(&dev_priv->mm.object_stat_lock);
  80. }
  81. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  82. size_t size)
  83. {
  84. spin_lock(&dev_priv->mm.object_stat_lock);
  85. dev_priv->mm.object_count--;
  86. dev_priv->mm.object_memory -= size;
  87. spin_unlock(&dev_priv->mm.object_stat_lock);
  88. }
  89. static int
  90. i915_gem_wait_for_error(struct i915_gpu_error *error)
  91. {
  92. int ret;
  93. #define EXIT_COND (!i915_reset_in_progress(error) || \
  94. i915_terminally_wedged(error))
  95. if (EXIT_COND)
  96. return 0;
  97. /*
  98. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  99. * userspace. If it takes that long something really bad is going on and
  100. * we should simply try to bail out and fail as gracefully as possible.
  101. */
  102. ret = wait_event_interruptible_timeout(error->reset_queue,
  103. EXIT_COND,
  104. 10*HZ);
  105. if (ret == 0) {
  106. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  107. return -EIO;
  108. } else if (ret < 0) {
  109. return ret;
  110. }
  111. #undef EXIT_COND
  112. return 0;
  113. }
  114. int i915_mutex_lock_interruptible(struct drm_device *dev)
  115. {
  116. struct drm_i915_private *dev_priv = dev->dev_private;
  117. int ret;
  118. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  119. if (ret)
  120. return ret;
  121. ret = mutex_lock_interruptible(&dev->struct_mutex);
  122. if (ret)
  123. return ret;
  124. WARN_ON(i915_verify_lists(dev));
  125. return 0;
  126. }
  127. int
  128. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. struct drm_i915_gem_get_aperture *args = data;
  133. struct drm_i915_gem_object *obj;
  134. size_t pinned;
  135. pinned = 0;
  136. mutex_lock(&dev->struct_mutex);
  137. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  138. if (i915_gem_obj_is_pinned(obj))
  139. pinned += i915_gem_obj_ggtt_size(obj);
  140. mutex_unlock(&dev->struct_mutex);
  141. args->aper_size = dev_priv->gtt.base.total;
  142. args->aper_available_size = args->aper_size - pinned;
  143. return 0;
  144. }
  145. static int
  146. i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
  147. {
  148. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  149. char *vaddr = obj->phys_handle->vaddr;
  150. struct sg_table *st;
  151. struct scatterlist *sg;
  152. int i;
  153. if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
  154. return -EINVAL;
  155. for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
  156. struct page *page;
  157. char *src;
  158. page = shmem_read_mapping_page(mapping, i);
  159. if (IS_ERR(page))
  160. return PTR_ERR(page);
  161. src = kmap_atomic(page);
  162. memcpy(vaddr, src, PAGE_SIZE);
  163. drm_clflush_virt_range(vaddr, PAGE_SIZE);
  164. kunmap_atomic(src);
  165. page_cache_release(page);
  166. vaddr += PAGE_SIZE;
  167. }
  168. i915_gem_chipset_flush(obj->base.dev);
  169. st = kmalloc(sizeof(*st), GFP_KERNEL);
  170. if (st == NULL)
  171. return -ENOMEM;
  172. if (sg_alloc_table(st, 1, GFP_KERNEL)) {
  173. kfree(st);
  174. return -ENOMEM;
  175. }
  176. sg = st->sgl;
  177. sg->offset = 0;
  178. sg->length = obj->base.size;
  179. sg_dma_address(sg) = obj->phys_handle->busaddr;
  180. sg_dma_len(sg) = obj->base.size;
  181. obj->pages = st;
  182. obj->has_dma_mapping = true;
  183. return 0;
  184. }
  185. static void
  186. i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
  187. {
  188. int ret;
  189. BUG_ON(obj->madv == __I915_MADV_PURGED);
  190. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  191. if (ret) {
  192. /* In the event of a disaster, abandon all caches and
  193. * hope for the best.
  194. */
  195. WARN_ON(ret != -EIO);
  196. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  197. }
  198. if (obj->madv == I915_MADV_DONTNEED)
  199. obj->dirty = 0;
  200. if (obj->dirty) {
  201. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  202. char *vaddr = obj->phys_handle->vaddr;
  203. int i;
  204. for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
  205. struct page *page;
  206. char *dst;
  207. page = shmem_read_mapping_page(mapping, i);
  208. if (IS_ERR(page))
  209. continue;
  210. dst = kmap_atomic(page);
  211. drm_clflush_virt_range(vaddr, PAGE_SIZE);
  212. memcpy(dst, vaddr, PAGE_SIZE);
  213. kunmap_atomic(dst);
  214. set_page_dirty(page);
  215. if (obj->madv == I915_MADV_WILLNEED)
  216. mark_page_accessed(page);
  217. page_cache_release(page);
  218. vaddr += PAGE_SIZE;
  219. }
  220. obj->dirty = 0;
  221. }
  222. sg_free_table(obj->pages);
  223. kfree(obj->pages);
  224. obj->has_dma_mapping = false;
  225. }
  226. static void
  227. i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
  228. {
  229. drm_pci_free(obj->base.dev, obj->phys_handle);
  230. }
  231. static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
  232. .get_pages = i915_gem_object_get_pages_phys,
  233. .put_pages = i915_gem_object_put_pages_phys,
  234. .release = i915_gem_object_release_phys,
  235. };
  236. static int
  237. drop_pages(struct drm_i915_gem_object *obj)
  238. {
  239. struct i915_vma *vma, *next;
  240. int ret;
  241. drm_gem_object_reference(&obj->base);
  242. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
  243. if (i915_vma_unbind(vma))
  244. break;
  245. ret = i915_gem_object_put_pages(obj);
  246. drm_gem_object_unreference(&obj->base);
  247. return ret;
  248. }
  249. int
  250. i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
  251. int align)
  252. {
  253. drm_dma_handle_t *phys;
  254. int ret;
  255. if (obj->phys_handle) {
  256. if ((unsigned long)obj->phys_handle->vaddr & (align -1))
  257. return -EBUSY;
  258. return 0;
  259. }
  260. if (obj->madv != I915_MADV_WILLNEED)
  261. return -EFAULT;
  262. if (obj->base.filp == NULL)
  263. return -EINVAL;
  264. ret = drop_pages(obj);
  265. if (ret)
  266. return ret;
  267. /* create a new object */
  268. phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
  269. if (!phys)
  270. return -ENOMEM;
  271. obj->phys_handle = phys;
  272. obj->ops = &i915_gem_phys_ops;
  273. return i915_gem_object_get_pages(obj);
  274. }
  275. static int
  276. i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
  277. struct drm_i915_gem_pwrite *args,
  278. struct drm_file *file_priv)
  279. {
  280. struct drm_device *dev = obj->base.dev;
  281. void *vaddr = obj->phys_handle->vaddr + args->offset;
  282. char __user *user_data = to_user_ptr(args->data_ptr);
  283. int ret = 0;
  284. /* We manually control the domain here and pretend that it
  285. * remains coherent i.e. in the GTT domain, like shmem_pwrite.
  286. */
  287. ret = i915_gem_object_wait_rendering(obj, false);
  288. if (ret)
  289. return ret;
  290. intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
  291. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  292. unsigned long unwritten;
  293. /* The physical object once assigned is fixed for the lifetime
  294. * of the obj, so we can safely drop the lock and continue
  295. * to access vaddr.
  296. */
  297. mutex_unlock(&dev->struct_mutex);
  298. unwritten = copy_from_user(vaddr, user_data, args->size);
  299. mutex_lock(&dev->struct_mutex);
  300. if (unwritten) {
  301. ret = -EFAULT;
  302. goto out;
  303. }
  304. }
  305. drm_clflush_virt_range(vaddr, args->size);
  306. i915_gem_chipset_flush(dev);
  307. out:
  308. intel_fb_obj_flush(obj, false);
  309. return ret;
  310. }
  311. void *i915_gem_object_alloc(struct drm_device *dev)
  312. {
  313. struct drm_i915_private *dev_priv = dev->dev_private;
  314. return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
  315. }
  316. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  317. {
  318. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  319. kmem_cache_free(dev_priv->slab, obj);
  320. }
  321. static int
  322. i915_gem_create(struct drm_file *file,
  323. struct drm_device *dev,
  324. uint64_t size,
  325. uint32_t *handle_p)
  326. {
  327. struct drm_i915_gem_object *obj;
  328. int ret;
  329. u32 handle;
  330. size = roundup(size, PAGE_SIZE);
  331. if (size == 0)
  332. return -EINVAL;
  333. /* Allocate the new object */
  334. obj = i915_gem_alloc_object(dev, size);
  335. if (obj == NULL)
  336. return -ENOMEM;
  337. ret = drm_gem_handle_create(file, &obj->base, &handle);
  338. /* drop reference from allocate - handle holds it now */
  339. drm_gem_object_unreference_unlocked(&obj->base);
  340. if (ret)
  341. return ret;
  342. *handle_p = handle;
  343. return 0;
  344. }
  345. int
  346. i915_gem_dumb_create(struct drm_file *file,
  347. struct drm_device *dev,
  348. struct drm_mode_create_dumb *args)
  349. {
  350. /* have to work out size/pitch and return them */
  351. args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
  352. args->size = args->pitch * args->height;
  353. return i915_gem_create(file, dev,
  354. args->size, &args->handle);
  355. }
  356. /**
  357. * Creates a new mm object and returns a handle to it.
  358. */
  359. int
  360. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  361. struct drm_file *file)
  362. {
  363. struct drm_i915_gem_create *args = data;
  364. return i915_gem_create(file, dev,
  365. args->size, &args->handle);
  366. }
  367. static inline int
  368. __copy_to_user_swizzled(char __user *cpu_vaddr,
  369. const char *gpu_vaddr, int gpu_offset,
  370. int length)
  371. {
  372. int ret, cpu_offset = 0;
  373. while (length > 0) {
  374. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  375. int this_length = min(cacheline_end - gpu_offset, length);
  376. int swizzled_gpu_offset = gpu_offset ^ 64;
  377. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  378. gpu_vaddr + swizzled_gpu_offset,
  379. this_length);
  380. if (ret)
  381. return ret + length;
  382. cpu_offset += this_length;
  383. gpu_offset += this_length;
  384. length -= this_length;
  385. }
  386. return 0;
  387. }
  388. static inline int
  389. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  390. const char __user *cpu_vaddr,
  391. int length)
  392. {
  393. int ret, cpu_offset = 0;
  394. while (length > 0) {
  395. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  396. int this_length = min(cacheline_end - gpu_offset, length);
  397. int swizzled_gpu_offset = gpu_offset ^ 64;
  398. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  399. cpu_vaddr + cpu_offset,
  400. this_length);
  401. if (ret)
  402. return ret + length;
  403. cpu_offset += this_length;
  404. gpu_offset += this_length;
  405. length -= this_length;
  406. }
  407. return 0;
  408. }
  409. /*
  410. * Pins the specified object's pages and synchronizes the object with
  411. * GPU accesses. Sets needs_clflush to non-zero if the caller should
  412. * flush the object from the CPU cache.
  413. */
  414. int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
  415. int *needs_clflush)
  416. {
  417. int ret;
  418. *needs_clflush = 0;
  419. if (!obj->base.filp)
  420. return -EINVAL;
  421. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  422. /* If we're not in the cpu read domain, set ourself into the gtt
  423. * read domain and manually flush cachelines (if required). This
  424. * optimizes for the case when the gpu will dirty the data
  425. * anyway again before the next pread happens. */
  426. *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
  427. obj->cache_level);
  428. ret = i915_gem_object_wait_rendering(obj, true);
  429. if (ret)
  430. return ret;
  431. i915_gem_object_retire(obj);
  432. }
  433. ret = i915_gem_object_get_pages(obj);
  434. if (ret)
  435. return ret;
  436. i915_gem_object_pin_pages(obj);
  437. return ret;
  438. }
  439. /* Per-page copy function for the shmem pread fastpath.
  440. * Flushes invalid cachelines before reading the target if
  441. * needs_clflush is set. */
  442. static int
  443. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  444. char __user *user_data,
  445. bool page_do_bit17_swizzling, bool needs_clflush)
  446. {
  447. char *vaddr;
  448. int ret;
  449. if (unlikely(page_do_bit17_swizzling))
  450. return -EINVAL;
  451. vaddr = kmap_atomic(page);
  452. if (needs_clflush)
  453. drm_clflush_virt_range(vaddr + shmem_page_offset,
  454. page_length);
  455. ret = __copy_to_user_inatomic(user_data,
  456. vaddr + shmem_page_offset,
  457. page_length);
  458. kunmap_atomic(vaddr);
  459. return ret ? -EFAULT : 0;
  460. }
  461. static void
  462. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  463. bool swizzled)
  464. {
  465. if (unlikely(swizzled)) {
  466. unsigned long start = (unsigned long) addr;
  467. unsigned long end = (unsigned long) addr + length;
  468. /* For swizzling simply ensure that we always flush both
  469. * channels. Lame, but simple and it works. Swizzled
  470. * pwrite/pread is far from a hotpath - current userspace
  471. * doesn't use it at all. */
  472. start = round_down(start, 128);
  473. end = round_up(end, 128);
  474. drm_clflush_virt_range((void *)start, end - start);
  475. } else {
  476. drm_clflush_virt_range(addr, length);
  477. }
  478. }
  479. /* Only difference to the fast-path function is that this can handle bit17
  480. * and uses non-atomic copy and kmap functions. */
  481. static int
  482. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  483. char __user *user_data,
  484. bool page_do_bit17_swizzling, bool needs_clflush)
  485. {
  486. char *vaddr;
  487. int ret;
  488. vaddr = kmap(page);
  489. if (needs_clflush)
  490. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  491. page_length,
  492. page_do_bit17_swizzling);
  493. if (page_do_bit17_swizzling)
  494. ret = __copy_to_user_swizzled(user_data,
  495. vaddr, shmem_page_offset,
  496. page_length);
  497. else
  498. ret = __copy_to_user(user_data,
  499. vaddr + shmem_page_offset,
  500. page_length);
  501. kunmap(page);
  502. return ret ? - EFAULT : 0;
  503. }
  504. static int
  505. i915_gem_shmem_pread(struct drm_device *dev,
  506. struct drm_i915_gem_object *obj,
  507. struct drm_i915_gem_pread *args,
  508. struct drm_file *file)
  509. {
  510. char __user *user_data;
  511. ssize_t remain;
  512. loff_t offset;
  513. int shmem_page_offset, page_length, ret = 0;
  514. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  515. int prefaulted = 0;
  516. int needs_clflush = 0;
  517. struct sg_page_iter sg_iter;
  518. user_data = to_user_ptr(args->data_ptr);
  519. remain = args->size;
  520. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  521. ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
  522. if (ret)
  523. return ret;
  524. offset = args->offset;
  525. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  526. offset >> PAGE_SHIFT) {
  527. struct page *page = sg_page_iter_page(&sg_iter);
  528. if (remain <= 0)
  529. break;
  530. /* Operation in this page
  531. *
  532. * shmem_page_offset = offset within page in shmem file
  533. * page_length = bytes to copy for this page
  534. */
  535. shmem_page_offset = offset_in_page(offset);
  536. page_length = remain;
  537. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  538. page_length = PAGE_SIZE - shmem_page_offset;
  539. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  540. (page_to_phys(page) & (1 << 17)) != 0;
  541. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  542. user_data, page_do_bit17_swizzling,
  543. needs_clflush);
  544. if (ret == 0)
  545. goto next_page;
  546. mutex_unlock(&dev->struct_mutex);
  547. if (likely(!i915.prefault_disable) && !prefaulted) {
  548. ret = fault_in_multipages_writeable(user_data, remain);
  549. /* Userspace is tricking us, but we've already clobbered
  550. * its pages with the prefault and promised to write the
  551. * data up to the first fault. Hence ignore any errors
  552. * and just continue. */
  553. (void)ret;
  554. prefaulted = 1;
  555. }
  556. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  557. user_data, page_do_bit17_swizzling,
  558. needs_clflush);
  559. mutex_lock(&dev->struct_mutex);
  560. if (ret)
  561. goto out;
  562. next_page:
  563. remain -= page_length;
  564. user_data += page_length;
  565. offset += page_length;
  566. }
  567. out:
  568. i915_gem_object_unpin_pages(obj);
  569. return ret;
  570. }
  571. /**
  572. * Reads data from the object referenced by handle.
  573. *
  574. * On error, the contents of *data are undefined.
  575. */
  576. int
  577. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  578. struct drm_file *file)
  579. {
  580. struct drm_i915_gem_pread *args = data;
  581. struct drm_i915_gem_object *obj;
  582. int ret = 0;
  583. if (args->size == 0)
  584. return 0;
  585. if (!access_ok(VERIFY_WRITE,
  586. to_user_ptr(args->data_ptr),
  587. args->size))
  588. return -EFAULT;
  589. ret = i915_mutex_lock_interruptible(dev);
  590. if (ret)
  591. return ret;
  592. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  593. if (&obj->base == NULL) {
  594. ret = -ENOENT;
  595. goto unlock;
  596. }
  597. /* Bounds check source. */
  598. if (args->offset > obj->base.size ||
  599. args->size > obj->base.size - args->offset) {
  600. ret = -EINVAL;
  601. goto out;
  602. }
  603. /* prime objects have no backing filp to GEM pread/pwrite
  604. * pages from.
  605. */
  606. if (!obj->base.filp) {
  607. ret = -EINVAL;
  608. goto out;
  609. }
  610. trace_i915_gem_object_pread(obj, args->offset, args->size);
  611. ret = i915_gem_shmem_pread(dev, obj, args, file);
  612. out:
  613. drm_gem_object_unreference(&obj->base);
  614. unlock:
  615. mutex_unlock(&dev->struct_mutex);
  616. return ret;
  617. }
  618. /* This is the fast write path which cannot handle
  619. * page faults in the source data
  620. */
  621. static inline int
  622. fast_user_write(struct io_mapping *mapping,
  623. loff_t page_base, int page_offset,
  624. char __user *user_data,
  625. int length)
  626. {
  627. void __iomem *vaddr_atomic;
  628. void *vaddr;
  629. unsigned long unwritten;
  630. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  631. /* We can use the cpu mem copy function because this is X86. */
  632. vaddr = (void __force*)vaddr_atomic + page_offset;
  633. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  634. user_data, length);
  635. io_mapping_unmap_atomic(vaddr_atomic);
  636. return unwritten;
  637. }
  638. /**
  639. * This is the fast pwrite path, where we copy the data directly from the
  640. * user into the GTT, uncached.
  641. */
  642. static int
  643. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  644. struct drm_i915_gem_object *obj,
  645. struct drm_i915_gem_pwrite *args,
  646. struct drm_file *file)
  647. {
  648. struct drm_i915_private *dev_priv = dev->dev_private;
  649. ssize_t remain;
  650. loff_t offset, page_base;
  651. char __user *user_data;
  652. int page_offset, page_length, ret;
  653. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
  654. if (ret)
  655. goto out;
  656. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  657. if (ret)
  658. goto out_unpin;
  659. ret = i915_gem_object_put_fence(obj);
  660. if (ret)
  661. goto out_unpin;
  662. user_data = to_user_ptr(args->data_ptr);
  663. remain = args->size;
  664. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  665. intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
  666. while (remain > 0) {
  667. /* Operation in this page
  668. *
  669. * page_base = page offset within aperture
  670. * page_offset = offset within page
  671. * page_length = bytes to copy for this page
  672. */
  673. page_base = offset & PAGE_MASK;
  674. page_offset = offset_in_page(offset);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. /* If we get a fault while copying data, then (presumably) our
  679. * source page isn't available. Return the error and we'll
  680. * retry in the slow path.
  681. */
  682. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  683. page_offset, user_data, page_length)) {
  684. ret = -EFAULT;
  685. goto out_flush;
  686. }
  687. remain -= page_length;
  688. user_data += page_length;
  689. offset += page_length;
  690. }
  691. out_flush:
  692. intel_fb_obj_flush(obj, false);
  693. out_unpin:
  694. i915_gem_object_ggtt_unpin(obj);
  695. out:
  696. return ret;
  697. }
  698. /* Per-page copy function for the shmem pwrite fastpath.
  699. * Flushes invalid cachelines before writing to the target if
  700. * needs_clflush_before is set and flushes out any written cachelines after
  701. * writing if needs_clflush is set. */
  702. static int
  703. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  704. char __user *user_data,
  705. bool page_do_bit17_swizzling,
  706. bool needs_clflush_before,
  707. bool needs_clflush_after)
  708. {
  709. char *vaddr;
  710. int ret;
  711. if (unlikely(page_do_bit17_swizzling))
  712. return -EINVAL;
  713. vaddr = kmap_atomic(page);
  714. if (needs_clflush_before)
  715. drm_clflush_virt_range(vaddr + shmem_page_offset,
  716. page_length);
  717. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  718. user_data, page_length);
  719. if (needs_clflush_after)
  720. drm_clflush_virt_range(vaddr + shmem_page_offset,
  721. page_length);
  722. kunmap_atomic(vaddr);
  723. return ret ? -EFAULT : 0;
  724. }
  725. /* Only difference to the fast-path function is that this can handle bit17
  726. * and uses non-atomic copy and kmap functions. */
  727. static int
  728. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  729. char __user *user_data,
  730. bool page_do_bit17_swizzling,
  731. bool needs_clflush_before,
  732. bool needs_clflush_after)
  733. {
  734. char *vaddr;
  735. int ret;
  736. vaddr = kmap(page);
  737. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  738. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  739. page_length,
  740. page_do_bit17_swizzling);
  741. if (page_do_bit17_swizzling)
  742. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  743. user_data,
  744. page_length);
  745. else
  746. ret = __copy_from_user(vaddr + shmem_page_offset,
  747. user_data,
  748. page_length);
  749. if (needs_clflush_after)
  750. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  751. page_length,
  752. page_do_bit17_swizzling);
  753. kunmap(page);
  754. return ret ? -EFAULT : 0;
  755. }
  756. static int
  757. i915_gem_shmem_pwrite(struct drm_device *dev,
  758. struct drm_i915_gem_object *obj,
  759. struct drm_i915_gem_pwrite *args,
  760. struct drm_file *file)
  761. {
  762. ssize_t remain;
  763. loff_t offset;
  764. char __user *user_data;
  765. int shmem_page_offset, page_length, ret = 0;
  766. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  767. int hit_slowpath = 0;
  768. int needs_clflush_after = 0;
  769. int needs_clflush_before = 0;
  770. struct sg_page_iter sg_iter;
  771. user_data = to_user_ptr(args->data_ptr);
  772. remain = args->size;
  773. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  774. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  775. /* If we're not in the cpu write domain, set ourself into the gtt
  776. * write domain and manually flush cachelines (if required). This
  777. * optimizes for the case when the gpu will use the data
  778. * right away and we therefore have to clflush anyway. */
  779. needs_clflush_after = cpu_write_needs_clflush(obj);
  780. ret = i915_gem_object_wait_rendering(obj, false);
  781. if (ret)
  782. return ret;
  783. i915_gem_object_retire(obj);
  784. }
  785. /* Same trick applies to invalidate partially written cachelines read
  786. * before writing. */
  787. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  788. needs_clflush_before =
  789. !cpu_cache_is_coherent(dev, obj->cache_level);
  790. ret = i915_gem_object_get_pages(obj);
  791. if (ret)
  792. return ret;
  793. intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
  794. i915_gem_object_pin_pages(obj);
  795. offset = args->offset;
  796. obj->dirty = 1;
  797. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  798. offset >> PAGE_SHIFT) {
  799. struct page *page = sg_page_iter_page(&sg_iter);
  800. int partial_cacheline_write;
  801. if (remain <= 0)
  802. break;
  803. /* Operation in this page
  804. *
  805. * shmem_page_offset = offset within page in shmem file
  806. * page_length = bytes to copy for this page
  807. */
  808. shmem_page_offset = offset_in_page(offset);
  809. page_length = remain;
  810. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  811. page_length = PAGE_SIZE - shmem_page_offset;
  812. /* If we don't overwrite a cacheline completely we need to be
  813. * careful to have up-to-date data by first clflushing. Don't
  814. * overcomplicate things and flush the entire patch. */
  815. partial_cacheline_write = needs_clflush_before &&
  816. ((shmem_page_offset | page_length)
  817. & (boot_cpu_data.x86_clflush_size - 1));
  818. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  819. (page_to_phys(page) & (1 << 17)) != 0;
  820. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  821. user_data, page_do_bit17_swizzling,
  822. partial_cacheline_write,
  823. needs_clflush_after);
  824. if (ret == 0)
  825. goto next_page;
  826. hit_slowpath = 1;
  827. mutex_unlock(&dev->struct_mutex);
  828. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  829. user_data, page_do_bit17_swizzling,
  830. partial_cacheline_write,
  831. needs_clflush_after);
  832. mutex_lock(&dev->struct_mutex);
  833. if (ret)
  834. goto out;
  835. next_page:
  836. remain -= page_length;
  837. user_data += page_length;
  838. offset += page_length;
  839. }
  840. out:
  841. i915_gem_object_unpin_pages(obj);
  842. if (hit_slowpath) {
  843. /*
  844. * Fixup: Flush cpu caches in case we didn't flush the dirty
  845. * cachelines in-line while writing and the object moved
  846. * out of the cpu write domain while we've dropped the lock.
  847. */
  848. if (!needs_clflush_after &&
  849. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  850. if (i915_gem_clflush_object(obj, obj->pin_display))
  851. i915_gem_chipset_flush(dev);
  852. }
  853. }
  854. if (needs_clflush_after)
  855. i915_gem_chipset_flush(dev);
  856. intel_fb_obj_flush(obj, false);
  857. return ret;
  858. }
  859. /**
  860. * Writes data to the object referenced by handle.
  861. *
  862. * On error, the contents of the buffer that were to be modified are undefined.
  863. */
  864. int
  865. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  866. struct drm_file *file)
  867. {
  868. struct drm_i915_private *dev_priv = dev->dev_private;
  869. struct drm_i915_gem_pwrite *args = data;
  870. struct drm_i915_gem_object *obj;
  871. int ret;
  872. if (args->size == 0)
  873. return 0;
  874. if (!access_ok(VERIFY_READ,
  875. to_user_ptr(args->data_ptr),
  876. args->size))
  877. return -EFAULT;
  878. if (likely(!i915.prefault_disable)) {
  879. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  880. args->size);
  881. if (ret)
  882. return -EFAULT;
  883. }
  884. intel_runtime_pm_get(dev_priv);
  885. ret = i915_mutex_lock_interruptible(dev);
  886. if (ret)
  887. goto put_rpm;
  888. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  889. if (&obj->base == NULL) {
  890. ret = -ENOENT;
  891. goto unlock;
  892. }
  893. /* Bounds check destination. */
  894. if (args->offset > obj->base.size ||
  895. args->size > obj->base.size - args->offset) {
  896. ret = -EINVAL;
  897. goto out;
  898. }
  899. /* prime objects have no backing filp to GEM pread/pwrite
  900. * pages from.
  901. */
  902. if (!obj->base.filp) {
  903. ret = -EINVAL;
  904. goto out;
  905. }
  906. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  907. ret = -EFAULT;
  908. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  909. * it would end up going through the fenced access, and we'll get
  910. * different detiling behavior between reading and writing.
  911. * pread/pwrite currently are reading and writing from the CPU
  912. * perspective, requiring manual detiling by the client.
  913. */
  914. if (obj->tiling_mode == I915_TILING_NONE &&
  915. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  916. cpu_write_needs_clflush(obj)) {
  917. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  918. /* Note that the gtt paths might fail with non-page-backed user
  919. * pointers (e.g. gtt mappings when moving data between
  920. * textures). Fallback to the shmem path in that case. */
  921. }
  922. if (ret == -EFAULT || ret == -ENOSPC) {
  923. if (obj->phys_handle)
  924. ret = i915_gem_phys_pwrite(obj, args, file);
  925. else
  926. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  927. }
  928. out:
  929. drm_gem_object_unreference(&obj->base);
  930. unlock:
  931. mutex_unlock(&dev->struct_mutex);
  932. put_rpm:
  933. intel_runtime_pm_put(dev_priv);
  934. return ret;
  935. }
  936. int
  937. i915_gem_check_wedge(struct i915_gpu_error *error,
  938. bool interruptible)
  939. {
  940. if (i915_reset_in_progress(error)) {
  941. /* Non-interruptible callers can't handle -EAGAIN, hence return
  942. * -EIO unconditionally for these. */
  943. if (!interruptible)
  944. return -EIO;
  945. /* Recovery complete, but the reset failed ... */
  946. if (i915_terminally_wedged(error))
  947. return -EIO;
  948. /*
  949. * Check if GPU Reset is in progress - we need intel_ring_begin
  950. * to work properly to reinit the hw state while the gpu is
  951. * still marked as reset-in-progress. Handle this with a flag.
  952. */
  953. if (!error->reload_in_reset)
  954. return -EAGAIN;
  955. }
  956. return 0;
  957. }
  958. /*
  959. * Compare arbitrary request against outstanding lazy request. Emit on match.
  960. */
  961. int
  962. i915_gem_check_olr(struct drm_i915_gem_request *req)
  963. {
  964. int ret;
  965. WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
  966. ret = 0;
  967. if (req == req->ring->outstanding_lazy_request)
  968. ret = i915_add_request(req->ring);
  969. return ret;
  970. }
  971. static void fake_irq(unsigned long data)
  972. {
  973. wake_up_process((struct task_struct *)data);
  974. }
  975. static bool missed_irq(struct drm_i915_private *dev_priv,
  976. struct intel_engine_cs *ring)
  977. {
  978. return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
  979. }
  980. static bool can_wait_boost(struct drm_i915_file_private *file_priv)
  981. {
  982. if (file_priv == NULL)
  983. return true;
  984. return !atomic_xchg(&file_priv->rps_wait_boost, true);
  985. }
  986. /**
  987. * __i915_wait_request - wait until execution of request has finished
  988. * @req: duh!
  989. * @reset_counter: reset sequence associated with the given request
  990. * @interruptible: do an interruptible wait (normally yes)
  991. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  992. *
  993. * Note: It is of utmost importance that the passed in seqno and reset_counter
  994. * values have been read by the caller in an smp safe manner. Where read-side
  995. * locks are involved, it is sufficient to read the reset_counter before
  996. * unlocking the lock that protects the seqno. For lockless tricks, the
  997. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  998. * inserted.
  999. *
  1000. * Returns 0 if the request was found within the alloted time. Else returns the
  1001. * errno with remaining time filled in timeout argument.
  1002. */
  1003. int __i915_wait_request(struct drm_i915_gem_request *req,
  1004. unsigned reset_counter,
  1005. bool interruptible,
  1006. s64 *timeout,
  1007. struct drm_i915_file_private *file_priv)
  1008. {
  1009. struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
  1010. struct drm_device *dev = ring->dev;
  1011. struct drm_i915_private *dev_priv = dev->dev_private;
  1012. const bool irq_test_in_progress =
  1013. ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
  1014. DEFINE_WAIT(wait);
  1015. unsigned long timeout_expire;
  1016. s64 before, now;
  1017. int ret;
  1018. WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
  1019. if (i915_gem_request_completed(req, true))
  1020. return 0;
  1021. timeout_expire = timeout ?
  1022. jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
  1023. if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
  1024. gen6_rps_boost(dev_priv);
  1025. if (file_priv)
  1026. mod_delayed_work(dev_priv->wq,
  1027. &file_priv->mm.idle_work,
  1028. msecs_to_jiffies(100));
  1029. }
  1030. if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
  1031. return -ENODEV;
  1032. /* Record current time in case interrupted by signal, or wedged */
  1033. trace_i915_gem_request_wait_begin(req);
  1034. before = ktime_get_raw_ns();
  1035. for (;;) {
  1036. struct timer_list timer;
  1037. prepare_to_wait(&ring->irq_queue, &wait,
  1038. interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  1039. /* We need to check whether any gpu reset happened in between
  1040. * the caller grabbing the seqno and now ... */
  1041. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
  1042. /* ... but upgrade the -EAGAIN to an -EIO if the gpu
  1043. * is truely gone. */
  1044. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  1045. if (ret == 0)
  1046. ret = -EAGAIN;
  1047. break;
  1048. }
  1049. if (i915_gem_request_completed(req, false)) {
  1050. ret = 0;
  1051. break;
  1052. }
  1053. if (interruptible && signal_pending(current)) {
  1054. ret = -ERESTARTSYS;
  1055. break;
  1056. }
  1057. if (timeout && time_after_eq(jiffies, timeout_expire)) {
  1058. ret = -ETIME;
  1059. break;
  1060. }
  1061. timer.function = NULL;
  1062. if (timeout || missed_irq(dev_priv, ring)) {
  1063. unsigned long expire;
  1064. setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
  1065. expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
  1066. mod_timer(&timer, expire);
  1067. }
  1068. io_schedule();
  1069. if (timer.function) {
  1070. del_singleshot_timer_sync(&timer);
  1071. destroy_timer_on_stack(&timer);
  1072. }
  1073. }
  1074. now = ktime_get_raw_ns();
  1075. trace_i915_gem_request_wait_end(req);
  1076. if (!irq_test_in_progress)
  1077. ring->irq_put(ring);
  1078. finish_wait(&ring->irq_queue, &wait);
  1079. if (timeout) {
  1080. s64 tres = *timeout - (now - before);
  1081. *timeout = tres < 0 ? 0 : tres;
  1082. /*
  1083. * Apparently ktime isn't accurate enough and occasionally has a
  1084. * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
  1085. * things up to make the test happy. We allow up to 1 jiffy.
  1086. *
  1087. * This is a regrssion from the timespec->ktime conversion.
  1088. */
  1089. if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
  1090. *timeout = 0;
  1091. }
  1092. return ret;
  1093. }
  1094. /**
  1095. * Waits for a request to be signaled, and cleans up the
  1096. * request and object lists appropriately for that event.
  1097. */
  1098. int
  1099. i915_wait_request(struct drm_i915_gem_request *req)
  1100. {
  1101. struct drm_device *dev;
  1102. struct drm_i915_private *dev_priv;
  1103. bool interruptible;
  1104. unsigned reset_counter;
  1105. int ret;
  1106. BUG_ON(req == NULL);
  1107. dev = req->ring->dev;
  1108. dev_priv = dev->dev_private;
  1109. interruptible = dev_priv->mm.interruptible;
  1110. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1111. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  1112. if (ret)
  1113. return ret;
  1114. ret = i915_gem_check_olr(req);
  1115. if (ret)
  1116. return ret;
  1117. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1118. i915_gem_request_reference(req);
  1119. ret = __i915_wait_request(req, reset_counter,
  1120. interruptible, NULL, NULL);
  1121. i915_gem_request_unreference(req);
  1122. return ret;
  1123. }
  1124. static int
  1125. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
  1126. {
  1127. if (!obj->active)
  1128. return 0;
  1129. /* Manually manage the write flush as we may have not yet
  1130. * retired the buffer.
  1131. *
  1132. * Note that the last_write_req is always the earlier of
  1133. * the two (read/write) requests, so if we haved successfully waited,
  1134. * we know we have passed the last write.
  1135. */
  1136. i915_gem_request_assign(&obj->last_write_req, NULL);
  1137. return 0;
  1138. }
  1139. /**
  1140. * Ensures that all rendering to the object has completed and the object is
  1141. * safe to unbind from the GTT or access from the CPU.
  1142. */
  1143. static __must_check int
  1144. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1145. bool readonly)
  1146. {
  1147. struct drm_i915_gem_request *req;
  1148. int ret;
  1149. req = readonly ? obj->last_write_req : obj->last_read_req;
  1150. if (!req)
  1151. return 0;
  1152. ret = i915_wait_request(req);
  1153. if (ret)
  1154. return ret;
  1155. return i915_gem_object_wait_rendering__tail(obj);
  1156. }
  1157. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  1158. * as the object state may change during this call.
  1159. */
  1160. static __must_check int
  1161. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  1162. struct drm_i915_file_private *file_priv,
  1163. bool readonly)
  1164. {
  1165. struct drm_i915_gem_request *req;
  1166. struct drm_device *dev = obj->base.dev;
  1167. struct drm_i915_private *dev_priv = dev->dev_private;
  1168. unsigned reset_counter;
  1169. int ret;
  1170. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1171. BUG_ON(!dev_priv->mm.interruptible);
  1172. req = readonly ? obj->last_write_req : obj->last_read_req;
  1173. if (!req)
  1174. return 0;
  1175. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  1176. if (ret)
  1177. return ret;
  1178. ret = i915_gem_check_olr(req);
  1179. if (ret)
  1180. return ret;
  1181. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1182. i915_gem_request_reference(req);
  1183. mutex_unlock(&dev->struct_mutex);
  1184. ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
  1185. mutex_lock(&dev->struct_mutex);
  1186. i915_gem_request_unreference(req);
  1187. if (ret)
  1188. return ret;
  1189. return i915_gem_object_wait_rendering__tail(obj);
  1190. }
  1191. /**
  1192. * Called when user space prepares to use an object with the CPU, either
  1193. * through the mmap ioctl's mapping or a GTT mapping.
  1194. */
  1195. int
  1196. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1197. struct drm_file *file)
  1198. {
  1199. struct drm_i915_gem_set_domain *args = data;
  1200. struct drm_i915_gem_object *obj;
  1201. uint32_t read_domains = args->read_domains;
  1202. uint32_t write_domain = args->write_domain;
  1203. int ret;
  1204. /* Only handle setting domains to types used by the CPU. */
  1205. if (write_domain & I915_GEM_GPU_DOMAINS)
  1206. return -EINVAL;
  1207. if (read_domains & I915_GEM_GPU_DOMAINS)
  1208. return -EINVAL;
  1209. /* Having something in the write domain implies it's in the read
  1210. * domain, and only that read domain. Enforce that in the request.
  1211. */
  1212. if (write_domain != 0 && read_domains != write_domain)
  1213. return -EINVAL;
  1214. ret = i915_mutex_lock_interruptible(dev);
  1215. if (ret)
  1216. return ret;
  1217. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1218. if (&obj->base == NULL) {
  1219. ret = -ENOENT;
  1220. goto unlock;
  1221. }
  1222. /* Try to flush the object off the GPU without holding the lock.
  1223. * We will repeat the flush holding the lock in the normal manner
  1224. * to catch cases where we are gazumped.
  1225. */
  1226. ret = i915_gem_object_wait_rendering__nonblocking(obj,
  1227. file->driver_priv,
  1228. !write_domain);
  1229. if (ret)
  1230. goto unref;
  1231. if (read_domains & I915_GEM_DOMAIN_GTT)
  1232. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1233. else
  1234. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1235. unref:
  1236. drm_gem_object_unreference(&obj->base);
  1237. unlock:
  1238. mutex_unlock(&dev->struct_mutex);
  1239. return ret;
  1240. }
  1241. /**
  1242. * Called when user space has done writes to this buffer
  1243. */
  1244. int
  1245. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1246. struct drm_file *file)
  1247. {
  1248. struct drm_i915_gem_sw_finish *args = data;
  1249. struct drm_i915_gem_object *obj;
  1250. int ret = 0;
  1251. ret = i915_mutex_lock_interruptible(dev);
  1252. if (ret)
  1253. return ret;
  1254. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1255. if (&obj->base == NULL) {
  1256. ret = -ENOENT;
  1257. goto unlock;
  1258. }
  1259. /* Pinned buffers may be scanout, so flush the cache */
  1260. if (obj->pin_display)
  1261. i915_gem_object_flush_cpu_write_domain(obj);
  1262. drm_gem_object_unreference(&obj->base);
  1263. unlock:
  1264. mutex_unlock(&dev->struct_mutex);
  1265. return ret;
  1266. }
  1267. /**
  1268. * Maps the contents of an object, returning the address it is mapped
  1269. * into.
  1270. *
  1271. * While the mapping holds a reference on the contents of the object, it doesn't
  1272. * imply a ref on the object itself.
  1273. *
  1274. * IMPORTANT:
  1275. *
  1276. * DRM driver writers who look a this function as an example for how to do GEM
  1277. * mmap support, please don't implement mmap support like here. The modern way
  1278. * to implement DRM mmap support is with an mmap offset ioctl (like
  1279. * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
  1280. * That way debug tooling like valgrind will understand what's going on, hiding
  1281. * the mmap call in a driver private ioctl will break that. The i915 driver only
  1282. * does cpu mmaps this way because we didn't know better.
  1283. */
  1284. int
  1285. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1286. struct drm_file *file)
  1287. {
  1288. struct drm_i915_gem_mmap *args = data;
  1289. struct drm_gem_object *obj;
  1290. unsigned long addr;
  1291. if (args->flags & ~(I915_MMAP_WC))
  1292. return -EINVAL;
  1293. if (args->flags & I915_MMAP_WC && !cpu_has_pat)
  1294. return -ENODEV;
  1295. obj = drm_gem_object_lookup(dev, file, args->handle);
  1296. if (obj == NULL)
  1297. return -ENOENT;
  1298. /* prime objects have no backing filp to GEM mmap
  1299. * pages from.
  1300. */
  1301. if (!obj->filp) {
  1302. drm_gem_object_unreference_unlocked(obj);
  1303. return -EINVAL;
  1304. }
  1305. addr = vm_mmap(obj->filp, 0, args->size,
  1306. PROT_READ | PROT_WRITE, MAP_SHARED,
  1307. args->offset);
  1308. if (args->flags & I915_MMAP_WC) {
  1309. struct mm_struct *mm = current->mm;
  1310. struct vm_area_struct *vma;
  1311. down_write(&mm->mmap_sem);
  1312. vma = find_vma(mm, addr);
  1313. if (vma)
  1314. vma->vm_page_prot =
  1315. pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
  1316. else
  1317. addr = -ENOMEM;
  1318. up_write(&mm->mmap_sem);
  1319. }
  1320. drm_gem_object_unreference_unlocked(obj);
  1321. if (IS_ERR((void *)addr))
  1322. return addr;
  1323. args->addr_ptr = (uint64_t) addr;
  1324. return 0;
  1325. }
  1326. /**
  1327. * i915_gem_fault - fault a page into the GTT
  1328. * vma: VMA in question
  1329. * vmf: fault info
  1330. *
  1331. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1332. * from userspace. The fault handler takes care of binding the object to
  1333. * the GTT (if needed), allocating and programming a fence register (again,
  1334. * only if needed based on whether the old reg is still valid or the object
  1335. * is tiled) and inserting a new PTE into the faulting process.
  1336. *
  1337. * Note that the faulting process may involve evicting existing objects
  1338. * from the GTT and/or fence registers to make room. So performance may
  1339. * suffer if the GTT working set is large or there are few fence registers
  1340. * left.
  1341. */
  1342. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1343. {
  1344. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1345. struct drm_device *dev = obj->base.dev;
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. pgoff_t page_offset;
  1348. unsigned long pfn;
  1349. int ret = 0;
  1350. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1351. intel_runtime_pm_get(dev_priv);
  1352. /* We don't use vmf->pgoff since that has the fake offset */
  1353. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1354. PAGE_SHIFT;
  1355. ret = i915_mutex_lock_interruptible(dev);
  1356. if (ret)
  1357. goto out;
  1358. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1359. /* Try to flush the object off the GPU first without holding the lock.
  1360. * Upon reacquiring the lock, we will perform our sanity checks and then
  1361. * repeat the flush holding the lock in the normal manner to catch cases
  1362. * where we are gazumped.
  1363. */
  1364. ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
  1365. if (ret)
  1366. goto unlock;
  1367. /* Access to snoopable pages through the GTT is incoherent. */
  1368. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1369. ret = -EFAULT;
  1370. goto unlock;
  1371. }
  1372. /* Now bind it into the GTT if needed */
  1373. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
  1374. if (ret)
  1375. goto unlock;
  1376. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1377. if (ret)
  1378. goto unpin;
  1379. ret = i915_gem_object_get_fence(obj);
  1380. if (ret)
  1381. goto unpin;
  1382. /* Finally, remap it using the new GTT offset */
  1383. pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
  1384. pfn >>= PAGE_SHIFT;
  1385. if (!obj->fault_mappable) {
  1386. unsigned long size = min_t(unsigned long,
  1387. vma->vm_end - vma->vm_start,
  1388. obj->base.size);
  1389. int i;
  1390. for (i = 0; i < size >> PAGE_SHIFT; i++) {
  1391. ret = vm_insert_pfn(vma,
  1392. (unsigned long)vma->vm_start + i * PAGE_SIZE,
  1393. pfn + i);
  1394. if (ret)
  1395. break;
  1396. }
  1397. obj->fault_mappable = true;
  1398. } else
  1399. ret = vm_insert_pfn(vma,
  1400. (unsigned long)vmf->virtual_address,
  1401. pfn + page_offset);
  1402. unpin:
  1403. i915_gem_object_ggtt_unpin(obj);
  1404. unlock:
  1405. mutex_unlock(&dev->struct_mutex);
  1406. out:
  1407. switch (ret) {
  1408. case -EIO:
  1409. /*
  1410. * We eat errors when the gpu is terminally wedged to avoid
  1411. * userspace unduly crashing (gl has no provisions for mmaps to
  1412. * fail). But any other -EIO isn't ours (e.g. swap in failure)
  1413. * and so needs to be reported.
  1414. */
  1415. if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
  1416. ret = VM_FAULT_SIGBUS;
  1417. break;
  1418. }
  1419. case -EAGAIN:
  1420. /*
  1421. * EAGAIN means the gpu is hung and we'll wait for the error
  1422. * handler to reset everything when re-faulting in
  1423. * i915_mutex_lock_interruptible.
  1424. */
  1425. case 0:
  1426. case -ERESTARTSYS:
  1427. case -EINTR:
  1428. case -EBUSY:
  1429. /*
  1430. * EBUSY is ok: this just means that another thread
  1431. * already did the job.
  1432. */
  1433. ret = VM_FAULT_NOPAGE;
  1434. break;
  1435. case -ENOMEM:
  1436. ret = VM_FAULT_OOM;
  1437. break;
  1438. case -ENOSPC:
  1439. case -EFAULT:
  1440. ret = VM_FAULT_SIGBUS;
  1441. break;
  1442. default:
  1443. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1444. ret = VM_FAULT_SIGBUS;
  1445. break;
  1446. }
  1447. intel_runtime_pm_put(dev_priv);
  1448. return ret;
  1449. }
  1450. /**
  1451. * i915_gem_release_mmap - remove physical page mappings
  1452. * @obj: obj in question
  1453. *
  1454. * Preserve the reservation of the mmapping with the DRM core code, but
  1455. * relinquish ownership of the pages back to the system.
  1456. *
  1457. * It is vital that we remove the page mapping if we have mapped a tiled
  1458. * object through the GTT and then lose the fence register due to
  1459. * resource pressure. Similarly if the object has been moved out of the
  1460. * aperture, than pages mapped into userspace must be revoked. Removing the
  1461. * mapping will then trigger a page fault on the next user access, allowing
  1462. * fixup by i915_gem_fault().
  1463. */
  1464. void
  1465. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1466. {
  1467. if (!obj->fault_mappable)
  1468. return;
  1469. drm_vma_node_unmap(&obj->base.vma_node,
  1470. obj->base.dev->anon_inode->i_mapping);
  1471. obj->fault_mappable = false;
  1472. }
  1473. void
  1474. i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
  1475. {
  1476. struct drm_i915_gem_object *obj;
  1477. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  1478. i915_gem_release_mmap(obj);
  1479. }
  1480. uint32_t
  1481. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1482. {
  1483. uint32_t gtt_size;
  1484. if (INTEL_INFO(dev)->gen >= 4 ||
  1485. tiling_mode == I915_TILING_NONE)
  1486. return size;
  1487. /* Previous chips need a power-of-two fence region when tiling */
  1488. if (INTEL_INFO(dev)->gen == 3)
  1489. gtt_size = 1024*1024;
  1490. else
  1491. gtt_size = 512*1024;
  1492. while (gtt_size < size)
  1493. gtt_size <<= 1;
  1494. return gtt_size;
  1495. }
  1496. /**
  1497. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1498. * @obj: object to check
  1499. *
  1500. * Return the required GTT alignment for an object, taking into account
  1501. * potential fence register mapping.
  1502. */
  1503. uint32_t
  1504. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1505. int tiling_mode, bool fenced)
  1506. {
  1507. /*
  1508. * Minimum alignment is 4k (GTT page size), but might be greater
  1509. * if a fence register is needed for the object.
  1510. */
  1511. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1512. tiling_mode == I915_TILING_NONE)
  1513. return 4096;
  1514. /*
  1515. * Previous chips need to be aligned to the size of the smallest
  1516. * fence register that can contain the object.
  1517. */
  1518. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1519. }
  1520. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1521. {
  1522. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1523. int ret;
  1524. if (drm_vma_node_has_offset(&obj->base.vma_node))
  1525. return 0;
  1526. dev_priv->mm.shrinker_no_lock_stealing = true;
  1527. ret = drm_gem_create_mmap_offset(&obj->base);
  1528. if (ret != -ENOSPC)
  1529. goto out;
  1530. /* Badly fragmented mmap space? The only way we can recover
  1531. * space is by destroying unwanted objects. We can't randomly release
  1532. * mmap_offsets as userspace expects them to be persistent for the
  1533. * lifetime of the objects. The closest we can is to release the
  1534. * offsets on purgeable objects by truncating it and marking it purged,
  1535. * which prevents userspace from ever using that object again.
  1536. */
  1537. i915_gem_shrink(dev_priv,
  1538. obj->base.size >> PAGE_SHIFT,
  1539. I915_SHRINK_BOUND |
  1540. I915_SHRINK_UNBOUND |
  1541. I915_SHRINK_PURGEABLE);
  1542. ret = drm_gem_create_mmap_offset(&obj->base);
  1543. if (ret != -ENOSPC)
  1544. goto out;
  1545. i915_gem_shrink_all(dev_priv);
  1546. ret = drm_gem_create_mmap_offset(&obj->base);
  1547. out:
  1548. dev_priv->mm.shrinker_no_lock_stealing = false;
  1549. return ret;
  1550. }
  1551. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1552. {
  1553. drm_gem_free_mmap_offset(&obj->base);
  1554. }
  1555. int
  1556. i915_gem_mmap_gtt(struct drm_file *file,
  1557. struct drm_device *dev,
  1558. uint32_t handle,
  1559. uint64_t *offset)
  1560. {
  1561. struct drm_i915_private *dev_priv = dev->dev_private;
  1562. struct drm_i915_gem_object *obj;
  1563. int ret;
  1564. ret = i915_mutex_lock_interruptible(dev);
  1565. if (ret)
  1566. return ret;
  1567. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1568. if (&obj->base == NULL) {
  1569. ret = -ENOENT;
  1570. goto unlock;
  1571. }
  1572. if (obj->base.size > dev_priv->gtt.mappable_end) {
  1573. ret = -E2BIG;
  1574. goto out;
  1575. }
  1576. if (obj->madv != I915_MADV_WILLNEED) {
  1577. DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
  1578. ret = -EFAULT;
  1579. goto out;
  1580. }
  1581. ret = i915_gem_object_create_mmap_offset(obj);
  1582. if (ret)
  1583. goto out;
  1584. *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
  1585. out:
  1586. drm_gem_object_unreference(&obj->base);
  1587. unlock:
  1588. mutex_unlock(&dev->struct_mutex);
  1589. return ret;
  1590. }
  1591. /**
  1592. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1593. * @dev: DRM device
  1594. * @data: GTT mapping ioctl data
  1595. * @file: GEM object info
  1596. *
  1597. * Simply returns the fake offset to userspace so it can mmap it.
  1598. * The mmap call will end up in drm_gem_mmap(), which will set things
  1599. * up so we can get faults in the handler above.
  1600. *
  1601. * The fault handler will take care of binding the object into the GTT
  1602. * (since it may have been evicted to make room for something), allocating
  1603. * a fence register, and mapping the appropriate aperture address into
  1604. * userspace.
  1605. */
  1606. int
  1607. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1608. struct drm_file *file)
  1609. {
  1610. struct drm_i915_gem_mmap_gtt *args = data;
  1611. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1612. }
  1613. /* Immediately discard the backing storage */
  1614. static void
  1615. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1616. {
  1617. i915_gem_object_free_mmap_offset(obj);
  1618. if (obj->base.filp == NULL)
  1619. return;
  1620. /* Our goal here is to return as much of the memory as
  1621. * is possible back to the system as we are called from OOM.
  1622. * To do this we must instruct the shmfs to drop all of its
  1623. * backing pages, *now*.
  1624. */
  1625. shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
  1626. obj->madv = __I915_MADV_PURGED;
  1627. }
  1628. /* Try to discard unwanted pages */
  1629. static void
  1630. i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
  1631. {
  1632. struct address_space *mapping;
  1633. switch (obj->madv) {
  1634. case I915_MADV_DONTNEED:
  1635. i915_gem_object_truncate(obj);
  1636. case __I915_MADV_PURGED:
  1637. return;
  1638. }
  1639. if (obj->base.filp == NULL)
  1640. return;
  1641. mapping = file_inode(obj->base.filp)->i_mapping,
  1642. invalidate_mapping_pages(mapping, 0, (loff_t)-1);
  1643. }
  1644. static void
  1645. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1646. {
  1647. struct sg_page_iter sg_iter;
  1648. int ret;
  1649. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1650. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1651. if (ret) {
  1652. /* In the event of a disaster, abandon all caches and
  1653. * hope for the best.
  1654. */
  1655. WARN_ON(ret != -EIO);
  1656. i915_gem_clflush_object(obj, true);
  1657. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1658. }
  1659. if (i915_gem_object_needs_bit17_swizzle(obj))
  1660. i915_gem_object_save_bit_17_swizzle(obj);
  1661. if (obj->madv == I915_MADV_DONTNEED)
  1662. obj->dirty = 0;
  1663. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1664. struct page *page = sg_page_iter_page(&sg_iter);
  1665. if (obj->dirty)
  1666. set_page_dirty(page);
  1667. if (obj->madv == I915_MADV_WILLNEED)
  1668. mark_page_accessed(page);
  1669. page_cache_release(page);
  1670. }
  1671. obj->dirty = 0;
  1672. sg_free_table(obj->pages);
  1673. kfree(obj->pages);
  1674. }
  1675. int
  1676. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1677. {
  1678. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1679. if (obj->pages == NULL)
  1680. return 0;
  1681. if (obj->pages_pin_count)
  1682. return -EBUSY;
  1683. BUG_ON(i915_gem_obj_bound_any(obj));
  1684. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1685. * array, hence protect them from being reaped by removing them from gtt
  1686. * lists early. */
  1687. list_del(&obj->global_list);
  1688. ops->put_pages(obj);
  1689. obj->pages = NULL;
  1690. i915_gem_object_invalidate(obj);
  1691. return 0;
  1692. }
  1693. static int
  1694. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1695. {
  1696. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1697. int page_count, i;
  1698. struct address_space *mapping;
  1699. struct sg_table *st;
  1700. struct scatterlist *sg;
  1701. struct sg_page_iter sg_iter;
  1702. struct page *page;
  1703. unsigned long last_pfn = 0; /* suppress gcc warning */
  1704. gfp_t gfp;
  1705. /* Assert that the object is not currently in any GPU domain. As it
  1706. * wasn't in the GTT, there shouldn't be any way it could have been in
  1707. * a GPU cache
  1708. */
  1709. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1710. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1711. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1712. if (st == NULL)
  1713. return -ENOMEM;
  1714. page_count = obj->base.size / PAGE_SIZE;
  1715. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1716. kfree(st);
  1717. return -ENOMEM;
  1718. }
  1719. /* Get the list of pages out of our struct file. They'll be pinned
  1720. * at this point until we release them.
  1721. *
  1722. * Fail silently without starting the shrinker
  1723. */
  1724. mapping = file_inode(obj->base.filp)->i_mapping;
  1725. gfp = mapping_gfp_mask(mapping);
  1726. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1727. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1728. sg = st->sgl;
  1729. st->nents = 0;
  1730. for (i = 0; i < page_count; i++) {
  1731. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1732. if (IS_ERR(page)) {
  1733. i915_gem_shrink(dev_priv,
  1734. page_count,
  1735. I915_SHRINK_BOUND |
  1736. I915_SHRINK_UNBOUND |
  1737. I915_SHRINK_PURGEABLE);
  1738. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1739. }
  1740. if (IS_ERR(page)) {
  1741. /* We've tried hard to allocate the memory by reaping
  1742. * our own buffer, now let the real VM do its job and
  1743. * go down in flames if truly OOM.
  1744. */
  1745. i915_gem_shrink_all(dev_priv);
  1746. page = shmem_read_mapping_page(mapping, i);
  1747. if (IS_ERR(page))
  1748. goto err_pages;
  1749. }
  1750. #ifdef CONFIG_SWIOTLB
  1751. if (swiotlb_nr_tbl()) {
  1752. st->nents++;
  1753. sg_set_page(sg, page, PAGE_SIZE, 0);
  1754. sg = sg_next(sg);
  1755. continue;
  1756. }
  1757. #endif
  1758. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1759. if (i)
  1760. sg = sg_next(sg);
  1761. st->nents++;
  1762. sg_set_page(sg, page, PAGE_SIZE, 0);
  1763. } else {
  1764. sg->length += PAGE_SIZE;
  1765. }
  1766. last_pfn = page_to_pfn(page);
  1767. /* Check that the i965g/gm workaround works. */
  1768. WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
  1769. }
  1770. #ifdef CONFIG_SWIOTLB
  1771. if (!swiotlb_nr_tbl())
  1772. #endif
  1773. sg_mark_end(sg);
  1774. obj->pages = st;
  1775. if (i915_gem_object_needs_bit17_swizzle(obj))
  1776. i915_gem_object_do_bit_17_swizzle(obj);
  1777. if (obj->tiling_mode != I915_TILING_NONE &&
  1778. dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1779. i915_gem_object_pin_pages(obj);
  1780. return 0;
  1781. err_pages:
  1782. sg_mark_end(sg);
  1783. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1784. page_cache_release(sg_page_iter_page(&sg_iter));
  1785. sg_free_table(st);
  1786. kfree(st);
  1787. /* shmemfs first checks if there is enough memory to allocate the page
  1788. * and reports ENOSPC should there be insufficient, along with the usual
  1789. * ENOMEM for a genuine allocation failure.
  1790. *
  1791. * We use ENOSPC in our driver to mean that we have run out of aperture
  1792. * space and so want to translate the error from shmemfs back to our
  1793. * usual understanding of ENOMEM.
  1794. */
  1795. if (PTR_ERR(page) == -ENOSPC)
  1796. return -ENOMEM;
  1797. else
  1798. return PTR_ERR(page);
  1799. }
  1800. /* Ensure that the associated pages are gathered from the backing storage
  1801. * and pinned into our object. i915_gem_object_get_pages() may be called
  1802. * multiple times before they are released by a single call to
  1803. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1804. * either as a result of memory pressure (reaping pages under the shrinker)
  1805. * or as the object is itself released.
  1806. */
  1807. int
  1808. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1809. {
  1810. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1811. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1812. int ret;
  1813. if (obj->pages)
  1814. return 0;
  1815. if (obj->madv != I915_MADV_WILLNEED) {
  1816. DRM_DEBUG("Attempting to obtain a purgeable object\n");
  1817. return -EFAULT;
  1818. }
  1819. BUG_ON(obj->pages_pin_count);
  1820. ret = ops->get_pages(obj);
  1821. if (ret)
  1822. return ret;
  1823. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1824. return 0;
  1825. }
  1826. static void
  1827. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1828. struct intel_engine_cs *ring)
  1829. {
  1830. struct drm_i915_gem_request *req;
  1831. struct intel_engine_cs *old_ring;
  1832. BUG_ON(ring == NULL);
  1833. req = intel_ring_get_request(ring);
  1834. old_ring = i915_gem_request_get_ring(obj->last_read_req);
  1835. if (old_ring != ring && obj->last_write_req) {
  1836. /* Keep the request relative to the current ring */
  1837. i915_gem_request_assign(&obj->last_write_req, req);
  1838. }
  1839. /* Add a reference if we're newly entering the active list. */
  1840. if (!obj->active) {
  1841. drm_gem_object_reference(&obj->base);
  1842. obj->active = 1;
  1843. }
  1844. list_move_tail(&obj->ring_list, &ring->active_list);
  1845. i915_gem_request_assign(&obj->last_read_req, req);
  1846. }
  1847. void i915_vma_move_to_active(struct i915_vma *vma,
  1848. struct intel_engine_cs *ring)
  1849. {
  1850. list_move_tail(&vma->mm_list, &vma->vm->active_list);
  1851. return i915_gem_object_move_to_active(vma->obj, ring);
  1852. }
  1853. static void
  1854. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1855. {
  1856. struct i915_vma *vma;
  1857. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1858. BUG_ON(!obj->active);
  1859. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  1860. if (!list_empty(&vma->mm_list))
  1861. list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
  1862. }
  1863. intel_fb_obj_flush(obj, true);
  1864. list_del_init(&obj->ring_list);
  1865. i915_gem_request_assign(&obj->last_read_req, NULL);
  1866. i915_gem_request_assign(&obj->last_write_req, NULL);
  1867. obj->base.write_domain = 0;
  1868. i915_gem_request_assign(&obj->last_fenced_req, NULL);
  1869. obj->active = 0;
  1870. drm_gem_object_unreference(&obj->base);
  1871. WARN_ON(i915_verify_lists(dev));
  1872. }
  1873. static void
  1874. i915_gem_object_retire(struct drm_i915_gem_object *obj)
  1875. {
  1876. if (obj->last_read_req == NULL)
  1877. return;
  1878. if (i915_gem_request_completed(obj->last_read_req, true))
  1879. i915_gem_object_move_to_inactive(obj);
  1880. }
  1881. static int
  1882. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1883. {
  1884. struct drm_i915_private *dev_priv = dev->dev_private;
  1885. struct intel_engine_cs *ring;
  1886. int ret, i, j;
  1887. /* Carefully retire all requests without writing to the rings */
  1888. for_each_ring(ring, dev_priv, i) {
  1889. ret = intel_ring_idle(ring);
  1890. if (ret)
  1891. return ret;
  1892. }
  1893. i915_gem_retire_requests(dev);
  1894. /* Finally reset hw state */
  1895. for_each_ring(ring, dev_priv, i) {
  1896. intel_ring_init_seqno(ring, seqno);
  1897. for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
  1898. ring->semaphore.sync_seqno[j] = 0;
  1899. }
  1900. return 0;
  1901. }
  1902. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1903. {
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. int ret;
  1906. if (seqno == 0)
  1907. return -EINVAL;
  1908. /* HWS page needs to be set less than what we
  1909. * will inject to ring
  1910. */
  1911. ret = i915_gem_init_seqno(dev, seqno - 1);
  1912. if (ret)
  1913. return ret;
  1914. /* Carefully set the last_seqno value so that wrap
  1915. * detection still works
  1916. */
  1917. dev_priv->next_seqno = seqno;
  1918. dev_priv->last_seqno = seqno - 1;
  1919. if (dev_priv->last_seqno == 0)
  1920. dev_priv->last_seqno--;
  1921. return 0;
  1922. }
  1923. int
  1924. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1925. {
  1926. struct drm_i915_private *dev_priv = dev->dev_private;
  1927. /* reserve 0 for non-seqno */
  1928. if (dev_priv->next_seqno == 0) {
  1929. int ret = i915_gem_init_seqno(dev, 0);
  1930. if (ret)
  1931. return ret;
  1932. dev_priv->next_seqno = 1;
  1933. }
  1934. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1935. return 0;
  1936. }
  1937. int __i915_add_request(struct intel_engine_cs *ring,
  1938. struct drm_file *file,
  1939. struct drm_i915_gem_object *obj)
  1940. {
  1941. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1942. struct drm_i915_gem_request *request;
  1943. struct intel_ringbuffer *ringbuf;
  1944. u32 request_start;
  1945. int ret;
  1946. request = ring->outstanding_lazy_request;
  1947. if (WARN_ON(request == NULL))
  1948. return -ENOMEM;
  1949. if (i915.enable_execlists) {
  1950. ringbuf = request->ctx->engine[ring->id].ringbuf;
  1951. } else
  1952. ringbuf = ring->buffer;
  1953. request_start = intel_ring_get_tail(ringbuf);
  1954. /*
  1955. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1956. * after having emitted the batchbuffer command. Hence we need to fix
  1957. * things up similar to emitting the lazy request. The difference here
  1958. * is that the flush _must_ happen before the next request, no matter
  1959. * what.
  1960. */
  1961. if (i915.enable_execlists) {
  1962. ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
  1963. if (ret)
  1964. return ret;
  1965. } else {
  1966. ret = intel_ring_flush_all_caches(ring);
  1967. if (ret)
  1968. return ret;
  1969. }
  1970. /* Record the position of the start of the request so that
  1971. * should we detect the updated seqno part-way through the
  1972. * GPU processing the request, we never over-estimate the
  1973. * position of the head.
  1974. */
  1975. request->postfix = intel_ring_get_tail(ringbuf);
  1976. if (i915.enable_execlists) {
  1977. ret = ring->emit_request(ringbuf, request);
  1978. if (ret)
  1979. return ret;
  1980. } else {
  1981. ret = ring->add_request(ring);
  1982. if (ret)
  1983. return ret;
  1984. request->tail = intel_ring_get_tail(ringbuf);
  1985. }
  1986. request->head = request_start;
  1987. /* Whilst this request exists, batch_obj will be on the
  1988. * active_list, and so will hold the active reference. Only when this
  1989. * request is retired will the the batch_obj be moved onto the
  1990. * inactive_list and lose its active reference. Hence we do not need
  1991. * to explicitly hold another reference here.
  1992. */
  1993. request->batch_obj = obj;
  1994. if (!i915.enable_execlists) {
  1995. /* Hold a reference to the current context so that we can inspect
  1996. * it later in case a hangcheck error event fires.
  1997. */
  1998. request->ctx = ring->last_context;
  1999. if (request->ctx)
  2000. i915_gem_context_reference(request->ctx);
  2001. }
  2002. request->emitted_jiffies = jiffies;
  2003. list_add_tail(&request->list, &ring->request_list);
  2004. request->file_priv = NULL;
  2005. if (file) {
  2006. struct drm_i915_file_private *file_priv = file->driver_priv;
  2007. spin_lock(&file_priv->mm.lock);
  2008. request->file_priv = file_priv;
  2009. list_add_tail(&request->client_list,
  2010. &file_priv->mm.request_list);
  2011. spin_unlock(&file_priv->mm.lock);
  2012. request->pid = get_pid(task_pid(current));
  2013. }
  2014. trace_i915_gem_request_add(request);
  2015. ring->outstanding_lazy_request = NULL;
  2016. i915_queue_hangcheck(ring->dev);
  2017. cancel_delayed_work_sync(&dev_priv->mm.idle_work);
  2018. queue_delayed_work(dev_priv->wq,
  2019. &dev_priv->mm.retire_work,
  2020. round_jiffies_up_relative(HZ));
  2021. intel_mark_busy(dev_priv->dev);
  2022. return 0;
  2023. }
  2024. static inline void
  2025. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  2026. {
  2027. struct drm_i915_file_private *file_priv = request->file_priv;
  2028. if (!file_priv)
  2029. return;
  2030. spin_lock(&file_priv->mm.lock);
  2031. list_del(&request->client_list);
  2032. request->file_priv = NULL;
  2033. spin_unlock(&file_priv->mm.lock);
  2034. }
  2035. static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
  2036. const struct intel_context *ctx)
  2037. {
  2038. unsigned long elapsed;
  2039. elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
  2040. if (ctx->hang_stats.banned)
  2041. return true;
  2042. if (ctx->hang_stats.ban_period_seconds &&
  2043. elapsed <= ctx->hang_stats.ban_period_seconds) {
  2044. if (!i915_gem_context_is_default(ctx)) {
  2045. DRM_DEBUG("context hanging too fast, banning!\n");
  2046. return true;
  2047. } else if (i915_stop_ring_allow_ban(dev_priv)) {
  2048. if (i915_stop_ring_allow_warn(dev_priv))
  2049. DRM_ERROR("gpu hanging too fast, banning!\n");
  2050. return true;
  2051. }
  2052. }
  2053. return false;
  2054. }
  2055. static void i915_set_reset_status(struct drm_i915_private *dev_priv,
  2056. struct intel_context *ctx,
  2057. const bool guilty)
  2058. {
  2059. struct i915_ctx_hang_stats *hs;
  2060. if (WARN_ON(!ctx))
  2061. return;
  2062. hs = &ctx->hang_stats;
  2063. if (guilty) {
  2064. hs->banned = i915_context_is_banned(dev_priv, ctx);
  2065. hs->batch_active++;
  2066. hs->guilty_ts = get_seconds();
  2067. } else {
  2068. hs->batch_pending++;
  2069. }
  2070. }
  2071. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  2072. {
  2073. list_del(&request->list);
  2074. i915_gem_request_remove_from_client(request);
  2075. put_pid(request->pid);
  2076. i915_gem_request_unreference(request);
  2077. }
  2078. void i915_gem_request_free(struct kref *req_ref)
  2079. {
  2080. struct drm_i915_gem_request *req = container_of(req_ref,
  2081. typeof(*req), ref);
  2082. struct intel_context *ctx = req->ctx;
  2083. if (ctx) {
  2084. if (i915.enable_execlists) {
  2085. struct intel_engine_cs *ring = req->ring;
  2086. if (ctx != ring->default_context)
  2087. intel_lr_context_unpin(ring, ctx);
  2088. }
  2089. i915_gem_context_unreference(ctx);
  2090. }
  2091. kfree(req);
  2092. }
  2093. struct drm_i915_gem_request *
  2094. i915_gem_find_active_request(struct intel_engine_cs *ring)
  2095. {
  2096. struct drm_i915_gem_request *request;
  2097. list_for_each_entry(request, &ring->request_list, list) {
  2098. if (i915_gem_request_completed(request, false))
  2099. continue;
  2100. return request;
  2101. }
  2102. return NULL;
  2103. }
  2104. static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
  2105. struct intel_engine_cs *ring)
  2106. {
  2107. struct drm_i915_gem_request *request;
  2108. bool ring_hung;
  2109. request = i915_gem_find_active_request(ring);
  2110. if (request == NULL)
  2111. return;
  2112. ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
  2113. i915_set_reset_status(dev_priv, request->ctx, ring_hung);
  2114. list_for_each_entry_continue(request, &ring->request_list, list)
  2115. i915_set_reset_status(dev_priv, request->ctx, false);
  2116. }
  2117. static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
  2118. struct intel_engine_cs *ring)
  2119. {
  2120. while (!list_empty(&ring->active_list)) {
  2121. struct drm_i915_gem_object *obj;
  2122. obj = list_first_entry(&ring->active_list,
  2123. struct drm_i915_gem_object,
  2124. ring_list);
  2125. i915_gem_object_move_to_inactive(obj);
  2126. }
  2127. /*
  2128. * Clear the execlists queue up before freeing the requests, as those
  2129. * are the ones that keep the context and ringbuffer backing objects
  2130. * pinned in place.
  2131. */
  2132. while (!list_empty(&ring->execlist_queue)) {
  2133. struct drm_i915_gem_request *submit_req;
  2134. submit_req = list_first_entry(&ring->execlist_queue,
  2135. struct drm_i915_gem_request,
  2136. execlist_link);
  2137. list_del(&submit_req->execlist_link);
  2138. intel_runtime_pm_put(dev_priv);
  2139. if (submit_req->ctx != ring->default_context)
  2140. intel_lr_context_unpin(ring, submit_req->ctx);
  2141. i915_gem_request_unreference(submit_req);
  2142. }
  2143. /*
  2144. * We must free the requests after all the corresponding objects have
  2145. * been moved off active lists. Which is the same order as the normal
  2146. * retire_requests function does. This is important if object hold
  2147. * implicit references on things like e.g. ppgtt address spaces through
  2148. * the request.
  2149. */
  2150. while (!list_empty(&ring->request_list)) {
  2151. struct drm_i915_gem_request *request;
  2152. request = list_first_entry(&ring->request_list,
  2153. struct drm_i915_gem_request,
  2154. list);
  2155. i915_gem_free_request(request);
  2156. }
  2157. /* This may not have been flushed before the reset, so clean it now */
  2158. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  2159. }
  2160. void i915_gem_restore_fences(struct drm_device *dev)
  2161. {
  2162. struct drm_i915_private *dev_priv = dev->dev_private;
  2163. int i;
  2164. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  2165. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  2166. /*
  2167. * Commit delayed tiling changes if we have an object still
  2168. * attached to the fence, otherwise just clear the fence.
  2169. */
  2170. if (reg->obj) {
  2171. i915_gem_object_update_fence(reg->obj, reg,
  2172. reg->obj->tiling_mode);
  2173. } else {
  2174. i915_gem_write_fence(dev, i, NULL);
  2175. }
  2176. }
  2177. }
  2178. void i915_gem_reset(struct drm_device *dev)
  2179. {
  2180. struct drm_i915_private *dev_priv = dev->dev_private;
  2181. struct intel_engine_cs *ring;
  2182. int i;
  2183. /*
  2184. * Before we free the objects from the requests, we need to inspect
  2185. * them for finding the guilty party. As the requests only borrow
  2186. * their reference to the objects, the inspection must be done first.
  2187. */
  2188. for_each_ring(ring, dev_priv, i)
  2189. i915_gem_reset_ring_status(dev_priv, ring);
  2190. for_each_ring(ring, dev_priv, i)
  2191. i915_gem_reset_ring_cleanup(dev_priv, ring);
  2192. i915_gem_context_reset(dev);
  2193. i915_gem_restore_fences(dev);
  2194. }
  2195. /**
  2196. * This function clears the request list as sequence numbers are passed.
  2197. */
  2198. void
  2199. i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
  2200. {
  2201. WARN_ON(i915_verify_lists(ring->dev));
  2202. /* Retire requests first as we use it above for the early return.
  2203. * If we retire requests last, we may use a later seqno and so clear
  2204. * the requests lists without clearing the active list, leading to
  2205. * confusion.
  2206. */
  2207. while (!list_empty(&ring->request_list)) {
  2208. struct drm_i915_gem_request *request;
  2209. request = list_first_entry(&ring->request_list,
  2210. struct drm_i915_gem_request,
  2211. list);
  2212. if (!i915_gem_request_completed(request, true))
  2213. break;
  2214. trace_i915_gem_request_retire(request);
  2215. /* We know the GPU must have read the request to have
  2216. * sent us the seqno + interrupt, so use the position
  2217. * of tail of the request to update the last known position
  2218. * of the GPU head.
  2219. */
  2220. request->ringbuf->last_retired_head = request->postfix;
  2221. i915_gem_free_request(request);
  2222. }
  2223. /* Move any buffers on the active list that are no longer referenced
  2224. * by the ringbuffer to the flushing/inactive lists as appropriate,
  2225. * before we free the context associated with the requests.
  2226. */
  2227. while (!list_empty(&ring->active_list)) {
  2228. struct drm_i915_gem_object *obj;
  2229. obj = list_first_entry(&ring->active_list,
  2230. struct drm_i915_gem_object,
  2231. ring_list);
  2232. if (!i915_gem_request_completed(obj->last_read_req, true))
  2233. break;
  2234. i915_gem_object_move_to_inactive(obj);
  2235. }
  2236. if (unlikely(ring->trace_irq_req &&
  2237. i915_gem_request_completed(ring->trace_irq_req, true))) {
  2238. ring->irq_put(ring);
  2239. i915_gem_request_assign(&ring->trace_irq_req, NULL);
  2240. }
  2241. WARN_ON(i915_verify_lists(ring->dev));
  2242. }
  2243. bool
  2244. i915_gem_retire_requests(struct drm_device *dev)
  2245. {
  2246. struct drm_i915_private *dev_priv = dev->dev_private;
  2247. struct intel_engine_cs *ring;
  2248. bool idle = true;
  2249. int i;
  2250. for_each_ring(ring, dev_priv, i) {
  2251. i915_gem_retire_requests_ring(ring);
  2252. idle &= list_empty(&ring->request_list);
  2253. if (i915.enable_execlists) {
  2254. unsigned long flags;
  2255. spin_lock_irqsave(&ring->execlist_lock, flags);
  2256. idle &= list_empty(&ring->execlist_queue);
  2257. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  2258. intel_execlists_retire_requests(ring);
  2259. }
  2260. }
  2261. if (idle)
  2262. mod_delayed_work(dev_priv->wq,
  2263. &dev_priv->mm.idle_work,
  2264. msecs_to_jiffies(100));
  2265. return idle;
  2266. }
  2267. static void
  2268. i915_gem_retire_work_handler(struct work_struct *work)
  2269. {
  2270. struct drm_i915_private *dev_priv =
  2271. container_of(work, typeof(*dev_priv), mm.retire_work.work);
  2272. struct drm_device *dev = dev_priv->dev;
  2273. bool idle;
  2274. /* Come back later if the device is busy... */
  2275. idle = false;
  2276. if (mutex_trylock(&dev->struct_mutex)) {
  2277. idle = i915_gem_retire_requests(dev);
  2278. mutex_unlock(&dev->struct_mutex);
  2279. }
  2280. if (!idle)
  2281. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2282. round_jiffies_up_relative(HZ));
  2283. }
  2284. static void
  2285. i915_gem_idle_work_handler(struct work_struct *work)
  2286. {
  2287. struct drm_i915_private *dev_priv =
  2288. container_of(work, typeof(*dev_priv), mm.idle_work.work);
  2289. intel_mark_idle(dev_priv->dev);
  2290. }
  2291. /**
  2292. * Ensures that an object will eventually get non-busy by flushing any required
  2293. * write domains, emitting any outstanding lazy request and retiring and
  2294. * completed requests.
  2295. */
  2296. static int
  2297. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2298. {
  2299. struct intel_engine_cs *ring;
  2300. int ret;
  2301. if (obj->active) {
  2302. ring = i915_gem_request_get_ring(obj->last_read_req);
  2303. ret = i915_gem_check_olr(obj->last_read_req);
  2304. if (ret)
  2305. return ret;
  2306. i915_gem_retire_requests_ring(ring);
  2307. }
  2308. return 0;
  2309. }
  2310. /**
  2311. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2312. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2313. *
  2314. * Returns 0 if successful, else an error is returned with the remaining time in
  2315. * the timeout parameter.
  2316. * -ETIME: object is still busy after timeout
  2317. * -ERESTARTSYS: signal interrupted the wait
  2318. * -ENONENT: object doesn't exist
  2319. * Also possible, but rare:
  2320. * -EAGAIN: GPU wedged
  2321. * -ENOMEM: damn
  2322. * -ENODEV: Internal IRQ fail
  2323. * -E?: The add request failed
  2324. *
  2325. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2326. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2327. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2328. * without holding struct_mutex the object may become re-busied before this
  2329. * function completes. A similar but shorter * race condition exists in the busy
  2330. * ioctl
  2331. */
  2332. int
  2333. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2334. {
  2335. struct drm_i915_private *dev_priv = dev->dev_private;
  2336. struct drm_i915_gem_wait *args = data;
  2337. struct drm_i915_gem_object *obj;
  2338. struct drm_i915_gem_request *req;
  2339. unsigned reset_counter;
  2340. int ret = 0;
  2341. if (args->flags != 0)
  2342. return -EINVAL;
  2343. ret = i915_mutex_lock_interruptible(dev);
  2344. if (ret)
  2345. return ret;
  2346. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2347. if (&obj->base == NULL) {
  2348. mutex_unlock(&dev->struct_mutex);
  2349. return -ENOENT;
  2350. }
  2351. /* Need to make sure the object gets inactive eventually. */
  2352. ret = i915_gem_object_flush_active(obj);
  2353. if (ret)
  2354. goto out;
  2355. if (!obj->active || !obj->last_read_req)
  2356. goto out;
  2357. req = obj->last_read_req;
  2358. /* Do this after OLR check to make sure we make forward progress polling
  2359. * on this IOCTL with a timeout == 0 (like busy ioctl)
  2360. */
  2361. if (args->timeout_ns == 0) {
  2362. ret = -ETIME;
  2363. goto out;
  2364. }
  2365. drm_gem_object_unreference(&obj->base);
  2366. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2367. i915_gem_request_reference(req);
  2368. mutex_unlock(&dev->struct_mutex);
  2369. ret = __i915_wait_request(req, reset_counter, true,
  2370. args->timeout_ns > 0 ? &args->timeout_ns : NULL,
  2371. file->driver_priv);
  2372. mutex_lock(&dev->struct_mutex);
  2373. i915_gem_request_unreference(req);
  2374. mutex_unlock(&dev->struct_mutex);
  2375. return ret;
  2376. out:
  2377. drm_gem_object_unreference(&obj->base);
  2378. mutex_unlock(&dev->struct_mutex);
  2379. return ret;
  2380. }
  2381. /**
  2382. * i915_gem_object_sync - sync an object to a ring.
  2383. *
  2384. * @obj: object which may be in use on another ring.
  2385. * @to: ring we wish to use the object on. May be NULL.
  2386. *
  2387. * This code is meant to abstract object synchronization with the GPU.
  2388. * Calling with NULL implies synchronizing the object with the CPU
  2389. * rather than a particular GPU ring.
  2390. *
  2391. * Returns 0 if successful, else propagates up the lower layer error.
  2392. */
  2393. int
  2394. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2395. struct intel_engine_cs *to)
  2396. {
  2397. struct intel_engine_cs *from;
  2398. u32 seqno;
  2399. int ret, idx;
  2400. from = i915_gem_request_get_ring(obj->last_read_req);
  2401. if (from == NULL || to == from)
  2402. return 0;
  2403. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2404. return i915_gem_object_wait_rendering(obj, false);
  2405. idx = intel_ring_sync_index(from, to);
  2406. seqno = i915_gem_request_get_seqno(obj->last_read_req);
  2407. /* Optimization: Avoid semaphore sync when we are sure we already
  2408. * waited for an object with higher seqno */
  2409. if (seqno <= from->semaphore.sync_seqno[idx])
  2410. return 0;
  2411. ret = i915_gem_check_olr(obj->last_read_req);
  2412. if (ret)
  2413. return ret;
  2414. trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
  2415. ret = to->semaphore.sync_to(to, from, seqno);
  2416. if (!ret)
  2417. /* We use last_read_req because sync_to()
  2418. * might have just caused seqno wrap under
  2419. * the radar.
  2420. */
  2421. from->semaphore.sync_seqno[idx] =
  2422. i915_gem_request_get_seqno(obj->last_read_req);
  2423. return ret;
  2424. }
  2425. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2426. {
  2427. u32 old_write_domain, old_read_domains;
  2428. /* Force a pagefault for domain tracking on next user access */
  2429. i915_gem_release_mmap(obj);
  2430. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2431. return;
  2432. /* Wait for any direct GTT access to complete */
  2433. mb();
  2434. old_read_domains = obj->base.read_domains;
  2435. old_write_domain = obj->base.write_domain;
  2436. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2437. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2438. trace_i915_gem_object_change_domain(obj,
  2439. old_read_domains,
  2440. old_write_domain);
  2441. }
  2442. int i915_vma_unbind(struct i915_vma *vma)
  2443. {
  2444. struct drm_i915_gem_object *obj = vma->obj;
  2445. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2446. int ret;
  2447. if (list_empty(&vma->vma_link))
  2448. return 0;
  2449. if (!drm_mm_node_allocated(&vma->node)) {
  2450. i915_gem_vma_destroy(vma);
  2451. return 0;
  2452. }
  2453. if (vma->pin_count)
  2454. return -EBUSY;
  2455. BUG_ON(obj->pages == NULL);
  2456. ret = i915_gem_object_finish_gpu(obj);
  2457. if (ret)
  2458. return ret;
  2459. /* Continue on if we fail due to EIO, the GPU is hung so we
  2460. * should be safe and we need to cleanup or else we might
  2461. * cause memory corruption through use-after-free.
  2462. */
  2463. if (i915_is_ggtt(vma->vm) &&
  2464. vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
  2465. i915_gem_object_finish_gtt(obj);
  2466. /* release the fence reg _after_ flushing */
  2467. ret = i915_gem_object_put_fence(obj);
  2468. if (ret)
  2469. return ret;
  2470. }
  2471. trace_i915_vma_unbind(vma);
  2472. vma->unbind_vma(vma);
  2473. list_del_init(&vma->mm_list);
  2474. if (i915_is_ggtt(vma->vm)) {
  2475. if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
  2476. obj->map_and_fenceable = false;
  2477. } else if (vma->ggtt_view.pages) {
  2478. sg_free_table(vma->ggtt_view.pages);
  2479. kfree(vma->ggtt_view.pages);
  2480. vma->ggtt_view.pages = NULL;
  2481. }
  2482. }
  2483. drm_mm_remove_node(&vma->node);
  2484. i915_gem_vma_destroy(vma);
  2485. /* Since the unbound list is global, only move to that list if
  2486. * no more VMAs exist. */
  2487. if (list_empty(&obj->vma_list)) {
  2488. /* Throw away the active reference before
  2489. * moving to the unbound list. */
  2490. i915_gem_object_retire(obj);
  2491. i915_gem_gtt_finish_object(obj);
  2492. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2493. }
  2494. /* And finally now the object is completely decoupled from this vma,
  2495. * we can drop its hold on the backing storage and allow it to be
  2496. * reaped by the shrinker.
  2497. */
  2498. i915_gem_object_unpin_pages(obj);
  2499. return 0;
  2500. }
  2501. int i915_gpu_idle(struct drm_device *dev)
  2502. {
  2503. struct drm_i915_private *dev_priv = dev->dev_private;
  2504. struct intel_engine_cs *ring;
  2505. int ret, i;
  2506. /* Flush everything onto the inactive list. */
  2507. for_each_ring(ring, dev_priv, i) {
  2508. if (!i915.enable_execlists) {
  2509. ret = i915_switch_context(ring, ring->default_context);
  2510. if (ret)
  2511. return ret;
  2512. }
  2513. ret = intel_ring_idle(ring);
  2514. if (ret)
  2515. return ret;
  2516. }
  2517. return 0;
  2518. }
  2519. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2520. struct drm_i915_gem_object *obj)
  2521. {
  2522. struct drm_i915_private *dev_priv = dev->dev_private;
  2523. int fence_reg;
  2524. int fence_pitch_shift;
  2525. if (INTEL_INFO(dev)->gen >= 6) {
  2526. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2527. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2528. } else {
  2529. fence_reg = FENCE_REG_965_0;
  2530. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2531. }
  2532. fence_reg += reg * 8;
  2533. /* To w/a incoherency with non-atomic 64-bit register updates,
  2534. * we split the 64-bit update into two 32-bit writes. In order
  2535. * for a partial fence not to be evaluated between writes, we
  2536. * precede the update with write to turn off the fence register,
  2537. * and only enable the fence as the last step.
  2538. *
  2539. * For extra levels of paranoia, we make sure each step lands
  2540. * before applying the next step.
  2541. */
  2542. I915_WRITE(fence_reg, 0);
  2543. POSTING_READ(fence_reg);
  2544. if (obj) {
  2545. u32 size = i915_gem_obj_ggtt_size(obj);
  2546. uint64_t val;
  2547. /* Adjust fence size to match tiled area */
  2548. if (obj->tiling_mode != I915_TILING_NONE) {
  2549. uint32_t row_size = obj->stride *
  2550. (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
  2551. size = (size / row_size) * row_size;
  2552. }
  2553. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2554. 0xfffff000) << 32;
  2555. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2556. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2557. if (obj->tiling_mode == I915_TILING_Y)
  2558. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2559. val |= I965_FENCE_REG_VALID;
  2560. I915_WRITE(fence_reg + 4, val >> 32);
  2561. POSTING_READ(fence_reg + 4);
  2562. I915_WRITE(fence_reg + 0, val);
  2563. POSTING_READ(fence_reg);
  2564. } else {
  2565. I915_WRITE(fence_reg + 4, 0);
  2566. POSTING_READ(fence_reg + 4);
  2567. }
  2568. }
  2569. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2570. struct drm_i915_gem_object *obj)
  2571. {
  2572. struct drm_i915_private *dev_priv = dev->dev_private;
  2573. u32 val;
  2574. if (obj) {
  2575. u32 size = i915_gem_obj_ggtt_size(obj);
  2576. int pitch_val;
  2577. int tile_width;
  2578. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2579. (size & -size) != size ||
  2580. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2581. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2582. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2583. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2584. tile_width = 128;
  2585. else
  2586. tile_width = 512;
  2587. /* Note: pitch better be a power of two tile widths */
  2588. pitch_val = obj->stride / tile_width;
  2589. pitch_val = ffs(pitch_val) - 1;
  2590. val = i915_gem_obj_ggtt_offset(obj);
  2591. if (obj->tiling_mode == I915_TILING_Y)
  2592. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2593. val |= I915_FENCE_SIZE_BITS(size);
  2594. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2595. val |= I830_FENCE_REG_VALID;
  2596. } else
  2597. val = 0;
  2598. if (reg < 8)
  2599. reg = FENCE_REG_830_0 + reg * 4;
  2600. else
  2601. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2602. I915_WRITE(reg, val);
  2603. POSTING_READ(reg);
  2604. }
  2605. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2606. struct drm_i915_gem_object *obj)
  2607. {
  2608. struct drm_i915_private *dev_priv = dev->dev_private;
  2609. uint32_t val;
  2610. if (obj) {
  2611. u32 size = i915_gem_obj_ggtt_size(obj);
  2612. uint32_t pitch_val;
  2613. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2614. (size & -size) != size ||
  2615. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2616. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2617. i915_gem_obj_ggtt_offset(obj), size);
  2618. pitch_val = obj->stride / 128;
  2619. pitch_val = ffs(pitch_val) - 1;
  2620. val = i915_gem_obj_ggtt_offset(obj);
  2621. if (obj->tiling_mode == I915_TILING_Y)
  2622. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2623. val |= I830_FENCE_SIZE_BITS(size);
  2624. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2625. val |= I830_FENCE_REG_VALID;
  2626. } else
  2627. val = 0;
  2628. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2629. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2630. }
  2631. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2632. {
  2633. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2634. }
  2635. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2636. struct drm_i915_gem_object *obj)
  2637. {
  2638. struct drm_i915_private *dev_priv = dev->dev_private;
  2639. /* Ensure that all CPU reads are completed before installing a fence
  2640. * and all writes before removing the fence.
  2641. */
  2642. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2643. mb();
  2644. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2645. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2646. obj->stride, obj->tiling_mode);
  2647. if (IS_GEN2(dev))
  2648. i830_write_fence_reg(dev, reg, obj);
  2649. else if (IS_GEN3(dev))
  2650. i915_write_fence_reg(dev, reg, obj);
  2651. else if (INTEL_INFO(dev)->gen >= 4)
  2652. i965_write_fence_reg(dev, reg, obj);
  2653. /* And similarly be paranoid that no direct access to this region
  2654. * is reordered to before the fence is installed.
  2655. */
  2656. if (i915_gem_object_needs_mb(obj))
  2657. mb();
  2658. }
  2659. static inline int fence_number(struct drm_i915_private *dev_priv,
  2660. struct drm_i915_fence_reg *fence)
  2661. {
  2662. return fence - dev_priv->fence_regs;
  2663. }
  2664. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2665. struct drm_i915_fence_reg *fence,
  2666. bool enable)
  2667. {
  2668. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2669. int reg = fence_number(dev_priv, fence);
  2670. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2671. if (enable) {
  2672. obj->fence_reg = reg;
  2673. fence->obj = obj;
  2674. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2675. } else {
  2676. obj->fence_reg = I915_FENCE_REG_NONE;
  2677. fence->obj = NULL;
  2678. list_del_init(&fence->lru_list);
  2679. }
  2680. obj->fence_dirty = false;
  2681. }
  2682. static int
  2683. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2684. {
  2685. if (obj->last_fenced_req) {
  2686. int ret = i915_wait_request(obj->last_fenced_req);
  2687. if (ret)
  2688. return ret;
  2689. i915_gem_request_assign(&obj->last_fenced_req, NULL);
  2690. }
  2691. return 0;
  2692. }
  2693. int
  2694. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2695. {
  2696. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2697. struct drm_i915_fence_reg *fence;
  2698. int ret;
  2699. ret = i915_gem_object_wait_fence(obj);
  2700. if (ret)
  2701. return ret;
  2702. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2703. return 0;
  2704. fence = &dev_priv->fence_regs[obj->fence_reg];
  2705. if (WARN_ON(fence->pin_count))
  2706. return -EBUSY;
  2707. i915_gem_object_fence_lost(obj);
  2708. i915_gem_object_update_fence(obj, fence, false);
  2709. return 0;
  2710. }
  2711. static struct drm_i915_fence_reg *
  2712. i915_find_fence_reg(struct drm_device *dev)
  2713. {
  2714. struct drm_i915_private *dev_priv = dev->dev_private;
  2715. struct drm_i915_fence_reg *reg, *avail;
  2716. int i;
  2717. /* First try to find a free reg */
  2718. avail = NULL;
  2719. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2720. reg = &dev_priv->fence_regs[i];
  2721. if (!reg->obj)
  2722. return reg;
  2723. if (!reg->pin_count)
  2724. avail = reg;
  2725. }
  2726. if (avail == NULL)
  2727. goto deadlock;
  2728. /* None available, try to steal one or wait for a user to finish */
  2729. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2730. if (reg->pin_count)
  2731. continue;
  2732. return reg;
  2733. }
  2734. deadlock:
  2735. /* Wait for completion of pending flips which consume fences */
  2736. if (intel_has_pending_fb_unpin(dev))
  2737. return ERR_PTR(-EAGAIN);
  2738. return ERR_PTR(-EDEADLK);
  2739. }
  2740. /**
  2741. * i915_gem_object_get_fence - set up fencing for an object
  2742. * @obj: object to map through a fence reg
  2743. *
  2744. * When mapping objects through the GTT, userspace wants to be able to write
  2745. * to them without having to worry about swizzling if the object is tiled.
  2746. * This function walks the fence regs looking for a free one for @obj,
  2747. * stealing one if it can't find any.
  2748. *
  2749. * It then sets up the reg based on the object's properties: address, pitch
  2750. * and tiling format.
  2751. *
  2752. * For an untiled surface, this removes any existing fence.
  2753. */
  2754. int
  2755. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2756. {
  2757. struct drm_device *dev = obj->base.dev;
  2758. struct drm_i915_private *dev_priv = dev->dev_private;
  2759. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2760. struct drm_i915_fence_reg *reg;
  2761. int ret;
  2762. /* Have we updated the tiling parameters upon the object and so
  2763. * will need to serialise the write to the associated fence register?
  2764. */
  2765. if (obj->fence_dirty) {
  2766. ret = i915_gem_object_wait_fence(obj);
  2767. if (ret)
  2768. return ret;
  2769. }
  2770. /* Just update our place in the LRU if our fence is getting reused. */
  2771. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2772. reg = &dev_priv->fence_regs[obj->fence_reg];
  2773. if (!obj->fence_dirty) {
  2774. list_move_tail(&reg->lru_list,
  2775. &dev_priv->mm.fence_list);
  2776. return 0;
  2777. }
  2778. } else if (enable) {
  2779. if (WARN_ON(!obj->map_and_fenceable))
  2780. return -EINVAL;
  2781. reg = i915_find_fence_reg(dev);
  2782. if (IS_ERR(reg))
  2783. return PTR_ERR(reg);
  2784. if (reg->obj) {
  2785. struct drm_i915_gem_object *old = reg->obj;
  2786. ret = i915_gem_object_wait_fence(old);
  2787. if (ret)
  2788. return ret;
  2789. i915_gem_object_fence_lost(old);
  2790. }
  2791. } else
  2792. return 0;
  2793. i915_gem_object_update_fence(obj, reg, enable);
  2794. return 0;
  2795. }
  2796. static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
  2797. unsigned long cache_level)
  2798. {
  2799. struct drm_mm_node *gtt_space = &vma->node;
  2800. struct drm_mm_node *other;
  2801. /*
  2802. * On some machines we have to be careful when putting differing types
  2803. * of snoopable memory together to avoid the prefetcher crossing memory
  2804. * domains and dying. During vm initialisation, we decide whether or not
  2805. * these constraints apply and set the drm_mm.color_adjust
  2806. * appropriately.
  2807. */
  2808. if (vma->vm->mm.color_adjust == NULL)
  2809. return true;
  2810. if (!drm_mm_node_allocated(gtt_space))
  2811. return true;
  2812. if (list_empty(&gtt_space->node_list))
  2813. return true;
  2814. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2815. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2816. return false;
  2817. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2818. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2819. return false;
  2820. return true;
  2821. }
  2822. /**
  2823. * Finds free space in the GTT aperture and binds the object there.
  2824. */
  2825. static struct i915_vma *
  2826. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  2827. struct i915_address_space *vm,
  2828. const struct i915_ggtt_view *ggtt_view,
  2829. unsigned alignment,
  2830. uint64_t flags)
  2831. {
  2832. struct drm_device *dev = obj->base.dev;
  2833. struct drm_i915_private *dev_priv = dev->dev_private;
  2834. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2835. unsigned long start =
  2836. flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
  2837. unsigned long end =
  2838. flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
  2839. struct i915_vma *vma;
  2840. int ret;
  2841. if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
  2842. return ERR_PTR(-EINVAL);
  2843. fence_size = i915_gem_get_gtt_size(dev,
  2844. obj->base.size,
  2845. obj->tiling_mode);
  2846. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2847. obj->base.size,
  2848. obj->tiling_mode, true);
  2849. unfenced_alignment =
  2850. i915_gem_get_gtt_alignment(dev,
  2851. obj->base.size,
  2852. obj->tiling_mode, false);
  2853. if (alignment == 0)
  2854. alignment = flags & PIN_MAPPABLE ? fence_alignment :
  2855. unfenced_alignment;
  2856. if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
  2857. DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
  2858. return ERR_PTR(-EINVAL);
  2859. }
  2860. size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
  2861. /* If the object is bigger than the entire aperture, reject it early
  2862. * before evicting everything in a vain attempt to find space.
  2863. */
  2864. if (obj->base.size > end) {
  2865. DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
  2866. obj->base.size,
  2867. flags & PIN_MAPPABLE ? "mappable" : "total",
  2868. end);
  2869. return ERR_PTR(-E2BIG);
  2870. }
  2871. ret = i915_gem_object_get_pages(obj);
  2872. if (ret)
  2873. return ERR_PTR(ret);
  2874. i915_gem_object_pin_pages(obj);
  2875. vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
  2876. i915_gem_obj_lookup_or_create_vma(obj, vm);
  2877. if (IS_ERR(vma))
  2878. goto err_unpin;
  2879. search_free:
  2880. ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
  2881. size, alignment,
  2882. obj->cache_level,
  2883. start, end,
  2884. DRM_MM_SEARCH_DEFAULT,
  2885. DRM_MM_CREATE_DEFAULT);
  2886. if (ret) {
  2887. ret = i915_gem_evict_something(dev, vm, size, alignment,
  2888. obj->cache_level,
  2889. start, end,
  2890. flags);
  2891. if (ret == 0)
  2892. goto search_free;
  2893. goto err_free_vma;
  2894. }
  2895. if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
  2896. ret = -EINVAL;
  2897. goto err_remove_node;
  2898. }
  2899. ret = i915_gem_gtt_prepare_object(obj);
  2900. if (ret)
  2901. goto err_remove_node;
  2902. /* allocate before insert / bind */
  2903. if (vma->vm->allocate_va_range) {
  2904. trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
  2905. VM_TO_TRACE_NAME(vma->vm));
  2906. ret = vma->vm->allocate_va_range(vma->vm,
  2907. vma->node.start,
  2908. vma->node.size);
  2909. if (ret)
  2910. goto err_remove_node;
  2911. }
  2912. trace_i915_vma_bind(vma, flags);
  2913. ret = i915_vma_bind(vma, obj->cache_level,
  2914. flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
  2915. if (ret)
  2916. goto err_finish_gtt;
  2917. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  2918. list_add_tail(&vma->mm_list, &vm->inactive_list);
  2919. return vma;
  2920. err_finish_gtt:
  2921. i915_gem_gtt_finish_object(obj);
  2922. err_remove_node:
  2923. drm_mm_remove_node(&vma->node);
  2924. err_free_vma:
  2925. i915_gem_vma_destroy(vma);
  2926. vma = ERR_PTR(ret);
  2927. err_unpin:
  2928. i915_gem_object_unpin_pages(obj);
  2929. return vma;
  2930. }
  2931. bool
  2932. i915_gem_clflush_object(struct drm_i915_gem_object *obj,
  2933. bool force)
  2934. {
  2935. /* If we don't have a page list set up, then we're not pinned
  2936. * to GPU, and we can ignore the cache flush because it'll happen
  2937. * again at bind time.
  2938. */
  2939. if (obj->pages == NULL)
  2940. return false;
  2941. /*
  2942. * Stolen memory is always coherent with the GPU as it is explicitly
  2943. * marked as wc by the system, or the system is cache-coherent.
  2944. */
  2945. if (obj->stolen || obj->phys_handle)
  2946. return false;
  2947. /* If the GPU is snooping the contents of the CPU cache,
  2948. * we do not need to manually clear the CPU cache lines. However,
  2949. * the caches are only snooped when the render cache is
  2950. * flushed/invalidated. As we always have to emit invalidations
  2951. * and flushes when moving into and out of the RENDER domain, correct
  2952. * snooping behaviour occurs naturally as the result of our domain
  2953. * tracking.
  2954. */
  2955. if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
  2956. obj->cache_dirty = true;
  2957. return false;
  2958. }
  2959. trace_i915_gem_object_clflush(obj);
  2960. drm_clflush_sg(obj->pages);
  2961. obj->cache_dirty = false;
  2962. return true;
  2963. }
  2964. /** Flushes the GTT write domain for the object if it's dirty. */
  2965. static void
  2966. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2967. {
  2968. uint32_t old_write_domain;
  2969. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2970. return;
  2971. /* No actual flushing is required for the GTT write domain. Writes
  2972. * to it immediately go to main memory as far as we know, so there's
  2973. * no chipset flush. It also doesn't land in render cache.
  2974. *
  2975. * However, we do have to enforce the order so that all writes through
  2976. * the GTT land before any writes to the device, such as updates to
  2977. * the GATT itself.
  2978. */
  2979. wmb();
  2980. old_write_domain = obj->base.write_domain;
  2981. obj->base.write_domain = 0;
  2982. intel_fb_obj_flush(obj, false);
  2983. trace_i915_gem_object_change_domain(obj,
  2984. obj->base.read_domains,
  2985. old_write_domain);
  2986. }
  2987. /** Flushes the CPU write domain for the object if it's dirty. */
  2988. static void
  2989. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2990. {
  2991. uint32_t old_write_domain;
  2992. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2993. return;
  2994. if (i915_gem_clflush_object(obj, obj->pin_display))
  2995. i915_gem_chipset_flush(obj->base.dev);
  2996. old_write_domain = obj->base.write_domain;
  2997. obj->base.write_domain = 0;
  2998. intel_fb_obj_flush(obj, false);
  2999. trace_i915_gem_object_change_domain(obj,
  3000. obj->base.read_domains,
  3001. old_write_domain);
  3002. }
  3003. /**
  3004. * Moves a single object to the GTT read, and possibly write domain.
  3005. *
  3006. * This function returns when the move is complete, including waiting on
  3007. * flushes to occur.
  3008. */
  3009. int
  3010. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  3011. {
  3012. uint32_t old_write_domain, old_read_domains;
  3013. struct i915_vma *vma;
  3014. int ret;
  3015. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  3016. return 0;
  3017. ret = i915_gem_object_wait_rendering(obj, !write);
  3018. if (ret)
  3019. return ret;
  3020. i915_gem_object_retire(obj);
  3021. /* Flush and acquire obj->pages so that we are coherent through
  3022. * direct access in memory with previous cached writes through
  3023. * shmemfs and that our cache domain tracking remains valid.
  3024. * For example, if the obj->filp was moved to swap without us
  3025. * being notified and releasing the pages, we would mistakenly
  3026. * continue to assume that the obj remained out of the CPU cached
  3027. * domain.
  3028. */
  3029. ret = i915_gem_object_get_pages(obj);
  3030. if (ret)
  3031. return ret;
  3032. i915_gem_object_flush_cpu_write_domain(obj);
  3033. /* Serialise direct access to this object with the barriers for
  3034. * coherent writes from the GPU, by effectively invalidating the
  3035. * GTT domain upon first access.
  3036. */
  3037. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  3038. mb();
  3039. old_write_domain = obj->base.write_domain;
  3040. old_read_domains = obj->base.read_domains;
  3041. /* It should now be out of any other write domains, and we can update
  3042. * the domain values for our changes.
  3043. */
  3044. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  3045. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3046. if (write) {
  3047. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  3048. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  3049. obj->dirty = 1;
  3050. }
  3051. if (write)
  3052. intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
  3053. trace_i915_gem_object_change_domain(obj,
  3054. old_read_domains,
  3055. old_write_domain);
  3056. /* And bump the LRU for this access */
  3057. vma = i915_gem_obj_to_ggtt(obj);
  3058. if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
  3059. list_move_tail(&vma->mm_list,
  3060. &to_i915(obj->base.dev)->gtt.base.inactive_list);
  3061. return 0;
  3062. }
  3063. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  3064. enum i915_cache_level cache_level)
  3065. {
  3066. struct drm_device *dev = obj->base.dev;
  3067. struct i915_vma *vma, *next;
  3068. int ret;
  3069. if (obj->cache_level == cache_level)
  3070. return 0;
  3071. if (i915_gem_obj_is_pinned(obj)) {
  3072. DRM_DEBUG("can not change the cache level of pinned objects\n");
  3073. return -EBUSY;
  3074. }
  3075. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3076. if (!i915_gem_valid_gtt_space(vma, cache_level)) {
  3077. ret = i915_vma_unbind(vma);
  3078. if (ret)
  3079. return ret;
  3080. }
  3081. }
  3082. if (i915_gem_obj_bound_any(obj)) {
  3083. ret = i915_gem_object_finish_gpu(obj);
  3084. if (ret)
  3085. return ret;
  3086. i915_gem_object_finish_gtt(obj);
  3087. /* Before SandyBridge, you could not use tiling or fence
  3088. * registers with snooped memory, so relinquish any fences
  3089. * currently pointing to our region in the aperture.
  3090. */
  3091. if (INTEL_INFO(dev)->gen < 6) {
  3092. ret = i915_gem_object_put_fence(obj);
  3093. if (ret)
  3094. return ret;
  3095. }
  3096. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3097. if (drm_mm_node_allocated(&vma->node)) {
  3098. ret = i915_vma_bind(vma, cache_level,
  3099. vma->bound & GLOBAL_BIND);
  3100. if (ret)
  3101. return ret;
  3102. }
  3103. }
  3104. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3105. vma->node.color = cache_level;
  3106. obj->cache_level = cache_level;
  3107. if (obj->cache_dirty &&
  3108. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  3109. cpu_write_needs_clflush(obj)) {
  3110. if (i915_gem_clflush_object(obj, true))
  3111. i915_gem_chipset_flush(obj->base.dev);
  3112. }
  3113. return 0;
  3114. }
  3115. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  3116. struct drm_file *file)
  3117. {
  3118. struct drm_i915_gem_caching *args = data;
  3119. struct drm_i915_gem_object *obj;
  3120. int ret;
  3121. ret = i915_mutex_lock_interruptible(dev);
  3122. if (ret)
  3123. return ret;
  3124. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3125. if (&obj->base == NULL) {
  3126. ret = -ENOENT;
  3127. goto unlock;
  3128. }
  3129. switch (obj->cache_level) {
  3130. case I915_CACHE_LLC:
  3131. case I915_CACHE_L3_LLC:
  3132. args->caching = I915_CACHING_CACHED;
  3133. break;
  3134. case I915_CACHE_WT:
  3135. args->caching = I915_CACHING_DISPLAY;
  3136. break;
  3137. default:
  3138. args->caching = I915_CACHING_NONE;
  3139. break;
  3140. }
  3141. drm_gem_object_unreference(&obj->base);
  3142. unlock:
  3143. mutex_unlock(&dev->struct_mutex);
  3144. return ret;
  3145. }
  3146. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  3147. struct drm_file *file)
  3148. {
  3149. struct drm_i915_gem_caching *args = data;
  3150. struct drm_i915_gem_object *obj;
  3151. enum i915_cache_level level;
  3152. int ret;
  3153. switch (args->caching) {
  3154. case I915_CACHING_NONE:
  3155. level = I915_CACHE_NONE;
  3156. break;
  3157. case I915_CACHING_CACHED:
  3158. level = I915_CACHE_LLC;
  3159. break;
  3160. case I915_CACHING_DISPLAY:
  3161. level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
  3162. break;
  3163. default:
  3164. return -EINVAL;
  3165. }
  3166. ret = i915_mutex_lock_interruptible(dev);
  3167. if (ret)
  3168. return ret;
  3169. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3170. if (&obj->base == NULL) {
  3171. ret = -ENOENT;
  3172. goto unlock;
  3173. }
  3174. ret = i915_gem_object_set_cache_level(obj, level);
  3175. drm_gem_object_unreference(&obj->base);
  3176. unlock:
  3177. mutex_unlock(&dev->struct_mutex);
  3178. return ret;
  3179. }
  3180. static bool is_pin_display(struct drm_i915_gem_object *obj)
  3181. {
  3182. struct i915_vma *vma;
  3183. vma = i915_gem_obj_to_ggtt(obj);
  3184. if (!vma)
  3185. return false;
  3186. /* There are 2 sources that pin objects:
  3187. * 1. The display engine (scanouts, sprites, cursors);
  3188. * 2. Reservations for execbuffer;
  3189. *
  3190. * We can ignore reservations as we hold the struct_mutex and
  3191. * are only called outside of the reservation path.
  3192. */
  3193. return vma->pin_count;
  3194. }
  3195. /*
  3196. * Prepare buffer for display plane (scanout, cursors, etc).
  3197. * Can be called from an uninterruptible phase (modesetting) and allows
  3198. * any flushes to be pipelined (for pageflips).
  3199. */
  3200. int
  3201. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  3202. u32 alignment,
  3203. struct intel_engine_cs *pipelined,
  3204. const struct i915_ggtt_view *view)
  3205. {
  3206. u32 old_read_domains, old_write_domain;
  3207. bool was_pin_display;
  3208. int ret;
  3209. if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
  3210. ret = i915_gem_object_sync(obj, pipelined);
  3211. if (ret)
  3212. return ret;
  3213. }
  3214. /* Mark the pin_display early so that we account for the
  3215. * display coherency whilst setting up the cache domains.
  3216. */
  3217. was_pin_display = obj->pin_display;
  3218. obj->pin_display = true;
  3219. /* The display engine is not coherent with the LLC cache on gen6. As
  3220. * a result, we make sure that the pinning that is about to occur is
  3221. * done with uncached PTEs. This is lowest common denominator for all
  3222. * chipsets.
  3223. *
  3224. * However for gen6+, we could do better by using the GFDT bit instead
  3225. * of uncaching, which would allow us to flush all the LLC-cached data
  3226. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  3227. */
  3228. ret = i915_gem_object_set_cache_level(obj,
  3229. HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
  3230. if (ret)
  3231. goto err_unpin_display;
  3232. /* As the user may map the buffer once pinned in the display plane
  3233. * (e.g. libkms for the bootup splash), we have to ensure that we
  3234. * always use map_and_fenceable for all scanout buffers.
  3235. */
  3236. ret = i915_gem_object_ggtt_pin(obj, view, alignment,
  3237. view->type == I915_GGTT_VIEW_NORMAL ?
  3238. PIN_MAPPABLE : 0);
  3239. if (ret)
  3240. goto err_unpin_display;
  3241. i915_gem_object_flush_cpu_write_domain(obj);
  3242. old_write_domain = obj->base.write_domain;
  3243. old_read_domains = obj->base.read_domains;
  3244. /* It should now be out of any other write domains, and we can update
  3245. * the domain values for our changes.
  3246. */
  3247. obj->base.write_domain = 0;
  3248. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3249. trace_i915_gem_object_change_domain(obj,
  3250. old_read_domains,
  3251. old_write_domain);
  3252. return 0;
  3253. err_unpin_display:
  3254. WARN_ON(was_pin_display != is_pin_display(obj));
  3255. obj->pin_display = was_pin_display;
  3256. return ret;
  3257. }
  3258. void
  3259. i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
  3260. const struct i915_ggtt_view *view)
  3261. {
  3262. i915_gem_object_ggtt_unpin_view(obj, view);
  3263. obj->pin_display = is_pin_display(obj);
  3264. }
  3265. int
  3266. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  3267. {
  3268. int ret;
  3269. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  3270. return 0;
  3271. ret = i915_gem_object_wait_rendering(obj, false);
  3272. if (ret)
  3273. return ret;
  3274. /* Ensure that we invalidate the GPU's caches and TLBs. */
  3275. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  3276. return 0;
  3277. }
  3278. /**
  3279. * Moves a single object to the CPU read, and possibly write domain.
  3280. *
  3281. * This function returns when the move is complete, including waiting on
  3282. * flushes to occur.
  3283. */
  3284. int
  3285. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  3286. {
  3287. uint32_t old_write_domain, old_read_domains;
  3288. int ret;
  3289. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  3290. return 0;
  3291. ret = i915_gem_object_wait_rendering(obj, !write);
  3292. if (ret)
  3293. return ret;
  3294. i915_gem_object_retire(obj);
  3295. i915_gem_object_flush_gtt_write_domain(obj);
  3296. old_write_domain = obj->base.write_domain;
  3297. old_read_domains = obj->base.read_domains;
  3298. /* Flush the CPU cache if it's still invalid. */
  3299. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  3300. i915_gem_clflush_object(obj, false);
  3301. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  3302. }
  3303. /* It should now be out of any other write domains, and we can update
  3304. * the domain values for our changes.
  3305. */
  3306. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  3307. /* If we're writing through the CPU, then the GPU read domains will
  3308. * need to be invalidated at next use.
  3309. */
  3310. if (write) {
  3311. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3312. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3313. }
  3314. if (write)
  3315. intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
  3316. trace_i915_gem_object_change_domain(obj,
  3317. old_read_domains,
  3318. old_write_domain);
  3319. return 0;
  3320. }
  3321. /* Throttle our rendering by waiting until the ring has completed our requests
  3322. * emitted over 20 msec ago.
  3323. *
  3324. * Note that if we were to use the current jiffies each time around the loop,
  3325. * we wouldn't escape the function with any frames outstanding if the time to
  3326. * render a frame was over 20ms.
  3327. *
  3328. * This should get us reasonable parallelism between CPU and GPU but also
  3329. * relatively low latency when blocking on a particular request to finish.
  3330. */
  3331. static int
  3332. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3333. {
  3334. struct drm_i915_private *dev_priv = dev->dev_private;
  3335. struct drm_i915_file_private *file_priv = file->driver_priv;
  3336. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3337. struct drm_i915_gem_request *request, *target = NULL;
  3338. unsigned reset_counter;
  3339. int ret;
  3340. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  3341. if (ret)
  3342. return ret;
  3343. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  3344. if (ret)
  3345. return ret;
  3346. spin_lock(&file_priv->mm.lock);
  3347. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3348. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3349. break;
  3350. target = request;
  3351. }
  3352. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3353. if (target)
  3354. i915_gem_request_reference(target);
  3355. spin_unlock(&file_priv->mm.lock);
  3356. if (target == NULL)
  3357. return 0;
  3358. ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
  3359. if (ret == 0)
  3360. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3361. mutex_lock(&dev->struct_mutex);
  3362. i915_gem_request_unreference(target);
  3363. mutex_unlock(&dev->struct_mutex);
  3364. return ret;
  3365. }
  3366. static bool
  3367. i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
  3368. {
  3369. struct drm_i915_gem_object *obj = vma->obj;
  3370. if (alignment &&
  3371. vma->node.start & (alignment - 1))
  3372. return true;
  3373. if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
  3374. return true;
  3375. if (flags & PIN_OFFSET_BIAS &&
  3376. vma->node.start < (flags & PIN_OFFSET_MASK))
  3377. return true;
  3378. return false;
  3379. }
  3380. static int
  3381. i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
  3382. struct i915_address_space *vm,
  3383. const struct i915_ggtt_view *ggtt_view,
  3384. uint32_t alignment,
  3385. uint64_t flags)
  3386. {
  3387. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3388. struct i915_vma *vma;
  3389. unsigned bound;
  3390. int ret;
  3391. if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
  3392. return -ENODEV;
  3393. if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
  3394. return -EINVAL;
  3395. if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
  3396. return -EINVAL;
  3397. if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
  3398. return -EINVAL;
  3399. vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
  3400. i915_gem_obj_to_vma(obj, vm);
  3401. if (IS_ERR(vma))
  3402. return PTR_ERR(vma);
  3403. if (vma) {
  3404. if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3405. return -EBUSY;
  3406. if (i915_vma_misplaced(vma, alignment, flags)) {
  3407. unsigned long offset;
  3408. offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
  3409. i915_gem_obj_offset(obj, vm);
  3410. WARN(vma->pin_count,
  3411. "bo is already pinned in %s with incorrect alignment:"
  3412. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3413. " obj->map_and_fenceable=%d\n",
  3414. ggtt_view ? "ggtt" : "ppgtt",
  3415. offset,
  3416. alignment,
  3417. !!(flags & PIN_MAPPABLE),
  3418. obj->map_and_fenceable);
  3419. ret = i915_vma_unbind(vma);
  3420. if (ret)
  3421. return ret;
  3422. vma = NULL;
  3423. }
  3424. }
  3425. bound = vma ? vma->bound : 0;
  3426. if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
  3427. /* In true PPGTT, bind has possibly changed PDEs, which
  3428. * means we must do a context switch before the GPU can
  3429. * accurately read some of the VMAs.
  3430. */
  3431. vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
  3432. flags);
  3433. if (IS_ERR(vma))
  3434. return PTR_ERR(vma);
  3435. }
  3436. if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
  3437. ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
  3438. if (ret)
  3439. return ret;
  3440. }
  3441. if ((bound ^ vma->bound) & GLOBAL_BIND) {
  3442. bool mappable, fenceable;
  3443. u32 fence_size, fence_alignment;
  3444. fence_size = i915_gem_get_gtt_size(obj->base.dev,
  3445. obj->base.size,
  3446. obj->tiling_mode);
  3447. fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
  3448. obj->base.size,
  3449. obj->tiling_mode,
  3450. true);
  3451. fenceable = (vma->node.size == fence_size &&
  3452. (vma->node.start & (fence_alignment - 1)) == 0);
  3453. mappable = (vma->node.start + fence_size <=
  3454. dev_priv->gtt.mappable_end);
  3455. obj->map_and_fenceable = mappable && fenceable;
  3456. }
  3457. WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
  3458. vma->pin_count++;
  3459. if (flags & PIN_MAPPABLE)
  3460. obj->pin_mappable |= true;
  3461. return 0;
  3462. }
  3463. int
  3464. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3465. struct i915_address_space *vm,
  3466. uint32_t alignment,
  3467. uint64_t flags)
  3468. {
  3469. return i915_gem_object_do_pin(obj, vm,
  3470. i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
  3471. alignment, flags);
  3472. }
  3473. int
  3474. i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
  3475. const struct i915_ggtt_view *view,
  3476. uint32_t alignment,
  3477. uint64_t flags)
  3478. {
  3479. if (WARN_ONCE(!view, "no view specified"))
  3480. return -EINVAL;
  3481. return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
  3482. alignment, flags | PIN_GLOBAL);
  3483. }
  3484. void
  3485. i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
  3486. const struct i915_ggtt_view *view)
  3487. {
  3488. struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
  3489. BUG_ON(!vma);
  3490. WARN_ON(vma->pin_count == 0);
  3491. WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
  3492. if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
  3493. obj->pin_mappable = false;
  3494. }
  3495. bool
  3496. i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
  3497. {
  3498. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  3499. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3500. struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
  3501. WARN_ON(!ggtt_vma ||
  3502. dev_priv->fence_regs[obj->fence_reg].pin_count >
  3503. ggtt_vma->pin_count);
  3504. dev_priv->fence_regs[obj->fence_reg].pin_count++;
  3505. return true;
  3506. } else
  3507. return false;
  3508. }
  3509. void
  3510. i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
  3511. {
  3512. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  3513. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3514. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
  3515. dev_priv->fence_regs[obj->fence_reg].pin_count--;
  3516. }
  3517. }
  3518. int
  3519. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3520. struct drm_file *file)
  3521. {
  3522. struct drm_i915_gem_busy *args = data;
  3523. struct drm_i915_gem_object *obj;
  3524. int ret;
  3525. ret = i915_mutex_lock_interruptible(dev);
  3526. if (ret)
  3527. return ret;
  3528. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3529. if (&obj->base == NULL) {
  3530. ret = -ENOENT;
  3531. goto unlock;
  3532. }
  3533. /* Count all active objects as busy, even if they are currently not used
  3534. * by the gpu. Users of this interface expect objects to eventually
  3535. * become non-busy without any further actions, therefore emit any
  3536. * necessary flushes here.
  3537. */
  3538. ret = i915_gem_object_flush_active(obj);
  3539. args->busy = obj->active;
  3540. if (obj->last_read_req) {
  3541. struct intel_engine_cs *ring;
  3542. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3543. ring = i915_gem_request_get_ring(obj->last_read_req);
  3544. args->busy |= intel_ring_flag(ring) << 16;
  3545. }
  3546. drm_gem_object_unreference(&obj->base);
  3547. unlock:
  3548. mutex_unlock(&dev->struct_mutex);
  3549. return ret;
  3550. }
  3551. int
  3552. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3553. struct drm_file *file_priv)
  3554. {
  3555. return i915_gem_ring_throttle(dev, file_priv);
  3556. }
  3557. int
  3558. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3559. struct drm_file *file_priv)
  3560. {
  3561. struct drm_i915_private *dev_priv = dev->dev_private;
  3562. struct drm_i915_gem_madvise *args = data;
  3563. struct drm_i915_gem_object *obj;
  3564. int ret;
  3565. switch (args->madv) {
  3566. case I915_MADV_DONTNEED:
  3567. case I915_MADV_WILLNEED:
  3568. break;
  3569. default:
  3570. return -EINVAL;
  3571. }
  3572. ret = i915_mutex_lock_interruptible(dev);
  3573. if (ret)
  3574. return ret;
  3575. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3576. if (&obj->base == NULL) {
  3577. ret = -ENOENT;
  3578. goto unlock;
  3579. }
  3580. if (i915_gem_obj_is_pinned(obj)) {
  3581. ret = -EINVAL;
  3582. goto out;
  3583. }
  3584. if (obj->pages &&
  3585. obj->tiling_mode != I915_TILING_NONE &&
  3586. dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
  3587. if (obj->madv == I915_MADV_WILLNEED)
  3588. i915_gem_object_unpin_pages(obj);
  3589. if (args->madv == I915_MADV_WILLNEED)
  3590. i915_gem_object_pin_pages(obj);
  3591. }
  3592. if (obj->madv != __I915_MADV_PURGED)
  3593. obj->madv = args->madv;
  3594. /* if the object is no longer attached, discard its backing storage */
  3595. if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
  3596. i915_gem_object_truncate(obj);
  3597. args->retained = obj->madv != __I915_MADV_PURGED;
  3598. out:
  3599. drm_gem_object_unreference(&obj->base);
  3600. unlock:
  3601. mutex_unlock(&dev->struct_mutex);
  3602. return ret;
  3603. }
  3604. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3605. const struct drm_i915_gem_object_ops *ops)
  3606. {
  3607. INIT_LIST_HEAD(&obj->global_list);
  3608. INIT_LIST_HEAD(&obj->ring_list);
  3609. INIT_LIST_HEAD(&obj->obj_exec_link);
  3610. INIT_LIST_HEAD(&obj->vma_list);
  3611. INIT_LIST_HEAD(&obj->batch_pool_list);
  3612. obj->ops = ops;
  3613. obj->fence_reg = I915_FENCE_REG_NONE;
  3614. obj->madv = I915_MADV_WILLNEED;
  3615. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3616. }
  3617. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3618. .get_pages = i915_gem_object_get_pages_gtt,
  3619. .put_pages = i915_gem_object_put_pages_gtt,
  3620. };
  3621. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3622. size_t size)
  3623. {
  3624. struct drm_i915_gem_object *obj;
  3625. struct address_space *mapping;
  3626. gfp_t mask;
  3627. obj = i915_gem_object_alloc(dev);
  3628. if (obj == NULL)
  3629. return NULL;
  3630. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3631. i915_gem_object_free(obj);
  3632. return NULL;
  3633. }
  3634. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3635. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3636. /* 965gm cannot relocate objects above 4GiB. */
  3637. mask &= ~__GFP_HIGHMEM;
  3638. mask |= __GFP_DMA32;
  3639. }
  3640. mapping = file_inode(obj->base.filp)->i_mapping;
  3641. mapping_set_gfp_mask(mapping, mask);
  3642. i915_gem_object_init(obj, &i915_gem_object_ops);
  3643. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3644. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3645. if (HAS_LLC(dev)) {
  3646. /* On some devices, we can have the GPU use the LLC (the CPU
  3647. * cache) for about a 10% performance improvement
  3648. * compared to uncached. Graphics requests other than
  3649. * display scanout are coherent with the CPU in
  3650. * accessing this cache. This means in this mode we
  3651. * don't need to clflush on the CPU side, and on the
  3652. * GPU side we only need to flush internal caches to
  3653. * get data visible to the CPU.
  3654. *
  3655. * However, we maintain the display planes as UC, and so
  3656. * need to rebind when first used as such.
  3657. */
  3658. obj->cache_level = I915_CACHE_LLC;
  3659. } else
  3660. obj->cache_level = I915_CACHE_NONE;
  3661. trace_i915_gem_object_create(obj);
  3662. return obj;
  3663. }
  3664. static bool discard_backing_storage(struct drm_i915_gem_object *obj)
  3665. {
  3666. /* If we are the last user of the backing storage (be it shmemfs
  3667. * pages or stolen etc), we know that the pages are going to be
  3668. * immediately released. In this case, we can then skip copying
  3669. * back the contents from the GPU.
  3670. */
  3671. if (obj->madv != I915_MADV_WILLNEED)
  3672. return false;
  3673. if (obj->base.filp == NULL)
  3674. return true;
  3675. /* At first glance, this looks racy, but then again so would be
  3676. * userspace racing mmap against close. However, the first external
  3677. * reference to the filp can only be obtained through the
  3678. * i915_gem_mmap_ioctl() which safeguards us against the user
  3679. * acquiring such a reference whilst we are in the middle of
  3680. * freeing the object.
  3681. */
  3682. return atomic_long_read(&obj->base.filp->f_count) == 1;
  3683. }
  3684. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3685. {
  3686. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3687. struct drm_device *dev = obj->base.dev;
  3688. struct drm_i915_private *dev_priv = dev->dev_private;
  3689. struct i915_vma *vma, *next;
  3690. intel_runtime_pm_get(dev_priv);
  3691. trace_i915_gem_object_destroy(obj);
  3692. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3693. int ret;
  3694. vma->pin_count = 0;
  3695. ret = i915_vma_unbind(vma);
  3696. if (WARN_ON(ret == -ERESTARTSYS)) {
  3697. bool was_interruptible;
  3698. was_interruptible = dev_priv->mm.interruptible;
  3699. dev_priv->mm.interruptible = false;
  3700. WARN_ON(i915_vma_unbind(vma));
  3701. dev_priv->mm.interruptible = was_interruptible;
  3702. }
  3703. }
  3704. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3705. * before progressing. */
  3706. if (obj->stolen)
  3707. i915_gem_object_unpin_pages(obj);
  3708. WARN_ON(obj->frontbuffer_bits);
  3709. if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
  3710. dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
  3711. obj->tiling_mode != I915_TILING_NONE)
  3712. i915_gem_object_unpin_pages(obj);
  3713. if (WARN_ON(obj->pages_pin_count))
  3714. obj->pages_pin_count = 0;
  3715. if (discard_backing_storage(obj))
  3716. obj->madv = I915_MADV_DONTNEED;
  3717. i915_gem_object_put_pages(obj);
  3718. i915_gem_object_free_mmap_offset(obj);
  3719. BUG_ON(obj->pages);
  3720. if (obj->base.import_attach)
  3721. drm_prime_gem_destroy(&obj->base, NULL);
  3722. if (obj->ops->release)
  3723. obj->ops->release(obj);
  3724. drm_gem_object_release(&obj->base);
  3725. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3726. kfree(obj->bit_17);
  3727. i915_gem_object_free(obj);
  3728. intel_runtime_pm_put(dev_priv);
  3729. }
  3730. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  3731. struct i915_address_space *vm)
  3732. {
  3733. struct i915_vma *vma;
  3734. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  3735. if (i915_is_ggtt(vma->vm) &&
  3736. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  3737. continue;
  3738. if (vma->vm == vm)
  3739. return vma;
  3740. }
  3741. return NULL;
  3742. }
  3743. struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
  3744. const struct i915_ggtt_view *view)
  3745. {
  3746. struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
  3747. struct i915_vma *vma;
  3748. if (WARN_ONCE(!view, "no view specified"))
  3749. return ERR_PTR(-EINVAL);
  3750. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3751. if (vma->vm == ggtt &&
  3752. i915_ggtt_view_equal(&vma->ggtt_view, view))
  3753. return vma;
  3754. return NULL;
  3755. }
  3756. void i915_gem_vma_destroy(struct i915_vma *vma)
  3757. {
  3758. struct i915_address_space *vm = NULL;
  3759. WARN_ON(vma->node.allocated);
  3760. /* Keep the vma as a placeholder in the execbuffer reservation lists */
  3761. if (!list_empty(&vma->exec_list))
  3762. return;
  3763. vm = vma->vm;
  3764. if (!i915_is_ggtt(vm))
  3765. i915_ppgtt_put(i915_vm_to_ppgtt(vm));
  3766. list_del(&vma->vma_link);
  3767. kfree(vma);
  3768. }
  3769. static void
  3770. i915_gem_stop_ringbuffers(struct drm_device *dev)
  3771. {
  3772. struct drm_i915_private *dev_priv = dev->dev_private;
  3773. struct intel_engine_cs *ring;
  3774. int i;
  3775. for_each_ring(ring, dev_priv, i)
  3776. dev_priv->gt.stop_ring(ring);
  3777. }
  3778. int
  3779. i915_gem_suspend(struct drm_device *dev)
  3780. {
  3781. struct drm_i915_private *dev_priv = dev->dev_private;
  3782. int ret = 0;
  3783. mutex_lock(&dev->struct_mutex);
  3784. ret = i915_gpu_idle(dev);
  3785. if (ret)
  3786. goto err;
  3787. i915_gem_retire_requests(dev);
  3788. i915_gem_stop_ringbuffers(dev);
  3789. mutex_unlock(&dev->struct_mutex);
  3790. cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
  3791. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3792. flush_delayed_work(&dev_priv->mm.idle_work);
  3793. /* Assert that we sucessfully flushed all the work and
  3794. * reset the GPU back to its idle, low power state.
  3795. */
  3796. WARN_ON(dev_priv->mm.busy);
  3797. return 0;
  3798. err:
  3799. mutex_unlock(&dev->struct_mutex);
  3800. return ret;
  3801. }
  3802. int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
  3803. {
  3804. struct drm_device *dev = ring->dev;
  3805. struct drm_i915_private *dev_priv = dev->dev_private;
  3806. u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
  3807. u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
  3808. int i, ret;
  3809. if (!HAS_L3_DPF(dev) || !remap_info)
  3810. return 0;
  3811. ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
  3812. if (ret)
  3813. return ret;
  3814. /*
  3815. * Note: We do not worry about the concurrent register cacheline hang
  3816. * here because no other code should access these registers other than
  3817. * at initialization time.
  3818. */
  3819. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3820. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  3821. intel_ring_emit(ring, reg_base + i);
  3822. intel_ring_emit(ring, remap_info[i/4]);
  3823. }
  3824. intel_ring_advance(ring);
  3825. return ret;
  3826. }
  3827. void i915_gem_init_swizzling(struct drm_device *dev)
  3828. {
  3829. struct drm_i915_private *dev_priv = dev->dev_private;
  3830. if (INTEL_INFO(dev)->gen < 5 ||
  3831. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3832. return;
  3833. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3834. DISP_TILE_SURFACE_SWIZZLING);
  3835. if (IS_GEN5(dev))
  3836. return;
  3837. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3838. if (IS_GEN6(dev))
  3839. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3840. else if (IS_GEN7(dev))
  3841. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3842. else if (IS_GEN8(dev))
  3843. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
  3844. else
  3845. BUG();
  3846. }
  3847. static bool
  3848. intel_enable_blt(struct drm_device *dev)
  3849. {
  3850. if (!HAS_BLT(dev))
  3851. return false;
  3852. /* The blitter was dysfunctional on early prototypes */
  3853. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3854. DRM_INFO("BLT not supported on this pre-production hardware;"
  3855. " graphics performance will be degraded.\n");
  3856. return false;
  3857. }
  3858. return true;
  3859. }
  3860. static void init_unused_ring(struct drm_device *dev, u32 base)
  3861. {
  3862. struct drm_i915_private *dev_priv = dev->dev_private;
  3863. I915_WRITE(RING_CTL(base), 0);
  3864. I915_WRITE(RING_HEAD(base), 0);
  3865. I915_WRITE(RING_TAIL(base), 0);
  3866. I915_WRITE(RING_START(base), 0);
  3867. }
  3868. static void init_unused_rings(struct drm_device *dev)
  3869. {
  3870. if (IS_I830(dev)) {
  3871. init_unused_ring(dev, PRB1_BASE);
  3872. init_unused_ring(dev, SRB0_BASE);
  3873. init_unused_ring(dev, SRB1_BASE);
  3874. init_unused_ring(dev, SRB2_BASE);
  3875. init_unused_ring(dev, SRB3_BASE);
  3876. } else if (IS_GEN2(dev)) {
  3877. init_unused_ring(dev, SRB0_BASE);
  3878. init_unused_ring(dev, SRB1_BASE);
  3879. } else if (IS_GEN3(dev)) {
  3880. init_unused_ring(dev, PRB1_BASE);
  3881. init_unused_ring(dev, PRB2_BASE);
  3882. }
  3883. }
  3884. int i915_gem_init_rings(struct drm_device *dev)
  3885. {
  3886. struct drm_i915_private *dev_priv = dev->dev_private;
  3887. int ret;
  3888. ret = intel_init_render_ring_buffer(dev);
  3889. if (ret)
  3890. return ret;
  3891. if (HAS_BSD(dev)) {
  3892. ret = intel_init_bsd_ring_buffer(dev);
  3893. if (ret)
  3894. goto cleanup_render_ring;
  3895. }
  3896. if (intel_enable_blt(dev)) {
  3897. ret = intel_init_blt_ring_buffer(dev);
  3898. if (ret)
  3899. goto cleanup_bsd_ring;
  3900. }
  3901. if (HAS_VEBOX(dev)) {
  3902. ret = intel_init_vebox_ring_buffer(dev);
  3903. if (ret)
  3904. goto cleanup_blt_ring;
  3905. }
  3906. if (HAS_BSD2(dev)) {
  3907. ret = intel_init_bsd2_ring_buffer(dev);
  3908. if (ret)
  3909. goto cleanup_vebox_ring;
  3910. }
  3911. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3912. if (ret)
  3913. goto cleanup_bsd2_ring;
  3914. return 0;
  3915. cleanup_bsd2_ring:
  3916. intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
  3917. cleanup_vebox_ring:
  3918. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3919. cleanup_blt_ring:
  3920. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3921. cleanup_bsd_ring:
  3922. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3923. cleanup_render_ring:
  3924. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3925. return ret;
  3926. }
  3927. int
  3928. i915_gem_init_hw(struct drm_device *dev)
  3929. {
  3930. struct drm_i915_private *dev_priv = dev->dev_private;
  3931. struct intel_engine_cs *ring;
  3932. int ret, i;
  3933. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3934. return -EIO;
  3935. /* Double layer security blanket, see i915_gem_init() */
  3936. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3937. if (dev_priv->ellc_size)
  3938. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  3939. if (IS_HASWELL(dev))
  3940. I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
  3941. LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
  3942. if (HAS_PCH_NOP(dev)) {
  3943. if (IS_IVYBRIDGE(dev)) {
  3944. u32 temp = I915_READ(GEN7_MSG_CTL);
  3945. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  3946. I915_WRITE(GEN7_MSG_CTL, temp);
  3947. } else if (INTEL_INFO(dev)->gen >= 7) {
  3948. u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
  3949. temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
  3950. I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
  3951. }
  3952. }
  3953. i915_gem_init_swizzling(dev);
  3954. /*
  3955. * At least 830 can leave some of the unused rings
  3956. * "active" (ie. head != tail) after resume which
  3957. * will prevent c3 entry. Makes sure all unused rings
  3958. * are totally idle.
  3959. */
  3960. init_unused_rings(dev);
  3961. for_each_ring(ring, dev_priv, i) {
  3962. ret = ring->init_hw(ring);
  3963. if (ret)
  3964. goto out;
  3965. }
  3966. for (i = 0; i < NUM_L3_SLICES(dev); i++)
  3967. i915_gem_l3_remap(&dev_priv->ring[RCS], i);
  3968. ret = i915_ppgtt_init_hw(dev);
  3969. if (ret && ret != -EIO) {
  3970. DRM_ERROR("PPGTT enable failed %d\n", ret);
  3971. i915_gem_cleanup_ringbuffer(dev);
  3972. }
  3973. ret = i915_gem_context_enable(dev_priv);
  3974. if (ret && ret != -EIO) {
  3975. DRM_ERROR("Context enable failed %d\n", ret);
  3976. i915_gem_cleanup_ringbuffer(dev);
  3977. goto out;
  3978. }
  3979. out:
  3980. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3981. return ret;
  3982. }
  3983. int i915_gem_init(struct drm_device *dev)
  3984. {
  3985. struct drm_i915_private *dev_priv = dev->dev_private;
  3986. int ret;
  3987. i915.enable_execlists = intel_sanitize_enable_execlists(dev,
  3988. i915.enable_execlists);
  3989. mutex_lock(&dev->struct_mutex);
  3990. if (IS_VALLEYVIEW(dev)) {
  3991. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  3992. I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
  3993. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
  3994. VLV_GTLC_ALLOWWAKEACK), 10))
  3995. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  3996. }
  3997. if (!i915.enable_execlists) {
  3998. dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
  3999. dev_priv->gt.init_rings = i915_gem_init_rings;
  4000. dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
  4001. dev_priv->gt.stop_ring = intel_stop_ring_buffer;
  4002. } else {
  4003. dev_priv->gt.do_execbuf = intel_execlists_submission;
  4004. dev_priv->gt.init_rings = intel_logical_rings_init;
  4005. dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
  4006. dev_priv->gt.stop_ring = intel_logical_ring_stop;
  4007. }
  4008. /* This is just a security blanket to placate dragons.
  4009. * On some systems, we very sporadically observe that the first TLBs
  4010. * used by the CS may be stale, despite us poking the TLB reset. If
  4011. * we hold the forcewake during initialisation these problems
  4012. * just magically go away.
  4013. */
  4014. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4015. ret = i915_gem_init_userptr(dev);
  4016. if (ret)
  4017. goto out_unlock;
  4018. i915_gem_init_global_gtt(dev);
  4019. ret = i915_gem_context_init(dev);
  4020. if (ret)
  4021. goto out_unlock;
  4022. ret = dev_priv->gt.init_rings(dev);
  4023. if (ret)
  4024. goto out_unlock;
  4025. ret = i915_gem_init_hw(dev);
  4026. if (ret == -EIO) {
  4027. /* Allow ring initialisation to fail by marking the GPU as
  4028. * wedged. But we only want to do this where the GPU is angry,
  4029. * for all other failure, such as an allocation failure, bail.
  4030. */
  4031. DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
  4032. atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
  4033. ret = 0;
  4034. }
  4035. out_unlock:
  4036. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4037. mutex_unlock(&dev->struct_mutex);
  4038. return ret;
  4039. }
  4040. void
  4041. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  4042. {
  4043. struct drm_i915_private *dev_priv = dev->dev_private;
  4044. struct intel_engine_cs *ring;
  4045. int i;
  4046. for_each_ring(ring, dev_priv, i)
  4047. dev_priv->gt.cleanup_ring(ring);
  4048. }
  4049. static void
  4050. init_ring_lists(struct intel_engine_cs *ring)
  4051. {
  4052. INIT_LIST_HEAD(&ring->active_list);
  4053. INIT_LIST_HEAD(&ring->request_list);
  4054. }
  4055. void i915_init_vm(struct drm_i915_private *dev_priv,
  4056. struct i915_address_space *vm)
  4057. {
  4058. if (!i915_is_ggtt(vm))
  4059. drm_mm_init(&vm->mm, vm->start, vm->total);
  4060. vm->dev = dev_priv->dev;
  4061. INIT_LIST_HEAD(&vm->active_list);
  4062. INIT_LIST_HEAD(&vm->inactive_list);
  4063. INIT_LIST_HEAD(&vm->global_link);
  4064. list_add_tail(&vm->global_link, &dev_priv->vm_list);
  4065. }
  4066. void
  4067. i915_gem_load(struct drm_device *dev)
  4068. {
  4069. struct drm_i915_private *dev_priv = dev->dev_private;
  4070. int i;
  4071. dev_priv->slab =
  4072. kmem_cache_create("i915_gem_object",
  4073. sizeof(struct drm_i915_gem_object), 0,
  4074. SLAB_HWCACHE_ALIGN,
  4075. NULL);
  4076. INIT_LIST_HEAD(&dev_priv->vm_list);
  4077. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  4078. INIT_LIST_HEAD(&dev_priv->context_list);
  4079. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  4080. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  4081. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4082. for (i = 0; i < I915_NUM_RINGS; i++)
  4083. init_ring_lists(&dev_priv->ring[i]);
  4084. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  4085. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4086. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4087. i915_gem_retire_work_handler);
  4088. INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
  4089. i915_gem_idle_work_handler);
  4090. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  4091. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  4092. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  4093. dev_priv->num_fence_regs = 32;
  4094. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4095. dev_priv->num_fence_regs = 16;
  4096. else
  4097. dev_priv->num_fence_regs = 8;
  4098. if (intel_vgpu_active(dev))
  4099. dev_priv->num_fence_regs =
  4100. I915_READ(vgtif_reg(avail_rs.fence_num));
  4101. /* Initialize fence registers to zero */
  4102. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4103. i915_gem_restore_fences(dev);
  4104. i915_gem_detect_bit_6_swizzle(dev);
  4105. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4106. dev_priv->mm.interruptible = true;
  4107. i915_gem_shrinker_init(dev_priv);
  4108. i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
  4109. mutex_init(&dev_priv->fb_tracking.lock);
  4110. }
  4111. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4112. {
  4113. struct drm_i915_file_private *file_priv = file->driver_priv;
  4114. cancel_delayed_work_sync(&file_priv->mm.idle_work);
  4115. /* Clean up our request list when the client is going away, so that
  4116. * later retire_requests won't dereference our soon-to-be-gone
  4117. * file_priv.
  4118. */
  4119. spin_lock(&file_priv->mm.lock);
  4120. while (!list_empty(&file_priv->mm.request_list)) {
  4121. struct drm_i915_gem_request *request;
  4122. request = list_first_entry(&file_priv->mm.request_list,
  4123. struct drm_i915_gem_request,
  4124. client_list);
  4125. list_del(&request->client_list);
  4126. request->file_priv = NULL;
  4127. }
  4128. spin_unlock(&file_priv->mm.lock);
  4129. }
  4130. static void
  4131. i915_gem_file_idle_work_handler(struct work_struct *work)
  4132. {
  4133. struct drm_i915_file_private *file_priv =
  4134. container_of(work, typeof(*file_priv), mm.idle_work.work);
  4135. atomic_set(&file_priv->rps_wait_boost, false);
  4136. }
  4137. int i915_gem_open(struct drm_device *dev, struct drm_file *file)
  4138. {
  4139. struct drm_i915_file_private *file_priv;
  4140. int ret;
  4141. DRM_DEBUG_DRIVER("\n");
  4142. file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
  4143. if (!file_priv)
  4144. return -ENOMEM;
  4145. file->driver_priv = file_priv;
  4146. file_priv->dev_priv = dev->dev_private;
  4147. file_priv->file = file;
  4148. spin_lock_init(&file_priv->mm.lock);
  4149. INIT_LIST_HEAD(&file_priv->mm.request_list);
  4150. INIT_DELAYED_WORK(&file_priv->mm.idle_work,
  4151. i915_gem_file_idle_work_handler);
  4152. ret = i915_gem_context_open(dev, file);
  4153. if (ret)
  4154. kfree(file_priv);
  4155. return ret;
  4156. }
  4157. /**
  4158. * i915_gem_track_fb - update frontbuffer tracking
  4159. * old: current GEM buffer for the frontbuffer slots
  4160. * new: new GEM buffer for the frontbuffer slots
  4161. * frontbuffer_bits: bitmask of frontbuffer slots
  4162. *
  4163. * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
  4164. * from @old and setting them in @new. Both @old and @new can be NULL.
  4165. */
  4166. void i915_gem_track_fb(struct drm_i915_gem_object *old,
  4167. struct drm_i915_gem_object *new,
  4168. unsigned frontbuffer_bits)
  4169. {
  4170. if (old) {
  4171. WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
  4172. WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
  4173. old->frontbuffer_bits &= ~frontbuffer_bits;
  4174. }
  4175. if (new) {
  4176. WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
  4177. WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
  4178. new->frontbuffer_bits |= frontbuffer_bits;
  4179. }
  4180. }
  4181. /* All the new VM stuff */
  4182. unsigned long
  4183. i915_gem_obj_offset(struct drm_i915_gem_object *o,
  4184. struct i915_address_space *vm)
  4185. {
  4186. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4187. struct i915_vma *vma;
  4188. WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
  4189. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4190. if (i915_is_ggtt(vma->vm) &&
  4191. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4192. continue;
  4193. if (vma->vm == vm)
  4194. return vma->node.start;
  4195. }
  4196. WARN(1, "%s vma for this object not found.\n",
  4197. i915_is_ggtt(vm) ? "global" : "ppgtt");
  4198. return -1;
  4199. }
  4200. unsigned long
  4201. i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
  4202. const struct i915_ggtt_view *view)
  4203. {
  4204. struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
  4205. struct i915_vma *vma;
  4206. list_for_each_entry(vma, &o->vma_list, vma_link)
  4207. if (vma->vm == ggtt &&
  4208. i915_ggtt_view_equal(&vma->ggtt_view, view))
  4209. return vma->node.start;
  4210. WARN(1, "global vma for this object not found.\n");
  4211. return -1;
  4212. }
  4213. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  4214. struct i915_address_space *vm)
  4215. {
  4216. struct i915_vma *vma;
  4217. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4218. if (i915_is_ggtt(vma->vm) &&
  4219. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4220. continue;
  4221. if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
  4222. return true;
  4223. }
  4224. return false;
  4225. }
  4226. bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
  4227. const struct i915_ggtt_view *view)
  4228. {
  4229. struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
  4230. struct i915_vma *vma;
  4231. list_for_each_entry(vma, &o->vma_list, vma_link)
  4232. if (vma->vm == ggtt &&
  4233. i915_ggtt_view_equal(&vma->ggtt_view, view) &&
  4234. drm_mm_node_allocated(&vma->node))
  4235. return true;
  4236. return false;
  4237. }
  4238. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  4239. {
  4240. struct i915_vma *vma;
  4241. list_for_each_entry(vma, &o->vma_list, vma_link)
  4242. if (drm_mm_node_allocated(&vma->node))
  4243. return true;
  4244. return false;
  4245. }
  4246. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  4247. struct i915_address_space *vm)
  4248. {
  4249. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4250. struct i915_vma *vma;
  4251. WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
  4252. BUG_ON(list_empty(&o->vma_list));
  4253. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4254. if (i915_is_ggtt(vma->vm) &&
  4255. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4256. continue;
  4257. if (vma->vm == vm)
  4258. return vma->node.size;
  4259. }
  4260. return 0;
  4261. }
  4262. bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
  4263. {
  4264. struct i915_vma *vma;
  4265. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  4266. if (i915_is_ggtt(vma->vm) &&
  4267. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4268. continue;
  4269. if (vma->pin_count > 0)
  4270. return true;
  4271. }
  4272. return false;
  4273. }