i915_debugfs.c 125 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  51. * allocated we need to hook into the minor for release. */
  52. static int
  53. drm_add_fake_info_node(struct drm_minor *minor,
  54. struct dentry *ent,
  55. const void *key)
  56. {
  57. struct drm_info_node *node;
  58. node = kmalloc(sizeof(*node), GFP_KERNEL);
  59. if (node == NULL) {
  60. debugfs_remove(ent);
  61. return -ENOMEM;
  62. }
  63. node->minor = minor;
  64. node->dent = ent;
  65. node->info_ent = (void *) key;
  66. mutex_lock(&minor->debugfs_lock);
  67. list_add(&node->list, &minor->debugfs_list);
  68. mutex_unlock(&minor->debugfs_lock);
  69. return 0;
  70. }
  71. static int i915_capabilities(struct seq_file *m, void *data)
  72. {
  73. struct drm_info_node *node = m->private;
  74. struct drm_device *dev = node->minor->dev;
  75. const struct intel_device_info *info = INTEL_INFO(dev);
  76. seq_printf(m, "gen: %d\n", info->gen);
  77. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  78. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  79. #define SEP_SEMICOLON ;
  80. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  81. #undef PRINT_FLAG
  82. #undef SEP_SEMICOLON
  83. return 0;
  84. }
  85. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. if (i915_gem_obj_is_pinned(obj))
  88. return "p";
  89. else
  90. return " ";
  91. }
  92. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  93. {
  94. switch (obj->tiling_mode) {
  95. default:
  96. case I915_TILING_NONE: return " ";
  97. case I915_TILING_X: return "X";
  98. case I915_TILING_Y: return "Y";
  99. }
  100. }
  101. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  102. {
  103. return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
  104. }
  105. static void
  106. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  107. {
  108. struct i915_vma *vma;
  109. int pin_count = 0;
  110. seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
  111. &obj->base,
  112. get_pin_flag(obj),
  113. get_tiling_flag(obj),
  114. get_global_flag(obj),
  115. obj->base.size / 1024,
  116. obj->base.read_domains,
  117. obj->base.write_domain,
  118. i915_gem_request_get_seqno(obj->last_read_req),
  119. i915_gem_request_get_seqno(obj->last_write_req),
  120. i915_gem_request_get_seqno(obj->last_fenced_req),
  121. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  122. obj->dirty ? " dirty" : "",
  123. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  124. if (obj->base.name)
  125. seq_printf(m, " (name: %d)", obj->base.name);
  126. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  127. if (vma->pin_count > 0)
  128. pin_count++;
  129. }
  130. seq_printf(m, " (pinned x %d)", pin_count);
  131. if (obj->pin_display)
  132. seq_printf(m, " (display)");
  133. if (obj->fence_reg != I915_FENCE_REG_NONE)
  134. seq_printf(m, " (fence: %d)", obj->fence_reg);
  135. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  136. if (!i915_is_ggtt(vma->vm))
  137. seq_puts(m, " (pp");
  138. else
  139. seq_puts(m, " (g");
  140. seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
  141. vma->node.start, vma->node.size,
  142. vma->ggtt_view.type);
  143. }
  144. if (obj->stolen)
  145. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  146. if (obj->pin_mappable || obj->fault_mappable) {
  147. char s[3], *t = s;
  148. if (obj->pin_mappable)
  149. *t++ = 'p';
  150. if (obj->fault_mappable)
  151. *t++ = 'f';
  152. *t = '\0';
  153. seq_printf(m, " (%s mappable)", s);
  154. }
  155. if (obj->last_read_req != NULL)
  156. seq_printf(m, " (%s)",
  157. i915_gem_request_get_ring(obj->last_read_req)->name);
  158. if (obj->frontbuffer_bits)
  159. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  160. }
  161. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  162. {
  163. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  164. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  165. seq_putc(m, ' ');
  166. }
  167. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  168. {
  169. struct drm_info_node *node = m->private;
  170. uintptr_t list = (uintptr_t) node->info_ent->data;
  171. struct list_head *head;
  172. struct drm_device *dev = node->minor->dev;
  173. struct drm_i915_private *dev_priv = dev->dev_private;
  174. struct i915_address_space *vm = &dev_priv->gtt.base;
  175. struct i915_vma *vma;
  176. size_t total_obj_size, total_gtt_size;
  177. int count, ret;
  178. ret = mutex_lock_interruptible(&dev->struct_mutex);
  179. if (ret)
  180. return ret;
  181. /* FIXME: the user of this interface might want more than just GGTT */
  182. switch (list) {
  183. case ACTIVE_LIST:
  184. seq_puts(m, "Active:\n");
  185. head = &vm->active_list;
  186. break;
  187. case INACTIVE_LIST:
  188. seq_puts(m, "Inactive:\n");
  189. head = &vm->inactive_list;
  190. break;
  191. default:
  192. mutex_unlock(&dev->struct_mutex);
  193. return -EINVAL;
  194. }
  195. total_obj_size = total_gtt_size = count = 0;
  196. list_for_each_entry(vma, head, mm_list) {
  197. seq_printf(m, " ");
  198. describe_obj(m, vma->obj);
  199. seq_printf(m, "\n");
  200. total_obj_size += vma->obj->base.size;
  201. total_gtt_size += vma->node.size;
  202. count++;
  203. }
  204. mutex_unlock(&dev->struct_mutex);
  205. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  206. count, total_obj_size, total_gtt_size);
  207. return 0;
  208. }
  209. static int obj_rank_by_stolen(void *priv,
  210. struct list_head *A, struct list_head *B)
  211. {
  212. struct drm_i915_gem_object *a =
  213. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  214. struct drm_i915_gem_object *b =
  215. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  216. return a->stolen->start - b->stolen->start;
  217. }
  218. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  219. {
  220. struct drm_info_node *node = m->private;
  221. struct drm_device *dev = node->minor->dev;
  222. struct drm_i915_private *dev_priv = dev->dev_private;
  223. struct drm_i915_gem_object *obj;
  224. size_t total_obj_size, total_gtt_size;
  225. LIST_HEAD(stolen);
  226. int count, ret;
  227. ret = mutex_lock_interruptible(&dev->struct_mutex);
  228. if (ret)
  229. return ret;
  230. total_obj_size = total_gtt_size = count = 0;
  231. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  232. if (obj->stolen == NULL)
  233. continue;
  234. list_add(&obj->obj_exec_link, &stolen);
  235. total_obj_size += obj->base.size;
  236. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  237. count++;
  238. }
  239. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  240. if (obj->stolen == NULL)
  241. continue;
  242. list_add(&obj->obj_exec_link, &stolen);
  243. total_obj_size += obj->base.size;
  244. count++;
  245. }
  246. list_sort(NULL, &stolen, obj_rank_by_stolen);
  247. seq_puts(m, "Stolen:\n");
  248. while (!list_empty(&stolen)) {
  249. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  250. seq_puts(m, " ");
  251. describe_obj(m, obj);
  252. seq_putc(m, '\n');
  253. list_del_init(&obj->obj_exec_link);
  254. }
  255. mutex_unlock(&dev->struct_mutex);
  256. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  257. count, total_obj_size, total_gtt_size);
  258. return 0;
  259. }
  260. #define count_objects(list, member) do { \
  261. list_for_each_entry(obj, list, member) { \
  262. size += i915_gem_obj_ggtt_size(obj); \
  263. ++count; \
  264. if (obj->map_and_fenceable) { \
  265. mappable_size += i915_gem_obj_ggtt_size(obj); \
  266. ++mappable_count; \
  267. } \
  268. } \
  269. } while (0)
  270. struct file_stats {
  271. struct drm_i915_file_private *file_priv;
  272. int count;
  273. size_t total, unbound;
  274. size_t global, shared;
  275. size_t active, inactive;
  276. };
  277. static int per_file_stats(int id, void *ptr, void *data)
  278. {
  279. struct drm_i915_gem_object *obj = ptr;
  280. struct file_stats *stats = data;
  281. struct i915_vma *vma;
  282. stats->count++;
  283. stats->total += obj->base.size;
  284. if (obj->base.name || obj->base.dma_buf)
  285. stats->shared += obj->base.size;
  286. if (USES_FULL_PPGTT(obj->base.dev)) {
  287. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  288. struct i915_hw_ppgtt *ppgtt;
  289. if (!drm_mm_node_allocated(&vma->node))
  290. continue;
  291. if (i915_is_ggtt(vma->vm)) {
  292. stats->global += obj->base.size;
  293. continue;
  294. }
  295. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  296. if (ppgtt->file_priv != stats->file_priv)
  297. continue;
  298. if (obj->active) /* XXX per-vma statistic */
  299. stats->active += obj->base.size;
  300. else
  301. stats->inactive += obj->base.size;
  302. return 0;
  303. }
  304. } else {
  305. if (i915_gem_obj_ggtt_bound(obj)) {
  306. stats->global += obj->base.size;
  307. if (obj->active)
  308. stats->active += obj->base.size;
  309. else
  310. stats->inactive += obj->base.size;
  311. return 0;
  312. }
  313. }
  314. if (!list_empty(&obj->global_list))
  315. stats->unbound += obj->base.size;
  316. return 0;
  317. }
  318. #define print_file_stats(m, name, stats) \
  319. seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
  320. name, \
  321. stats.count, \
  322. stats.total, \
  323. stats.active, \
  324. stats.inactive, \
  325. stats.global, \
  326. stats.shared, \
  327. stats.unbound)
  328. static void print_batch_pool_stats(struct seq_file *m,
  329. struct drm_i915_private *dev_priv)
  330. {
  331. struct drm_i915_gem_object *obj;
  332. struct file_stats stats;
  333. memset(&stats, 0, sizeof(stats));
  334. list_for_each_entry(obj,
  335. &dev_priv->mm.batch_pool.cache_list,
  336. batch_pool_list)
  337. per_file_stats(0, obj, &stats);
  338. print_file_stats(m, "batch pool", stats);
  339. }
  340. #define count_vmas(list, member) do { \
  341. list_for_each_entry(vma, list, member) { \
  342. size += i915_gem_obj_ggtt_size(vma->obj); \
  343. ++count; \
  344. if (vma->obj->map_and_fenceable) { \
  345. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  346. ++mappable_count; \
  347. } \
  348. } \
  349. } while (0)
  350. static int i915_gem_object_info(struct seq_file *m, void* data)
  351. {
  352. struct drm_info_node *node = m->private;
  353. struct drm_device *dev = node->minor->dev;
  354. struct drm_i915_private *dev_priv = dev->dev_private;
  355. u32 count, mappable_count, purgeable_count;
  356. size_t size, mappable_size, purgeable_size;
  357. struct drm_i915_gem_object *obj;
  358. struct i915_address_space *vm = &dev_priv->gtt.base;
  359. struct drm_file *file;
  360. struct i915_vma *vma;
  361. int ret;
  362. ret = mutex_lock_interruptible(&dev->struct_mutex);
  363. if (ret)
  364. return ret;
  365. seq_printf(m, "%u objects, %zu bytes\n",
  366. dev_priv->mm.object_count,
  367. dev_priv->mm.object_memory);
  368. size = count = mappable_size = mappable_count = 0;
  369. count_objects(&dev_priv->mm.bound_list, global_list);
  370. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  371. count, mappable_count, size, mappable_size);
  372. size = count = mappable_size = mappable_count = 0;
  373. count_vmas(&vm->active_list, mm_list);
  374. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  375. count, mappable_count, size, mappable_size);
  376. size = count = mappable_size = mappable_count = 0;
  377. count_vmas(&vm->inactive_list, mm_list);
  378. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  379. count, mappable_count, size, mappable_size);
  380. size = count = purgeable_size = purgeable_count = 0;
  381. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  382. size += obj->base.size, ++count;
  383. if (obj->madv == I915_MADV_DONTNEED)
  384. purgeable_size += obj->base.size, ++purgeable_count;
  385. }
  386. seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
  387. size = count = mappable_size = mappable_count = 0;
  388. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  389. if (obj->fault_mappable) {
  390. size += i915_gem_obj_ggtt_size(obj);
  391. ++count;
  392. }
  393. if (obj->pin_mappable) {
  394. mappable_size += i915_gem_obj_ggtt_size(obj);
  395. ++mappable_count;
  396. }
  397. if (obj->madv == I915_MADV_DONTNEED) {
  398. purgeable_size += obj->base.size;
  399. ++purgeable_count;
  400. }
  401. }
  402. seq_printf(m, "%u purgeable objects, %zu bytes\n",
  403. purgeable_count, purgeable_size);
  404. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  405. mappable_count, mappable_size);
  406. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  407. count, size);
  408. seq_printf(m, "%zu [%lu] gtt total\n",
  409. dev_priv->gtt.base.total,
  410. dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  411. seq_putc(m, '\n');
  412. print_batch_pool_stats(m, dev_priv);
  413. seq_putc(m, '\n');
  414. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  415. struct file_stats stats;
  416. struct task_struct *task;
  417. memset(&stats, 0, sizeof(stats));
  418. stats.file_priv = file->driver_priv;
  419. spin_lock(&file->table_lock);
  420. idr_for_each(&file->object_idr, per_file_stats, &stats);
  421. spin_unlock(&file->table_lock);
  422. /*
  423. * Although we have a valid reference on file->pid, that does
  424. * not guarantee that the task_struct who called get_pid() is
  425. * still alive (e.g. get_pid(current) => fork() => exit()).
  426. * Therefore, we need to protect this ->comm access using RCU.
  427. */
  428. rcu_read_lock();
  429. task = pid_task(file->pid, PIDTYPE_PID);
  430. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  431. rcu_read_unlock();
  432. }
  433. mutex_unlock(&dev->struct_mutex);
  434. return 0;
  435. }
  436. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  437. {
  438. struct drm_info_node *node = m->private;
  439. struct drm_device *dev = node->minor->dev;
  440. uintptr_t list = (uintptr_t) node->info_ent->data;
  441. struct drm_i915_private *dev_priv = dev->dev_private;
  442. struct drm_i915_gem_object *obj;
  443. size_t total_obj_size, total_gtt_size;
  444. int count, ret;
  445. ret = mutex_lock_interruptible(&dev->struct_mutex);
  446. if (ret)
  447. return ret;
  448. total_obj_size = total_gtt_size = count = 0;
  449. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  450. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  451. continue;
  452. seq_puts(m, " ");
  453. describe_obj(m, obj);
  454. seq_putc(m, '\n');
  455. total_obj_size += obj->base.size;
  456. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  457. count++;
  458. }
  459. mutex_unlock(&dev->struct_mutex);
  460. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  461. count, total_obj_size, total_gtt_size);
  462. return 0;
  463. }
  464. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  465. {
  466. struct drm_info_node *node = m->private;
  467. struct drm_device *dev = node->minor->dev;
  468. struct drm_i915_private *dev_priv = dev->dev_private;
  469. struct intel_crtc *crtc;
  470. int ret;
  471. ret = mutex_lock_interruptible(&dev->struct_mutex);
  472. if (ret)
  473. return ret;
  474. for_each_intel_crtc(dev, crtc) {
  475. const char pipe = pipe_name(crtc->pipe);
  476. const char plane = plane_name(crtc->plane);
  477. struct intel_unpin_work *work;
  478. spin_lock_irq(&dev->event_lock);
  479. work = crtc->unpin_work;
  480. if (work == NULL) {
  481. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  482. pipe, plane);
  483. } else {
  484. u32 addr;
  485. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  486. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  487. pipe, plane);
  488. } else {
  489. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  490. pipe, plane);
  491. }
  492. if (work->flip_queued_req) {
  493. struct intel_engine_cs *ring =
  494. i915_gem_request_get_ring(work->flip_queued_req);
  495. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  496. ring->name,
  497. i915_gem_request_get_seqno(work->flip_queued_req),
  498. dev_priv->next_seqno,
  499. ring->get_seqno(ring, true),
  500. i915_gem_request_completed(work->flip_queued_req, true));
  501. } else
  502. seq_printf(m, "Flip not associated with any ring\n");
  503. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  504. work->flip_queued_vblank,
  505. work->flip_ready_vblank,
  506. drm_crtc_vblank_count(&crtc->base));
  507. if (work->enable_stall_check)
  508. seq_puts(m, "Stall check enabled, ");
  509. else
  510. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  511. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  512. if (INTEL_INFO(dev)->gen >= 4)
  513. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  514. else
  515. addr = I915_READ(DSPADDR(crtc->plane));
  516. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  517. if (work->pending_flip_obj) {
  518. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  519. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  520. }
  521. }
  522. spin_unlock_irq(&dev->event_lock);
  523. }
  524. mutex_unlock(&dev->struct_mutex);
  525. return 0;
  526. }
  527. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  528. {
  529. struct drm_info_node *node = m->private;
  530. struct drm_device *dev = node->minor->dev;
  531. struct drm_i915_private *dev_priv = dev->dev_private;
  532. struct drm_i915_gem_object *obj;
  533. int count = 0;
  534. int ret;
  535. ret = mutex_lock_interruptible(&dev->struct_mutex);
  536. if (ret)
  537. return ret;
  538. seq_puts(m, "cache:\n");
  539. list_for_each_entry(obj,
  540. &dev_priv->mm.batch_pool.cache_list,
  541. batch_pool_list) {
  542. seq_puts(m, " ");
  543. describe_obj(m, obj);
  544. seq_putc(m, '\n');
  545. count++;
  546. }
  547. seq_printf(m, "total: %d\n", count);
  548. mutex_unlock(&dev->struct_mutex);
  549. return 0;
  550. }
  551. static int i915_gem_request_info(struct seq_file *m, void *data)
  552. {
  553. struct drm_info_node *node = m->private;
  554. struct drm_device *dev = node->minor->dev;
  555. struct drm_i915_private *dev_priv = dev->dev_private;
  556. struct intel_engine_cs *ring;
  557. struct drm_i915_gem_request *gem_request;
  558. int ret, count, i;
  559. ret = mutex_lock_interruptible(&dev->struct_mutex);
  560. if (ret)
  561. return ret;
  562. count = 0;
  563. for_each_ring(ring, dev_priv, i) {
  564. if (list_empty(&ring->request_list))
  565. continue;
  566. seq_printf(m, "%s requests:\n", ring->name);
  567. list_for_each_entry(gem_request,
  568. &ring->request_list,
  569. list) {
  570. seq_printf(m, " %x @ %d\n",
  571. gem_request->seqno,
  572. (int) (jiffies - gem_request->emitted_jiffies));
  573. }
  574. count++;
  575. }
  576. mutex_unlock(&dev->struct_mutex);
  577. if (count == 0)
  578. seq_puts(m, "No requests\n");
  579. return 0;
  580. }
  581. static void i915_ring_seqno_info(struct seq_file *m,
  582. struct intel_engine_cs *ring)
  583. {
  584. if (ring->get_seqno) {
  585. seq_printf(m, "Current sequence (%s): %x\n",
  586. ring->name, ring->get_seqno(ring, false));
  587. }
  588. }
  589. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  590. {
  591. struct drm_info_node *node = m->private;
  592. struct drm_device *dev = node->minor->dev;
  593. struct drm_i915_private *dev_priv = dev->dev_private;
  594. struct intel_engine_cs *ring;
  595. int ret, i;
  596. ret = mutex_lock_interruptible(&dev->struct_mutex);
  597. if (ret)
  598. return ret;
  599. intel_runtime_pm_get(dev_priv);
  600. for_each_ring(ring, dev_priv, i)
  601. i915_ring_seqno_info(m, ring);
  602. intel_runtime_pm_put(dev_priv);
  603. mutex_unlock(&dev->struct_mutex);
  604. return 0;
  605. }
  606. static int i915_interrupt_info(struct seq_file *m, void *data)
  607. {
  608. struct drm_info_node *node = m->private;
  609. struct drm_device *dev = node->minor->dev;
  610. struct drm_i915_private *dev_priv = dev->dev_private;
  611. struct intel_engine_cs *ring;
  612. int ret, i, pipe;
  613. ret = mutex_lock_interruptible(&dev->struct_mutex);
  614. if (ret)
  615. return ret;
  616. intel_runtime_pm_get(dev_priv);
  617. if (IS_CHERRYVIEW(dev)) {
  618. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  619. I915_READ(GEN8_MASTER_IRQ));
  620. seq_printf(m, "Display IER:\t%08x\n",
  621. I915_READ(VLV_IER));
  622. seq_printf(m, "Display IIR:\t%08x\n",
  623. I915_READ(VLV_IIR));
  624. seq_printf(m, "Display IIR_RW:\t%08x\n",
  625. I915_READ(VLV_IIR_RW));
  626. seq_printf(m, "Display IMR:\t%08x\n",
  627. I915_READ(VLV_IMR));
  628. for_each_pipe(dev_priv, pipe)
  629. seq_printf(m, "Pipe %c stat:\t%08x\n",
  630. pipe_name(pipe),
  631. I915_READ(PIPESTAT(pipe)));
  632. seq_printf(m, "Port hotplug:\t%08x\n",
  633. I915_READ(PORT_HOTPLUG_EN));
  634. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  635. I915_READ(VLV_DPFLIPSTAT));
  636. seq_printf(m, "DPINVGTT:\t%08x\n",
  637. I915_READ(DPINVGTT));
  638. for (i = 0; i < 4; i++) {
  639. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  640. i, I915_READ(GEN8_GT_IMR(i)));
  641. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  642. i, I915_READ(GEN8_GT_IIR(i)));
  643. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  644. i, I915_READ(GEN8_GT_IER(i)));
  645. }
  646. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  647. I915_READ(GEN8_PCU_IMR));
  648. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  649. I915_READ(GEN8_PCU_IIR));
  650. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  651. I915_READ(GEN8_PCU_IER));
  652. } else if (INTEL_INFO(dev)->gen >= 8) {
  653. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  654. I915_READ(GEN8_MASTER_IRQ));
  655. for (i = 0; i < 4; i++) {
  656. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  657. i, I915_READ(GEN8_GT_IMR(i)));
  658. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  659. i, I915_READ(GEN8_GT_IIR(i)));
  660. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  661. i, I915_READ(GEN8_GT_IER(i)));
  662. }
  663. for_each_pipe(dev_priv, pipe) {
  664. if (!intel_display_power_is_enabled(dev_priv,
  665. POWER_DOMAIN_PIPE(pipe))) {
  666. seq_printf(m, "Pipe %c power disabled\n",
  667. pipe_name(pipe));
  668. continue;
  669. }
  670. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  671. pipe_name(pipe),
  672. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  673. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  674. pipe_name(pipe),
  675. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  676. seq_printf(m, "Pipe %c IER:\t%08x\n",
  677. pipe_name(pipe),
  678. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  679. }
  680. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  681. I915_READ(GEN8_DE_PORT_IMR));
  682. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  683. I915_READ(GEN8_DE_PORT_IIR));
  684. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  685. I915_READ(GEN8_DE_PORT_IER));
  686. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  687. I915_READ(GEN8_DE_MISC_IMR));
  688. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  689. I915_READ(GEN8_DE_MISC_IIR));
  690. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  691. I915_READ(GEN8_DE_MISC_IER));
  692. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  693. I915_READ(GEN8_PCU_IMR));
  694. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  695. I915_READ(GEN8_PCU_IIR));
  696. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  697. I915_READ(GEN8_PCU_IER));
  698. } else if (IS_VALLEYVIEW(dev)) {
  699. seq_printf(m, "Display IER:\t%08x\n",
  700. I915_READ(VLV_IER));
  701. seq_printf(m, "Display IIR:\t%08x\n",
  702. I915_READ(VLV_IIR));
  703. seq_printf(m, "Display IIR_RW:\t%08x\n",
  704. I915_READ(VLV_IIR_RW));
  705. seq_printf(m, "Display IMR:\t%08x\n",
  706. I915_READ(VLV_IMR));
  707. for_each_pipe(dev_priv, pipe)
  708. seq_printf(m, "Pipe %c stat:\t%08x\n",
  709. pipe_name(pipe),
  710. I915_READ(PIPESTAT(pipe)));
  711. seq_printf(m, "Master IER:\t%08x\n",
  712. I915_READ(VLV_MASTER_IER));
  713. seq_printf(m, "Render IER:\t%08x\n",
  714. I915_READ(GTIER));
  715. seq_printf(m, "Render IIR:\t%08x\n",
  716. I915_READ(GTIIR));
  717. seq_printf(m, "Render IMR:\t%08x\n",
  718. I915_READ(GTIMR));
  719. seq_printf(m, "PM IER:\t\t%08x\n",
  720. I915_READ(GEN6_PMIER));
  721. seq_printf(m, "PM IIR:\t\t%08x\n",
  722. I915_READ(GEN6_PMIIR));
  723. seq_printf(m, "PM IMR:\t\t%08x\n",
  724. I915_READ(GEN6_PMIMR));
  725. seq_printf(m, "Port hotplug:\t%08x\n",
  726. I915_READ(PORT_HOTPLUG_EN));
  727. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  728. I915_READ(VLV_DPFLIPSTAT));
  729. seq_printf(m, "DPINVGTT:\t%08x\n",
  730. I915_READ(DPINVGTT));
  731. } else if (!HAS_PCH_SPLIT(dev)) {
  732. seq_printf(m, "Interrupt enable: %08x\n",
  733. I915_READ(IER));
  734. seq_printf(m, "Interrupt identity: %08x\n",
  735. I915_READ(IIR));
  736. seq_printf(m, "Interrupt mask: %08x\n",
  737. I915_READ(IMR));
  738. for_each_pipe(dev_priv, pipe)
  739. seq_printf(m, "Pipe %c stat: %08x\n",
  740. pipe_name(pipe),
  741. I915_READ(PIPESTAT(pipe)));
  742. } else {
  743. seq_printf(m, "North Display Interrupt enable: %08x\n",
  744. I915_READ(DEIER));
  745. seq_printf(m, "North Display Interrupt identity: %08x\n",
  746. I915_READ(DEIIR));
  747. seq_printf(m, "North Display Interrupt mask: %08x\n",
  748. I915_READ(DEIMR));
  749. seq_printf(m, "South Display Interrupt enable: %08x\n",
  750. I915_READ(SDEIER));
  751. seq_printf(m, "South Display Interrupt identity: %08x\n",
  752. I915_READ(SDEIIR));
  753. seq_printf(m, "South Display Interrupt mask: %08x\n",
  754. I915_READ(SDEIMR));
  755. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  756. I915_READ(GTIER));
  757. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  758. I915_READ(GTIIR));
  759. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  760. I915_READ(GTIMR));
  761. }
  762. for_each_ring(ring, dev_priv, i) {
  763. if (INTEL_INFO(dev)->gen >= 6) {
  764. seq_printf(m,
  765. "Graphics Interrupt mask (%s): %08x\n",
  766. ring->name, I915_READ_IMR(ring));
  767. }
  768. i915_ring_seqno_info(m, ring);
  769. }
  770. intel_runtime_pm_put(dev_priv);
  771. mutex_unlock(&dev->struct_mutex);
  772. return 0;
  773. }
  774. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  775. {
  776. struct drm_info_node *node = m->private;
  777. struct drm_device *dev = node->minor->dev;
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. int i, ret;
  780. ret = mutex_lock_interruptible(&dev->struct_mutex);
  781. if (ret)
  782. return ret;
  783. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  784. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  785. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  786. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  787. seq_printf(m, "Fence %d, pin count = %d, object = ",
  788. i, dev_priv->fence_regs[i].pin_count);
  789. if (obj == NULL)
  790. seq_puts(m, "unused");
  791. else
  792. describe_obj(m, obj);
  793. seq_putc(m, '\n');
  794. }
  795. mutex_unlock(&dev->struct_mutex);
  796. return 0;
  797. }
  798. static int i915_hws_info(struct seq_file *m, void *data)
  799. {
  800. struct drm_info_node *node = m->private;
  801. struct drm_device *dev = node->minor->dev;
  802. struct drm_i915_private *dev_priv = dev->dev_private;
  803. struct intel_engine_cs *ring;
  804. const u32 *hws;
  805. int i;
  806. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  807. hws = ring->status_page.page_addr;
  808. if (hws == NULL)
  809. return 0;
  810. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  811. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  812. i * 4,
  813. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  814. }
  815. return 0;
  816. }
  817. static ssize_t
  818. i915_error_state_write(struct file *filp,
  819. const char __user *ubuf,
  820. size_t cnt,
  821. loff_t *ppos)
  822. {
  823. struct i915_error_state_file_priv *error_priv = filp->private_data;
  824. struct drm_device *dev = error_priv->dev;
  825. int ret;
  826. DRM_DEBUG_DRIVER("Resetting error state\n");
  827. ret = mutex_lock_interruptible(&dev->struct_mutex);
  828. if (ret)
  829. return ret;
  830. i915_destroy_error_state(dev);
  831. mutex_unlock(&dev->struct_mutex);
  832. return cnt;
  833. }
  834. static int i915_error_state_open(struct inode *inode, struct file *file)
  835. {
  836. struct drm_device *dev = inode->i_private;
  837. struct i915_error_state_file_priv *error_priv;
  838. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  839. if (!error_priv)
  840. return -ENOMEM;
  841. error_priv->dev = dev;
  842. i915_error_state_get(dev, error_priv);
  843. file->private_data = error_priv;
  844. return 0;
  845. }
  846. static int i915_error_state_release(struct inode *inode, struct file *file)
  847. {
  848. struct i915_error_state_file_priv *error_priv = file->private_data;
  849. i915_error_state_put(error_priv);
  850. kfree(error_priv);
  851. return 0;
  852. }
  853. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  854. size_t count, loff_t *pos)
  855. {
  856. struct i915_error_state_file_priv *error_priv = file->private_data;
  857. struct drm_i915_error_state_buf error_str;
  858. loff_t tmp_pos = 0;
  859. ssize_t ret_count = 0;
  860. int ret;
  861. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  862. if (ret)
  863. return ret;
  864. ret = i915_error_state_to_str(&error_str, error_priv);
  865. if (ret)
  866. goto out;
  867. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  868. error_str.buf,
  869. error_str.bytes);
  870. if (ret_count < 0)
  871. ret = ret_count;
  872. else
  873. *pos = error_str.start + ret_count;
  874. out:
  875. i915_error_state_buf_release(&error_str);
  876. return ret ?: ret_count;
  877. }
  878. static const struct file_operations i915_error_state_fops = {
  879. .owner = THIS_MODULE,
  880. .open = i915_error_state_open,
  881. .read = i915_error_state_read,
  882. .write = i915_error_state_write,
  883. .llseek = default_llseek,
  884. .release = i915_error_state_release,
  885. };
  886. static int
  887. i915_next_seqno_get(void *data, u64 *val)
  888. {
  889. struct drm_device *dev = data;
  890. struct drm_i915_private *dev_priv = dev->dev_private;
  891. int ret;
  892. ret = mutex_lock_interruptible(&dev->struct_mutex);
  893. if (ret)
  894. return ret;
  895. *val = dev_priv->next_seqno;
  896. mutex_unlock(&dev->struct_mutex);
  897. return 0;
  898. }
  899. static int
  900. i915_next_seqno_set(void *data, u64 val)
  901. {
  902. struct drm_device *dev = data;
  903. int ret;
  904. ret = mutex_lock_interruptible(&dev->struct_mutex);
  905. if (ret)
  906. return ret;
  907. ret = i915_gem_set_seqno(dev, val);
  908. mutex_unlock(&dev->struct_mutex);
  909. return ret;
  910. }
  911. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  912. i915_next_seqno_get, i915_next_seqno_set,
  913. "0x%llx\n");
  914. static int i915_frequency_info(struct seq_file *m, void *unused)
  915. {
  916. struct drm_info_node *node = m->private;
  917. struct drm_device *dev = node->minor->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. int ret = 0;
  920. intel_runtime_pm_get(dev_priv);
  921. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  922. if (IS_GEN5(dev)) {
  923. u16 rgvswctl = I915_READ16(MEMSWCTL);
  924. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  925. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  926. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  927. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  928. MEMSTAT_VID_SHIFT);
  929. seq_printf(m, "Current P-state: %d\n",
  930. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  931. } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
  932. IS_BROADWELL(dev) || IS_GEN9(dev)) {
  933. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  934. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  935. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  936. u32 rpmodectl, rpinclimit, rpdeclimit;
  937. u32 rpstat, cagf, reqf;
  938. u32 rpupei, rpcurup, rpprevup;
  939. u32 rpdownei, rpcurdown, rpprevdown;
  940. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  941. int max_freq;
  942. /* RPSTAT1 is in the GT power well */
  943. ret = mutex_lock_interruptible(&dev->struct_mutex);
  944. if (ret)
  945. goto out;
  946. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  947. reqf = I915_READ(GEN6_RPNSWREQ);
  948. if (IS_GEN9(dev))
  949. reqf >>= 23;
  950. else {
  951. reqf &= ~GEN6_TURBO_DISABLE;
  952. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  953. reqf >>= 24;
  954. else
  955. reqf >>= 25;
  956. }
  957. reqf = intel_gpu_freq(dev_priv, reqf);
  958. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  959. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  960. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  961. rpstat = I915_READ(GEN6_RPSTAT1);
  962. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  963. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  964. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  965. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  966. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  967. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  968. if (IS_GEN9(dev))
  969. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  970. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  971. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  972. else
  973. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  974. cagf = intel_gpu_freq(dev_priv, cagf);
  975. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  976. mutex_unlock(&dev->struct_mutex);
  977. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  978. pm_ier = I915_READ(GEN6_PMIER);
  979. pm_imr = I915_READ(GEN6_PMIMR);
  980. pm_isr = I915_READ(GEN6_PMISR);
  981. pm_iir = I915_READ(GEN6_PMIIR);
  982. pm_mask = I915_READ(GEN6_PMINTRMSK);
  983. } else {
  984. pm_ier = I915_READ(GEN8_GT_IER(2));
  985. pm_imr = I915_READ(GEN8_GT_IMR(2));
  986. pm_isr = I915_READ(GEN8_GT_ISR(2));
  987. pm_iir = I915_READ(GEN8_GT_IIR(2));
  988. pm_mask = I915_READ(GEN6_PMINTRMSK);
  989. }
  990. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  991. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  992. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  993. seq_printf(m, "Render p-state ratio: %d\n",
  994. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  995. seq_printf(m, "Render p-state VID: %d\n",
  996. gt_perf_status & 0xff);
  997. seq_printf(m, "Render p-state limit: %d\n",
  998. rp_state_limits & 0xff);
  999. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1000. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1001. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1002. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1003. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1004. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1005. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  1006. GEN6_CURICONT_MASK);
  1007. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  1008. GEN6_CURBSYTAVG_MASK);
  1009. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  1010. GEN6_CURBSYTAVG_MASK);
  1011. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  1012. GEN6_CURIAVG_MASK);
  1013. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  1014. GEN6_CURBSYTAVG_MASK);
  1015. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  1016. GEN6_CURBSYTAVG_MASK);
  1017. max_freq = (rp_state_cap & 0xff0000) >> 16;
  1018. max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
  1019. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1020. intel_gpu_freq(dev_priv, max_freq));
  1021. max_freq = (rp_state_cap & 0xff00) >> 8;
  1022. max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
  1023. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1024. intel_gpu_freq(dev_priv, max_freq));
  1025. max_freq = rp_state_cap & 0xff;
  1026. max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
  1027. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1028. intel_gpu_freq(dev_priv, max_freq));
  1029. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1030. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1031. seq_printf(m, "Idle freq: %d MHz\n",
  1032. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1033. } else if (IS_VALLEYVIEW(dev)) {
  1034. u32 freq_sts;
  1035. mutex_lock(&dev_priv->rps.hw_lock);
  1036. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1037. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1038. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1039. seq_printf(m, "max GPU freq: %d MHz\n",
  1040. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1041. seq_printf(m, "min GPU freq: %d MHz\n",
  1042. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1043. seq_printf(m, "idle GPU freq: %d MHz\n",
  1044. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1045. seq_printf(m,
  1046. "efficient (RPe) frequency: %d MHz\n",
  1047. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1048. seq_printf(m, "current GPU freq: %d MHz\n",
  1049. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1050. mutex_unlock(&dev_priv->rps.hw_lock);
  1051. } else {
  1052. seq_puts(m, "no P-state info available\n");
  1053. }
  1054. out:
  1055. intel_runtime_pm_put(dev_priv);
  1056. return ret;
  1057. }
  1058. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1059. {
  1060. struct drm_info_node *node = m->private;
  1061. struct drm_device *dev = node->minor->dev;
  1062. struct drm_i915_private *dev_priv = dev->dev_private;
  1063. struct intel_engine_cs *ring;
  1064. u64 acthd[I915_NUM_RINGS];
  1065. u32 seqno[I915_NUM_RINGS];
  1066. int i;
  1067. if (!i915.enable_hangcheck) {
  1068. seq_printf(m, "Hangcheck disabled\n");
  1069. return 0;
  1070. }
  1071. intel_runtime_pm_get(dev_priv);
  1072. for_each_ring(ring, dev_priv, i) {
  1073. seqno[i] = ring->get_seqno(ring, false);
  1074. acthd[i] = intel_ring_get_active_head(ring);
  1075. }
  1076. intel_runtime_pm_put(dev_priv);
  1077. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1078. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1079. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1080. jiffies));
  1081. } else
  1082. seq_printf(m, "Hangcheck inactive\n");
  1083. for_each_ring(ring, dev_priv, i) {
  1084. seq_printf(m, "%s:\n", ring->name);
  1085. seq_printf(m, "\tseqno = %x [current %x]\n",
  1086. ring->hangcheck.seqno, seqno[i]);
  1087. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1088. (long long)ring->hangcheck.acthd,
  1089. (long long)acthd[i]);
  1090. seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
  1091. (long long)ring->hangcheck.max_acthd);
  1092. seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
  1093. seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
  1094. }
  1095. return 0;
  1096. }
  1097. static int ironlake_drpc_info(struct seq_file *m)
  1098. {
  1099. struct drm_info_node *node = m->private;
  1100. struct drm_device *dev = node->minor->dev;
  1101. struct drm_i915_private *dev_priv = dev->dev_private;
  1102. u32 rgvmodectl, rstdbyctl;
  1103. u16 crstandvid;
  1104. int ret;
  1105. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1106. if (ret)
  1107. return ret;
  1108. intel_runtime_pm_get(dev_priv);
  1109. rgvmodectl = I915_READ(MEMMODECTL);
  1110. rstdbyctl = I915_READ(RSTDBYCTL);
  1111. crstandvid = I915_READ16(CRSTANDVID);
  1112. intel_runtime_pm_put(dev_priv);
  1113. mutex_unlock(&dev->struct_mutex);
  1114. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  1115. "yes" : "no");
  1116. seq_printf(m, "Boost freq: %d\n",
  1117. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1118. MEMMODE_BOOST_FREQ_SHIFT);
  1119. seq_printf(m, "HW control enabled: %s\n",
  1120. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  1121. seq_printf(m, "SW control enabled: %s\n",
  1122. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  1123. seq_printf(m, "Gated voltage change: %s\n",
  1124. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  1125. seq_printf(m, "Starting frequency: P%d\n",
  1126. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1127. seq_printf(m, "Max P-state: P%d\n",
  1128. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1129. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1130. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1131. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1132. seq_printf(m, "Render standby enabled: %s\n",
  1133. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  1134. seq_puts(m, "Current RS state: ");
  1135. switch (rstdbyctl & RSX_STATUS_MASK) {
  1136. case RSX_STATUS_ON:
  1137. seq_puts(m, "on\n");
  1138. break;
  1139. case RSX_STATUS_RC1:
  1140. seq_puts(m, "RC1\n");
  1141. break;
  1142. case RSX_STATUS_RC1E:
  1143. seq_puts(m, "RC1E\n");
  1144. break;
  1145. case RSX_STATUS_RS1:
  1146. seq_puts(m, "RS1\n");
  1147. break;
  1148. case RSX_STATUS_RS2:
  1149. seq_puts(m, "RS2 (RC6)\n");
  1150. break;
  1151. case RSX_STATUS_RS3:
  1152. seq_puts(m, "RC3 (RC6+)\n");
  1153. break;
  1154. default:
  1155. seq_puts(m, "unknown\n");
  1156. break;
  1157. }
  1158. return 0;
  1159. }
  1160. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1161. {
  1162. struct drm_info_node *node = m->private;
  1163. struct drm_device *dev = node->minor->dev;
  1164. struct drm_i915_private *dev_priv = dev->dev_private;
  1165. struct intel_uncore_forcewake_domain *fw_domain;
  1166. int i;
  1167. spin_lock_irq(&dev_priv->uncore.lock);
  1168. for_each_fw_domain(fw_domain, dev_priv, i) {
  1169. seq_printf(m, "%s.wake_count = %u\n",
  1170. intel_uncore_forcewake_domain_to_str(i),
  1171. fw_domain->wake_count);
  1172. }
  1173. spin_unlock_irq(&dev_priv->uncore.lock);
  1174. return 0;
  1175. }
  1176. static int vlv_drpc_info(struct seq_file *m)
  1177. {
  1178. struct drm_info_node *node = m->private;
  1179. struct drm_device *dev = node->minor->dev;
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. u32 rpmodectl1, rcctl1, pw_status;
  1182. intel_runtime_pm_get(dev_priv);
  1183. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1184. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1185. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1186. intel_runtime_pm_put(dev_priv);
  1187. seq_printf(m, "Video Turbo Mode: %s\n",
  1188. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1189. seq_printf(m, "Turbo enabled: %s\n",
  1190. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1191. seq_printf(m, "HW control enabled: %s\n",
  1192. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1193. seq_printf(m, "SW control enabled: %s\n",
  1194. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1195. GEN6_RP_MEDIA_SW_MODE));
  1196. seq_printf(m, "RC6 Enabled: %s\n",
  1197. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1198. GEN6_RC_CTL_EI_MODE(1))));
  1199. seq_printf(m, "Render Power Well: %s\n",
  1200. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1201. seq_printf(m, "Media Power Well: %s\n",
  1202. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1203. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1204. I915_READ(VLV_GT_RENDER_RC6));
  1205. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1206. I915_READ(VLV_GT_MEDIA_RC6));
  1207. return i915_forcewake_domains(m, NULL);
  1208. }
  1209. static int gen6_drpc_info(struct seq_file *m)
  1210. {
  1211. struct drm_info_node *node = m->private;
  1212. struct drm_device *dev = node->minor->dev;
  1213. struct drm_i915_private *dev_priv = dev->dev_private;
  1214. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1215. unsigned forcewake_count;
  1216. int count = 0, ret;
  1217. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1218. if (ret)
  1219. return ret;
  1220. intel_runtime_pm_get(dev_priv);
  1221. spin_lock_irq(&dev_priv->uncore.lock);
  1222. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1223. spin_unlock_irq(&dev_priv->uncore.lock);
  1224. if (forcewake_count) {
  1225. seq_puts(m, "RC information inaccurate because somebody "
  1226. "holds a forcewake reference \n");
  1227. } else {
  1228. /* NB: we cannot use forcewake, else we read the wrong values */
  1229. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1230. udelay(10);
  1231. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1232. }
  1233. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  1234. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1235. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1236. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1237. mutex_unlock(&dev->struct_mutex);
  1238. mutex_lock(&dev_priv->rps.hw_lock);
  1239. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1240. mutex_unlock(&dev_priv->rps.hw_lock);
  1241. intel_runtime_pm_put(dev_priv);
  1242. seq_printf(m, "Video Turbo Mode: %s\n",
  1243. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1244. seq_printf(m, "HW control enabled: %s\n",
  1245. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1246. seq_printf(m, "SW control enabled: %s\n",
  1247. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1248. GEN6_RP_MEDIA_SW_MODE));
  1249. seq_printf(m, "RC1e Enabled: %s\n",
  1250. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1251. seq_printf(m, "RC6 Enabled: %s\n",
  1252. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1253. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1254. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1255. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1256. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1257. seq_puts(m, "Current RC state: ");
  1258. switch (gt_core_status & GEN6_RCn_MASK) {
  1259. case GEN6_RC0:
  1260. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1261. seq_puts(m, "Core Power Down\n");
  1262. else
  1263. seq_puts(m, "on\n");
  1264. break;
  1265. case GEN6_RC3:
  1266. seq_puts(m, "RC3\n");
  1267. break;
  1268. case GEN6_RC6:
  1269. seq_puts(m, "RC6\n");
  1270. break;
  1271. case GEN6_RC7:
  1272. seq_puts(m, "RC7\n");
  1273. break;
  1274. default:
  1275. seq_puts(m, "Unknown\n");
  1276. break;
  1277. }
  1278. seq_printf(m, "Core Power Down: %s\n",
  1279. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1280. /* Not exactly sure what this is */
  1281. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1282. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1283. seq_printf(m, "RC6 residency since boot: %u\n",
  1284. I915_READ(GEN6_GT_GFX_RC6));
  1285. seq_printf(m, "RC6+ residency since boot: %u\n",
  1286. I915_READ(GEN6_GT_GFX_RC6p));
  1287. seq_printf(m, "RC6++ residency since boot: %u\n",
  1288. I915_READ(GEN6_GT_GFX_RC6pp));
  1289. seq_printf(m, "RC6 voltage: %dmV\n",
  1290. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1291. seq_printf(m, "RC6+ voltage: %dmV\n",
  1292. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1293. seq_printf(m, "RC6++ voltage: %dmV\n",
  1294. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1295. return 0;
  1296. }
  1297. static int i915_drpc_info(struct seq_file *m, void *unused)
  1298. {
  1299. struct drm_info_node *node = m->private;
  1300. struct drm_device *dev = node->minor->dev;
  1301. if (IS_VALLEYVIEW(dev))
  1302. return vlv_drpc_info(m);
  1303. else if (INTEL_INFO(dev)->gen >= 6)
  1304. return gen6_drpc_info(m);
  1305. else
  1306. return ironlake_drpc_info(m);
  1307. }
  1308. static int i915_fbc_status(struct seq_file *m, void *unused)
  1309. {
  1310. struct drm_info_node *node = m->private;
  1311. struct drm_device *dev = node->minor->dev;
  1312. struct drm_i915_private *dev_priv = dev->dev_private;
  1313. if (!HAS_FBC(dev)) {
  1314. seq_puts(m, "FBC unsupported on this chipset\n");
  1315. return 0;
  1316. }
  1317. intel_runtime_pm_get(dev_priv);
  1318. if (intel_fbc_enabled(dev)) {
  1319. seq_puts(m, "FBC enabled\n");
  1320. } else {
  1321. seq_puts(m, "FBC disabled: ");
  1322. switch (dev_priv->fbc.no_fbc_reason) {
  1323. case FBC_OK:
  1324. seq_puts(m, "FBC actived, but currently disabled in hardware");
  1325. break;
  1326. case FBC_UNSUPPORTED:
  1327. seq_puts(m, "unsupported by this chipset");
  1328. break;
  1329. case FBC_NO_OUTPUT:
  1330. seq_puts(m, "no outputs");
  1331. break;
  1332. case FBC_STOLEN_TOO_SMALL:
  1333. seq_puts(m, "not enough stolen memory");
  1334. break;
  1335. case FBC_UNSUPPORTED_MODE:
  1336. seq_puts(m, "mode not supported");
  1337. break;
  1338. case FBC_MODE_TOO_LARGE:
  1339. seq_puts(m, "mode too large");
  1340. break;
  1341. case FBC_BAD_PLANE:
  1342. seq_puts(m, "FBC unsupported on plane");
  1343. break;
  1344. case FBC_NOT_TILED:
  1345. seq_puts(m, "scanout buffer not tiled");
  1346. break;
  1347. case FBC_MULTIPLE_PIPES:
  1348. seq_puts(m, "multiple pipes are enabled");
  1349. break;
  1350. case FBC_MODULE_PARAM:
  1351. seq_puts(m, "disabled per module param (default off)");
  1352. break;
  1353. case FBC_CHIP_DEFAULT:
  1354. seq_puts(m, "disabled per chip default");
  1355. break;
  1356. default:
  1357. seq_puts(m, "unknown reason");
  1358. }
  1359. seq_putc(m, '\n');
  1360. }
  1361. intel_runtime_pm_put(dev_priv);
  1362. return 0;
  1363. }
  1364. static int i915_fbc_fc_get(void *data, u64 *val)
  1365. {
  1366. struct drm_device *dev = data;
  1367. struct drm_i915_private *dev_priv = dev->dev_private;
  1368. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1369. return -ENODEV;
  1370. drm_modeset_lock_all(dev);
  1371. *val = dev_priv->fbc.false_color;
  1372. drm_modeset_unlock_all(dev);
  1373. return 0;
  1374. }
  1375. static int i915_fbc_fc_set(void *data, u64 val)
  1376. {
  1377. struct drm_device *dev = data;
  1378. struct drm_i915_private *dev_priv = dev->dev_private;
  1379. u32 reg;
  1380. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1381. return -ENODEV;
  1382. drm_modeset_lock_all(dev);
  1383. reg = I915_READ(ILK_DPFC_CONTROL);
  1384. dev_priv->fbc.false_color = val;
  1385. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1386. (reg | FBC_CTL_FALSE_COLOR) :
  1387. (reg & ~FBC_CTL_FALSE_COLOR));
  1388. drm_modeset_unlock_all(dev);
  1389. return 0;
  1390. }
  1391. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1392. i915_fbc_fc_get, i915_fbc_fc_set,
  1393. "%llu\n");
  1394. static int i915_ips_status(struct seq_file *m, void *unused)
  1395. {
  1396. struct drm_info_node *node = m->private;
  1397. struct drm_device *dev = node->minor->dev;
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. if (!HAS_IPS(dev)) {
  1400. seq_puts(m, "not supported\n");
  1401. return 0;
  1402. }
  1403. intel_runtime_pm_get(dev_priv);
  1404. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1405. yesno(i915.enable_ips));
  1406. if (INTEL_INFO(dev)->gen >= 8) {
  1407. seq_puts(m, "Currently: unknown\n");
  1408. } else {
  1409. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1410. seq_puts(m, "Currently: enabled\n");
  1411. else
  1412. seq_puts(m, "Currently: disabled\n");
  1413. }
  1414. intel_runtime_pm_put(dev_priv);
  1415. return 0;
  1416. }
  1417. static int i915_sr_status(struct seq_file *m, void *unused)
  1418. {
  1419. struct drm_info_node *node = m->private;
  1420. struct drm_device *dev = node->minor->dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. bool sr_enabled = false;
  1423. intel_runtime_pm_get(dev_priv);
  1424. if (HAS_PCH_SPLIT(dev))
  1425. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1426. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1427. IS_I945G(dev) || IS_I945GM(dev))
  1428. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1429. else if (IS_I915GM(dev))
  1430. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1431. else if (IS_PINEVIEW(dev))
  1432. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1433. else if (IS_VALLEYVIEW(dev))
  1434. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1435. intel_runtime_pm_put(dev_priv);
  1436. seq_printf(m, "self-refresh: %s\n",
  1437. sr_enabled ? "enabled" : "disabled");
  1438. return 0;
  1439. }
  1440. static int i915_emon_status(struct seq_file *m, void *unused)
  1441. {
  1442. struct drm_info_node *node = m->private;
  1443. struct drm_device *dev = node->minor->dev;
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. unsigned long temp, chipset, gfx;
  1446. int ret;
  1447. if (!IS_GEN5(dev))
  1448. return -ENODEV;
  1449. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1450. if (ret)
  1451. return ret;
  1452. temp = i915_mch_val(dev_priv);
  1453. chipset = i915_chipset_val(dev_priv);
  1454. gfx = i915_gfx_val(dev_priv);
  1455. mutex_unlock(&dev->struct_mutex);
  1456. seq_printf(m, "GMCH temp: %ld\n", temp);
  1457. seq_printf(m, "Chipset power: %ld\n", chipset);
  1458. seq_printf(m, "GFX power: %ld\n", gfx);
  1459. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1460. return 0;
  1461. }
  1462. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1463. {
  1464. struct drm_info_node *node = m->private;
  1465. struct drm_device *dev = node->minor->dev;
  1466. struct drm_i915_private *dev_priv = dev->dev_private;
  1467. int ret = 0;
  1468. int gpu_freq, ia_freq;
  1469. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1470. seq_puts(m, "unsupported on this chipset\n");
  1471. return 0;
  1472. }
  1473. intel_runtime_pm_get(dev_priv);
  1474. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1475. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1476. if (ret)
  1477. goto out;
  1478. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1479. for (gpu_freq = dev_priv->rps.min_freq_softlimit;
  1480. gpu_freq <= dev_priv->rps.max_freq_softlimit;
  1481. gpu_freq++) {
  1482. ia_freq = gpu_freq;
  1483. sandybridge_pcode_read(dev_priv,
  1484. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1485. &ia_freq);
  1486. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1487. intel_gpu_freq(dev_priv, gpu_freq),
  1488. ((ia_freq >> 0) & 0xff) * 100,
  1489. ((ia_freq >> 8) & 0xff) * 100);
  1490. }
  1491. mutex_unlock(&dev_priv->rps.hw_lock);
  1492. out:
  1493. intel_runtime_pm_put(dev_priv);
  1494. return ret;
  1495. }
  1496. static int i915_opregion(struct seq_file *m, void *unused)
  1497. {
  1498. struct drm_info_node *node = m->private;
  1499. struct drm_device *dev = node->minor->dev;
  1500. struct drm_i915_private *dev_priv = dev->dev_private;
  1501. struct intel_opregion *opregion = &dev_priv->opregion;
  1502. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1503. int ret;
  1504. if (data == NULL)
  1505. return -ENOMEM;
  1506. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1507. if (ret)
  1508. goto out;
  1509. if (opregion->header) {
  1510. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1511. seq_write(m, data, OPREGION_SIZE);
  1512. }
  1513. mutex_unlock(&dev->struct_mutex);
  1514. out:
  1515. kfree(data);
  1516. return 0;
  1517. }
  1518. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1519. {
  1520. struct drm_info_node *node = m->private;
  1521. struct drm_device *dev = node->minor->dev;
  1522. struct intel_fbdev *ifbdev = NULL;
  1523. struct intel_framebuffer *fb;
  1524. #ifdef CONFIG_DRM_I915_FBDEV
  1525. struct drm_i915_private *dev_priv = dev->dev_private;
  1526. ifbdev = dev_priv->fbdev;
  1527. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1528. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1529. fb->base.width,
  1530. fb->base.height,
  1531. fb->base.depth,
  1532. fb->base.bits_per_pixel,
  1533. fb->base.modifier[0],
  1534. atomic_read(&fb->base.refcount.refcount));
  1535. describe_obj(m, fb->obj);
  1536. seq_putc(m, '\n');
  1537. #endif
  1538. mutex_lock(&dev->mode_config.fb_lock);
  1539. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1540. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1541. continue;
  1542. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1543. fb->base.width,
  1544. fb->base.height,
  1545. fb->base.depth,
  1546. fb->base.bits_per_pixel,
  1547. fb->base.modifier[0],
  1548. atomic_read(&fb->base.refcount.refcount));
  1549. describe_obj(m, fb->obj);
  1550. seq_putc(m, '\n');
  1551. }
  1552. mutex_unlock(&dev->mode_config.fb_lock);
  1553. return 0;
  1554. }
  1555. static void describe_ctx_ringbuf(struct seq_file *m,
  1556. struct intel_ringbuffer *ringbuf)
  1557. {
  1558. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1559. ringbuf->space, ringbuf->head, ringbuf->tail,
  1560. ringbuf->last_retired_head);
  1561. }
  1562. static int i915_context_status(struct seq_file *m, void *unused)
  1563. {
  1564. struct drm_info_node *node = m->private;
  1565. struct drm_device *dev = node->minor->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. struct intel_engine_cs *ring;
  1568. struct intel_context *ctx;
  1569. int ret, i;
  1570. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1571. if (ret)
  1572. return ret;
  1573. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1574. if (!i915.enable_execlists &&
  1575. ctx->legacy_hw_ctx.rcs_state == NULL)
  1576. continue;
  1577. seq_puts(m, "HW context ");
  1578. describe_ctx(m, ctx);
  1579. for_each_ring(ring, dev_priv, i) {
  1580. if (ring->default_context == ctx)
  1581. seq_printf(m, "(default context %s) ",
  1582. ring->name);
  1583. }
  1584. if (i915.enable_execlists) {
  1585. seq_putc(m, '\n');
  1586. for_each_ring(ring, dev_priv, i) {
  1587. struct drm_i915_gem_object *ctx_obj =
  1588. ctx->engine[i].state;
  1589. struct intel_ringbuffer *ringbuf =
  1590. ctx->engine[i].ringbuf;
  1591. seq_printf(m, "%s: ", ring->name);
  1592. if (ctx_obj)
  1593. describe_obj(m, ctx_obj);
  1594. if (ringbuf)
  1595. describe_ctx_ringbuf(m, ringbuf);
  1596. seq_putc(m, '\n');
  1597. }
  1598. } else {
  1599. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1600. }
  1601. seq_putc(m, '\n');
  1602. }
  1603. mutex_unlock(&dev->struct_mutex);
  1604. return 0;
  1605. }
  1606. static void i915_dump_lrc_obj(struct seq_file *m,
  1607. struct intel_engine_cs *ring,
  1608. struct drm_i915_gem_object *ctx_obj)
  1609. {
  1610. struct page *page;
  1611. uint32_t *reg_state;
  1612. int j;
  1613. unsigned long ggtt_offset = 0;
  1614. if (ctx_obj == NULL) {
  1615. seq_printf(m, "Context on %s with no gem object\n",
  1616. ring->name);
  1617. return;
  1618. }
  1619. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1620. intel_execlists_ctx_id(ctx_obj));
  1621. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1622. seq_puts(m, "\tNot bound in GGTT\n");
  1623. else
  1624. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1625. if (i915_gem_object_get_pages(ctx_obj)) {
  1626. seq_puts(m, "\tFailed to get pages for context object\n");
  1627. return;
  1628. }
  1629. page = i915_gem_object_get_page(ctx_obj, 1);
  1630. if (!WARN_ON(page == NULL)) {
  1631. reg_state = kmap_atomic(page);
  1632. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1633. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1634. ggtt_offset + 4096 + (j * 4),
  1635. reg_state[j], reg_state[j + 1],
  1636. reg_state[j + 2], reg_state[j + 3]);
  1637. }
  1638. kunmap_atomic(reg_state);
  1639. }
  1640. seq_putc(m, '\n');
  1641. }
  1642. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1643. {
  1644. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1645. struct drm_device *dev = node->minor->dev;
  1646. struct drm_i915_private *dev_priv = dev->dev_private;
  1647. struct intel_engine_cs *ring;
  1648. struct intel_context *ctx;
  1649. int ret, i;
  1650. if (!i915.enable_execlists) {
  1651. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1652. return 0;
  1653. }
  1654. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1655. if (ret)
  1656. return ret;
  1657. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1658. for_each_ring(ring, dev_priv, i) {
  1659. if (ring->default_context != ctx)
  1660. i915_dump_lrc_obj(m, ring,
  1661. ctx->engine[i].state);
  1662. }
  1663. }
  1664. mutex_unlock(&dev->struct_mutex);
  1665. return 0;
  1666. }
  1667. static int i915_execlists(struct seq_file *m, void *data)
  1668. {
  1669. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1670. struct drm_device *dev = node->minor->dev;
  1671. struct drm_i915_private *dev_priv = dev->dev_private;
  1672. struct intel_engine_cs *ring;
  1673. u32 status_pointer;
  1674. u8 read_pointer;
  1675. u8 write_pointer;
  1676. u32 status;
  1677. u32 ctx_id;
  1678. struct list_head *cursor;
  1679. int ring_id, i;
  1680. int ret;
  1681. if (!i915.enable_execlists) {
  1682. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1683. return 0;
  1684. }
  1685. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1686. if (ret)
  1687. return ret;
  1688. intel_runtime_pm_get(dev_priv);
  1689. for_each_ring(ring, dev_priv, ring_id) {
  1690. struct drm_i915_gem_request *head_req = NULL;
  1691. int count = 0;
  1692. unsigned long flags;
  1693. seq_printf(m, "%s\n", ring->name);
  1694. status = I915_READ(RING_EXECLIST_STATUS(ring));
  1695. ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
  1696. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1697. status, ctx_id);
  1698. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1699. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1700. read_pointer = ring->next_context_status_buffer;
  1701. write_pointer = status_pointer & 0x07;
  1702. if (read_pointer > write_pointer)
  1703. write_pointer += 6;
  1704. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1705. read_pointer, write_pointer);
  1706. for (i = 0; i < 6; i++) {
  1707. status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
  1708. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
  1709. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1710. i, status, ctx_id);
  1711. }
  1712. spin_lock_irqsave(&ring->execlist_lock, flags);
  1713. list_for_each(cursor, &ring->execlist_queue)
  1714. count++;
  1715. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1716. struct drm_i915_gem_request, execlist_link);
  1717. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1718. seq_printf(m, "\t%d requests in queue\n", count);
  1719. if (head_req) {
  1720. struct drm_i915_gem_object *ctx_obj;
  1721. ctx_obj = head_req->ctx->engine[ring_id].state;
  1722. seq_printf(m, "\tHead request id: %u\n",
  1723. intel_execlists_ctx_id(ctx_obj));
  1724. seq_printf(m, "\tHead request tail: %u\n",
  1725. head_req->tail);
  1726. }
  1727. seq_putc(m, '\n');
  1728. }
  1729. intel_runtime_pm_put(dev_priv);
  1730. mutex_unlock(&dev->struct_mutex);
  1731. return 0;
  1732. }
  1733. static const char *swizzle_string(unsigned swizzle)
  1734. {
  1735. switch (swizzle) {
  1736. case I915_BIT_6_SWIZZLE_NONE:
  1737. return "none";
  1738. case I915_BIT_6_SWIZZLE_9:
  1739. return "bit9";
  1740. case I915_BIT_6_SWIZZLE_9_10:
  1741. return "bit9/bit10";
  1742. case I915_BIT_6_SWIZZLE_9_11:
  1743. return "bit9/bit11";
  1744. case I915_BIT_6_SWIZZLE_9_10_11:
  1745. return "bit9/bit10/bit11";
  1746. case I915_BIT_6_SWIZZLE_9_17:
  1747. return "bit9/bit17";
  1748. case I915_BIT_6_SWIZZLE_9_10_17:
  1749. return "bit9/bit10/bit17";
  1750. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1751. return "unknown";
  1752. }
  1753. return "bug";
  1754. }
  1755. static int i915_swizzle_info(struct seq_file *m, void *data)
  1756. {
  1757. struct drm_info_node *node = m->private;
  1758. struct drm_device *dev = node->minor->dev;
  1759. struct drm_i915_private *dev_priv = dev->dev_private;
  1760. int ret;
  1761. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1762. if (ret)
  1763. return ret;
  1764. intel_runtime_pm_get(dev_priv);
  1765. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1766. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1767. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1768. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1769. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1770. seq_printf(m, "DDC = 0x%08x\n",
  1771. I915_READ(DCC));
  1772. seq_printf(m, "DDC2 = 0x%08x\n",
  1773. I915_READ(DCC2));
  1774. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1775. I915_READ16(C0DRB3));
  1776. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1777. I915_READ16(C1DRB3));
  1778. } else if (INTEL_INFO(dev)->gen >= 6) {
  1779. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1780. I915_READ(MAD_DIMM_C0));
  1781. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1782. I915_READ(MAD_DIMM_C1));
  1783. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1784. I915_READ(MAD_DIMM_C2));
  1785. seq_printf(m, "TILECTL = 0x%08x\n",
  1786. I915_READ(TILECTL));
  1787. if (INTEL_INFO(dev)->gen >= 8)
  1788. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1789. I915_READ(GAMTARBMODE));
  1790. else
  1791. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1792. I915_READ(ARB_MODE));
  1793. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1794. I915_READ(DISP_ARB_CTL));
  1795. }
  1796. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1797. seq_puts(m, "L-shaped memory detected\n");
  1798. intel_runtime_pm_put(dev_priv);
  1799. mutex_unlock(&dev->struct_mutex);
  1800. return 0;
  1801. }
  1802. static int per_file_ctx(int id, void *ptr, void *data)
  1803. {
  1804. struct intel_context *ctx = ptr;
  1805. struct seq_file *m = data;
  1806. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1807. if (!ppgtt) {
  1808. seq_printf(m, " no ppgtt for context %d\n",
  1809. ctx->user_handle);
  1810. return 0;
  1811. }
  1812. if (i915_gem_context_is_default(ctx))
  1813. seq_puts(m, " default context:\n");
  1814. else
  1815. seq_printf(m, " context %d:\n", ctx->user_handle);
  1816. ppgtt->debug_dump(ppgtt, m);
  1817. return 0;
  1818. }
  1819. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1820. {
  1821. struct drm_i915_private *dev_priv = dev->dev_private;
  1822. struct intel_engine_cs *ring;
  1823. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1824. int unused, i;
  1825. if (!ppgtt)
  1826. return;
  1827. seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
  1828. seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
  1829. for_each_ring(ring, dev_priv, unused) {
  1830. seq_printf(m, "%s\n", ring->name);
  1831. for (i = 0; i < 4; i++) {
  1832. u32 offset = 0x270 + i * 8;
  1833. u64 pdp = I915_READ(ring->mmio_base + offset + 4);
  1834. pdp <<= 32;
  1835. pdp |= I915_READ(ring->mmio_base + offset);
  1836. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1837. }
  1838. }
  1839. }
  1840. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1841. {
  1842. struct drm_i915_private *dev_priv = dev->dev_private;
  1843. struct intel_engine_cs *ring;
  1844. struct drm_file *file;
  1845. int i;
  1846. if (INTEL_INFO(dev)->gen == 6)
  1847. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1848. for_each_ring(ring, dev_priv, i) {
  1849. seq_printf(m, "%s\n", ring->name);
  1850. if (INTEL_INFO(dev)->gen == 7)
  1851. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1852. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1853. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1854. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1855. }
  1856. if (dev_priv->mm.aliasing_ppgtt) {
  1857. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1858. seq_puts(m, "aliasing PPGTT:\n");
  1859. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
  1860. ppgtt->debug_dump(ppgtt, m);
  1861. }
  1862. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1863. struct drm_i915_file_private *file_priv = file->driver_priv;
  1864. seq_printf(m, "proc: %s\n",
  1865. get_pid_task(file->pid, PIDTYPE_PID)->comm);
  1866. idr_for_each(&file_priv->context_idr, per_file_ctx, m);
  1867. }
  1868. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1869. }
  1870. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1871. {
  1872. struct drm_info_node *node = m->private;
  1873. struct drm_device *dev = node->minor->dev;
  1874. struct drm_i915_private *dev_priv = dev->dev_private;
  1875. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1876. if (ret)
  1877. return ret;
  1878. intel_runtime_pm_get(dev_priv);
  1879. if (INTEL_INFO(dev)->gen >= 8)
  1880. gen8_ppgtt_info(m, dev);
  1881. else if (INTEL_INFO(dev)->gen >= 6)
  1882. gen6_ppgtt_info(m, dev);
  1883. intel_runtime_pm_put(dev_priv);
  1884. mutex_unlock(&dev->struct_mutex);
  1885. return 0;
  1886. }
  1887. static int i915_llc(struct seq_file *m, void *data)
  1888. {
  1889. struct drm_info_node *node = m->private;
  1890. struct drm_device *dev = node->minor->dev;
  1891. struct drm_i915_private *dev_priv = dev->dev_private;
  1892. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  1893. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  1894. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  1895. return 0;
  1896. }
  1897. static int i915_edp_psr_status(struct seq_file *m, void *data)
  1898. {
  1899. struct drm_info_node *node = m->private;
  1900. struct drm_device *dev = node->minor->dev;
  1901. struct drm_i915_private *dev_priv = dev->dev_private;
  1902. u32 psrperf = 0;
  1903. u32 stat[3];
  1904. enum pipe pipe;
  1905. bool enabled = false;
  1906. if (!HAS_PSR(dev)) {
  1907. seq_puts(m, "PSR not supported\n");
  1908. return 0;
  1909. }
  1910. intel_runtime_pm_get(dev_priv);
  1911. mutex_lock(&dev_priv->psr.lock);
  1912. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  1913. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  1914. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  1915. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  1916. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  1917. dev_priv->psr.busy_frontbuffer_bits);
  1918. seq_printf(m, "Re-enable work scheduled: %s\n",
  1919. yesno(work_busy(&dev_priv->psr.work.work)));
  1920. if (HAS_DDI(dev))
  1921. enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1922. else {
  1923. for_each_pipe(dev_priv, pipe) {
  1924. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  1925. VLV_EDP_PSR_CURR_STATE_MASK;
  1926. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  1927. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  1928. enabled = true;
  1929. }
  1930. }
  1931. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  1932. if (!HAS_DDI(dev))
  1933. for_each_pipe(dev_priv, pipe) {
  1934. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  1935. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  1936. seq_printf(m, " pipe %c", pipe_name(pipe));
  1937. }
  1938. seq_puts(m, "\n");
  1939. seq_printf(m, "Link standby: %s\n",
  1940. yesno((bool)dev_priv->psr.link_standby));
  1941. /* CHV PSR has no kind of performance counter */
  1942. if (HAS_DDI(dev)) {
  1943. psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
  1944. EDP_PSR_PERF_CNT_MASK;
  1945. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  1946. }
  1947. mutex_unlock(&dev_priv->psr.lock);
  1948. intel_runtime_pm_put(dev_priv);
  1949. return 0;
  1950. }
  1951. static int i915_sink_crc(struct seq_file *m, void *data)
  1952. {
  1953. struct drm_info_node *node = m->private;
  1954. struct drm_device *dev = node->minor->dev;
  1955. struct intel_encoder *encoder;
  1956. struct intel_connector *connector;
  1957. struct intel_dp *intel_dp = NULL;
  1958. int ret;
  1959. u8 crc[6];
  1960. drm_modeset_lock_all(dev);
  1961. for_each_intel_connector(dev, connector) {
  1962. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  1963. continue;
  1964. if (!connector->base.encoder)
  1965. continue;
  1966. encoder = to_intel_encoder(connector->base.encoder);
  1967. if (encoder->type != INTEL_OUTPUT_EDP)
  1968. continue;
  1969. intel_dp = enc_to_intel_dp(&encoder->base);
  1970. ret = intel_dp_sink_crc(intel_dp, crc);
  1971. if (ret)
  1972. goto out;
  1973. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  1974. crc[0], crc[1], crc[2],
  1975. crc[3], crc[4], crc[5]);
  1976. goto out;
  1977. }
  1978. ret = -ENODEV;
  1979. out:
  1980. drm_modeset_unlock_all(dev);
  1981. return ret;
  1982. }
  1983. static int i915_energy_uJ(struct seq_file *m, void *data)
  1984. {
  1985. struct drm_info_node *node = m->private;
  1986. struct drm_device *dev = node->minor->dev;
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. u64 power;
  1989. u32 units;
  1990. if (INTEL_INFO(dev)->gen < 6)
  1991. return -ENODEV;
  1992. intel_runtime_pm_get(dev_priv);
  1993. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  1994. power = (power & 0x1f00) >> 8;
  1995. units = 1000000 / (1 << power); /* convert to uJ */
  1996. power = I915_READ(MCH_SECP_NRG_STTS);
  1997. power *= units;
  1998. intel_runtime_pm_put(dev_priv);
  1999. seq_printf(m, "%llu", (long long unsigned)power);
  2000. return 0;
  2001. }
  2002. static int i915_pc8_status(struct seq_file *m, void *unused)
  2003. {
  2004. struct drm_info_node *node = m->private;
  2005. struct drm_device *dev = node->minor->dev;
  2006. struct drm_i915_private *dev_priv = dev->dev_private;
  2007. if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  2008. seq_puts(m, "not supported\n");
  2009. return 0;
  2010. }
  2011. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2012. seq_printf(m, "IRQs disabled: %s\n",
  2013. yesno(!intel_irqs_enabled(dev_priv)));
  2014. return 0;
  2015. }
  2016. static const char *power_domain_str(enum intel_display_power_domain domain)
  2017. {
  2018. switch (domain) {
  2019. case POWER_DOMAIN_PIPE_A:
  2020. return "PIPE_A";
  2021. case POWER_DOMAIN_PIPE_B:
  2022. return "PIPE_B";
  2023. case POWER_DOMAIN_PIPE_C:
  2024. return "PIPE_C";
  2025. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  2026. return "PIPE_A_PANEL_FITTER";
  2027. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  2028. return "PIPE_B_PANEL_FITTER";
  2029. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  2030. return "PIPE_C_PANEL_FITTER";
  2031. case POWER_DOMAIN_TRANSCODER_A:
  2032. return "TRANSCODER_A";
  2033. case POWER_DOMAIN_TRANSCODER_B:
  2034. return "TRANSCODER_B";
  2035. case POWER_DOMAIN_TRANSCODER_C:
  2036. return "TRANSCODER_C";
  2037. case POWER_DOMAIN_TRANSCODER_EDP:
  2038. return "TRANSCODER_EDP";
  2039. case POWER_DOMAIN_PORT_DDI_A_2_LANES:
  2040. return "PORT_DDI_A_2_LANES";
  2041. case POWER_DOMAIN_PORT_DDI_A_4_LANES:
  2042. return "PORT_DDI_A_4_LANES";
  2043. case POWER_DOMAIN_PORT_DDI_B_2_LANES:
  2044. return "PORT_DDI_B_2_LANES";
  2045. case POWER_DOMAIN_PORT_DDI_B_4_LANES:
  2046. return "PORT_DDI_B_4_LANES";
  2047. case POWER_DOMAIN_PORT_DDI_C_2_LANES:
  2048. return "PORT_DDI_C_2_LANES";
  2049. case POWER_DOMAIN_PORT_DDI_C_4_LANES:
  2050. return "PORT_DDI_C_4_LANES";
  2051. case POWER_DOMAIN_PORT_DDI_D_2_LANES:
  2052. return "PORT_DDI_D_2_LANES";
  2053. case POWER_DOMAIN_PORT_DDI_D_4_LANES:
  2054. return "PORT_DDI_D_4_LANES";
  2055. case POWER_DOMAIN_PORT_DSI:
  2056. return "PORT_DSI";
  2057. case POWER_DOMAIN_PORT_CRT:
  2058. return "PORT_CRT";
  2059. case POWER_DOMAIN_PORT_OTHER:
  2060. return "PORT_OTHER";
  2061. case POWER_DOMAIN_VGA:
  2062. return "VGA";
  2063. case POWER_DOMAIN_AUDIO:
  2064. return "AUDIO";
  2065. case POWER_DOMAIN_PLLS:
  2066. return "PLLS";
  2067. case POWER_DOMAIN_AUX_A:
  2068. return "AUX_A";
  2069. case POWER_DOMAIN_AUX_B:
  2070. return "AUX_B";
  2071. case POWER_DOMAIN_AUX_C:
  2072. return "AUX_C";
  2073. case POWER_DOMAIN_AUX_D:
  2074. return "AUX_D";
  2075. case POWER_DOMAIN_INIT:
  2076. return "INIT";
  2077. default:
  2078. MISSING_CASE(domain);
  2079. return "?";
  2080. }
  2081. }
  2082. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2083. {
  2084. struct drm_info_node *node = m->private;
  2085. struct drm_device *dev = node->minor->dev;
  2086. struct drm_i915_private *dev_priv = dev->dev_private;
  2087. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2088. int i;
  2089. mutex_lock(&power_domains->lock);
  2090. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2091. for (i = 0; i < power_domains->power_well_count; i++) {
  2092. struct i915_power_well *power_well;
  2093. enum intel_display_power_domain power_domain;
  2094. power_well = &power_domains->power_wells[i];
  2095. seq_printf(m, "%-25s %d\n", power_well->name,
  2096. power_well->count);
  2097. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2098. power_domain++) {
  2099. if (!(BIT(power_domain) & power_well->domains))
  2100. continue;
  2101. seq_printf(m, " %-23s %d\n",
  2102. power_domain_str(power_domain),
  2103. power_domains->domain_use_count[power_domain]);
  2104. }
  2105. }
  2106. mutex_unlock(&power_domains->lock);
  2107. return 0;
  2108. }
  2109. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2110. struct drm_display_mode *mode)
  2111. {
  2112. int i;
  2113. for (i = 0; i < tabs; i++)
  2114. seq_putc(m, '\t');
  2115. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2116. mode->base.id, mode->name,
  2117. mode->vrefresh, mode->clock,
  2118. mode->hdisplay, mode->hsync_start,
  2119. mode->hsync_end, mode->htotal,
  2120. mode->vdisplay, mode->vsync_start,
  2121. mode->vsync_end, mode->vtotal,
  2122. mode->type, mode->flags);
  2123. }
  2124. static void intel_encoder_info(struct seq_file *m,
  2125. struct intel_crtc *intel_crtc,
  2126. struct intel_encoder *intel_encoder)
  2127. {
  2128. struct drm_info_node *node = m->private;
  2129. struct drm_device *dev = node->minor->dev;
  2130. struct drm_crtc *crtc = &intel_crtc->base;
  2131. struct intel_connector *intel_connector;
  2132. struct drm_encoder *encoder;
  2133. encoder = &intel_encoder->base;
  2134. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2135. encoder->base.id, encoder->name);
  2136. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2137. struct drm_connector *connector = &intel_connector->base;
  2138. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2139. connector->base.id,
  2140. connector->name,
  2141. drm_get_connector_status_name(connector->status));
  2142. if (connector->status == connector_status_connected) {
  2143. struct drm_display_mode *mode = &crtc->mode;
  2144. seq_printf(m, ", mode:\n");
  2145. intel_seq_print_mode(m, 2, mode);
  2146. } else {
  2147. seq_putc(m, '\n');
  2148. }
  2149. }
  2150. }
  2151. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2152. {
  2153. struct drm_info_node *node = m->private;
  2154. struct drm_device *dev = node->minor->dev;
  2155. struct drm_crtc *crtc = &intel_crtc->base;
  2156. struct intel_encoder *intel_encoder;
  2157. if (crtc->primary->fb)
  2158. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2159. crtc->primary->fb->base.id, crtc->x, crtc->y,
  2160. crtc->primary->fb->width, crtc->primary->fb->height);
  2161. else
  2162. seq_puts(m, "\tprimary plane disabled\n");
  2163. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2164. intel_encoder_info(m, intel_crtc, intel_encoder);
  2165. }
  2166. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2167. {
  2168. struct drm_display_mode *mode = panel->fixed_mode;
  2169. seq_printf(m, "\tfixed mode:\n");
  2170. intel_seq_print_mode(m, 2, mode);
  2171. }
  2172. static void intel_dp_info(struct seq_file *m,
  2173. struct intel_connector *intel_connector)
  2174. {
  2175. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2176. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2177. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2178. seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
  2179. "no");
  2180. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2181. intel_panel_info(m, &intel_connector->panel);
  2182. }
  2183. static void intel_hdmi_info(struct seq_file *m,
  2184. struct intel_connector *intel_connector)
  2185. {
  2186. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2187. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2188. seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
  2189. "no");
  2190. }
  2191. static void intel_lvds_info(struct seq_file *m,
  2192. struct intel_connector *intel_connector)
  2193. {
  2194. intel_panel_info(m, &intel_connector->panel);
  2195. }
  2196. static void intel_connector_info(struct seq_file *m,
  2197. struct drm_connector *connector)
  2198. {
  2199. struct intel_connector *intel_connector = to_intel_connector(connector);
  2200. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2201. struct drm_display_mode *mode;
  2202. seq_printf(m, "connector %d: type %s, status: %s\n",
  2203. connector->base.id, connector->name,
  2204. drm_get_connector_status_name(connector->status));
  2205. if (connector->status == connector_status_connected) {
  2206. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2207. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2208. connector->display_info.width_mm,
  2209. connector->display_info.height_mm);
  2210. seq_printf(m, "\tsubpixel order: %s\n",
  2211. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2212. seq_printf(m, "\tCEA rev: %d\n",
  2213. connector->display_info.cea_rev);
  2214. }
  2215. if (intel_encoder) {
  2216. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2217. intel_encoder->type == INTEL_OUTPUT_EDP)
  2218. intel_dp_info(m, intel_connector);
  2219. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2220. intel_hdmi_info(m, intel_connector);
  2221. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2222. intel_lvds_info(m, intel_connector);
  2223. }
  2224. seq_printf(m, "\tmodes:\n");
  2225. list_for_each_entry(mode, &connector->modes, head)
  2226. intel_seq_print_mode(m, 2, mode);
  2227. }
  2228. static bool cursor_active(struct drm_device *dev, int pipe)
  2229. {
  2230. struct drm_i915_private *dev_priv = dev->dev_private;
  2231. u32 state;
  2232. if (IS_845G(dev) || IS_I865G(dev))
  2233. state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  2234. else
  2235. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2236. return state;
  2237. }
  2238. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2239. {
  2240. struct drm_i915_private *dev_priv = dev->dev_private;
  2241. u32 pos;
  2242. pos = I915_READ(CURPOS(pipe));
  2243. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2244. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2245. *x = -*x;
  2246. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2247. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2248. *y = -*y;
  2249. return cursor_active(dev, pipe);
  2250. }
  2251. static int i915_display_info(struct seq_file *m, void *unused)
  2252. {
  2253. struct drm_info_node *node = m->private;
  2254. struct drm_device *dev = node->minor->dev;
  2255. struct drm_i915_private *dev_priv = dev->dev_private;
  2256. struct intel_crtc *crtc;
  2257. struct drm_connector *connector;
  2258. intel_runtime_pm_get(dev_priv);
  2259. drm_modeset_lock_all(dev);
  2260. seq_printf(m, "CRTC info\n");
  2261. seq_printf(m, "---------\n");
  2262. for_each_intel_crtc(dev, crtc) {
  2263. bool active;
  2264. int x, y;
  2265. seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
  2266. crtc->base.base.id, pipe_name(crtc->pipe),
  2267. yesno(crtc->active), crtc->config->pipe_src_w,
  2268. crtc->config->pipe_src_h);
  2269. if (crtc->active) {
  2270. intel_crtc_info(m, crtc);
  2271. active = cursor_position(dev, crtc->pipe, &x, &y);
  2272. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2273. yesno(crtc->cursor_base),
  2274. x, y, crtc->base.cursor->state->crtc_w,
  2275. crtc->base.cursor->state->crtc_h,
  2276. crtc->cursor_addr, yesno(active));
  2277. }
  2278. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2279. yesno(!crtc->cpu_fifo_underrun_disabled),
  2280. yesno(!crtc->pch_fifo_underrun_disabled));
  2281. }
  2282. seq_printf(m, "\n");
  2283. seq_printf(m, "Connector info\n");
  2284. seq_printf(m, "--------------\n");
  2285. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2286. intel_connector_info(m, connector);
  2287. }
  2288. drm_modeset_unlock_all(dev);
  2289. intel_runtime_pm_put(dev_priv);
  2290. return 0;
  2291. }
  2292. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2293. {
  2294. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2295. struct drm_device *dev = node->minor->dev;
  2296. struct drm_i915_private *dev_priv = dev->dev_private;
  2297. struct intel_engine_cs *ring;
  2298. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2299. int i, j, ret;
  2300. if (!i915_semaphore_is_enabled(dev)) {
  2301. seq_puts(m, "Semaphores are disabled\n");
  2302. return 0;
  2303. }
  2304. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2305. if (ret)
  2306. return ret;
  2307. intel_runtime_pm_get(dev_priv);
  2308. if (IS_BROADWELL(dev)) {
  2309. struct page *page;
  2310. uint64_t *seqno;
  2311. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2312. seqno = (uint64_t *)kmap_atomic(page);
  2313. for_each_ring(ring, dev_priv, i) {
  2314. uint64_t offset;
  2315. seq_printf(m, "%s\n", ring->name);
  2316. seq_puts(m, " Last signal:");
  2317. for (j = 0; j < num_rings; j++) {
  2318. offset = i * I915_NUM_RINGS + j;
  2319. seq_printf(m, "0x%08llx (0x%02llx) ",
  2320. seqno[offset], offset * 8);
  2321. }
  2322. seq_putc(m, '\n');
  2323. seq_puts(m, " Last wait: ");
  2324. for (j = 0; j < num_rings; j++) {
  2325. offset = i + (j * I915_NUM_RINGS);
  2326. seq_printf(m, "0x%08llx (0x%02llx) ",
  2327. seqno[offset], offset * 8);
  2328. }
  2329. seq_putc(m, '\n');
  2330. }
  2331. kunmap_atomic(seqno);
  2332. } else {
  2333. seq_puts(m, " Last signal:");
  2334. for_each_ring(ring, dev_priv, i)
  2335. for (j = 0; j < num_rings; j++)
  2336. seq_printf(m, "0x%08x\n",
  2337. I915_READ(ring->semaphore.mbox.signal[j]));
  2338. seq_putc(m, '\n');
  2339. }
  2340. seq_puts(m, "\nSync seqno:\n");
  2341. for_each_ring(ring, dev_priv, i) {
  2342. for (j = 0; j < num_rings; j++) {
  2343. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2344. }
  2345. seq_putc(m, '\n');
  2346. }
  2347. seq_putc(m, '\n');
  2348. intel_runtime_pm_put(dev_priv);
  2349. mutex_unlock(&dev->struct_mutex);
  2350. return 0;
  2351. }
  2352. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2353. {
  2354. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2355. struct drm_device *dev = node->minor->dev;
  2356. struct drm_i915_private *dev_priv = dev->dev_private;
  2357. int i;
  2358. drm_modeset_lock_all(dev);
  2359. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2360. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2361. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2362. seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
  2363. pll->config.crtc_mask, pll->active, yesno(pll->on));
  2364. seq_printf(m, " tracked hardware state:\n");
  2365. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2366. seq_printf(m, " dpll_md: 0x%08x\n",
  2367. pll->config.hw_state.dpll_md);
  2368. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2369. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2370. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2371. }
  2372. drm_modeset_unlock_all(dev);
  2373. return 0;
  2374. }
  2375. static int i915_wa_registers(struct seq_file *m, void *unused)
  2376. {
  2377. int i;
  2378. int ret;
  2379. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2380. struct drm_device *dev = node->minor->dev;
  2381. struct drm_i915_private *dev_priv = dev->dev_private;
  2382. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2383. if (ret)
  2384. return ret;
  2385. intel_runtime_pm_get(dev_priv);
  2386. seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
  2387. for (i = 0; i < dev_priv->workarounds.count; ++i) {
  2388. u32 addr, mask, value, read;
  2389. bool ok;
  2390. addr = dev_priv->workarounds.reg[i].addr;
  2391. mask = dev_priv->workarounds.reg[i].mask;
  2392. value = dev_priv->workarounds.reg[i].value;
  2393. read = I915_READ(addr);
  2394. ok = (value & mask) == (read & mask);
  2395. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2396. addr, value, mask, read, ok ? "OK" : "FAIL");
  2397. }
  2398. intel_runtime_pm_put(dev_priv);
  2399. mutex_unlock(&dev->struct_mutex);
  2400. return 0;
  2401. }
  2402. static int i915_ddb_info(struct seq_file *m, void *unused)
  2403. {
  2404. struct drm_info_node *node = m->private;
  2405. struct drm_device *dev = node->minor->dev;
  2406. struct drm_i915_private *dev_priv = dev->dev_private;
  2407. struct skl_ddb_allocation *ddb;
  2408. struct skl_ddb_entry *entry;
  2409. enum pipe pipe;
  2410. int plane;
  2411. if (INTEL_INFO(dev)->gen < 9)
  2412. return 0;
  2413. drm_modeset_lock_all(dev);
  2414. ddb = &dev_priv->wm.skl_hw.ddb;
  2415. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2416. for_each_pipe(dev_priv, pipe) {
  2417. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2418. for_each_plane(dev_priv, pipe, plane) {
  2419. entry = &ddb->plane[pipe][plane];
  2420. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2421. entry->start, entry->end,
  2422. skl_ddb_entry_size(entry));
  2423. }
  2424. entry = &ddb->cursor[pipe];
  2425. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2426. entry->end, skl_ddb_entry_size(entry));
  2427. }
  2428. drm_modeset_unlock_all(dev);
  2429. return 0;
  2430. }
  2431. static void drrs_status_per_crtc(struct seq_file *m,
  2432. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2433. {
  2434. struct intel_encoder *intel_encoder;
  2435. struct drm_i915_private *dev_priv = dev->dev_private;
  2436. struct i915_drrs *drrs = &dev_priv->drrs;
  2437. int vrefresh = 0;
  2438. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2439. /* Encoder connected on this CRTC */
  2440. switch (intel_encoder->type) {
  2441. case INTEL_OUTPUT_EDP:
  2442. seq_puts(m, "eDP:\n");
  2443. break;
  2444. case INTEL_OUTPUT_DSI:
  2445. seq_puts(m, "DSI:\n");
  2446. break;
  2447. case INTEL_OUTPUT_HDMI:
  2448. seq_puts(m, "HDMI:\n");
  2449. break;
  2450. case INTEL_OUTPUT_DISPLAYPORT:
  2451. seq_puts(m, "DP:\n");
  2452. break;
  2453. default:
  2454. seq_printf(m, "Other encoder (id=%d).\n",
  2455. intel_encoder->type);
  2456. return;
  2457. }
  2458. }
  2459. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2460. seq_puts(m, "\tVBT: DRRS_type: Static");
  2461. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2462. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2463. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2464. seq_puts(m, "\tVBT: DRRS_type: None");
  2465. else
  2466. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2467. seq_puts(m, "\n\n");
  2468. if (intel_crtc->config->has_drrs) {
  2469. struct intel_panel *panel;
  2470. mutex_lock(&drrs->mutex);
  2471. /* DRRS Supported */
  2472. seq_puts(m, "\tDRRS Supported: Yes\n");
  2473. /* disable_drrs() will make drrs->dp NULL */
  2474. if (!drrs->dp) {
  2475. seq_puts(m, "Idleness DRRS: Disabled");
  2476. mutex_unlock(&drrs->mutex);
  2477. return;
  2478. }
  2479. panel = &drrs->dp->attached_connector->panel;
  2480. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2481. drrs->busy_frontbuffer_bits);
  2482. seq_puts(m, "\n\t\t");
  2483. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2484. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2485. vrefresh = panel->fixed_mode->vrefresh;
  2486. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2487. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2488. vrefresh = panel->downclock_mode->vrefresh;
  2489. } else {
  2490. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2491. drrs->refresh_rate_type);
  2492. mutex_unlock(&drrs->mutex);
  2493. return;
  2494. }
  2495. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2496. seq_puts(m, "\n\t\t");
  2497. mutex_unlock(&drrs->mutex);
  2498. } else {
  2499. /* DRRS not supported. Print the VBT parameter*/
  2500. seq_puts(m, "\tDRRS Supported : No");
  2501. }
  2502. seq_puts(m, "\n");
  2503. }
  2504. static int i915_drrs_status(struct seq_file *m, void *unused)
  2505. {
  2506. struct drm_info_node *node = m->private;
  2507. struct drm_device *dev = node->minor->dev;
  2508. struct intel_crtc *intel_crtc;
  2509. int active_crtc_cnt = 0;
  2510. for_each_intel_crtc(dev, intel_crtc) {
  2511. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2512. if (intel_crtc->active) {
  2513. active_crtc_cnt++;
  2514. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2515. drrs_status_per_crtc(m, dev, intel_crtc);
  2516. }
  2517. drm_modeset_unlock(&intel_crtc->base.mutex);
  2518. }
  2519. if (!active_crtc_cnt)
  2520. seq_puts(m, "No active crtc found\n");
  2521. return 0;
  2522. }
  2523. struct pipe_crc_info {
  2524. const char *name;
  2525. struct drm_device *dev;
  2526. enum pipe pipe;
  2527. };
  2528. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2529. {
  2530. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2531. struct drm_device *dev = node->minor->dev;
  2532. struct drm_encoder *encoder;
  2533. struct intel_encoder *intel_encoder;
  2534. struct intel_digital_port *intel_dig_port;
  2535. drm_modeset_lock_all(dev);
  2536. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2537. intel_encoder = to_intel_encoder(encoder);
  2538. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2539. continue;
  2540. intel_dig_port = enc_to_dig_port(encoder);
  2541. if (!intel_dig_port->dp.can_mst)
  2542. continue;
  2543. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2544. }
  2545. drm_modeset_unlock_all(dev);
  2546. return 0;
  2547. }
  2548. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2549. {
  2550. struct pipe_crc_info *info = inode->i_private;
  2551. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2552. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2553. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2554. return -ENODEV;
  2555. spin_lock_irq(&pipe_crc->lock);
  2556. if (pipe_crc->opened) {
  2557. spin_unlock_irq(&pipe_crc->lock);
  2558. return -EBUSY; /* already open */
  2559. }
  2560. pipe_crc->opened = true;
  2561. filep->private_data = inode->i_private;
  2562. spin_unlock_irq(&pipe_crc->lock);
  2563. return 0;
  2564. }
  2565. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2566. {
  2567. struct pipe_crc_info *info = inode->i_private;
  2568. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2569. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2570. spin_lock_irq(&pipe_crc->lock);
  2571. pipe_crc->opened = false;
  2572. spin_unlock_irq(&pipe_crc->lock);
  2573. return 0;
  2574. }
  2575. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2576. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2577. /* account for \'0' */
  2578. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2579. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2580. {
  2581. assert_spin_locked(&pipe_crc->lock);
  2582. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2583. INTEL_PIPE_CRC_ENTRIES_NR);
  2584. }
  2585. static ssize_t
  2586. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2587. loff_t *pos)
  2588. {
  2589. struct pipe_crc_info *info = filep->private_data;
  2590. struct drm_device *dev = info->dev;
  2591. struct drm_i915_private *dev_priv = dev->dev_private;
  2592. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2593. char buf[PIPE_CRC_BUFFER_LEN];
  2594. int n_entries;
  2595. ssize_t bytes_read;
  2596. /*
  2597. * Don't allow user space to provide buffers not big enough to hold
  2598. * a line of data.
  2599. */
  2600. if (count < PIPE_CRC_LINE_LEN)
  2601. return -EINVAL;
  2602. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2603. return 0;
  2604. /* nothing to read */
  2605. spin_lock_irq(&pipe_crc->lock);
  2606. while (pipe_crc_data_count(pipe_crc) == 0) {
  2607. int ret;
  2608. if (filep->f_flags & O_NONBLOCK) {
  2609. spin_unlock_irq(&pipe_crc->lock);
  2610. return -EAGAIN;
  2611. }
  2612. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2613. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2614. if (ret) {
  2615. spin_unlock_irq(&pipe_crc->lock);
  2616. return ret;
  2617. }
  2618. }
  2619. /* We now have one or more entries to read */
  2620. n_entries = count / PIPE_CRC_LINE_LEN;
  2621. bytes_read = 0;
  2622. while (n_entries > 0) {
  2623. struct intel_pipe_crc_entry *entry =
  2624. &pipe_crc->entries[pipe_crc->tail];
  2625. int ret;
  2626. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2627. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2628. break;
  2629. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2630. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2631. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2632. "%8u %8x %8x %8x %8x %8x\n",
  2633. entry->frame, entry->crc[0],
  2634. entry->crc[1], entry->crc[2],
  2635. entry->crc[3], entry->crc[4]);
  2636. spin_unlock_irq(&pipe_crc->lock);
  2637. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  2638. if (ret == PIPE_CRC_LINE_LEN)
  2639. return -EFAULT;
  2640. user_buf += PIPE_CRC_LINE_LEN;
  2641. n_entries--;
  2642. spin_lock_irq(&pipe_crc->lock);
  2643. }
  2644. spin_unlock_irq(&pipe_crc->lock);
  2645. return bytes_read;
  2646. }
  2647. static const struct file_operations i915_pipe_crc_fops = {
  2648. .owner = THIS_MODULE,
  2649. .open = i915_pipe_crc_open,
  2650. .read = i915_pipe_crc_read,
  2651. .release = i915_pipe_crc_release,
  2652. };
  2653. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2654. {
  2655. .name = "i915_pipe_A_crc",
  2656. .pipe = PIPE_A,
  2657. },
  2658. {
  2659. .name = "i915_pipe_B_crc",
  2660. .pipe = PIPE_B,
  2661. },
  2662. {
  2663. .name = "i915_pipe_C_crc",
  2664. .pipe = PIPE_C,
  2665. },
  2666. };
  2667. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2668. enum pipe pipe)
  2669. {
  2670. struct drm_device *dev = minor->dev;
  2671. struct dentry *ent;
  2672. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2673. info->dev = dev;
  2674. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2675. &i915_pipe_crc_fops);
  2676. if (!ent)
  2677. return -ENOMEM;
  2678. return drm_add_fake_info_node(minor, ent, info);
  2679. }
  2680. static const char * const pipe_crc_sources[] = {
  2681. "none",
  2682. "plane1",
  2683. "plane2",
  2684. "pf",
  2685. "pipe",
  2686. "TV",
  2687. "DP-B",
  2688. "DP-C",
  2689. "DP-D",
  2690. "auto",
  2691. };
  2692. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2693. {
  2694. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2695. return pipe_crc_sources[source];
  2696. }
  2697. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2698. {
  2699. struct drm_device *dev = m->private;
  2700. struct drm_i915_private *dev_priv = dev->dev_private;
  2701. int i;
  2702. for (i = 0; i < I915_MAX_PIPES; i++)
  2703. seq_printf(m, "%c %s\n", pipe_name(i),
  2704. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2705. return 0;
  2706. }
  2707. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2708. {
  2709. struct drm_device *dev = inode->i_private;
  2710. return single_open(file, display_crc_ctl_show, dev);
  2711. }
  2712. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2713. uint32_t *val)
  2714. {
  2715. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2716. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2717. switch (*source) {
  2718. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2719. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  2720. break;
  2721. case INTEL_PIPE_CRC_SOURCE_NONE:
  2722. *val = 0;
  2723. break;
  2724. default:
  2725. return -EINVAL;
  2726. }
  2727. return 0;
  2728. }
  2729. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  2730. enum intel_pipe_crc_source *source)
  2731. {
  2732. struct intel_encoder *encoder;
  2733. struct intel_crtc *crtc;
  2734. struct intel_digital_port *dig_port;
  2735. int ret = 0;
  2736. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2737. drm_modeset_lock_all(dev);
  2738. for_each_intel_encoder(dev, encoder) {
  2739. if (!encoder->base.crtc)
  2740. continue;
  2741. crtc = to_intel_crtc(encoder->base.crtc);
  2742. if (crtc->pipe != pipe)
  2743. continue;
  2744. switch (encoder->type) {
  2745. case INTEL_OUTPUT_TVOUT:
  2746. *source = INTEL_PIPE_CRC_SOURCE_TV;
  2747. break;
  2748. case INTEL_OUTPUT_DISPLAYPORT:
  2749. case INTEL_OUTPUT_EDP:
  2750. dig_port = enc_to_dig_port(&encoder->base);
  2751. switch (dig_port->port) {
  2752. case PORT_B:
  2753. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  2754. break;
  2755. case PORT_C:
  2756. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  2757. break;
  2758. case PORT_D:
  2759. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  2760. break;
  2761. default:
  2762. WARN(1, "nonexisting DP port %c\n",
  2763. port_name(dig_port->port));
  2764. break;
  2765. }
  2766. break;
  2767. default:
  2768. break;
  2769. }
  2770. }
  2771. drm_modeset_unlock_all(dev);
  2772. return ret;
  2773. }
  2774. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  2775. enum pipe pipe,
  2776. enum intel_pipe_crc_source *source,
  2777. uint32_t *val)
  2778. {
  2779. struct drm_i915_private *dev_priv = dev->dev_private;
  2780. bool need_stable_symbols = false;
  2781. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2782. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2783. if (ret)
  2784. return ret;
  2785. }
  2786. switch (*source) {
  2787. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2788. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  2789. break;
  2790. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2791. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  2792. need_stable_symbols = true;
  2793. break;
  2794. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2795. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  2796. need_stable_symbols = true;
  2797. break;
  2798. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2799. if (!IS_CHERRYVIEW(dev))
  2800. return -EINVAL;
  2801. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  2802. need_stable_symbols = true;
  2803. break;
  2804. case INTEL_PIPE_CRC_SOURCE_NONE:
  2805. *val = 0;
  2806. break;
  2807. default:
  2808. return -EINVAL;
  2809. }
  2810. /*
  2811. * When the pipe CRC tap point is after the transcoders we need
  2812. * to tweak symbol-level features to produce a deterministic series of
  2813. * symbols for a given frame. We need to reset those features only once
  2814. * a frame (instead of every nth symbol):
  2815. * - DC-balance: used to ensure a better clock recovery from the data
  2816. * link (SDVO)
  2817. * - DisplayPort scrambling: used for EMI reduction
  2818. */
  2819. if (need_stable_symbols) {
  2820. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2821. tmp |= DC_BALANCE_RESET_VLV;
  2822. switch (pipe) {
  2823. case PIPE_A:
  2824. tmp |= PIPE_A_SCRAMBLE_RESET;
  2825. break;
  2826. case PIPE_B:
  2827. tmp |= PIPE_B_SCRAMBLE_RESET;
  2828. break;
  2829. case PIPE_C:
  2830. tmp |= PIPE_C_SCRAMBLE_RESET;
  2831. break;
  2832. default:
  2833. return -EINVAL;
  2834. }
  2835. I915_WRITE(PORT_DFT2_G4X, tmp);
  2836. }
  2837. return 0;
  2838. }
  2839. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  2840. enum pipe pipe,
  2841. enum intel_pipe_crc_source *source,
  2842. uint32_t *val)
  2843. {
  2844. struct drm_i915_private *dev_priv = dev->dev_private;
  2845. bool need_stable_symbols = false;
  2846. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2847. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2848. if (ret)
  2849. return ret;
  2850. }
  2851. switch (*source) {
  2852. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2853. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  2854. break;
  2855. case INTEL_PIPE_CRC_SOURCE_TV:
  2856. if (!SUPPORTS_TV(dev))
  2857. return -EINVAL;
  2858. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  2859. break;
  2860. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2861. if (!IS_G4X(dev))
  2862. return -EINVAL;
  2863. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  2864. need_stable_symbols = true;
  2865. break;
  2866. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2867. if (!IS_G4X(dev))
  2868. return -EINVAL;
  2869. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  2870. need_stable_symbols = true;
  2871. break;
  2872. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2873. if (!IS_G4X(dev))
  2874. return -EINVAL;
  2875. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  2876. need_stable_symbols = true;
  2877. break;
  2878. case INTEL_PIPE_CRC_SOURCE_NONE:
  2879. *val = 0;
  2880. break;
  2881. default:
  2882. return -EINVAL;
  2883. }
  2884. /*
  2885. * When the pipe CRC tap point is after the transcoders we need
  2886. * to tweak symbol-level features to produce a deterministic series of
  2887. * symbols for a given frame. We need to reset those features only once
  2888. * a frame (instead of every nth symbol):
  2889. * - DC-balance: used to ensure a better clock recovery from the data
  2890. * link (SDVO)
  2891. * - DisplayPort scrambling: used for EMI reduction
  2892. */
  2893. if (need_stable_symbols) {
  2894. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2895. WARN_ON(!IS_G4X(dev));
  2896. I915_WRITE(PORT_DFT_I9XX,
  2897. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  2898. if (pipe == PIPE_A)
  2899. tmp |= PIPE_A_SCRAMBLE_RESET;
  2900. else
  2901. tmp |= PIPE_B_SCRAMBLE_RESET;
  2902. I915_WRITE(PORT_DFT2_G4X, tmp);
  2903. }
  2904. return 0;
  2905. }
  2906. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  2907. enum pipe pipe)
  2908. {
  2909. struct drm_i915_private *dev_priv = dev->dev_private;
  2910. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2911. switch (pipe) {
  2912. case PIPE_A:
  2913. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2914. break;
  2915. case PIPE_B:
  2916. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2917. break;
  2918. case PIPE_C:
  2919. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  2920. break;
  2921. default:
  2922. return;
  2923. }
  2924. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  2925. tmp &= ~DC_BALANCE_RESET_VLV;
  2926. I915_WRITE(PORT_DFT2_G4X, tmp);
  2927. }
  2928. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  2929. enum pipe pipe)
  2930. {
  2931. struct drm_i915_private *dev_priv = dev->dev_private;
  2932. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2933. if (pipe == PIPE_A)
  2934. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2935. else
  2936. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2937. I915_WRITE(PORT_DFT2_G4X, tmp);
  2938. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  2939. I915_WRITE(PORT_DFT_I9XX,
  2940. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  2941. }
  2942. }
  2943. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2944. uint32_t *val)
  2945. {
  2946. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2947. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2948. switch (*source) {
  2949. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2950. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  2951. break;
  2952. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2953. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  2954. break;
  2955. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2956. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  2957. break;
  2958. case INTEL_PIPE_CRC_SOURCE_NONE:
  2959. *val = 0;
  2960. break;
  2961. default:
  2962. return -EINVAL;
  2963. }
  2964. return 0;
  2965. }
  2966. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2967. {
  2968. struct drm_i915_private *dev_priv = dev->dev_private;
  2969. struct intel_crtc *crtc =
  2970. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2971. drm_modeset_lock_all(dev);
  2972. /*
  2973. * If we use the eDP transcoder we need to make sure that we don't
  2974. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2975. * relevant on hsw with pipe A when using the always-on power well
  2976. * routing.
  2977. */
  2978. if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
  2979. !crtc->config->pch_pfit.enabled) {
  2980. crtc->config->pch_pfit.force_thru = true;
  2981. intel_display_power_get(dev_priv,
  2982. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2983. dev_priv->display.crtc_disable(&crtc->base);
  2984. dev_priv->display.crtc_enable(&crtc->base);
  2985. }
  2986. drm_modeset_unlock_all(dev);
  2987. }
  2988. static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2989. {
  2990. struct drm_i915_private *dev_priv = dev->dev_private;
  2991. struct intel_crtc *crtc =
  2992. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2993. drm_modeset_lock_all(dev);
  2994. /*
  2995. * If we use the eDP transcoder we need to make sure that we don't
  2996. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2997. * relevant on hsw with pipe A when using the always-on power well
  2998. * routing.
  2999. */
  3000. if (crtc->config->pch_pfit.force_thru) {
  3001. crtc->config->pch_pfit.force_thru = false;
  3002. dev_priv->display.crtc_disable(&crtc->base);
  3003. dev_priv->display.crtc_enable(&crtc->base);
  3004. intel_display_power_put(dev_priv,
  3005. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  3006. }
  3007. drm_modeset_unlock_all(dev);
  3008. }
  3009. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3010. enum pipe pipe,
  3011. enum intel_pipe_crc_source *source,
  3012. uint32_t *val)
  3013. {
  3014. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3015. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3016. switch (*source) {
  3017. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3018. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3019. break;
  3020. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3021. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3022. break;
  3023. case INTEL_PIPE_CRC_SOURCE_PF:
  3024. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3025. hsw_trans_edp_pipe_A_crc_wa(dev);
  3026. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3027. break;
  3028. case INTEL_PIPE_CRC_SOURCE_NONE:
  3029. *val = 0;
  3030. break;
  3031. default:
  3032. return -EINVAL;
  3033. }
  3034. return 0;
  3035. }
  3036. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3037. enum intel_pipe_crc_source source)
  3038. {
  3039. struct drm_i915_private *dev_priv = dev->dev_private;
  3040. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3041. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3042. pipe));
  3043. u32 val = 0; /* shut up gcc */
  3044. int ret;
  3045. if (pipe_crc->source == source)
  3046. return 0;
  3047. /* forbid changing the source without going back to 'none' */
  3048. if (pipe_crc->source && source)
  3049. return -EINVAL;
  3050. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
  3051. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3052. return -EIO;
  3053. }
  3054. if (IS_GEN2(dev))
  3055. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3056. else if (INTEL_INFO(dev)->gen < 5)
  3057. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3058. else if (IS_VALLEYVIEW(dev))
  3059. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3060. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3061. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3062. else
  3063. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3064. if (ret != 0)
  3065. return ret;
  3066. /* none -> real source transition */
  3067. if (source) {
  3068. struct intel_pipe_crc_entry *entries;
  3069. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3070. pipe_name(pipe), pipe_crc_source_name(source));
  3071. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3072. sizeof(pipe_crc->entries[0]),
  3073. GFP_KERNEL);
  3074. if (!entries)
  3075. return -ENOMEM;
  3076. /*
  3077. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3078. * enabled and disabled dynamically based on package C states,
  3079. * user space can't make reliable use of the CRCs, so let's just
  3080. * completely disable it.
  3081. */
  3082. hsw_disable_ips(crtc);
  3083. spin_lock_irq(&pipe_crc->lock);
  3084. kfree(pipe_crc->entries);
  3085. pipe_crc->entries = entries;
  3086. pipe_crc->head = 0;
  3087. pipe_crc->tail = 0;
  3088. spin_unlock_irq(&pipe_crc->lock);
  3089. }
  3090. pipe_crc->source = source;
  3091. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3092. POSTING_READ(PIPE_CRC_CTL(pipe));
  3093. /* real source -> none transition */
  3094. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3095. struct intel_pipe_crc_entry *entries;
  3096. struct intel_crtc *crtc =
  3097. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3098. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3099. pipe_name(pipe));
  3100. drm_modeset_lock(&crtc->base.mutex, NULL);
  3101. if (crtc->active)
  3102. intel_wait_for_vblank(dev, pipe);
  3103. drm_modeset_unlock(&crtc->base.mutex);
  3104. spin_lock_irq(&pipe_crc->lock);
  3105. entries = pipe_crc->entries;
  3106. pipe_crc->entries = NULL;
  3107. pipe_crc->head = 0;
  3108. pipe_crc->tail = 0;
  3109. spin_unlock_irq(&pipe_crc->lock);
  3110. kfree(entries);
  3111. if (IS_G4X(dev))
  3112. g4x_undo_pipe_scramble_reset(dev, pipe);
  3113. else if (IS_VALLEYVIEW(dev))
  3114. vlv_undo_pipe_scramble_reset(dev, pipe);
  3115. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3116. hsw_undo_trans_edp_pipe_A_crc_wa(dev);
  3117. hsw_enable_ips(crtc);
  3118. }
  3119. return 0;
  3120. }
  3121. /*
  3122. * Parse pipe CRC command strings:
  3123. * command: wsp* object wsp+ name wsp+ source wsp*
  3124. * object: 'pipe'
  3125. * name: (A | B | C)
  3126. * source: (none | plane1 | plane2 | pf)
  3127. * wsp: (#0x20 | #0x9 | #0xA)+
  3128. *
  3129. * eg.:
  3130. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3131. * "pipe A none" -> Stop CRC
  3132. */
  3133. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3134. {
  3135. int n_words = 0;
  3136. while (*buf) {
  3137. char *end;
  3138. /* skip leading white space */
  3139. buf = skip_spaces(buf);
  3140. if (!*buf)
  3141. break; /* end of buffer */
  3142. /* find end of word */
  3143. for (end = buf; *end && !isspace(*end); end++)
  3144. ;
  3145. if (n_words == max_words) {
  3146. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3147. max_words);
  3148. return -EINVAL; /* ran out of words[] before bytes */
  3149. }
  3150. if (*end)
  3151. *end++ = '\0';
  3152. words[n_words++] = buf;
  3153. buf = end;
  3154. }
  3155. return n_words;
  3156. }
  3157. enum intel_pipe_crc_object {
  3158. PIPE_CRC_OBJECT_PIPE,
  3159. };
  3160. static const char * const pipe_crc_objects[] = {
  3161. "pipe",
  3162. };
  3163. static int
  3164. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3165. {
  3166. int i;
  3167. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3168. if (!strcmp(buf, pipe_crc_objects[i])) {
  3169. *o = i;
  3170. return 0;
  3171. }
  3172. return -EINVAL;
  3173. }
  3174. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3175. {
  3176. const char name = buf[0];
  3177. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3178. return -EINVAL;
  3179. *pipe = name - 'A';
  3180. return 0;
  3181. }
  3182. static int
  3183. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3184. {
  3185. int i;
  3186. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3187. if (!strcmp(buf, pipe_crc_sources[i])) {
  3188. *s = i;
  3189. return 0;
  3190. }
  3191. return -EINVAL;
  3192. }
  3193. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3194. {
  3195. #define N_WORDS 3
  3196. int n_words;
  3197. char *words[N_WORDS];
  3198. enum pipe pipe;
  3199. enum intel_pipe_crc_object object;
  3200. enum intel_pipe_crc_source source;
  3201. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3202. if (n_words != N_WORDS) {
  3203. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3204. N_WORDS);
  3205. return -EINVAL;
  3206. }
  3207. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3208. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3209. return -EINVAL;
  3210. }
  3211. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3212. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3213. return -EINVAL;
  3214. }
  3215. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3216. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3217. return -EINVAL;
  3218. }
  3219. return pipe_crc_set_source(dev, pipe, source);
  3220. }
  3221. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3222. size_t len, loff_t *offp)
  3223. {
  3224. struct seq_file *m = file->private_data;
  3225. struct drm_device *dev = m->private;
  3226. char *tmpbuf;
  3227. int ret;
  3228. if (len == 0)
  3229. return 0;
  3230. if (len > PAGE_SIZE - 1) {
  3231. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3232. PAGE_SIZE);
  3233. return -E2BIG;
  3234. }
  3235. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3236. if (!tmpbuf)
  3237. return -ENOMEM;
  3238. if (copy_from_user(tmpbuf, ubuf, len)) {
  3239. ret = -EFAULT;
  3240. goto out;
  3241. }
  3242. tmpbuf[len] = '\0';
  3243. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3244. out:
  3245. kfree(tmpbuf);
  3246. if (ret < 0)
  3247. return ret;
  3248. *offp += len;
  3249. return len;
  3250. }
  3251. static const struct file_operations i915_display_crc_ctl_fops = {
  3252. .owner = THIS_MODULE,
  3253. .open = display_crc_ctl_open,
  3254. .read = seq_read,
  3255. .llseek = seq_lseek,
  3256. .release = single_release,
  3257. .write = display_crc_ctl_write
  3258. };
  3259. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3260. {
  3261. struct drm_device *dev = m->private;
  3262. int num_levels = ilk_wm_max_level(dev) + 1;
  3263. int level;
  3264. drm_modeset_lock_all(dev);
  3265. for (level = 0; level < num_levels; level++) {
  3266. unsigned int latency = wm[level];
  3267. /*
  3268. * - WM1+ latency values in 0.5us units
  3269. * - latencies are in us on gen9
  3270. */
  3271. if (INTEL_INFO(dev)->gen >= 9)
  3272. latency *= 10;
  3273. else if (level > 0)
  3274. latency *= 5;
  3275. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3276. level, wm[level], latency / 10, latency % 10);
  3277. }
  3278. drm_modeset_unlock_all(dev);
  3279. }
  3280. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3281. {
  3282. struct drm_device *dev = m->private;
  3283. struct drm_i915_private *dev_priv = dev->dev_private;
  3284. const uint16_t *latencies;
  3285. if (INTEL_INFO(dev)->gen >= 9)
  3286. latencies = dev_priv->wm.skl_latency;
  3287. else
  3288. latencies = to_i915(dev)->wm.pri_latency;
  3289. wm_latency_show(m, latencies);
  3290. return 0;
  3291. }
  3292. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3293. {
  3294. struct drm_device *dev = m->private;
  3295. struct drm_i915_private *dev_priv = dev->dev_private;
  3296. const uint16_t *latencies;
  3297. if (INTEL_INFO(dev)->gen >= 9)
  3298. latencies = dev_priv->wm.skl_latency;
  3299. else
  3300. latencies = to_i915(dev)->wm.spr_latency;
  3301. wm_latency_show(m, latencies);
  3302. return 0;
  3303. }
  3304. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3305. {
  3306. struct drm_device *dev = m->private;
  3307. struct drm_i915_private *dev_priv = dev->dev_private;
  3308. const uint16_t *latencies;
  3309. if (INTEL_INFO(dev)->gen >= 9)
  3310. latencies = dev_priv->wm.skl_latency;
  3311. else
  3312. latencies = to_i915(dev)->wm.cur_latency;
  3313. wm_latency_show(m, latencies);
  3314. return 0;
  3315. }
  3316. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3317. {
  3318. struct drm_device *dev = inode->i_private;
  3319. if (HAS_GMCH_DISPLAY(dev))
  3320. return -ENODEV;
  3321. return single_open(file, pri_wm_latency_show, dev);
  3322. }
  3323. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3324. {
  3325. struct drm_device *dev = inode->i_private;
  3326. if (HAS_GMCH_DISPLAY(dev))
  3327. return -ENODEV;
  3328. return single_open(file, spr_wm_latency_show, dev);
  3329. }
  3330. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3331. {
  3332. struct drm_device *dev = inode->i_private;
  3333. if (HAS_GMCH_DISPLAY(dev))
  3334. return -ENODEV;
  3335. return single_open(file, cur_wm_latency_show, dev);
  3336. }
  3337. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3338. size_t len, loff_t *offp, uint16_t wm[8])
  3339. {
  3340. struct seq_file *m = file->private_data;
  3341. struct drm_device *dev = m->private;
  3342. uint16_t new[8] = { 0 };
  3343. int num_levels = ilk_wm_max_level(dev) + 1;
  3344. int level;
  3345. int ret;
  3346. char tmp[32];
  3347. if (len >= sizeof(tmp))
  3348. return -EINVAL;
  3349. if (copy_from_user(tmp, ubuf, len))
  3350. return -EFAULT;
  3351. tmp[len] = '\0';
  3352. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3353. &new[0], &new[1], &new[2], &new[3],
  3354. &new[4], &new[5], &new[6], &new[7]);
  3355. if (ret != num_levels)
  3356. return -EINVAL;
  3357. drm_modeset_lock_all(dev);
  3358. for (level = 0; level < num_levels; level++)
  3359. wm[level] = new[level];
  3360. drm_modeset_unlock_all(dev);
  3361. return len;
  3362. }
  3363. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3364. size_t len, loff_t *offp)
  3365. {
  3366. struct seq_file *m = file->private_data;
  3367. struct drm_device *dev = m->private;
  3368. struct drm_i915_private *dev_priv = dev->dev_private;
  3369. uint16_t *latencies;
  3370. if (INTEL_INFO(dev)->gen >= 9)
  3371. latencies = dev_priv->wm.skl_latency;
  3372. else
  3373. latencies = to_i915(dev)->wm.pri_latency;
  3374. return wm_latency_write(file, ubuf, len, offp, latencies);
  3375. }
  3376. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3377. size_t len, loff_t *offp)
  3378. {
  3379. struct seq_file *m = file->private_data;
  3380. struct drm_device *dev = m->private;
  3381. struct drm_i915_private *dev_priv = dev->dev_private;
  3382. uint16_t *latencies;
  3383. if (INTEL_INFO(dev)->gen >= 9)
  3384. latencies = dev_priv->wm.skl_latency;
  3385. else
  3386. latencies = to_i915(dev)->wm.spr_latency;
  3387. return wm_latency_write(file, ubuf, len, offp, latencies);
  3388. }
  3389. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3390. size_t len, loff_t *offp)
  3391. {
  3392. struct seq_file *m = file->private_data;
  3393. struct drm_device *dev = m->private;
  3394. struct drm_i915_private *dev_priv = dev->dev_private;
  3395. uint16_t *latencies;
  3396. if (INTEL_INFO(dev)->gen >= 9)
  3397. latencies = dev_priv->wm.skl_latency;
  3398. else
  3399. latencies = to_i915(dev)->wm.cur_latency;
  3400. return wm_latency_write(file, ubuf, len, offp, latencies);
  3401. }
  3402. static const struct file_operations i915_pri_wm_latency_fops = {
  3403. .owner = THIS_MODULE,
  3404. .open = pri_wm_latency_open,
  3405. .read = seq_read,
  3406. .llseek = seq_lseek,
  3407. .release = single_release,
  3408. .write = pri_wm_latency_write
  3409. };
  3410. static const struct file_operations i915_spr_wm_latency_fops = {
  3411. .owner = THIS_MODULE,
  3412. .open = spr_wm_latency_open,
  3413. .read = seq_read,
  3414. .llseek = seq_lseek,
  3415. .release = single_release,
  3416. .write = spr_wm_latency_write
  3417. };
  3418. static const struct file_operations i915_cur_wm_latency_fops = {
  3419. .owner = THIS_MODULE,
  3420. .open = cur_wm_latency_open,
  3421. .read = seq_read,
  3422. .llseek = seq_lseek,
  3423. .release = single_release,
  3424. .write = cur_wm_latency_write
  3425. };
  3426. static int
  3427. i915_wedged_get(void *data, u64 *val)
  3428. {
  3429. struct drm_device *dev = data;
  3430. struct drm_i915_private *dev_priv = dev->dev_private;
  3431. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3432. return 0;
  3433. }
  3434. static int
  3435. i915_wedged_set(void *data, u64 val)
  3436. {
  3437. struct drm_device *dev = data;
  3438. struct drm_i915_private *dev_priv = dev->dev_private;
  3439. /*
  3440. * There is no safeguard against this debugfs entry colliding
  3441. * with the hangcheck calling same i915_handle_error() in
  3442. * parallel, causing an explosion. For now we assume that the
  3443. * test harness is responsible enough not to inject gpu hangs
  3444. * while it is writing to 'i915_wedged'
  3445. */
  3446. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3447. return -EAGAIN;
  3448. intel_runtime_pm_get(dev_priv);
  3449. i915_handle_error(dev, val,
  3450. "Manually setting wedged to %llu", val);
  3451. intel_runtime_pm_put(dev_priv);
  3452. return 0;
  3453. }
  3454. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3455. i915_wedged_get, i915_wedged_set,
  3456. "%llu\n");
  3457. static int
  3458. i915_ring_stop_get(void *data, u64 *val)
  3459. {
  3460. struct drm_device *dev = data;
  3461. struct drm_i915_private *dev_priv = dev->dev_private;
  3462. *val = dev_priv->gpu_error.stop_rings;
  3463. return 0;
  3464. }
  3465. static int
  3466. i915_ring_stop_set(void *data, u64 val)
  3467. {
  3468. struct drm_device *dev = data;
  3469. struct drm_i915_private *dev_priv = dev->dev_private;
  3470. int ret;
  3471. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3472. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3473. if (ret)
  3474. return ret;
  3475. dev_priv->gpu_error.stop_rings = val;
  3476. mutex_unlock(&dev->struct_mutex);
  3477. return 0;
  3478. }
  3479. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3480. i915_ring_stop_get, i915_ring_stop_set,
  3481. "0x%08llx\n");
  3482. static int
  3483. i915_ring_missed_irq_get(void *data, u64 *val)
  3484. {
  3485. struct drm_device *dev = data;
  3486. struct drm_i915_private *dev_priv = dev->dev_private;
  3487. *val = dev_priv->gpu_error.missed_irq_rings;
  3488. return 0;
  3489. }
  3490. static int
  3491. i915_ring_missed_irq_set(void *data, u64 val)
  3492. {
  3493. struct drm_device *dev = data;
  3494. struct drm_i915_private *dev_priv = dev->dev_private;
  3495. int ret;
  3496. /* Lock against concurrent debugfs callers */
  3497. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3498. if (ret)
  3499. return ret;
  3500. dev_priv->gpu_error.missed_irq_rings = val;
  3501. mutex_unlock(&dev->struct_mutex);
  3502. return 0;
  3503. }
  3504. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3505. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3506. "0x%08llx\n");
  3507. static int
  3508. i915_ring_test_irq_get(void *data, u64 *val)
  3509. {
  3510. struct drm_device *dev = data;
  3511. struct drm_i915_private *dev_priv = dev->dev_private;
  3512. *val = dev_priv->gpu_error.test_irq_rings;
  3513. return 0;
  3514. }
  3515. static int
  3516. i915_ring_test_irq_set(void *data, u64 val)
  3517. {
  3518. struct drm_device *dev = data;
  3519. struct drm_i915_private *dev_priv = dev->dev_private;
  3520. int ret;
  3521. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3522. /* Lock against concurrent debugfs callers */
  3523. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3524. if (ret)
  3525. return ret;
  3526. dev_priv->gpu_error.test_irq_rings = val;
  3527. mutex_unlock(&dev->struct_mutex);
  3528. return 0;
  3529. }
  3530. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3531. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3532. "0x%08llx\n");
  3533. #define DROP_UNBOUND 0x1
  3534. #define DROP_BOUND 0x2
  3535. #define DROP_RETIRE 0x4
  3536. #define DROP_ACTIVE 0x8
  3537. #define DROP_ALL (DROP_UNBOUND | \
  3538. DROP_BOUND | \
  3539. DROP_RETIRE | \
  3540. DROP_ACTIVE)
  3541. static int
  3542. i915_drop_caches_get(void *data, u64 *val)
  3543. {
  3544. *val = DROP_ALL;
  3545. return 0;
  3546. }
  3547. static int
  3548. i915_drop_caches_set(void *data, u64 val)
  3549. {
  3550. struct drm_device *dev = data;
  3551. struct drm_i915_private *dev_priv = dev->dev_private;
  3552. int ret;
  3553. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3554. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3555. * on ioctls on -EAGAIN. */
  3556. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3557. if (ret)
  3558. return ret;
  3559. if (val & DROP_ACTIVE) {
  3560. ret = i915_gpu_idle(dev);
  3561. if (ret)
  3562. goto unlock;
  3563. }
  3564. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3565. i915_gem_retire_requests(dev);
  3566. if (val & DROP_BOUND)
  3567. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3568. if (val & DROP_UNBOUND)
  3569. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3570. unlock:
  3571. mutex_unlock(&dev->struct_mutex);
  3572. return ret;
  3573. }
  3574. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3575. i915_drop_caches_get, i915_drop_caches_set,
  3576. "0x%08llx\n");
  3577. static int
  3578. i915_max_freq_get(void *data, u64 *val)
  3579. {
  3580. struct drm_device *dev = data;
  3581. struct drm_i915_private *dev_priv = dev->dev_private;
  3582. int ret;
  3583. if (INTEL_INFO(dev)->gen < 6)
  3584. return -ENODEV;
  3585. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3586. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3587. if (ret)
  3588. return ret;
  3589. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3590. mutex_unlock(&dev_priv->rps.hw_lock);
  3591. return 0;
  3592. }
  3593. static int
  3594. i915_max_freq_set(void *data, u64 val)
  3595. {
  3596. struct drm_device *dev = data;
  3597. struct drm_i915_private *dev_priv = dev->dev_private;
  3598. u32 hw_max, hw_min;
  3599. int ret;
  3600. if (INTEL_INFO(dev)->gen < 6)
  3601. return -ENODEV;
  3602. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3603. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3604. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3605. if (ret)
  3606. return ret;
  3607. /*
  3608. * Turbo will still be enabled, but won't go above the set value.
  3609. */
  3610. val = intel_freq_opcode(dev_priv, val);
  3611. hw_max = dev_priv->rps.max_freq;
  3612. hw_min = dev_priv->rps.min_freq;
  3613. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3614. mutex_unlock(&dev_priv->rps.hw_lock);
  3615. return -EINVAL;
  3616. }
  3617. dev_priv->rps.max_freq_softlimit = val;
  3618. intel_set_rps(dev, val);
  3619. mutex_unlock(&dev_priv->rps.hw_lock);
  3620. return 0;
  3621. }
  3622. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3623. i915_max_freq_get, i915_max_freq_set,
  3624. "%llu\n");
  3625. static int
  3626. i915_min_freq_get(void *data, u64 *val)
  3627. {
  3628. struct drm_device *dev = data;
  3629. struct drm_i915_private *dev_priv = dev->dev_private;
  3630. int ret;
  3631. if (INTEL_INFO(dev)->gen < 6)
  3632. return -ENODEV;
  3633. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3634. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3635. if (ret)
  3636. return ret;
  3637. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3638. mutex_unlock(&dev_priv->rps.hw_lock);
  3639. return 0;
  3640. }
  3641. static int
  3642. i915_min_freq_set(void *data, u64 val)
  3643. {
  3644. struct drm_device *dev = data;
  3645. struct drm_i915_private *dev_priv = dev->dev_private;
  3646. u32 hw_max, hw_min;
  3647. int ret;
  3648. if (INTEL_INFO(dev)->gen < 6)
  3649. return -ENODEV;
  3650. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3651. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3652. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3653. if (ret)
  3654. return ret;
  3655. /*
  3656. * Turbo will still be enabled, but won't go below the set value.
  3657. */
  3658. val = intel_freq_opcode(dev_priv, val);
  3659. hw_max = dev_priv->rps.max_freq;
  3660. hw_min = dev_priv->rps.min_freq;
  3661. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3662. mutex_unlock(&dev_priv->rps.hw_lock);
  3663. return -EINVAL;
  3664. }
  3665. dev_priv->rps.min_freq_softlimit = val;
  3666. intel_set_rps(dev, val);
  3667. mutex_unlock(&dev_priv->rps.hw_lock);
  3668. return 0;
  3669. }
  3670. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3671. i915_min_freq_get, i915_min_freq_set,
  3672. "%llu\n");
  3673. static int
  3674. i915_cache_sharing_get(void *data, u64 *val)
  3675. {
  3676. struct drm_device *dev = data;
  3677. struct drm_i915_private *dev_priv = dev->dev_private;
  3678. u32 snpcr;
  3679. int ret;
  3680. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3681. return -ENODEV;
  3682. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3683. if (ret)
  3684. return ret;
  3685. intel_runtime_pm_get(dev_priv);
  3686. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3687. intel_runtime_pm_put(dev_priv);
  3688. mutex_unlock(&dev_priv->dev->struct_mutex);
  3689. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3690. return 0;
  3691. }
  3692. static int
  3693. i915_cache_sharing_set(void *data, u64 val)
  3694. {
  3695. struct drm_device *dev = data;
  3696. struct drm_i915_private *dev_priv = dev->dev_private;
  3697. u32 snpcr;
  3698. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3699. return -ENODEV;
  3700. if (val > 3)
  3701. return -EINVAL;
  3702. intel_runtime_pm_get(dev_priv);
  3703. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3704. /* Update the cache sharing policy here as well */
  3705. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3706. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3707. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3708. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3709. intel_runtime_pm_put(dev_priv);
  3710. return 0;
  3711. }
  3712. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3713. i915_cache_sharing_get, i915_cache_sharing_set,
  3714. "%llu\n");
  3715. static int i915_sseu_status(struct seq_file *m, void *unused)
  3716. {
  3717. struct drm_info_node *node = (struct drm_info_node *) m->private;
  3718. struct drm_device *dev = node->minor->dev;
  3719. struct drm_i915_private *dev_priv = dev->dev_private;
  3720. unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
  3721. if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
  3722. return -ENODEV;
  3723. seq_puts(m, "SSEU Device Info\n");
  3724. seq_printf(m, " Available Slice Total: %u\n",
  3725. INTEL_INFO(dev)->slice_total);
  3726. seq_printf(m, " Available Subslice Total: %u\n",
  3727. INTEL_INFO(dev)->subslice_total);
  3728. seq_printf(m, " Available Subslice Per Slice: %u\n",
  3729. INTEL_INFO(dev)->subslice_per_slice);
  3730. seq_printf(m, " Available EU Total: %u\n",
  3731. INTEL_INFO(dev)->eu_total);
  3732. seq_printf(m, " Available EU Per Subslice: %u\n",
  3733. INTEL_INFO(dev)->eu_per_subslice);
  3734. seq_printf(m, " Has Slice Power Gating: %s\n",
  3735. yesno(INTEL_INFO(dev)->has_slice_pg));
  3736. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3737. yesno(INTEL_INFO(dev)->has_subslice_pg));
  3738. seq_printf(m, " Has EU Power Gating: %s\n",
  3739. yesno(INTEL_INFO(dev)->has_eu_pg));
  3740. seq_puts(m, "SSEU Device Status\n");
  3741. if (IS_CHERRYVIEW(dev)) {
  3742. const int ss_max = 2;
  3743. int ss;
  3744. u32 sig1[ss_max], sig2[ss_max];
  3745. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3746. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3747. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3748. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3749. for (ss = 0; ss < ss_max; ss++) {
  3750. unsigned int eu_cnt;
  3751. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3752. /* skip disabled subslice */
  3753. continue;
  3754. s_tot = 1;
  3755. ss_per++;
  3756. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3757. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3758. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3759. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3760. eu_tot += eu_cnt;
  3761. eu_per = max(eu_per, eu_cnt);
  3762. }
  3763. ss_tot = ss_per;
  3764. } else if (IS_SKYLAKE(dev)) {
  3765. const int s_max = 3, ss_max = 4;
  3766. int s, ss;
  3767. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3768. s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
  3769. s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
  3770. s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
  3771. eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
  3772. eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
  3773. eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
  3774. eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
  3775. eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
  3776. eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
  3777. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3778. GEN9_PGCTL_SSA_EU19_ACK |
  3779. GEN9_PGCTL_SSA_EU210_ACK |
  3780. GEN9_PGCTL_SSA_EU311_ACK;
  3781. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3782. GEN9_PGCTL_SSB_EU19_ACK |
  3783. GEN9_PGCTL_SSB_EU210_ACK |
  3784. GEN9_PGCTL_SSB_EU311_ACK;
  3785. for (s = 0; s < s_max; s++) {
  3786. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3787. /* skip disabled slice */
  3788. continue;
  3789. s_tot++;
  3790. ss_per = INTEL_INFO(dev)->subslice_per_slice;
  3791. ss_tot += ss_per;
  3792. for (ss = 0; ss < ss_max; ss++) {
  3793. unsigned int eu_cnt;
  3794. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3795. eu_mask[ss%2]);
  3796. eu_tot += eu_cnt;
  3797. eu_per = max(eu_per, eu_cnt);
  3798. }
  3799. }
  3800. }
  3801. seq_printf(m, " Enabled Slice Total: %u\n", s_tot);
  3802. seq_printf(m, " Enabled Subslice Total: %u\n", ss_tot);
  3803. seq_printf(m, " Enabled Subslice Per Slice: %u\n", ss_per);
  3804. seq_printf(m, " Enabled EU Total: %u\n", eu_tot);
  3805. seq_printf(m, " Enabled EU Per Subslice: %u\n", eu_per);
  3806. return 0;
  3807. }
  3808. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3809. {
  3810. struct drm_device *dev = inode->i_private;
  3811. struct drm_i915_private *dev_priv = dev->dev_private;
  3812. if (INTEL_INFO(dev)->gen < 6)
  3813. return 0;
  3814. intel_runtime_pm_get(dev_priv);
  3815. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3816. return 0;
  3817. }
  3818. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3819. {
  3820. struct drm_device *dev = inode->i_private;
  3821. struct drm_i915_private *dev_priv = dev->dev_private;
  3822. if (INTEL_INFO(dev)->gen < 6)
  3823. return 0;
  3824. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3825. intel_runtime_pm_put(dev_priv);
  3826. return 0;
  3827. }
  3828. static const struct file_operations i915_forcewake_fops = {
  3829. .owner = THIS_MODULE,
  3830. .open = i915_forcewake_open,
  3831. .release = i915_forcewake_release,
  3832. };
  3833. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3834. {
  3835. struct drm_device *dev = minor->dev;
  3836. struct dentry *ent;
  3837. ent = debugfs_create_file("i915_forcewake_user",
  3838. S_IRUSR,
  3839. root, dev,
  3840. &i915_forcewake_fops);
  3841. if (!ent)
  3842. return -ENOMEM;
  3843. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3844. }
  3845. static int i915_debugfs_create(struct dentry *root,
  3846. struct drm_minor *minor,
  3847. const char *name,
  3848. const struct file_operations *fops)
  3849. {
  3850. struct drm_device *dev = minor->dev;
  3851. struct dentry *ent;
  3852. ent = debugfs_create_file(name,
  3853. S_IRUGO | S_IWUSR,
  3854. root, dev,
  3855. fops);
  3856. if (!ent)
  3857. return -ENOMEM;
  3858. return drm_add_fake_info_node(minor, ent, fops);
  3859. }
  3860. static const struct drm_info_list i915_debugfs_list[] = {
  3861. {"i915_capabilities", i915_capabilities, 0},
  3862. {"i915_gem_objects", i915_gem_object_info, 0},
  3863. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3864. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  3865. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  3866. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  3867. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3868. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3869. {"i915_gem_request", i915_gem_request_info, 0},
  3870. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3871. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3872. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3873. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  3874. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  3875. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  3876. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  3877. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3878. {"i915_frequency_info", i915_frequency_info, 0},
  3879. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3880. {"i915_drpc_info", i915_drpc_info, 0},
  3881. {"i915_emon_status", i915_emon_status, 0},
  3882. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3883. {"i915_fbc_status", i915_fbc_status, 0},
  3884. {"i915_ips_status", i915_ips_status, 0},
  3885. {"i915_sr_status", i915_sr_status, 0},
  3886. {"i915_opregion", i915_opregion, 0},
  3887. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3888. {"i915_context_status", i915_context_status, 0},
  3889. {"i915_dump_lrc", i915_dump_lrc, 0},
  3890. {"i915_execlists", i915_execlists, 0},
  3891. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3892. {"i915_swizzle_info", i915_swizzle_info, 0},
  3893. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3894. {"i915_llc", i915_llc, 0},
  3895. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3896. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3897. {"i915_energy_uJ", i915_energy_uJ, 0},
  3898. {"i915_pc8_status", i915_pc8_status, 0},
  3899. {"i915_power_domain_info", i915_power_domain_info, 0},
  3900. {"i915_display_info", i915_display_info, 0},
  3901. {"i915_semaphore_status", i915_semaphore_status, 0},
  3902. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3903. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3904. {"i915_wa_registers", i915_wa_registers, 0},
  3905. {"i915_ddb_info", i915_ddb_info, 0},
  3906. {"i915_sseu_status", i915_sseu_status, 0},
  3907. {"i915_drrs_status", i915_drrs_status, 0},
  3908. };
  3909. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3910. static const struct i915_debugfs_files {
  3911. const char *name;
  3912. const struct file_operations *fops;
  3913. } i915_debugfs_files[] = {
  3914. {"i915_wedged", &i915_wedged_fops},
  3915. {"i915_max_freq", &i915_max_freq_fops},
  3916. {"i915_min_freq", &i915_min_freq_fops},
  3917. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3918. {"i915_ring_stop", &i915_ring_stop_fops},
  3919. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3920. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3921. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3922. {"i915_error_state", &i915_error_state_fops},
  3923. {"i915_next_seqno", &i915_next_seqno_fops},
  3924. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3925. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3926. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3927. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3928. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  3929. };
  3930. void intel_display_crc_init(struct drm_device *dev)
  3931. {
  3932. struct drm_i915_private *dev_priv = dev->dev_private;
  3933. enum pipe pipe;
  3934. for_each_pipe(dev_priv, pipe) {
  3935. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3936. pipe_crc->opened = false;
  3937. spin_lock_init(&pipe_crc->lock);
  3938. init_waitqueue_head(&pipe_crc->wq);
  3939. }
  3940. }
  3941. int i915_debugfs_init(struct drm_minor *minor)
  3942. {
  3943. int ret, i;
  3944. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3945. if (ret)
  3946. return ret;
  3947. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3948. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  3949. if (ret)
  3950. return ret;
  3951. }
  3952. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3953. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3954. i915_debugfs_files[i].name,
  3955. i915_debugfs_files[i].fops);
  3956. if (ret)
  3957. return ret;
  3958. }
  3959. return drm_debugfs_create_files(i915_debugfs_list,
  3960. I915_DEBUGFS_ENTRIES,
  3961. minor->debugfs_root, minor);
  3962. }
  3963. void i915_debugfs_cleanup(struct drm_minor *minor)
  3964. {
  3965. int i;
  3966. drm_debugfs_remove_files(i915_debugfs_list,
  3967. I915_DEBUGFS_ENTRIES, minor);
  3968. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  3969. 1, minor);
  3970. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3971. struct drm_info_list *info_list =
  3972. (struct drm_info_list *)&i915_pipe_crc_data[i];
  3973. drm_debugfs_remove_files(info_list, 1, minor);
  3974. }
  3975. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3976. struct drm_info_list *info_list =
  3977. (struct drm_info_list *) i915_debugfs_files[i].fops;
  3978. drm_debugfs_remove_files(info_list, 1, minor);
  3979. }
  3980. }