hsu.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. /*
  2. * Core driver for the High Speed UART DMA
  3. *
  4. * Copyright (C) 2015 Intel Corporation
  5. * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
  6. *
  7. * Partially based on the bits found in drivers/tty/serial/mfd.c.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /*
  14. * DMA channel allocation:
  15. * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
  16. * Write (UART RX).
  17. * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
  18. * port 3, and so on.
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/dmaengine.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/init.h>
  24. #include <linux/module.h>
  25. #include <linux/slab.h>
  26. #include "hsu.h"
  27. #define HSU_DMA_BUSWIDTHS \
  28. BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  29. BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  30. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  31. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  32. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  33. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
  34. BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
  35. static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
  36. {
  37. hsu_chan_writel(hsuc, HSU_CH_CR, 0);
  38. }
  39. static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
  40. {
  41. u32 cr = HSU_CH_CR_CHA;
  42. if (hsuc->direction == DMA_MEM_TO_DEV)
  43. cr &= ~HSU_CH_CR_CHD;
  44. else if (hsuc->direction == DMA_DEV_TO_MEM)
  45. cr |= HSU_CH_CR_CHD;
  46. hsu_chan_writel(hsuc, HSU_CH_CR, cr);
  47. }
  48. static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
  49. {
  50. struct dma_slave_config *config = &hsuc->config;
  51. struct hsu_dma_desc *desc = hsuc->desc;
  52. u32 bsr = 0, mtsr = 0; /* to shut the compiler up */
  53. u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
  54. unsigned int i, count;
  55. if (hsuc->direction == DMA_MEM_TO_DEV) {
  56. bsr = config->dst_maxburst;
  57. mtsr = config->dst_addr_width;
  58. } else if (hsuc->direction == DMA_DEV_TO_MEM) {
  59. bsr = config->src_maxburst;
  60. mtsr = config->src_addr_width;
  61. }
  62. hsu_chan_disable(hsuc);
  63. hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
  64. hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
  65. hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
  66. /* Set descriptors */
  67. count = (desc->nents - desc->active) % HSU_DMA_CHAN_NR_DESC;
  68. for (i = 0; i < count; i++) {
  69. hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
  70. hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
  71. /* Prepare value for DCR */
  72. dcr |= HSU_CH_DCR_DESCA(i);
  73. dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */
  74. desc->active++;
  75. }
  76. /* Only for the last descriptor in the chain */
  77. dcr |= HSU_CH_DCR_CHSOD(count - 1);
  78. dcr |= HSU_CH_DCR_CHDI(count - 1);
  79. hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
  80. hsu_chan_enable(hsuc);
  81. }
  82. static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
  83. {
  84. unsigned long flags;
  85. spin_lock_irqsave(&hsuc->lock, flags);
  86. hsu_chan_disable(hsuc);
  87. hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
  88. spin_unlock_irqrestore(&hsuc->lock, flags);
  89. }
  90. static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
  91. {
  92. unsigned long flags;
  93. spin_lock_irqsave(&hsuc->lock, flags);
  94. hsu_dma_chan_start(hsuc);
  95. spin_unlock_irqrestore(&hsuc->lock, flags);
  96. }
  97. static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
  98. {
  99. struct virt_dma_desc *vdesc;
  100. /* Get the next descriptor */
  101. vdesc = vchan_next_desc(&hsuc->vchan);
  102. if (!vdesc) {
  103. hsuc->desc = NULL;
  104. return;
  105. }
  106. list_del(&vdesc->node);
  107. hsuc->desc = to_hsu_dma_desc(vdesc);
  108. /* Start the channel with a new descriptor */
  109. hsu_dma_start_channel(hsuc);
  110. }
  111. static u32 hsu_dma_chan_get_sr(struct hsu_dma_chan *hsuc)
  112. {
  113. unsigned long flags;
  114. u32 sr;
  115. spin_lock_irqsave(&hsuc->lock, flags);
  116. sr = hsu_chan_readl(hsuc, HSU_CH_SR);
  117. spin_unlock_irqrestore(&hsuc->lock, flags);
  118. return sr;
  119. }
  120. irqreturn_t hsu_dma_irq(struct hsu_dma_chip *chip, unsigned short nr)
  121. {
  122. struct hsu_dma_chan *hsuc;
  123. struct hsu_dma_desc *desc;
  124. unsigned long flags;
  125. u32 sr;
  126. /* Sanity check */
  127. if (nr >= chip->pdata->nr_channels)
  128. return IRQ_NONE;
  129. hsuc = &chip->hsu->chan[nr];
  130. /*
  131. * No matter what situation, need read clear the IRQ status
  132. * There is a bug, see Errata 5, HSD 2900918
  133. */
  134. sr = hsu_dma_chan_get_sr(hsuc);
  135. if (!sr)
  136. return IRQ_NONE;
  137. /* Timeout IRQ, need wait some time, see Errata 2 */
  138. if (hsuc->direction == DMA_DEV_TO_MEM && (sr & HSU_CH_SR_DESCTO_ANY))
  139. udelay(2);
  140. sr &= ~HSU_CH_SR_DESCTO_ANY;
  141. if (!sr)
  142. return IRQ_HANDLED;
  143. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  144. desc = hsuc->desc;
  145. if (desc) {
  146. if (sr & HSU_CH_SR_CHE) {
  147. desc->status = DMA_ERROR;
  148. } else if (desc->active < desc->nents) {
  149. hsu_dma_start_channel(hsuc);
  150. } else {
  151. vchan_cookie_complete(&desc->vdesc);
  152. desc->status = DMA_COMPLETE;
  153. hsu_dma_start_transfer(hsuc);
  154. }
  155. }
  156. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  157. return IRQ_HANDLED;
  158. }
  159. EXPORT_SYMBOL_GPL(hsu_dma_irq);
  160. static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
  161. {
  162. struct hsu_dma_desc *desc;
  163. desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
  164. if (!desc)
  165. return NULL;
  166. desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
  167. if (!desc->sg) {
  168. kfree(desc);
  169. return NULL;
  170. }
  171. return desc;
  172. }
  173. static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
  174. {
  175. struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
  176. kfree(desc->sg);
  177. kfree(desc);
  178. }
  179. static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
  180. struct dma_chan *chan, struct scatterlist *sgl,
  181. unsigned int sg_len, enum dma_transfer_direction direction,
  182. unsigned long flags, void *context)
  183. {
  184. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  185. struct hsu_dma_desc *desc;
  186. struct scatterlist *sg;
  187. unsigned int i;
  188. desc = hsu_dma_alloc_desc(sg_len);
  189. if (!desc)
  190. return NULL;
  191. for_each_sg(sgl, sg, sg_len, i) {
  192. desc->sg[i].addr = sg_dma_address(sg);
  193. desc->sg[i].len = sg_dma_len(sg);
  194. }
  195. desc->nents = sg_len;
  196. desc->direction = direction;
  197. /* desc->active = 0 by kzalloc */
  198. desc->status = DMA_IN_PROGRESS;
  199. return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
  200. }
  201. static void hsu_dma_issue_pending(struct dma_chan *chan)
  202. {
  203. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  204. unsigned long flags;
  205. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  206. if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
  207. hsu_dma_start_transfer(hsuc);
  208. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  209. }
  210. static size_t hsu_dma_desc_size(struct hsu_dma_desc *desc)
  211. {
  212. size_t bytes = 0;
  213. unsigned int i;
  214. for (i = desc->active; i < desc->nents; i++)
  215. bytes += desc->sg[i].len;
  216. return bytes;
  217. }
  218. static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
  219. {
  220. struct hsu_dma_desc *desc = hsuc->desc;
  221. size_t bytes = hsu_dma_desc_size(desc);
  222. int i;
  223. unsigned long flags;
  224. spin_lock_irqsave(&hsuc->lock, flags);
  225. i = desc->active % HSU_DMA_CHAN_NR_DESC;
  226. do {
  227. bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
  228. } while (--i >= 0);
  229. spin_unlock_irqrestore(&hsuc->lock, flags);
  230. return bytes;
  231. }
  232. static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
  233. dma_cookie_t cookie, struct dma_tx_state *state)
  234. {
  235. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  236. struct virt_dma_desc *vdesc;
  237. enum dma_status status;
  238. size_t bytes;
  239. unsigned long flags;
  240. status = dma_cookie_status(chan, cookie, state);
  241. if (status == DMA_COMPLETE)
  242. return status;
  243. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  244. vdesc = vchan_find_desc(&hsuc->vchan, cookie);
  245. if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
  246. bytes = hsu_dma_active_desc_size(hsuc);
  247. dma_set_residue(state, bytes);
  248. status = hsuc->desc->status;
  249. } else if (vdesc) {
  250. bytes = hsu_dma_desc_size(to_hsu_dma_desc(vdesc));
  251. dma_set_residue(state, bytes);
  252. }
  253. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  254. return status;
  255. }
  256. static int hsu_dma_slave_config(struct dma_chan *chan,
  257. struct dma_slave_config *config)
  258. {
  259. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  260. /* Check if chan will be configured for slave transfers */
  261. if (!is_slave_direction(config->direction))
  262. return -EINVAL;
  263. memcpy(&hsuc->config, config, sizeof(hsuc->config));
  264. return 0;
  265. }
  266. static void hsu_dma_chan_deactivate(struct hsu_dma_chan *hsuc)
  267. {
  268. unsigned long flags;
  269. spin_lock_irqsave(&hsuc->lock, flags);
  270. hsu_chan_disable(hsuc);
  271. spin_unlock_irqrestore(&hsuc->lock, flags);
  272. }
  273. static void hsu_dma_chan_activate(struct hsu_dma_chan *hsuc)
  274. {
  275. unsigned long flags;
  276. spin_lock_irqsave(&hsuc->lock, flags);
  277. hsu_chan_enable(hsuc);
  278. spin_unlock_irqrestore(&hsuc->lock, flags);
  279. }
  280. static int hsu_dma_pause(struct dma_chan *chan)
  281. {
  282. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  283. unsigned long flags;
  284. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  285. if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
  286. hsu_dma_chan_deactivate(hsuc);
  287. hsuc->desc->status = DMA_PAUSED;
  288. }
  289. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  290. return 0;
  291. }
  292. static int hsu_dma_resume(struct dma_chan *chan)
  293. {
  294. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  295. unsigned long flags;
  296. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  297. if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
  298. hsuc->desc->status = DMA_IN_PROGRESS;
  299. hsu_dma_chan_activate(hsuc);
  300. }
  301. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  302. return 0;
  303. }
  304. static int hsu_dma_terminate_all(struct dma_chan *chan)
  305. {
  306. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  307. unsigned long flags;
  308. LIST_HEAD(head);
  309. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  310. hsu_dma_stop_channel(hsuc);
  311. if (hsuc->desc) {
  312. hsu_dma_desc_free(&hsuc->desc->vdesc);
  313. hsuc->desc = NULL;
  314. }
  315. vchan_get_all_descriptors(&hsuc->vchan, &head);
  316. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  317. vchan_dma_desc_free_list(&hsuc->vchan, &head);
  318. return 0;
  319. }
  320. static void hsu_dma_free_chan_resources(struct dma_chan *chan)
  321. {
  322. vchan_free_chan_resources(to_virt_chan(chan));
  323. }
  324. int hsu_dma_probe(struct hsu_dma_chip *chip)
  325. {
  326. struct hsu_dma *hsu;
  327. struct hsu_dma_platform_data *pdata = chip->pdata;
  328. void __iomem *addr = chip->regs + chip->offset;
  329. unsigned short i;
  330. int ret;
  331. hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
  332. if (!hsu)
  333. return -ENOMEM;
  334. chip->hsu = hsu;
  335. if (!pdata) {
  336. pdata = devm_kzalloc(chip->dev, sizeof(*pdata), GFP_KERNEL);
  337. if (!pdata)
  338. return -ENOMEM;
  339. chip->pdata = pdata;
  340. /* Guess nr_channels from the IO space length */
  341. pdata->nr_channels = (chip->length - chip->offset) /
  342. HSU_DMA_CHAN_LENGTH;
  343. }
  344. hsu->chan = devm_kcalloc(chip->dev, pdata->nr_channels,
  345. sizeof(*hsu->chan), GFP_KERNEL);
  346. if (!hsu->chan)
  347. return -ENOMEM;
  348. INIT_LIST_HEAD(&hsu->dma.channels);
  349. for (i = 0; i < pdata->nr_channels; i++) {
  350. struct hsu_dma_chan *hsuc = &hsu->chan[i];
  351. hsuc->vchan.desc_free = hsu_dma_desc_free;
  352. vchan_init(&hsuc->vchan, &hsu->dma);
  353. hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
  354. hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
  355. spin_lock_init(&hsuc->lock);
  356. }
  357. dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
  358. dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
  359. hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
  360. hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
  361. hsu->dma.device_issue_pending = hsu_dma_issue_pending;
  362. hsu->dma.device_tx_status = hsu_dma_tx_status;
  363. hsu->dma.device_config = hsu_dma_slave_config;
  364. hsu->dma.device_pause = hsu_dma_pause;
  365. hsu->dma.device_resume = hsu_dma_resume;
  366. hsu->dma.device_terminate_all = hsu_dma_terminate_all;
  367. hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
  368. hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
  369. hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  370. hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  371. hsu->dma.dev = chip->dev;
  372. ret = dma_async_device_register(&hsu->dma);
  373. if (ret)
  374. return ret;
  375. dev_info(chip->dev, "Found HSU DMA, %d channels\n", pdata->nr_channels);
  376. return 0;
  377. }
  378. EXPORT_SYMBOL_GPL(hsu_dma_probe);
  379. int hsu_dma_remove(struct hsu_dma_chip *chip)
  380. {
  381. struct hsu_dma *hsu = chip->hsu;
  382. unsigned short i;
  383. dma_async_device_unregister(&hsu->dma);
  384. for (i = 0; i < chip->pdata->nr_channels; i++) {
  385. struct hsu_dma_chan *hsuc = &hsu->chan[i];
  386. tasklet_kill(&hsuc->vchan.task);
  387. }
  388. return 0;
  389. }
  390. EXPORT_SYMBOL_GPL(hsu_dma_remove);
  391. MODULE_LICENSE("GPL v2");
  392. MODULE_DESCRIPTION("High Speed UART DMA core driver");
  393. MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");