caamhash.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. struct device *jrdev;
  91. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  92. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  93. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  96. dma_addr_t sh_desc_update_dma;
  97. dma_addr_t sh_desc_update_first_dma;
  98. dma_addr_t sh_desc_fin_dma;
  99. dma_addr_t sh_desc_digest_dma;
  100. dma_addr_t sh_desc_finup_dma;
  101. u32 alg_type;
  102. u32 alg_op;
  103. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  104. dma_addr_t key_dma;
  105. int ctx_len;
  106. unsigned int split_key_len;
  107. unsigned int split_key_pad_len;
  108. };
  109. /* ahash state */
  110. struct caam_hash_state {
  111. dma_addr_t buf_dma;
  112. dma_addr_t ctx_dma;
  113. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  114. int buflen_0;
  115. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_1;
  117. u8 caam_ctx[MAX_CTX_LEN];
  118. int (*update)(struct ahash_request *req);
  119. int (*final)(struct ahash_request *req);
  120. int (*finup)(struct ahash_request *req);
  121. int current_buf;
  122. };
  123. /* Common job descriptor seq in/out ptr routines */
  124. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  125. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  126. struct caam_hash_state *state,
  127. int ctx_len)
  128. {
  129. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  130. ctx_len, DMA_FROM_DEVICE);
  131. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  132. dev_err(jrdev, "unable to map ctx\n");
  133. return -ENOMEM;
  134. }
  135. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  136. return 0;
  137. }
  138. /* Map req->result, and append seq_out_ptr command that points to it */
  139. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  140. u8 *result, int digestsize)
  141. {
  142. dma_addr_t dst_dma;
  143. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  144. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  145. return dst_dma;
  146. }
  147. /* Map current buffer in state and put it in link table */
  148. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  149. struct sec4_sg_entry *sec4_sg,
  150. u8 *buf, int buflen)
  151. {
  152. dma_addr_t buf_dma;
  153. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  154. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  155. return buf_dma;
  156. }
  157. /* Map req->src and put it in link table */
  158. static inline void src_map_to_sec4_sg(struct device *jrdev,
  159. struct scatterlist *src, int src_nents,
  160. struct sec4_sg_entry *sec4_sg,
  161. bool chained)
  162. {
  163. dma_map_sg_chained(jrdev, src, src_nents, DMA_TO_DEVICE, chained);
  164. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  165. }
  166. /*
  167. * Only put buffer in link table if it contains data, which is possible,
  168. * since a buffer has previously been used, and needs to be unmapped,
  169. */
  170. static inline dma_addr_t
  171. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  172. u8 *buf, dma_addr_t buf_dma, int buflen,
  173. int last_buflen)
  174. {
  175. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  176. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  177. if (buflen)
  178. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  179. else
  180. buf_dma = 0;
  181. return buf_dma;
  182. }
  183. /* Map state->caam_ctx, and add it to link table */
  184. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  185. struct caam_hash_state *state, int ctx_len,
  186. struct sec4_sg_entry *sec4_sg, u32 flag)
  187. {
  188. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  189. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  190. dev_err(jrdev, "unable to map ctx\n");
  191. return -ENOMEM;
  192. }
  193. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  194. return 0;
  195. }
  196. /* Common shared descriptor commands */
  197. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  198. {
  199. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  200. ctx->split_key_len, CLASS_2 |
  201. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  202. }
  203. /* Append key if it has been set */
  204. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  205. {
  206. u32 *key_jump_cmd;
  207. init_sh_desc(desc, HDR_SHARE_SERIAL);
  208. if (ctx->split_key_len) {
  209. /* Skip if already shared */
  210. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  211. JUMP_COND_SHRD);
  212. append_key_ahash(desc, ctx);
  213. set_jump_tgt_here(desc, key_jump_cmd);
  214. }
  215. /* Propagate errors from shared to job descriptor */
  216. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  217. }
  218. /*
  219. * For ahash read data from seqin following state->caam_ctx,
  220. * and write resulting class2 context to seqout, which may be state->caam_ctx
  221. * or req->result
  222. */
  223. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  224. {
  225. /* Calculate remaining bytes to read */
  226. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  227. /* Read remaining bytes */
  228. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  229. FIFOLD_TYPE_MSG | KEY_VLF);
  230. /* Store class2 context bytes */
  231. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  232. LDST_SRCDST_BYTE_CONTEXT);
  233. }
  234. /*
  235. * For ahash update, final and finup, import context, read and write to seqout
  236. */
  237. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  238. int digestsize,
  239. struct caam_hash_ctx *ctx)
  240. {
  241. init_sh_desc_key_ahash(desc, ctx);
  242. /* Import context from software */
  243. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  244. LDST_CLASS_2_CCB | ctx->ctx_len);
  245. /* Class 2 operation */
  246. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  247. /*
  248. * Load from buf and/or src and write to req->result or state->context
  249. */
  250. ahash_append_load_str(desc, digestsize);
  251. }
  252. /* For ahash firsts and digest, read and write to seqout */
  253. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  254. int digestsize, struct caam_hash_ctx *ctx)
  255. {
  256. init_sh_desc_key_ahash(desc, ctx);
  257. /* Class 2 operation */
  258. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  259. /*
  260. * Load from buf and/or src and write to req->result or state->context
  261. */
  262. ahash_append_load_str(desc, digestsize);
  263. }
  264. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  265. {
  266. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  267. int digestsize = crypto_ahash_digestsize(ahash);
  268. struct device *jrdev = ctx->jrdev;
  269. u32 have_key = 0;
  270. u32 *desc;
  271. if (ctx->split_key_len)
  272. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  273. /* ahash_update shared descriptor */
  274. desc = ctx->sh_desc_update;
  275. init_sh_desc(desc, HDR_SHARE_SERIAL);
  276. /* Import context from software */
  277. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  278. LDST_CLASS_2_CCB | ctx->ctx_len);
  279. /* Class 2 operation */
  280. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  281. OP_ALG_ENCRYPT);
  282. /* Load data and write to result or context */
  283. ahash_append_load_str(desc, ctx->ctx_len);
  284. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  285. DMA_TO_DEVICE);
  286. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  287. dev_err(jrdev, "unable to map shared descriptor\n");
  288. return -ENOMEM;
  289. }
  290. #ifdef DEBUG
  291. print_hex_dump(KERN_ERR,
  292. "ahash update shdesc@"__stringify(__LINE__)": ",
  293. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  294. #endif
  295. /* ahash_update_first shared descriptor */
  296. desc = ctx->sh_desc_update_first;
  297. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  298. ctx->ctx_len, ctx);
  299. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  300. desc_bytes(desc),
  301. DMA_TO_DEVICE);
  302. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  303. dev_err(jrdev, "unable to map shared descriptor\n");
  304. return -ENOMEM;
  305. }
  306. #ifdef DEBUG
  307. print_hex_dump(KERN_ERR,
  308. "ahash update first shdesc@"__stringify(__LINE__)": ",
  309. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  310. #endif
  311. /* ahash_final shared descriptor */
  312. desc = ctx->sh_desc_fin;
  313. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  314. OP_ALG_AS_FINALIZE, digestsize, ctx);
  315. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  316. DMA_TO_DEVICE);
  317. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  318. dev_err(jrdev, "unable to map shared descriptor\n");
  319. return -ENOMEM;
  320. }
  321. #ifdef DEBUG
  322. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  323. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  324. desc_bytes(desc), 1);
  325. #endif
  326. /* ahash_finup shared descriptor */
  327. desc = ctx->sh_desc_finup;
  328. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  329. OP_ALG_AS_FINALIZE, digestsize, ctx);
  330. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  331. DMA_TO_DEVICE);
  332. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  333. dev_err(jrdev, "unable to map shared descriptor\n");
  334. return -ENOMEM;
  335. }
  336. #ifdef DEBUG
  337. print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
  338. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  339. desc_bytes(desc), 1);
  340. #endif
  341. /* ahash_digest shared descriptor */
  342. desc = ctx->sh_desc_digest;
  343. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  344. digestsize, ctx);
  345. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  346. desc_bytes(desc),
  347. DMA_TO_DEVICE);
  348. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  349. dev_err(jrdev, "unable to map shared descriptor\n");
  350. return -ENOMEM;
  351. }
  352. #ifdef DEBUG
  353. print_hex_dump(KERN_ERR,
  354. "ahash digest shdesc@"__stringify(__LINE__)": ",
  355. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  356. desc_bytes(desc), 1);
  357. #endif
  358. return 0;
  359. }
  360. static int gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  361. u32 keylen)
  362. {
  363. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  364. ctx->split_key_pad_len, key_in, keylen,
  365. ctx->alg_op);
  366. }
  367. /* Digest hash size if it is too large */
  368. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  369. u32 *keylen, u8 *key_out, u32 digestsize)
  370. {
  371. struct device *jrdev = ctx->jrdev;
  372. u32 *desc;
  373. struct split_key_result result;
  374. dma_addr_t src_dma, dst_dma;
  375. int ret = 0;
  376. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  377. if (!desc) {
  378. dev_err(jrdev, "unable to allocate key input memory\n");
  379. return -ENOMEM;
  380. }
  381. init_job_desc(desc, 0);
  382. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  383. DMA_TO_DEVICE);
  384. if (dma_mapping_error(jrdev, src_dma)) {
  385. dev_err(jrdev, "unable to map key input memory\n");
  386. kfree(desc);
  387. return -ENOMEM;
  388. }
  389. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  390. DMA_FROM_DEVICE);
  391. if (dma_mapping_error(jrdev, dst_dma)) {
  392. dev_err(jrdev, "unable to map key output memory\n");
  393. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  394. kfree(desc);
  395. return -ENOMEM;
  396. }
  397. /* Job descriptor to perform unkeyed hash on key_in */
  398. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  399. OP_ALG_AS_INITFINAL);
  400. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  401. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  402. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  403. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  404. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  405. LDST_SRCDST_BYTE_CONTEXT);
  406. #ifdef DEBUG
  407. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  408. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  409. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  410. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  411. #endif
  412. result.err = 0;
  413. init_completion(&result.completion);
  414. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  415. if (!ret) {
  416. /* in progress */
  417. wait_for_completion_interruptible(&result.completion);
  418. ret = result.err;
  419. #ifdef DEBUG
  420. print_hex_dump(KERN_ERR,
  421. "digested key@"__stringify(__LINE__)": ",
  422. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  423. digestsize, 1);
  424. #endif
  425. }
  426. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  427. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  428. *keylen = digestsize;
  429. kfree(desc);
  430. return ret;
  431. }
  432. static int ahash_setkey(struct crypto_ahash *ahash,
  433. const u8 *key, unsigned int keylen)
  434. {
  435. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  436. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  437. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  438. struct device *jrdev = ctx->jrdev;
  439. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  440. int digestsize = crypto_ahash_digestsize(ahash);
  441. int ret = 0;
  442. u8 *hashed_key = NULL;
  443. #ifdef DEBUG
  444. printk(KERN_ERR "keylen %d\n", keylen);
  445. #endif
  446. if (keylen > blocksize) {
  447. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  448. GFP_DMA);
  449. if (!hashed_key)
  450. return -ENOMEM;
  451. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  452. digestsize);
  453. if (ret)
  454. goto badkey;
  455. key = hashed_key;
  456. }
  457. /* Pick class 2 key length from algorithm submask */
  458. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  459. OP_ALG_ALGSEL_SHIFT] * 2;
  460. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  461. #ifdef DEBUG
  462. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  463. ctx->split_key_len, ctx->split_key_pad_len);
  464. print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
  465. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  466. #endif
  467. ret = gen_split_hash_key(ctx, key, keylen);
  468. if (ret)
  469. goto badkey;
  470. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  471. DMA_TO_DEVICE);
  472. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  473. dev_err(jrdev, "unable to map key i/o memory\n");
  474. ret = -ENOMEM;
  475. goto map_err;
  476. }
  477. #ifdef DEBUG
  478. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  479. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  480. ctx->split_key_pad_len, 1);
  481. #endif
  482. ret = ahash_set_sh_desc(ahash);
  483. if (ret) {
  484. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  485. DMA_TO_DEVICE);
  486. }
  487. map_err:
  488. kfree(hashed_key);
  489. return ret;
  490. badkey:
  491. kfree(hashed_key);
  492. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  493. return -EINVAL;
  494. }
  495. /*
  496. * ahash_edesc - s/w-extended ahash descriptor
  497. * @dst_dma: physical mapped address of req->result
  498. * @sec4_sg_dma: physical mapped address of h/w link table
  499. * @chained: if source is chained
  500. * @src_nents: number of segments in input scatterlist
  501. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  502. * @sec4_sg: pointer to h/w link table
  503. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  504. */
  505. struct ahash_edesc {
  506. dma_addr_t dst_dma;
  507. dma_addr_t sec4_sg_dma;
  508. bool chained;
  509. int src_nents;
  510. int sec4_sg_bytes;
  511. struct sec4_sg_entry *sec4_sg;
  512. u32 hw_desc[0];
  513. };
  514. static inline void ahash_unmap(struct device *dev,
  515. struct ahash_edesc *edesc,
  516. struct ahash_request *req, int dst_len)
  517. {
  518. if (edesc->src_nents)
  519. dma_unmap_sg_chained(dev, req->src, edesc->src_nents,
  520. DMA_TO_DEVICE, edesc->chained);
  521. if (edesc->dst_dma)
  522. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  523. if (edesc->sec4_sg_bytes)
  524. dma_unmap_single(dev, edesc->sec4_sg_dma,
  525. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  526. }
  527. static inline void ahash_unmap_ctx(struct device *dev,
  528. struct ahash_edesc *edesc,
  529. struct ahash_request *req, int dst_len, u32 flag)
  530. {
  531. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  532. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  533. struct caam_hash_state *state = ahash_request_ctx(req);
  534. if (state->ctx_dma)
  535. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  536. ahash_unmap(dev, edesc, req, dst_len);
  537. }
  538. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  539. void *context)
  540. {
  541. struct ahash_request *req = context;
  542. struct ahash_edesc *edesc;
  543. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  544. int digestsize = crypto_ahash_digestsize(ahash);
  545. #ifdef DEBUG
  546. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  547. struct caam_hash_state *state = ahash_request_ctx(req);
  548. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  549. #endif
  550. edesc = (struct ahash_edesc *)((char *)desc -
  551. offsetof(struct ahash_edesc, hw_desc));
  552. if (err)
  553. caam_jr_strstatus(jrdev, err);
  554. ahash_unmap(jrdev, edesc, req, digestsize);
  555. kfree(edesc);
  556. #ifdef DEBUG
  557. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  558. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  559. ctx->ctx_len, 1);
  560. if (req->result)
  561. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  562. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  563. digestsize, 1);
  564. #endif
  565. req->base.complete(&req->base, err);
  566. }
  567. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  568. void *context)
  569. {
  570. struct ahash_request *req = context;
  571. struct ahash_edesc *edesc;
  572. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  573. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  574. #ifdef DEBUG
  575. struct caam_hash_state *state = ahash_request_ctx(req);
  576. int digestsize = crypto_ahash_digestsize(ahash);
  577. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  578. #endif
  579. edesc = (struct ahash_edesc *)((char *)desc -
  580. offsetof(struct ahash_edesc, hw_desc));
  581. if (err)
  582. caam_jr_strstatus(jrdev, err);
  583. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  584. kfree(edesc);
  585. #ifdef DEBUG
  586. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  587. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  588. ctx->ctx_len, 1);
  589. if (req->result)
  590. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  591. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  592. digestsize, 1);
  593. #endif
  594. req->base.complete(&req->base, err);
  595. }
  596. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  597. void *context)
  598. {
  599. struct ahash_request *req = context;
  600. struct ahash_edesc *edesc;
  601. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  602. int digestsize = crypto_ahash_digestsize(ahash);
  603. #ifdef DEBUG
  604. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  605. struct caam_hash_state *state = ahash_request_ctx(req);
  606. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  607. #endif
  608. edesc = (struct ahash_edesc *)((char *)desc -
  609. offsetof(struct ahash_edesc, hw_desc));
  610. if (err)
  611. caam_jr_strstatus(jrdev, err);
  612. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  613. kfree(edesc);
  614. #ifdef DEBUG
  615. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  616. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  617. ctx->ctx_len, 1);
  618. if (req->result)
  619. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  620. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  621. digestsize, 1);
  622. #endif
  623. req->base.complete(&req->base, err);
  624. }
  625. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  626. void *context)
  627. {
  628. struct ahash_request *req = context;
  629. struct ahash_edesc *edesc;
  630. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  631. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  632. #ifdef DEBUG
  633. struct caam_hash_state *state = ahash_request_ctx(req);
  634. int digestsize = crypto_ahash_digestsize(ahash);
  635. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  636. #endif
  637. edesc = (struct ahash_edesc *)((char *)desc -
  638. offsetof(struct ahash_edesc, hw_desc));
  639. if (err)
  640. caam_jr_strstatus(jrdev, err);
  641. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  642. kfree(edesc);
  643. #ifdef DEBUG
  644. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  645. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  646. ctx->ctx_len, 1);
  647. if (req->result)
  648. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  649. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  650. digestsize, 1);
  651. #endif
  652. req->base.complete(&req->base, err);
  653. }
  654. /* submit update job descriptor */
  655. static int ahash_update_ctx(struct ahash_request *req)
  656. {
  657. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  658. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  659. struct caam_hash_state *state = ahash_request_ctx(req);
  660. struct device *jrdev = ctx->jrdev;
  661. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  662. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  663. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  664. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  665. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  666. int *next_buflen = state->current_buf ? &state->buflen_0 :
  667. &state->buflen_1, last_buflen;
  668. int in_len = *buflen + req->nbytes, to_hash;
  669. u32 *sh_desc = ctx->sh_desc_update, *desc;
  670. dma_addr_t ptr = ctx->sh_desc_update_dma;
  671. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  672. struct ahash_edesc *edesc;
  673. bool chained = false;
  674. int ret = 0;
  675. int sh_len;
  676. last_buflen = *next_buflen;
  677. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  678. to_hash = in_len - *next_buflen;
  679. if (to_hash) {
  680. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  681. &chained);
  682. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  683. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  684. sizeof(struct sec4_sg_entry);
  685. /*
  686. * allocate space for base edesc and hw desc commands,
  687. * link tables
  688. */
  689. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  690. sec4_sg_bytes, GFP_DMA | flags);
  691. if (!edesc) {
  692. dev_err(jrdev,
  693. "could not allocate extended descriptor\n");
  694. return -ENOMEM;
  695. }
  696. edesc->src_nents = src_nents;
  697. edesc->chained = chained;
  698. edesc->sec4_sg_bytes = sec4_sg_bytes;
  699. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  700. DESC_JOB_IO_LEN;
  701. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  702. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  703. if (ret)
  704. return ret;
  705. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  706. edesc->sec4_sg + 1,
  707. buf, state->buf_dma,
  708. *buflen, last_buflen);
  709. if (src_nents) {
  710. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  711. edesc->sec4_sg + sec4_sg_src_index,
  712. chained);
  713. if (*next_buflen) {
  714. scatterwalk_map_and_copy(next_buf, req->src,
  715. to_hash - *buflen,
  716. *next_buflen, 0);
  717. state->current_buf = !state->current_buf;
  718. }
  719. } else {
  720. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  721. SEC4_SG_LEN_FIN;
  722. }
  723. sh_len = desc_len(sh_desc);
  724. desc = edesc->hw_desc;
  725. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  726. HDR_REVERSE);
  727. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  728. sec4_sg_bytes,
  729. DMA_TO_DEVICE);
  730. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  731. dev_err(jrdev, "unable to map S/G table\n");
  732. return -ENOMEM;
  733. }
  734. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  735. to_hash, LDST_SGF);
  736. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  737. #ifdef DEBUG
  738. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  739. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  740. desc_bytes(desc), 1);
  741. #endif
  742. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  743. if (!ret) {
  744. ret = -EINPROGRESS;
  745. } else {
  746. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  747. DMA_BIDIRECTIONAL);
  748. kfree(edesc);
  749. }
  750. } else if (*next_buflen) {
  751. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  752. req->nbytes, 0);
  753. *buflen = *next_buflen;
  754. *next_buflen = last_buflen;
  755. }
  756. #ifdef DEBUG
  757. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  758. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  759. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  760. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  761. *next_buflen, 1);
  762. #endif
  763. return ret;
  764. }
  765. static int ahash_final_ctx(struct ahash_request *req)
  766. {
  767. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  768. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  769. struct caam_hash_state *state = ahash_request_ctx(req);
  770. struct device *jrdev = ctx->jrdev;
  771. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  772. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  773. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  774. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  775. int last_buflen = state->current_buf ? state->buflen_0 :
  776. state->buflen_1;
  777. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  778. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  779. int sec4_sg_bytes;
  780. int digestsize = crypto_ahash_digestsize(ahash);
  781. struct ahash_edesc *edesc;
  782. int ret = 0;
  783. int sh_len;
  784. sec4_sg_bytes = (1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry);
  785. /* allocate space for base edesc and hw desc commands, link tables */
  786. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  787. sec4_sg_bytes, GFP_DMA | flags);
  788. if (!edesc) {
  789. dev_err(jrdev, "could not allocate extended descriptor\n");
  790. return -ENOMEM;
  791. }
  792. sh_len = desc_len(sh_desc);
  793. desc = edesc->hw_desc;
  794. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  795. edesc->sec4_sg_bytes = sec4_sg_bytes;
  796. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  797. DESC_JOB_IO_LEN;
  798. edesc->src_nents = 0;
  799. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  800. edesc->sec4_sg, DMA_TO_DEVICE);
  801. if (ret)
  802. return ret;
  803. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  804. buf, state->buf_dma, buflen,
  805. last_buflen);
  806. (edesc->sec4_sg + sec4_sg_bytes - 1)->len |= SEC4_SG_LEN_FIN;
  807. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  808. sec4_sg_bytes, DMA_TO_DEVICE);
  809. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  810. dev_err(jrdev, "unable to map S/G table\n");
  811. return -ENOMEM;
  812. }
  813. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  814. LDST_SGF);
  815. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  816. digestsize);
  817. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  818. dev_err(jrdev, "unable to map dst\n");
  819. return -ENOMEM;
  820. }
  821. #ifdef DEBUG
  822. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  823. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  824. #endif
  825. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  826. if (!ret) {
  827. ret = -EINPROGRESS;
  828. } else {
  829. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  830. kfree(edesc);
  831. }
  832. return ret;
  833. }
  834. static int ahash_finup_ctx(struct ahash_request *req)
  835. {
  836. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  837. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  838. struct caam_hash_state *state = ahash_request_ctx(req);
  839. struct device *jrdev = ctx->jrdev;
  840. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  841. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  842. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  843. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  844. int last_buflen = state->current_buf ? state->buflen_0 :
  845. state->buflen_1;
  846. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  847. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  848. int sec4_sg_bytes, sec4_sg_src_index;
  849. int src_nents;
  850. int digestsize = crypto_ahash_digestsize(ahash);
  851. struct ahash_edesc *edesc;
  852. bool chained = false;
  853. int ret = 0;
  854. int sh_len;
  855. src_nents = __sg_count(req->src, req->nbytes, &chained);
  856. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  857. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  858. sizeof(struct sec4_sg_entry);
  859. /* allocate space for base edesc and hw desc commands, link tables */
  860. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  861. sec4_sg_bytes, GFP_DMA | flags);
  862. if (!edesc) {
  863. dev_err(jrdev, "could not allocate extended descriptor\n");
  864. return -ENOMEM;
  865. }
  866. sh_len = desc_len(sh_desc);
  867. desc = edesc->hw_desc;
  868. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  869. edesc->src_nents = src_nents;
  870. edesc->chained = chained;
  871. edesc->sec4_sg_bytes = sec4_sg_bytes;
  872. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  873. DESC_JOB_IO_LEN;
  874. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  875. edesc->sec4_sg, DMA_TO_DEVICE);
  876. if (ret)
  877. return ret;
  878. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  879. buf, state->buf_dma, buflen,
  880. last_buflen);
  881. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  882. sec4_sg_src_index, chained);
  883. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  884. sec4_sg_bytes, DMA_TO_DEVICE);
  885. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  886. dev_err(jrdev, "unable to map S/G table\n");
  887. return -ENOMEM;
  888. }
  889. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  890. buflen + req->nbytes, LDST_SGF);
  891. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  892. digestsize);
  893. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  894. dev_err(jrdev, "unable to map dst\n");
  895. return -ENOMEM;
  896. }
  897. #ifdef DEBUG
  898. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  899. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  900. #endif
  901. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  902. if (!ret) {
  903. ret = -EINPROGRESS;
  904. } else {
  905. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  906. kfree(edesc);
  907. }
  908. return ret;
  909. }
  910. static int ahash_digest(struct ahash_request *req)
  911. {
  912. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  913. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  914. struct device *jrdev = ctx->jrdev;
  915. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  916. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  917. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  918. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  919. int digestsize = crypto_ahash_digestsize(ahash);
  920. int src_nents, sec4_sg_bytes;
  921. dma_addr_t src_dma;
  922. struct ahash_edesc *edesc;
  923. bool chained = false;
  924. int ret = 0;
  925. u32 options;
  926. int sh_len;
  927. src_nents = sg_count(req->src, req->nbytes, &chained);
  928. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE,
  929. chained);
  930. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  931. /* allocate space for base edesc and hw desc commands, link tables */
  932. edesc = kmalloc(sizeof(struct ahash_edesc) + sec4_sg_bytes +
  933. DESC_JOB_IO_LEN, GFP_DMA | flags);
  934. if (!edesc) {
  935. dev_err(jrdev, "could not allocate extended descriptor\n");
  936. return -ENOMEM;
  937. }
  938. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  939. DESC_JOB_IO_LEN;
  940. edesc->sec4_sg_bytes = sec4_sg_bytes;
  941. edesc->src_nents = src_nents;
  942. edesc->chained = chained;
  943. sh_len = desc_len(sh_desc);
  944. desc = edesc->hw_desc;
  945. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  946. if (src_nents) {
  947. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  948. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  949. sec4_sg_bytes, DMA_TO_DEVICE);
  950. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  951. dev_err(jrdev, "unable to map S/G table\n");
  952. return -ENOMEM;
  953. }
  954. src_dma = edesc->sec4_sg_dma;
  955. options = LDST_SGF;
  956. } else {
  957. src_dma = sg_dma_address(req->src);
  958. options = 0;
  959. }
  960. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  961. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  962. digestsize);
  963. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  964. dev_err(jrdev, "unable to map dst\n");
  965. return -ENOMEM;
  966. }
  967. #ifdef DEBUG
  968. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  969. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  970. #endif
  971. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  972. if (!ret) {
  973. ret = -EINPROGRESS;
  974. } else {
  975. ahash_unmap(jrdev, edesc, req, digestsize);
  976. kfree(edesc);
  977. }
  978. return ret;
  979. }
  980. /* submit ahash final if it the first job descriptor */
  981. static int ahash_final_no_ctx(struct ahash_request *req)
  982. {
  983. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  984. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  985. struct caam_hash_state *state = ahash_request_ctx(req);
  986. struct device *jrdev = ctx->jrdev;
  987. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  988. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  989. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  990. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  991. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  992. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  993. int digestsize = crypto_ahash_digestsize(ahash);
  994. struct ahash_edesc *edesc;
  995. int ret = 0;
  996. int sh_len;
  997. /* allocate space for base edesc and hw desc commands, link tables */
  998. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN,
  999. GFP_DMA | flags);
  1000. if (!edesc) {
  1001. dev_err(jrdev, "could not allocate extended descriptor\n");
  1002. return -ENOMEM;
  1003. }
  1004. edesc->sec4_sg_bytes = 0;
  1005. sh_len = desc_len(sh_desc);
  1006. desc = edesc->hw_desc;
  1007. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1008. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  1009. if (dma_mapping_error(jrdev, state->buf_dma)) {
  1010. dev_err(jrdev, "unable to map src\n");
  1011. return -ENOMEM;
  1012. }
  1013. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  1014. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1015. digestsize);
  1016. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1017. dev_err(jrdev, "unable to map dst\n");
  1018. return -ENOMEM;
  1019. }
  1020. edesc->src_nents = 0;
  1021. #ifdef DEBUG
  1022. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1023. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1024. #endif
  1025. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1026. if (!ret) {
  1027. ret = -EINPROGRESS;
  1028. } else {
  1029. ahash_unmap(jrdev, edesc, req, digestsize);
  1030. kfree(edesc);
  1031. }
  1032. return ret;
  1033. }
  1034. /* submit ahash update if it the first job descriptor after update */
  1035. static int ahash_update_no_ctx(struct ahash_request *req)
  1036. {
  1037. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1038. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1039. struct caam_hash_state *state = ahash_request_ctx(req);
  1040. struct device *jrdev = ctx->jrdev;
  1041. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1042. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1043. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1044. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  1045. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  1046. int *next_buflen = state->current_buf ? &state->buflen_0 :
  1047. &state->buflen_1;
  1048. int in_len = *buflen + req->nbytes, to_hash;
  1049. int sec4_sg_bytes, src_nents;
  1050. struct ahash_edesc *edesc;
  1051. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  1052. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1053. bool chained = false;
  1054. int ret = 0;
  1055. int sh_len;
  1056. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1057. to_hash = in_len - *next_buflen;
  1058. if (to_hash) {
  1059. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  1060. &chained);
  1061. sec4_sg_bytes = (1 + src_nents) *
  1062. sizeof(struct sec4_sg_entry);
  1063. /*
  1064. * allocate space for base edesc and hw desc commands,
  1065. * link tables
  1066. */
  1067. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1068. sec4_sg_bytes, GFP_DMA | flags);
  1069. if (!edesc) {
  1070. dev_err(jrdev,
  1071. "could not allocate extended descriptor\n");
  1072. return -ENOMEM;
  1073. }
  1074. edesc->src_nents = src_nents;
  1075. edesc->chained = chained;
  1076. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1077. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1078. DESC_JOB_IO_LEN;
  1079. edesc->dst_dma = 0;
  1080. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1081. buf, *buflen);
  1082. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1083. edesc->sec4_sg + 1, chained);
  1084. if (*next_buflen) {
  1085. scatterwalk_map_and_copy(next_buf, req->src,
  1086. to_hash - *buflen,
  1087. *next_buflen, 0);
  1088. state->current_buf = !state->current_buf;
  1089. }
  1090. sh_len = desc_len(sh_desc);
  1091. desc = edesc->hw_desc;
  1092. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1093. HDR_REVERSE);
  1094. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1095. sec4_sg_bytes,
  1096. DMA_TO_DEVICE);
  1097. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1098. dev_err(jrdev, "unable to map S/G table\n");
  1099. return -ENOMEM;
  1100. }
  1101. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1102. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1103. if (ret)
  1104. return ret;
  1105. #ifdef DEBUG
  1106. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1107. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1108. desc_bytes(desc), 1);
  1109. #endif
  1110. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1111. if (!ret) {
  1112. ret = -EINPROGRESS;
  1113. state->update = ahash_update_ctx;
  1114. state->finup = ahash_finup_ctx;
  1115. state->final = ahash_final_ctx;
  1116. } else {
  1117. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1118. DMA_TO_DEVICE);
  1119. kfree(edesc);
  1120. }
  1121. } else if (*next_buflen) {
  1122. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1123. req->nbytes, 0);
  1124. *buflen = *next_buflen;
  1125. *next_buflen = 0;
  1126. }
  1127. #ifdef DEBUG
  1128. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1129. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1130. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1131. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1132. *next_buflen, 1);
  1133. #endif
  1134. return ret;
  1135. }
  1136. /* submit ahash finup if it the first job descriptor after update */
  1137. static int ahash_finup_no_ctx(struct ahash_request *req)
  1138. {
  1139. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1140. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1141. struct caam_hash_state *state = ahash_request_ctx(req);
  1142. struct device *jrdev = ctx->jrdev;
  1143. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1144. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1145. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1146. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1147. int last_buflen = state->current_buf ? state->buflen_0 :
  1148. state->buflen_1;
  1149. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1150. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1151. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1152. int digestsize = crypto_ahash_digestsize(ahash);
  1153. struct ahash_edesc *edesc;
  1154. bool chained = false;
  1155. int sh_len;
  1156. int ret = 0;
  1157. src_nents = __sg_count(req->src, req->nbytes, &chained);
  1158. sec4_sg_src_index = 2;
  1159. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1160. sizeof(struct sec4_sg_entry);
  1161. /* allocate space for base edesc and hw desc commands, link tables */
  1162. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1163. sec4_sg_bytes, GFP_DMA | flags);
  1164. if (!edesc) {
  1165. dev_err(jrdev, "could not allocate extended descriptor\n");
  1166. return -ENOMEM;
  1167. }
  1168. sh_len = desc_len(sh_desc);
  1169. desc = edesc->hw_desc;
  1170. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1171. edesc->src_nents = src_nents;
  1172. edesc->chained = chained;
  1173. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1174. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1175. DESC_JOB_IO_LEN;
  1176. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1177. state->buf_dma, buflen,
  1178. last_buflen);
  1179. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1,
  1180. chained);
  1181. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1182. sec4_sg_bytes, DMA_TO_DEVICE);
  1183. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1184. dev_err(jrdev, "unable to map S/G table\n");
  1185. return -ENOMEM;
  1186. }
  1187. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1188. req->nbytes, LDST_SGF);
  1189. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1190. digestsize);
  1191. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1192. dev_err(jrdev, "unable to map dst\n");
  1193. return -ENOMEM;
  1194. }
  1195. #ifdef DEBUG
  1196. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1197. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1198. #endif
  1199. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1200. if (!ret) {
  1201. ret = -EINPROGRESS;
  1202. } else {
  1203. ahash_unmap(jrdev, edesc, req, digestsize);
  1204. kfree(edesc);
  1205. }
  1206. return ret;
  1207. }
  1208. /* submit first update job descriptor after init */
  1209. static int ahash_update_first(struct ahash_request *req)
  1210. {
  1211. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1212. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1213. struct caam_hash_state *state = ahash_request_ctx(req);
  1214. struct device *jrdev = ctx->jrdev;
  1215. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1216. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1217. u8 *next_buf = state->current_buf ? state->buf_1 : state->buf_0;
  1218. int *next_buflen = state->current_buf ?
  1219. &state->buflen_1 : &state->buflen_0;
  1220. int to_hash;
  1221. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1222. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1223. int sec4_sg_bytes, src_nents;
  1224. dma_addr_t src_dma;
  1225. u32 options;
  1226. struct ahash_edesc *edesc;
  1227. bool chained = false;
  1228. int ret = 0;
  1229. int sh_len;
  1230. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1231. 1);
  1232. to_hash = req->nbytes - *next_buflen;
  1233. if (to_hash) {
  1234. src_nents = sg_count(req->src, req->nbytes - (*next_buflen),
  1235. &chained);
  1236. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1,
  1237. DMA_TO_DEVICE, chained);
  1238. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1239. /*
  1240. * allocate space for base edesc and hw desc commands,
  1241. * link tables
  1242. */
  1243. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1244. sec4_sg_bytes, GFP_DMA | flags);
  1245. if (!edesc) {
  1246. dev_err(jrdev,
  1247. "could not allocate extended descriptor\n");
  1248. return -ENOMEM;
  1249. }
  1250. edesc->src_nents = src_nents;
  1251. edesc->chained = chained;
  1252. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1253. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1254. DESC_JOB_IO_LEN;
  1255. edesc->dst_dma = 0;
  1256. if (src_nents) {
  1257. sg_to_sec4_sg_last(req->src, src_nents,
  1258. edesc->sec4_sg, 0);
  1259. edesc->sec4_sg_dma = dma_map_single(jrdev,
  1260. edesc->sec4_sg,
  1261. sec4_sg_bytes,
  1262. DMA_TO_DEVICE);
  1263. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1264. dev_err(jrdev, "unable to map S/G table\n");
  1265. return -ENOMEM;
  1266. }
  1267. src_dma = edesc->sec4_sg_dma;
  1268. options = LDST_SGF;
  1269. } else {
  1270. src_dma = sg_dma_address(req->src);
  1271. options = 0;
  1272. }
  1273. if (*next_buflen)
  1274. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1275. *next_buflen, 0);
  1276. sh_len = desc_len(sh_desc);
  1277. desc = edesc->hw_desc;
  1278. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1279. HDR_REVERSE);
  1280. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1281. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1282. if (ret)
  1283. return ret;
  1284. #ifdef DEBUG
  1285. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1286. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1287. desc_bytes(desc), 1);
  1288. #endif
  1289. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1290. req);
  1291. if (!ret) {
  1292. ret = -EINPROGRESS;
  1293. state->update = ahash_update_ctx;
  1294. state->finup = ahash_finup_ctx;
  1295. state->final = ahash_final_ctx;
  1296. } else {
  1297. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1298. DMA_TO_DEVICE);
  1299. kfree(edesc);
  1300. }
  1301. } else if (*next_buflen) {
  1302. state->update = ahash_update_no_ctx;
  1303. state->finup = ahash_finup_no_ctx;
  1304. state->final = ahash_final_no_ctx;
  1305. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1306. req->nbytes, 0);
  1307. }
  1308. #ifdef DEBUG
  1309. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1310. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1311. *next_buflen, 1);
  1312. #endif
  1313. return ret;
  1314. }
  1315. static int ahash_finup_first(struct ahash_request *req)
  1316. {
  1317. return ahash_digest(req);
  1318. }
  1319. static int ahash_init(struct ahash_request *req)
  1320. {
  1321. struct caam_hash_state *state = ahash_request_ctx(req);
  1322. state->update = ahash_update_first;
  1323. state->finup = ahash_finup_first;
  1324. state->final = ahash_final_no_ctx;
  1325. state->current_buf = 0;
  1326. state->buf_dma = 0;
  1327. return 0;
  1328. }
  1329. static int ahash_update(struct ahash_request *req)
  1330. {
  1331. struct caam_hash_state *state = ahash_request_ctx(req);
  1332. return state->update(req);
  1333. }
  1334. static int ahash_finup(struct ahash_request *req)
  1335. {
  1336. struct caam_hash_state *state = ahash_request_ctx(req);
  1337. return state->finup(req);
  1338. }
  1339. static int ahash_final(struct ahash_request *req)
  1340. {
  1341. struct caam_hash_state *state = ahash_request_ctx(req);
  1342. return state->final(req);
  1343. }
  1344. static int ahash_export(struct ahash_request *req, void *out)
  1345. {
  1346. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1347. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1348. struct caam_hash_state *state = ahash_request_ctx(req);
  1349. memcpy(out, ctx, sizeof(struct caam_hash_ctx));
  1350. memcpy(out + sizeof(struct caam_hash_ctx), state,
  1351. sizeof(struct caam_hash_state));
  1352. return 0;
  1353. }
  1354. static int ahash_import(struct ahash_request *req, const void *in)
  1355. {
  1356. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1357. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1358. struct caam_hash_state *state = ahash_request_ctx(req);
  1359. memcpy(ctx, in, sizeof(struct caam_hash_ctx));
  1360. memcpy(state, in + sizeof(struct caam_hash_ctx),
  1361. sizeof(struct caam_hash_state));
  1362. return 0;
  1363. }
  1364. struct caam_hash_template {
  1365. char name[CRYPTO_MAX_ALG_NAME];
  1366. char driver_name[CRYPTO_MAX_ALG_NAME];
  1367. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1368. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1369. unsigned int blocksize;
  1370. struct ahash_alg template_ahash;
  1371. u32 alg_type;
  1372. u32 alg_op;
  1373. };
  1374. /* ahash descriptors */
  1375. static struct caam_hash_template driver_hash[] = {
  1376. {
  1377. .name = "sha1",
  1378. .driver_name = "sha1-caam",
  1379. .hmac_name = "hmac(sha1)",
  1380. .hmac_driver_name = "hmac-sha1-caam",
  1381. .blocksize = SHA1_BLOCK_SIZE,
  1382. .template_ahash = {
  1383. .init = ahash_init,
  1384. .update = ahash_update,
  1385. .final = ahash_final,
  1386. .finup = ahash_finup,
  1387. .digest = ahash_digest,
  1388. .export = ahash_export,
  1389. .import = ahash_import,
  1390. .setkey = ahash_setkey,
  1391. .halg = {
  1392. .digestsize = SHA1_DIGEST_SIZE,
  1393. },
  1394. },
  1395. .alg_type = OP_ALG_ALGSEL_SHA1,
  1396. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1397. }, {
  1398. .name = "sha224",
  1399. .driver_name = "sha224-caam",
  1400. .hmac_name = "hmac(sha224)",
  1401. .hmac_driver_name = "hmac-sha224-caam",
  1402. .blocksize = SHA224_BLOCK_SIZE,
  1403. .template_ahash = {
  1404. .init = ahash_init,
  1405. .update = ahash_update,
  1406. .final = ahash_final,
  1407. .finup = ahash_finup,
  1408. .digest = ahash_digest,
  1409. .export = ahash_export,
  1410. .import = ahash_import,
  1411. .setkey = ahash_setkey,
  1412. .halg = {
  1413. .digestsize = SHA224_DIGEST_SIZE,
  1414. },
  1415. },
  1416. .alg_type = OP_ALG_ALGSEL_SHA224,
  1417. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1418. }, {
  1419. .name = "sha256",
  1420. .driver_name = "sha256-caam",
  1421. .hmac_name = "hmac(sha256)",
  1422. .hmac_driver_name = "hmac-sha256-caam",
  1423. .blocksize = SHA256_BLOCK_SIZE,
  1424. .template_ahash = {
  1425. .init = ahash_init,
  1426. .update = ahash_update,
  1427. .final = ahash_final,
  1428. .finup = ahash_finup,
  1429. .digest = ahash_digest,
  1430. .export = ahash_export,
  1431. .import = ahash_import,
  1432. .setkey = ahash_setkey,
  1433. .halg = {
  1434. .digestsize = SHA256_DIGEST_SIZE,
  1435. },
  1436. },
  1437. .alg_type = OP_ALG_ALGSEL_SHA256,
  1438. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1439. }, {
  1440. .name = "sha384",
  1441. .driver_name = "sha384-caam",
  1442. .hmac_name = "hmac(sha384)",
  1443. .hmac_driver_name = "hmac-sha384-caam",
  1444. .blocksize = SHA384_BLOCK_SIZE,
  1445. .template_ahash = {
  1446. .init = ahash_init,
  1447. .update = ahash_update,
  1448. .final = ahash_final,
  1449. .finup = ahash_finup,
  1450. .digest = ahash_digest,
  1451. .export = ahash_export,
  1452. .import = ahash_import,
  1453. .setkey = ahash_setkey,
  1454. .halg = {
  1455. .digestsize = SHA384_DIGEST_SIZE,
  1456. },
  1457. },
  1458. .alg_type = OP_ALG_ALGSEL_SHA384,
  1459. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1460. }, {
  1461. .name = "sha512",
  1462. .driver_name = "sha512-caam",
  1463. .hmac_name = "hmac(sha512)",
  1464. .hmac_driver_name = "hmac-sha512-caam",
  1465. .blocksize = SHA512_BLOCK_SIZE,
  1466. .template_ahash = {
  1467. .init = ahash_init,
  1468. .update = ahash_update,
  1469. .final = ahash_final,
  1470. .finup = ahash_finup,
  1471. .digest = ahash_digest,
  1472. .export = ahash_export,
  1473. .import = ahash_import,
  1474. .setkey = ahash_setkey,
  1475. .halg = {
  1476. .digestsize = SHA512_DIGEST_SIZE,
  1477. },
  1478. },
  1479. .alg_type = OP_ALG_ALGSEL_SHA512,
  1480. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1481. }, {
  1482. .name = "md5",
  1483. .driver_name = "md5-caam",
  1484. .hmac_name = "hmac(md5)",
  1485. .hmac_driver_name = "hmac-md5-caam",
  1486. .blocksize = MD5_BLOCK_WORDS * 4,
  1487. .template_ahash = {
  1488. .init = ahash_init,
  1489. .update = ahash_update,
  1490. .final = ahash_final,
  1491. .finup = ahash_finup,
  1492. .digest = ahash_digest,
  1493. .export = ahash_export,
  1494. .import = ahash_import,
  1495. .setkey = ahash_setkey,
  1496. .halg = {
  1497. .digestsize = MD5_DIGEST_SIZE,
  1498. },
  1499. },
  1500. .alg_type = OP_ALG_ALGSEL_MD5,
  1501. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1502. },
  1503. };
  1504. struct caam_hash_alg {
  1505. struct list_head entry;
  1506. int alg_type;
  1507. int alg_op;
  1508. struct ahash_alg ahash_alg;
  1509. };
  1510. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1511. {
  1512. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1513. struct crypto_alg *base = tfm->__crt_alg;
  1514. struct hash_alg_common *halg =
  1515. container_of(base, struct hash_alg_common, base);
  1516. struct ahash_alg *alg =
  1517. container_of(halg, struct ahash_alg, halg);
  1518. struct caam_hash_alg *caam_hash =
  1519. container_of(alg, struct caam_hash_alg, ahash_alg);
  1520. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1521. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1522. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1523. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1524. HASH_MSG_LEN + 32,
  1525. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1526. HASH_MSG_LEN + 64,
  1527. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1528. int ret = 0;
  1529. /*
  1530. * Get a Job ring from Job Ring driver to ensure in-order
  1531. * crypto request processing per tfm
  1532. */
  1533. ctx->jrdev = caam_jr_alloc();
  1534. if (IS_ERR(ctx->jrdev)) {
  1535. pr_err("Job Ring Device allocation for transform failed\n");
  1536. return PTR_ERR(ctx->jrdev);
  1537. }
  1538. /* copy descriptor header template value */
  1539. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1540. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1541. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1542. OP_ALG_ALGSEL_SHIFT];
  1543. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1544. sizeof(struct caam_hash_state));
  1545. ret = ahash_set_sh_desc(ahash);
  1546. return ret;
  1547. }
  1548. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1549. {
  1550. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1551. if (ctx->sh_desc_update_dma &&
  1552. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1553. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1554. desc_bytes(ctx->sh_desc_update),
  1555. DMA_TO_DEVICE);
  1556. if (ctx->sh_desc_update_first_dma &&
  1557. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1558. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1559. desc_bytes(ctx->sh_desc_update_first),
  1560. DMA_TO_DEVICE);
  1561. if (ctx->sh_desc_fin_dma &&
  1562. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1563. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1564. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1565. if (ctx->sh_desc_digest_dma &&
  1566. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1567. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1568. desc_bytes(ctx->sh_desc_digest),
  1569. DMA_TO_DEVICE);
  1570. if (ctx->sh_desc_finup_dma &&
  1571. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1572. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1573. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1574. caam_jr_free(ctx->jrdev);
  1575. }
  1576. static void __exit caam_algapi_hash_exit(void)
  1577. {
  1578. struct caam_hash_alg *t_alg, *n;
  1579. if (!hash_list.next)
  1580. return;
  1581. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1582. crypto_unregister_ahash(&t_alg->ahash_alg);
  1583. list_del(&t_alg->entry);
  1584. kfree(t_alg);
  1585. }
  1586. }
  1587. static struct caam_hash_alg *
  1588. caam_hash_alloc(struct caam_hash_template *template,
  1589. bool keyed)
  1590. {
  1591. struct caam_hash_alg *t_alg;
  1592. struct ahash_alg *halg;
  1593. struct crypto_alg *alg;
  1594. t_alg = kzalloc(sizeof(struct caam_hash_alg), GFP_KERNEL);
  1595. if (!t_alg) {
  1596. pr_err("failed to allocate t_alg\n");
  1597. return ERR_PTR(-ENOMEM);
  1598. }
  1599. t_alg->ahash_alg = template->template_ahash;
  1600. halg = &t_alg->ahash_alg;
  1601. alg = &halg->halg.base;
  1602. if (keyed) {
  1603. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1604. template->hmac_name);
  1605. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1606. template->hmac_driver_name);
  1607. } else {
  1608. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1609. template->name);
  1610. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1611. template->driver_name);
  1612. }
  1613. alg->cra_module = THIS_MODULE;
  1614. alg->cra_init = caam_hash_cra_init;
  1615. alg->cra_exit = caam_hash_cra_exit;
  1616. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1617. alg->cra_priority = CAAM_CRA_PRIORITY;
  1618. alg->cra_blocksize = template->blocksize;
  1619. alg->cra_alignmask = 0;
  1620. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1621. alg->cra_type = &crypto_ahash_type;
  1622. t_alg->alg_type = template->alg_type;
  1623. t_alg->alg_op = template->alg_op;
  1624. return t_alg;
  1625. }
  1626. static int __init caam_algapi_hash_init(void)
  1627. {
  1628. struct device_node *dev_node;
  1629. struct platform_device *pdev;
  1630. struct device *ctrldev;
  1631. void *priv;
  1632. int i = 0, err = 0;
  1633. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1634. if (!dev_node) {
  1635. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1636. if (!dev_node)
  1637. return -ENODEV;
  1638. }
  1639. pdev = of_find_device_by_node(dev_node);
  1640. if (!pdev) {
  1641. of_node_put(dev_node);
  1642. return -ENODEV;
  1643. }
  1644. ctrldev = &pdev->dev;
  1645. priv = dev_get_drvdata(ctrldev);
  1646. of_node_put(dev_node);
  1647. /*
  1648. * If priv is NULL, it's probably because the caam driver wasn't
  1649. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1650. */
  1651. if (!priv)
  1652. return -ENODEV;
  1653. INIT_LIST_HEAD(&hash_list);
  1654. /* register crypto algorithms the device supports */
  1655. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1656. /* TODO: check if h/w supports alg */
  1657. struct caam_hash_alg *t_alg;
  1658. /* register hmac version */
  1659. t_alg = caam_hash_alloc(&driver_hash[i], true);
  1660. if (IS_ERR(t_alg)) {
  1661. err = PTR_ERR(t_alg);
  1662. pr_warn("%s alg allocation failed\n",
  1663. driver_hash[i].driver_name);
  1664. continue;
  1665. }
  1666. err = crypto_register_ahash(&t_alg->ahash_alg);
  1667. if (err) {
  1668. pr_warn("%s alg registration failed\n",
  1669. t_alg->ahash_alg.halg.base.cra_driver_name);
  1670. kfree(t_alg);
  1671. } else
  1672. list_add_tail(&t_alg->entry, &hash_list);
  1673. /* register unkeyed version */
  1674. t_alg = caam_hash_alloc(&driver_hash[i], false);
  1675. if (IS_ERR(t_alg)) {
  1676. err = PTR_ERR(t_alg);
  1677. pr_warn("%s alg allocation failed\n",
  1678. driver_hash[i].driver_name);
  1679. continue;
  1680. }
  1681. err = crypto_register_ahash(&t_alg->ahash_alg);
  1682. if (err) {
  1683. pr_warn("%s alg registration failed\n",
  1684. t_alg->ahash_alg.halg.base.cra_driver_name);
  1685. kfree(t_alg);
  1686. } else
  1687. list_add_tail(&t_alg->entry, &hash_list);
  1688. }
  1689. return err;
  1690. }
  1691. module_init(caam_algapi_hash_init);
  1692. module_exit(caam_algapi_hash_exit);
  1693. MODULE_LICENSE("GPL");
  1694. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1695. MODULE_AUTHOR("Freescale Semiconductor - NMG");