timer-atmel-st.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. /*
  2. * linux/arch/arm/mach-at91/at91rm9200_time.c
  3. *
  4. * Copyright (C) 2003 SAN People
  5. * Copyright (C) 2003 ATMEL
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/irq.h>
  24. #include <linux/clockchips.h>
  25. #include <linux/export.h>
  26. #include <linux/mfd/syscon.h>
  27. #include <linux/mfd/syscon/atmel-st.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/regmap.h>
  30. static unsigned long last_crtr;
  31. static u32 irqmask;
  32. static struct clock_event_device clkevt;
  33. static struct regmap *regmap_st;
  34. #define AT91_SLOW_CLOCK 32768
  35. #define RM9200_TIMER_LATCH ((AT91_SLOW_CLOCK + HZ/2) / HZ)
  36. /*
  37. * The ST_CRTR is updated asynchronously to the master clock ... but
  38. * the updates as seen by the CPU don't seem to be strictly monotonic.
  39. * Waiting until we read the same value twice avoids glitching.
  40. */
  41. static inline unsigned long read_CRTR(void)
  42. {
  43. unsigned int x1, x2;
  44. regmap_read(regmap_st, AT91_ST_CRTR, &x1);
  45. do {
  46. regmap_read(regmap_st, AT91_ST_CRTR, &x2);
  47. if (x1 == x2)
  48. break;
  49. x1 = x2;
  50. } while (1);
  51. return x1;
  52. }
  53. /*
  54. * IRQ handler for the timer.
  55. */
  56. static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
  57. {
  58. u32 sr;
  59. regmap_read(regmap_st, AT91_ST_SR, &sr);
  60. sr &= irqmask;
  61. /*
  62. * irqs should be disabled here, but as the irq is shared they are only
  63. * guaranteed to be off if the timer irq is registered first.
  64. */
  65. WARN_ON_ONCE(!irqs_disabled());
  66. /* simulate "oneshot" timer with alarm */
  67. if (sr & AT91_ST_ALMS) {
  68. clkevt.event_handler(&clkevt);
  69. return IRQ_HANDLED;
  70. }
  71. /* periodic mode should handle delayed ticks */
  72. if (sr & AT91_ST_PITS) {
  73. u32 crtr = read_CRTR();
  74. while (((crtr - last_crtr) & AT91_ST_CRTV) >= RM9200_TIMER_LATCH) {
  75. last_crtr += RM9200_TIMER_LATCH;
  76. clkevt.event_handler(&clkevt);
  77. }
  78. return IRQ_HANDLED;
  79. }
  80. /* this irq is shared ... */
  81. return IRQ_NONE;
  82. }
  83. static cycle_t read_clk32k(struct clocksource *cs)
  84. {
  85. return read_CRTR();
  86. }
  87. static struct clocksource clk32k = {
  88. .name = "32k_counter",
  89. .rating = 150,
  90. .read = read_clk32k,
  91. .mask = CLOCKSOURCE_MASK(20),
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. };
  94. static void
  95. clkevt32k_mode(enum clock_event_mode mode, struct clock_event_device *dev)
  96. {
  97. unsigned int val;
  98. /* Disable and flush pending timer interrupts */
  99. regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
  100. regmap_read(regmap_st, AT91_ST_SR, &val);
  101. last_crtr = read_CRTR();
  102. switch (mode) {
  103. case CLOCK_EVT_MODE_PERIODIC:
  104. /* PIT for periodic irqs; fixed rate of 1/HZ */
  105. irqmask = AT91_ST_PITS;
  106. regmap_write(regmap_st, AT91_ST_PIMR, RM9200_TIMER_LATCH);
  107. break;
  108. case CLOCK_EVT_MODE_ONESHOT:
  109. /* ALM for oneshot irqs, set by next_event()
  110. * before 32 seconds have passed
  111. */
  112. irqmask = AT91_ST_ALMS;
  113. regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
  114. break;
  115. case CLOCK_EVT_MODE_SHUTDOWN:
  116. case CLOCK_EVT_MODE_UNUSED:
  117. case CLOCK_EVT_MODE_RESUME:
  118. irqmask = 0;
  119. break;
  120. }
  121. regmap_write(regmap_st, AT91_ST_IER, irqmask);
  122. }
  123. static int
  124. clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
  125. {
  126. u32 alm;
  127. int status = 0;
  128. unsigned int val;
  129. BUG_ON(delta < 2);
  130. /* The alarm IRQ uses absolute time (now+delta), not the relative
  131. * time (delta) in our calling convention. Like all clockevents
  132. * using such "match" hardware, we have a race to defend against.
  133. *
  134. * Our defense here is to have set up the clockevent device so the
  135. * delta is at least two. That way we never end up writing RTAR
  136. * with the value then held in CRTR ... which would mean the match
  137. * wouldn't trigger until 32 seconds later, after CRTR wraps.
  138. */
  139. alm = read_CRTR();
  140. /* Cancel any pending alarm; flush any pending IRQ */
  141. regmap_write(regmap_st, AT91_ST_RTAR, alm);
  142. regmap_read(regmap_st, AT91_ST_SR, &val);
  143. /* Schedule alarm by writing RTAR. */
  144. alm += delta;
  145. regmap_write(regmap_st, AT91_ST_RTAR, alm);
  146. return status;
  147. }
  148. static struct clock_event_device clkevt = {
  149. .name = "at91_tick",
  150. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  151. .rating = 150,
  152. .set_next_event = clkevt32k_next_event,
  153. .set_mode = clkevt32k_mode,
  154. };
  155. /*
  156. * ST (system timer) module supports both clockevents and clocksource.
  157. */
  158. static void __init atmel_st_timer_init(struct device_node *node)
  159. {
  160. unsigned int val;
  161. int irq, ret;
  162. regmap_st = syscon_node_to_regmap(node);
  163. if (IS_ERR(regmap_st))
  164. panic(pr_fmt("Unable to get regmap\n"));
  165. /* Disable all timer interrupts, and clear any pending ones */
  166. regmap_write(regmap_st, AT91_ST_IDR,
  167. AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
  168. regmap_read(regmap_st, AT91_ST_SR, &val);
  169. /* Get the interrupts property */
  170. irq = irq_of_parse_and_map(node, 0);
  171. if (!irq)
  172. panic(pr_fmt("Unable to get IRQ from DT\n"));
  173. /* Make IRQs happen for the system timer */
  174. ret = request_irq(irq, at91rm9200_timer_interrupt,
  175. IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
  176. "at91_tick", regmap_st);
  177. if (ret)
  178. panic(pr_fmt("Unable to setup IRQ\n"));
  179. /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
  180. * directly for the clocksource and all clockevents, after adjusting
  181. * its prescaler from the 1 Hz default.
  182. */
  183. regmap_write(regmap_st, AT91_ST_RTMR, 1);
  184. /* Setup timer clockevent, with minimum of two ticks (important!!) */
  185. clkevt.cpumask = cpumask_of(0);
  186. clockevents_config_and_register(&clkevt, AT91_SLOW_CLOCK,
  187. 2, AT91_ST_ALMV);
  188. /* register clocksource */
  189. clocksource_register_hz(&clk32k, AT91_SLOW_CLOCK);
  190. }
  191. CLOCKSOURCE_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
  192. atmel_st_timer_init);