exynos_mct.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpu.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/delay.h>
  21. #include <linux/percpu.h>
  22. #include <linux/of.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/of_address.h>
  25. #include <linux/clocksource.h>
  26. #include <linux/sched_clock.h>
  27. #define EXYNOS4_MCTREG(x) (x)
  28. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  29. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  30. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  31. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  32. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  33. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  34. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  35. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  36. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  37. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  38. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  39. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  40. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  41. #define MCT_L_TCNTB_OFFSET (0x00)
  42. #define MCT_L_ICNTB_OFFSET (0x08)
  43. #define MCT_L_TCON_OFFSET (0x20)
  44. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  45. #define MCT_L_INT_ENB_OFFSET (0x34)
  46. #define MCT_L_WSTAT_OFFSET (0x40)
  47. #define MCT_G_TCON_START (1 << 8)
  48. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  49. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  50. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  51. #define MCT_L_TCON_INT_START (1 << 1)
  52. #define MCT_L_TCON_TIMER_START (1 << 0)
  53. #define TICK_BASE_CNT 1
  54. enum {
  55. MCT_INT_SPI,
  56. MCT_INT_PPI
  57. };
  58. enum {
  59. MCT_G0_IRQ,
  60. MCT_G1_IRQ,
  61. MCT_G2_IRQ,
  62. MCT_G3_IRQ,
  63. MCT_L0_IRQ,
  64. MCT_L1_IRQ,
  65. MCT_L2_IRQ,
  66. MCT_L3_IRQ,
  67. MCT_L4_IRQ,
  68. MCT_L5_IRQ,
  69. MCT_L6_IRQ,
  70. MCT_L7_IRQ,
  71. MCT_NR_IRQS,
  72. };
  73. static void __iomem *reg_base;
  74. static unsigned long clk_rate;
  75. static unsigned int mct_int_type;
  76. static int mct_irqs[MCT_NR_IRQS];
  77. struct mct_clock_event_device {
  78. struct clock_event_device evt;
  79. unsigned long base;
  80. char name[10];
  81. };
  82. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  83. {
  84. unsigned long stat_addr;
  85. u32 mask;
  86. u32 i;
  87. writel_relaxed(value, reg_base + offset);
  88. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  89. stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  90. switch (offset & ~EXYNOS4_MCT_L_MASK) {
  91. case MCT_L_TCON_OFFSET:
  92. mask = 1 << 3; /* L_TCON write status */
  93. break;
  94. case MCT_L_ICNTB_OFFSET:
  95. mask = 1 << 1; /* L_ICNTB write status */
  96. break;
  97. case MCT_L_TCNTB_OFFSET:
  98. mask = 1 << 0; /* L_TCNTB write status */
  99. break;
  100. default:
  101. return;
  102. }
  103. } else {
  104. switch (offset) {
  105. case EXYNOS4_MCT_G_TCON:
  106. stat_addr = EXYNOS4_MCT_G_WSTAT;
  107. mask = 1 << 16; /* G_TCON write status */
  108. break;
  109. case EXYNOS4_MCT_G_COMP0_L:
  110. stat_addr = EXYNOS4_MCT_G_WSTAT;
  111. mask = 1 << 0; /* G_COMP0_L write status */
  112. break;
  113. case EXYNOS4_MCT_G_COMP0_U:
  114. stat_addr = EXYNOS4_MCT_G_WSTAT;
  115. mask = 1 << 1; /* G_COMP0_U write status */
  116. break;
  117. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  118. stat_addr = EXYNOS4_MCT_G_WSTAT;
  119. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  120. break;
  121. case EXYNOS4_MCT_G_CNT_L:
  122. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  123. mask = 1 << 0; /* G_CNT_L write status */
  124. break;
  125. case EXYNOS4_MCT_G_CNT_U:
  126. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  127. mask = 1 << 1; /* G_CNT_U write status */
  128. break;
  129. default:
  130. return;
  131. }
  132. }
  133. /* Wait maximum 1 ms until written values are applied */
  134. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  135. if (readl_relaxed(reg_base + stat_addr) & mask) {
  136. writel_relaxed(mask, reg_base + stat_addr);
  137. return;
  138. }
  139. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  140. }
  141. /* Clocksource handling */
  142. static void exynos4_mct_frc_start(void)
  143. {
  144. u32 reg;
  145. reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
  146. reg |= MCT_G_TCON_START;
  147. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  148. }
  149. /**
  150. * exynos4_read_count_64 - Read all 64-bits of the global counter
  151. *
  152. * This will read all 64-bits of the global counter taking care to make sure
  153. * that the upper and lower half match. Note that reading the MCT can be quite
  154. * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
  155. * only) version when possible.
  156. *
  157. * Returns the number of cycles in the global counter.
  158. */
  159. static u64 exynos4_read_count_64(void)
  160. {
  161. unsigned int lo, hi;
  162. u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
  163. do {
  164. hi = hi2;
  165. lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
  166. hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
  167. } while (hi != hi2);
  168. return ((cycle_t)hi << 32) | lo;
  169. }
  170. /**
  171. * exynos4_read_count_32 - Read the lower 32-bits of the global counter
  172. *
  173. * This will read just the lower 32-bits of the global counter. This is marked
  174. * as notrace so it can be used by the scheduler clock.
  175. *
  176. * Returns the number of cycles in the global counter (lower 32 bits).
  177. */
  178. static u32 notrace exynos4_read_count_32(void)
  179. {
  180. return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
  181. }
  182. static cycle_t exynos4_frc_read(struct clocksource *cs)
  183. {
  184. return exynos4_read_count_32();
  185. }
  186. static void exynos4_frc_resume(struct clocksource *cs)
  187. {
  188. exynos4_mct_frc_start();
  189. }
  190. struct clocksource mct_frc = {
  191. .name = "mct-frc",
  192. .rating = 400,
  193. .read = exynos4_frc_read,
  194. .mask = CLOCKSOURCE_MASK(32),
  195. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  196. .resume = exynos4_frc_resume,
  197. };
  198. static u64 notrace exynos4_read_sched_clock(void)
  199. {
  200. return exynos4_read_count_32();
  201. }
  202. static struct delay_timer exynos4_delay_timer;
  203. static cycles_t exynos4_read_current_timer(void)
  204. {
  205. BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
  206. "cycles_t needs to move to 32-bit for ARM64 usage");
  207. return exynos4_read_count_32();
  208. }
  209. static void __init exynos4_clocksource_init(void)
  210. {
  211. exynos4_mct_frc_start();
  212. exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
  213. exynos4_delay_timer.freq = clk_rate;
  214. register_current_timer_delay(&exynos4_delay_timer);
  215. if (clocksource_register_hz(&mct_frc, clk_rate))
  216. panic("%s: can't register clocksource\n", mct_frc.name);
  217. sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
  218. }
  219. static void exynos4_mct_comp0_stop(void)
  220. {
  221. unsigned int tcon;
  222. tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
  223. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  224. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  225. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  226. }
  227. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  228. unsigned long cycles)
  229. {
  230. unsigned int tcon;
  231. cycle_t comp_cycle;
  232. tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
  233. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  234. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  235. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  236. }
  237. comp_cycle = exynos4_read_count_64() + cycles;
  238. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  239. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  240. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  241. tcon |= MCT_G_TCON_COMP0_ENABLE;
  242. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  243. }
  244. static int exynos4_comp_set_next_event(unsigned long cycles,
  245. struct clock_event_device *evt)
  246. {
  247. exynos4_mct_comp0_start(evt->mode, cycles);
  248. return 0;
  249. }
  250. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  251. struct clock_event_device *evt)
  252. {
  253. unsigned long cycles_per_jiffy;
  254. exynos4_mct_comp0_stop();
  255. switch (mode) {
  256. case CLOCK_EVT_MODE_PERIODIC:
  257. cycles_per_jiffy =
  258. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  259. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  260. break;
  261. case CLOCK_EVT_MODE_ONESHOT:
  262. case CLOCK_EVT_MODE_UNUSED:
  263. case CLOCK_EVT_MODE_SHUTDOWN:
  264. case CLOCK_EVT_MODE_RESUME:
  265. break;
  266. }
  267. }
  268. static struct clock_event_device mct_comp_device = {
  269. .name = "mct-comp",
  270. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  271. .rating = 250,
  272. .set_next_event = exynos4_comp_set_next_event,
  273. .set_mode = exynos4_comp_set_mode,
  274. };
  275. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  276. {
  277. struct clock_event_device *evt = dev_id;
  278. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  279. evt->event_handler(evt);
  280. return IRQ_HANDLED;
  281. }
  282. static struct irqaction mct_comp_event_irq = {
  283. .name = "mct_comp_irq",
  284. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  285. .handler = exynos4_mct_comp_isr,
  286. .dev_id = &mct_comp_device,
  287. };
  288. static void exynos4_clockevent_init(void)
  289. {
  290. mct_comp_device.cpumask = cpumask_of(0);
  291. clockevents_config_and_register(&mct_comp_device, clk_rate,
  292. 0xf, 0xffffffff);
  293. setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
  294. }
  295. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  296. /* Clock event handling */
  297. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  298. {
  299. unsigned long tmp;
  300. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  301. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  302. tmp = readl_relaxed(reg_base + offset);
  303. if (tmp & mask) {
  304. tmp &= ~mask;
  305. exynos4_mct_write(tmp, offset);
  306. }
  307. }
  308. static void exynos4_mct_tick_start(unsigned long cycles,
  309. struct mct_clock_event_device *mevt)
  310. {
  311. unsigned long tmp;
  312. exynos4_mct_tick_stop(mevt);
  313. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  314. /* update interrupt count buffer */
  315. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  316. /* enable MCT tick interrupt */
  317. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  318. tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  319. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  320. MCT_L_TCON_INTERVAL_MODE;
  321. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  322. }
  323. static int exynos4_tick_set_next_event(unsigned long cycles,
  324. struct clock_event_device *evt)
  325. {
  326. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  327. exynos4_mct_tick_start(cycles, mevt);
  328. return 0;
  329. }
  330. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  331. struct clock_event_device *evt)
  332. {
  333. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  334. unsigned long cycles_per_jiffy;
  335. exynos4_mct_tick_stop(mevt);
  336. switch (mode) {
  337. case CLOCK_EVT_MODE_PERIODIC:
  338. cycles_per_jiffy =
  339. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  340. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  341. break;
  342. case CLOCK_EVT_MODE_ONESHOT:
  343. case CLOCK_EVT_MODE_UNUSED:
  344. case CLOCK_EVT_MODE_SHUTDOWN:
  345. case CLOCK_EVT_MODE_RESUME:
  346. break;
  347. }
  348. }
  349. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  350. {
  351. struct clock_event_device *evt = &mevt->evt;
  352. /*
  353. * This is for supporting oneshot mode.
  354. * Mct would generate interrupt periodically
  355. * without explicit stopping.
  356. */
  357. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  358. exynos4_mct_tick_stop(mevt);
  359. /* Clear the MCT tick interrupt */
  360. if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  361. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  362. return 1;
  363. } else {
  364. return 0;
  365. }
  366. }
  367. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  368. {
  369. struct mct_clock_event_device *mevt = dev_id;
  370. struct clock_event_device *evt = &mevt->evt;
  371. exynos4_mct_tick_clear(mevt);
  372. evt->event_handler(evt);
  373. return IRQ_HANDLED;
  374. }
  375. static int exynos4_local_timer_setup(struct clock_event_device *evt)
  376. {
  377. struct mct_clock_event_device *mevt;
  378. unsigned int cpu = smp_processor_id();
  379. mevt = container_of(evt, struct mct_clock_event_device, evt);
  380. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  381. snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
  382. evt->name = mevt->name;
  383. evt->cpumask = cpumask_of(cpu);
  384. evt->set_next_event = exynos4_tick_set_next_event;
  385. evt->set_mode = exynos4_tick_set_mode;
  386. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  387. evt->rating = 450;
  388. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  389. if (mct_int_type == MCT_INT_SPI) {
  390. evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
  391. if (request_irq(evt->irq, exynos4_mct_tick_isr,
  392. IRQF_TIMER | IRQF_NOBALANCING,
  393. evt->name, mevt)) {
  394. pr_err("exynos-mct: cannot register IRQ %d\n",
  395. evt->irq);
  396. return -EIO;
  397. }
  398. irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
  399. } else {
  400. enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
  401. }
  402. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  403. 0xf, 0x7fffffff);
  404. return 0;
  405. }
  406. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  407. {
  408. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  409. if (mct_int_type == MCT_INT_SPI)
  410. free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
  411. else
  412. disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
  413. }
  414. static int exynos4_mct_cpu_notify(struct notifier_block *self,
  415. unsigned long action, void *hcpu)
  416. {
  417. struct mct_clock_event_device *mevt;
  418. /*
  419. * Grab cpu pointer in each case to avoid spurious
  420. * preemptible warnings
  421. */
  422. switch (action & ~CPU_TASKS_FROZEN) {
  423. case CPU_STARTING:
  424. mevt = this_cpu_ptr(&percpu_mct_tick);
  425. exynos4_local_timer_setup(&mevt->evt);
  426. break;
  427. case CPU_DYING:
  428. mevt = this_cpu_ptr(&percpu_mct_tick);
  429. exynos4_local_timer_stop(&mevt->evt);
  430. break;
  431. }
  432. return NOTIFY_OK;
  433. }
  434. static struct notifier_block exynos4_mct_cpu_nb = {
  435. .notifier_call = exynos4_mct_cpu_notify,
  436. };
  437. static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
  438. {
  439. int err;
  440. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  441. struct clk *mct_clk, *tick_clk;
  442. tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
  443. clk_get(NULL, "fin_pll");
  444. if (IS_ERR(tick_clk))
  445. panic("%s: unable to determine tick clock rate\n", __func__);
  446. clk_rate = clk_get_rate(tick_clk);
  447. mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
  448. if (IS_ERR(mct_clk))
  449. panic("%s: unable to retrieve mct clock instance\n", __func__);
  450. clk_prepare_enable(mct_clk);
  451. reg_base = base;
  452. if (!reg_base)
  453. panic("%s: unable to ioremap mct address space\n", __func__);
  454. if (mct_int_type == MCT_INT_PPI) {
  455. err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
  456. exynos4_mct_tick_isr, "MCT",
  457. &percpu_mct_tick);
  458. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  459. mct_irqs[MCT_L0_IRQ], err);
  460. } else {
  461. irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
  462. }
  463. err = register_cpu_notifier(&exynos4_mct_cpu_nb);
  464. if (err)
  465. goto out_irq;
  466. /* Immediately configure the timer on the boot CPU */
  467. exynos4_local_timer_setup(&mevt->evt);
  468. return;
  469. out_irq:
  470. free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
  471. }
  472. void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
  473. {
  474. mct_irqs[MCT_G0_IRQ] = irq_g0;
  475. mct_irqs[MCT_L0_IRQ] = irq_l0;
  476. mct_irqs[MCT_L1_IRQ] = irq_l1;
  477. mct_int_type = MCT_INT_SPI;
  478. exynos4_timer_resources(NULL, base);
  479. exynos4_clocksource_init();
  480. exynos4_clockevent_init();
  481. }
  482. static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
  483. {
  484. u32 nr_irqs, i;
  485. mct_int_type = int_type;
  486. /* This driver uses only one global timer interrupt */
  487. mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
  488. /*
  489. * Find out the number of local irqs specified. The local
  490. * timer irqs are specified after the four global timer
  491. * irqs are specified.
  492. */
  493. #ifdef CONFIG_OF
  494. nr_irqs = of_irq_count(np);
  495. #else
  496. nr_irqs = 0;
  497. #endif
  498. for (i = MCT_L0_IRQ; i < nr_irqs; i++)
  499. mct_irqs[i] = irq_of_parse_and_map(np, i);
  500. exynos4_timer_resources(np, of_iomap(np, 0));
  501. exynos4_clocksource_init();
  502. exynos4_clockevent_init();
  503. }
  504. static void __init mct_init_spi(struct device_node *np)
  505. {
  506. return mct_init_dt(np, MCT_INT_SPI);
  507. }
  508. static void __init mct_init_ppi(struct device_node *np)
  509. {
  510. return mct_init_dt(np, MCT_INT_PPI);
  511. }
  512. CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
  513. CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);