clkc.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /*
  2. * Zynq clock controller
  3. *
  4. * Copyright (C) 2012 - 2013 Xilinx
  5. *
  6. * Sören Brinkmann <soren.brinkmann@xilinx.com>
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License v2 as published by
  10. * the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <linux/clk/zynq.h>
  21. #include <linux/clk-provider.h>
  22. #include <linux/of.h>
  23. #include <linux/of_address.h>
  24. #include <linux/slab.h>
  25. #include <linux/string.h>
  26. #include <linux/io.h>
  27. static void __iomem *zynq_clkc_base;
  28. #define SLCR_ARMPLL_CTRL (zynq_clkc_base + 0x00)
  29. #define SLCR_DDRPLL_CTRL (zynq_clkc_base + 0x04)
  30. #define SLCR_IOPLL_CTRL (zynq_clkc_base + 0x08)
  31. #define SLCR_PLL_STATUS (zynq_clkc_base + 0x0c)
  32. #define SLCR_ARM_CLK_CTRL (zynq_clkc_base + 0x20)
  33. #define SLCR_DDR_CLK_CTRL (zynq_clkc_base + 0x24)
  34. #define SLCR_DCI_CLK_CTRL (zynq_clkc_base + 0x28)
  35. #define SLCR_APER_CLK_CTRL (zynq_clkc_base + 0x2c)
  36. #define SLCR_GEM0_CLK_CTRL (zynq_clkc_base + 0x40)
  37. #define SLCR_GEM1_CLK_CTRL (zynq_clkc_base + 0x44)
  38. #define SLCR_SMC_CLK_CTRL (zynq_clkc_base + 0x48)
  39. #define SLCR_LQSPI_CLK_CTRL (zynq_clkc_base + 0x4c)
  40. #define SLCR_SDIO_CLK_CTRL (zynq_clkc_base + 0x50)
  41. #define SLCR_UART_CLK_CTRL (zynq_clkc_base + 0x54)
  42. #define SLCR_SPI_CLK_CTRL (zynq_clkc_base + 0x58)
  43. #define SLCR_CAN_CLK_CTRL (zynq_clkc_base + 0x5c)
  44. #define SLCR_CAN_MIOCLK_CTRL (zynq_clkc_base + 0x60)
  45. #define SLCR_DBG_CLK_CTRL (zynq_clkc_base + 0x64)
  46. #define SLCR_PCAP_CLK_CTRL (zynq_clkc_base + 0x68)
  47. #define SLCR_FPGA0_CLK_CTRL (zynq_clkc_base + 0x70)
  48. #define SLCR_621_TRUE (zynq_clkc_base + 0xc4)
  49. #define SLCR_SWDT_CLK_SEL (zynq_clkc_base + 0x204)
  50. #define NUM_MIO_PINS 54
  51. #define DBG_CLK_CTRL_CLKACT_TRC BIT(0)
  52. #define DBG_CLK_CTRL_CPU_1XCLKACT BIT(1)
  53. enum zynq_clk {
  54. armpll, ddrpll, iopll,
  55. cpu_6or4x, cpu_3or2x, cpu_2x, cpu_1x,
  56. ddr2x, ddr3x, dci,
  57. lqspi, smc, pcap, gem0, gem1, fclk0, fclk1, fclk2, fclk3, can0, can1,
  58. sdio0, sdio1, uart0, uart1, spi0, spi1, dma,
  59. usb0_aper, usb1_aper, gem0_aper, gem1_aper,
  60. sdio0_aper, sdio1_aper, spi0_aper, spi1_aper, can0_aper, can1_aper,
  61. i2c0_aper, i2c1_aper, uart0_aper, uart1_aper, gpio_aper, lqspi_aper,
  62. smc_aper, swdt, dbg_trc, dbg_apb, clk_max};
  63. static struct clk *ps_clk;
  64. static struct clk *clks[clk_max];
  65. static struct clk_onecell_data clk_data;
  66. static DEFINE_SPINLOCK(armpll_lock);
  67. static DEFINE_SPINLOCK(ddrpll_lock);
  68. static DEFINE_SPINLOCK(iopll_lock);
  69. static DEFINE_SPINLOCK(armclk_lock);
  70. static DEFINE_SPINLOCK(swdtclk_lock);
  71. static DEFINE_SPINLOCK(ddrclk_lock);
  72. static DEFINE_SPINLOCK(dciclk_lock);
  73. static DEFINE_SPINLOCK(gem0clk_lock);
  74. static DEFINE_SPINLOCK(gem1clk_lock);
  75. static DEFINE_SPINLOCK(canclk_lock);
  76. static DEFINE_SPINLOCK(canmioclk_lock);
  77. static DEFINE_SPINLOCK(dbgclk_lock);
  78. static DEFINE_SPINLOCK(aperclk_lock);
  79. static const char *armpll_parents[] __initdata = {"armpll_int", "ps_clk"};
  80. static const char *ddrpll_parents[] __initdata = {"ddrpll_int", "ps_clk"};
  81. static const char *iopll_parents[] __initdata = {"iopll_int", "ps_clk"};
  82. static const char *gem0_mux_parents[] __initdata = {"gem0_div1", "dummy_name"};
  83. static const char *gem1_mux_parents[] __initdata = {"gem1_div1", "dummy_name"};
  84. static const char *can0_mio_mux2_parents[] __initdata = {"can0_gate",
  85. "can0_mio_mux"};
  86. static const char *can1_mio_mux2_parents[] __initdata = {"can1_gate",
  87. "can1_mio_mux"};
  88. static const char *dbg_emio_mux_parents[] __initdata = {"dbg_div",
  89. "dummy_name"};
  90. static const char *dbgtrc_emio_input_names[] __initdata = {"trace_emio_clk"};
  91. static const char *gem0_emio_input_names[] __initdata = {"gem0_emio_clk"};
  92. static const char *gem1_emio_input_names[] __initdata = {"gem1_emio_clk"};
  93. static const char *swdt_ext_clk_input_names[] __initdata = {"swdt_ext_clk"};
  94. static void __init zynq_clk_register_fclk(enum zynq_clk fclk,
  95. const char *clk_name, void __iomem *fclk_ctrl_reg,
  96. const char **parents, int enable)
  97. {
  98. struct clk *clk;
  99. u32 enable_reg;
  100. char *mux_name;
  101. char *div0_name;
  102. char *div1_name;
  103. spinlock_t *fclk_lock;
  104. spinlock_t *fclk_gate_lock;
  105. void __iomem *fclk_gate_reg = fclk_ctrl_reg + 8;
  106. fclk_lock = kmalloc(sizeof(*fclk_lock), GFP_KERNEL);
  107. if (!fclk_lock)
  108. goto err;
  109. fclk_gate_lock = kmalloc(sizeof(*fclk_gate_lock), GFP_KERNEL);
  110. if (!fclk_gate_lock)
  111. goto err_fclk_gate_lock;
  112. spin_lock_init(fclk_lock);
  113. spin_lock_init(fclk_gate_lock);
  114. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name);
  115. if (!mux_name)
  116. goto err_mux_name;
  117. div0_name = kasprintf(GFP_KERNEL, "%s_div0", clk_name);
  118. if (!div0_name)
  119. goto err_div0_name;
  120. div1_name = kasprintf(GFP_KERNEL, "%s_div1", clk_name);
  121. if (!div1_name)
  122. goto err_div1_name;
  123. clk = clk_register_mux(NULL, mux_name, parents, 4,
  124. CLK_SET_RATE_NO_REPARENT, fclk_ctrl_reg, 4, 2, 0,
  125. fclk_lock);
  126. clk = clk_register_divider(NULL, div0_name, mux_name,
  127. 0, fclk_ctrl_reg, 8, 6, CLK_DIVIDER_ONE_BASED |
  128. CLK_DIVIDER_ALLOW_ZERO, fclk_lock);
  129. clk = clk_register_divider(NULL, div1_name, div0_name,
  130. CLK_SET_RATE_PARENT, fclk_ctrl_reg, 20, 6,
  131. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  132. fclk_lock);
  133. clks[fclk] = clk_register_gate(NULL, clk_name,
  134. div1_name, CLK_SET_RATE_PARENT, fclk_gate_reg,
  135. 0, CLK_GATE_SET_TO_DISABLE, fclk_gate_lock);
  136. enable_reg = clk_readl(fclk_gate_reg) & 1;
  137. if (enable && !enable_reg) {
  138. if (clk_prepare_enable(clks[fclk]))
  139. pr_warn("%s: FCLK%u enable failed\n", __func__,
  140. fclk - fclk0);
  141. }
  142. kfree(mux_name);
  143. kfree(div0_name);
  144. kfree(div1_name);
  145. return;
  146. err_div1_name:
  147. kfree(div0_name);
  148. err_div0_name:
  149. kfree(mux_name);
  150. err_mux_name:
  151. kfree(fclk_gate_lock);
  152. err_fclk_gate_lock:
  153. kfree(fclk_lock);
  154. err:
  155. clks[fclk] = ERR_PTR(-ENOMEM);
  156. }
  157. static void __init zynq_clk_register_periph_clk(enum zynq_clk clk0,
  158. enum zynq_clk clk1, const char *clk_name0,
  159. const char *clk_name1, void __iomem *clk_ctrl,
  160. const char **parents, unsigned int two_gates)
  161. {
  162. struct clk *clk;
  163. char *mux_name;
  164. char *div_name;
  165. spinlock_t *lock;
  166. lock = kmalloc(sizeof(*lock), GFP_KERNEL);
  167. if (!lock)
  168. goto err;
  169. spin_lock_init(lock);
  170. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name0);
  171. div_name = kasprintf(GFP_KERNEL, "%s_div", clk_name0);
  172. clk = clk_register_mux(NULL, mux_name, parents, 4,
  173. CLK_SET_RATE_NO_REPARENT, clk_ctrl, 4, 2, 0, lock);
  174. clk = clk_register_divider(NULL, div_name, mux_name, 0, clk_ctrl, 8, 6,
  175. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, lock);
  176. clks[clk0] = clk_register_gate(NULL, clk_name0, div_name,
  177. CLK_SET_RATE_PARENT, clk_ctrl, 0, 0, lock);
  178. if (two_gates)
  179. clks[clk1] = clk_register_gate(NULL, clk_name1, div_name,
  180. CLK_SET_RATE_PARENT, clk_ctrl, 1, 0, lock);
  181. kfree(mux_name);
  182. kfree(div_name);
  183. return;
  184. err:
  185. clks[clk0] = ERR_PTR(-ENOMEM);
  186. if (two_gates)
  187. clks[clk1] = ERR_PTR(-ENOMEM);
  188. }
  189. static void __init zynq_clk_setup(struct device_node *np)
  190. {
  191. int i;
  192. u32 tmp;
  193. int ret;
  194. struct clk *clk;
  195. char *clk_name;
  196. unsigned int fclk_enable = 0;
  197. const char *clk_output_name[clk_max];
  198. const char *cpu_parents[4];
  199. const char *periph_parents[4];
  200. const char *swdt_ext_clk_mux_parents[2];
  201. const char *can_mio_mux_parents[NUM_MIO_PINS];
  202. const char *dummy_nm = "dummy_name";
  203. pr_info("Zynq clock init\n");
  204. /* get clock output names from DT */
  205. for (i = 0; i < clk_max; i++) {
  206. if (of_property_read_string_index(np, "clock-output-names",
  207. i, &clk_output_name[i])) {
  208. pr_err("%s: clock output name not in DT\n", __func__);
  209. BUG();
  210. }
  211. }
  212. cpu_parents[0] = clk_output_name[armpll];
  213. cpu_parents[1] = clk_output_name[armpll];
  214. cpu_parents[2] = clk_output_name[ddrpll];
  215. cpu_parents[3] = clk_output_name[iopll];
  216. periph_parents[0] = clk_output_name[iopll];
  217. periph_parents[1] = clk_output_name[iopll];
  218. periph_parents[2] = clk_output_name[armpll];
  219. periph_parents[3] = clk_output_name[ddrpll];
  220. of_property_read_u32(np, "fclk-enable", &fclk_enable);
  221. /* ps_clk */
  222. ret = of_property_read_u32(np, "ps-clk-frequency", &tmp);
  223. if (ret) {
  224. pr_warn("ps_clk frequency not specified, using 33 MHz.\n");
  225. tmp = 33333333;
  226. }
  227. ps_clk = clk_register_fixed_rate(NULL, "ps_clk", NULL, CLK_IS_ROOT,
  228. tmp);
  229. /* PLLs */
  230. clk = clk_register_zynq_pll("armpll_int", "ps_clk", SLCR_ARMPLL_CTRL,
  231. SLCR_PLL_STATUS, 0, &armpll_lock);
  232. clks[armpll] = clk_register_mux(NULL, clk_output_name[armpll],
  233. armpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  234. SLCR_ARMPLL_CTRL, 4, 1, 0, &armpll_lock);
  235. clk = clk_register_zynq_pll("ddrpll_int", "ps_clk", SLCR_DDRPLL_CTRL,
  236. SLCR_PLL_STATUS, 1, &ddrpll_lock);
  237. clks[ddrpll] = clk_register_mux(NULL, clk_output_name[ddrpll],
  238. ddrpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  239. SLCR_DDRPLL_CTRL, 4, 1, 0, &ddrpll_lock);
  240. clk = clk_register_zynq_pll("iopll_int", "ps_clk", SLCR_IOPLL_CTRL,
  241. SLCR_PLL_STATUS, 2, &iopll_lock);
  242. clks[iopll] = clk_register_mux(NULL, clk_output_name[iopll],
  243. iopll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  244. SLCR_IOPLL_CTRL, 4, 1, 0, &iopll_lock);
  245. /* CPU clocks */
  246. tmp = clk_readl(SLCR_621_TRUE) & 1;
  247. clk = clk_register_mux(NULL, "cpu_mux", cpu_parents, 4,
  248. CLK_SET_RATE_NO_REPARENT, SLCR_ARM_CLK_CTRL, 4, 2, 0,
  249. &armclk_lock);
  250. clk = clk_register_divider(NULL, "cpu_div", "cpu_mux", 0,
  251. SLCR_ARM_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  252. CLK_DIVIDER_ALLOW_ZERO, &armclk_lock);
  253. clks[cpu_6or4x] = clk_register_gate(NULL, clk_output_name[cpu_6or4x],
  254. "cpu_div", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED,
  255. SLCR_ARM_CLK_CTRL, 24, 0, &armclk_lock);
  256. clk = clk_register_fixed_factor(NULL, "cpu_3or2x_div", "cpu_div", 0,
  257. 1, 2);
  258. clks[cpu_3or2x] = clk_register_gate(NULL, clk_output_name[cpu_3or2x],
  259. "cpu_3or2x_div", CLK_IGNORE_UNUSED,
  260. SLCR_ARM_CLK_CTRL, 25, 0, &armclk_lock);
  261. clk = clk_register_fixed_factor(NULL, "cpu_2x_div", "cpu_div", 0, 1,
  262. 2 + tmp);
  263. clks[cpu_2x] = clk_register_gate(NULL, clk_output_name[cpu_2x],
  264. "cpu_2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL,
  265. 26, 0, &armclk_lock);
  266. clk_prepare_enable(clks[cpu_2x]);
  267. clk = clk_register_fixed_factor(NULL, "cpu_1x_div", "cpu_div", 0, 1,
  268. 4 + 2 * tmp);
  269. clks[cpu_1x] = clk_register_gate(NULL, clk_output_name[cpu_1x],
  270. "cpu_1x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 27,
  271. 0, &armclk_lock);
  272. /* Timers */
  273. swdt_ext_clk_mux_parents[0] = clk_output_name[cpu_1x];
  274. for (i = 0; i < ARRAY_SIZE(swdt_ext_clk_input_names); i++) {
  275. int idx = of_property_match_string(np, "clock-names",
  276. swdt_ext_clk_input_names[i]);
  277. if (idx >= 0)
  278. swdt_ext_clk_mux_parents[i + 1] =
  279. of_clk_get_parent_name(np, idx);
  280. else
  281. swdt_ext_clk_mux_parents[i + 1] = dummy_nm;
  282. }
  283. clks[swdt] = clk_register_mux(NULL, clk_output_name[swdt],
  284. swdt_ext_clk_mux_parents, 2, CLK_SET_RATE_PARENT |
  285. CLK_SET_RATE_NO_REPARENT, SLCR_SWDT_CLK_SEL, 0, 1, 0,
  286. &swdtclk_lock);
  287. /* DDR clocks */
  288. clk = clk_register_divider(NULL, "ddr2x_div", "ddrpll", 0,
  289. SLCR_DDR_CLK_CTRL, 26, 6, CLK_DIVIDER_ONE_BASED |
  290. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  291. clks[ddr2x] = clk_register_gate(NULL, clk_output_name[ddr2x],
  292. "ddr2x_div", 0, SLCR_DDR_CLK_CTRL, 1, 0, &ddrclk_lock);
  293. clk_prepare_enable(clks[ddr2x]);
  294. clk = clk_register_divider(NULL, "ddr3x_div", "ddrpll", 0,
  295. SLCR_DDR_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED |
  296. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  297. clks[ddr3x] = clk_register_gate(NULL, clk_output_name[ddr3x],
  298. "ddr3x_div", 0, SLCR_DDR_CLK_CTRL, 0, 0, &ddrclk_lock);
  299. clk_prepare_enable(clks[ddr3x]);
  300. clk = clk_register_divider(NULL, "dci_div0", "ddrpll", 0,
  301. SLCR_DCI_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  302. CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock);
  303. clk = clk_register_divider(NULL, "dci_div1", "dci_div0",
  304. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 20, 6,
  305. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  306. &dciclk_lock);
  307. clks[dci] = clk_register_gate(NULL, clk_output_name[dci], "dci_div1",
  308. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 0, 0,
  309. &dciclk_lock);
  310. clk_prepare_enable(clks[dci]);
  311. /* Peripheral clocks */
  312. for (i = fclk0; i <= fclk3; i++) {
  313. int enable = !!(fclk_enable & BIT(i - fclk0));
  314. zynq_clk_register_fclk(i, clk_output_name[i],
  315. SLCR_FPGA0_CLK_CTRL + 0x10 * (i - fclk0),
  316. periph_parents, enable);
  317. }
  318. zynq_clk_register_periph_clk(lqspi, 0, clk_output_name[lqspi], NULL,
  319. SLCR_LQSPI_CLK_CTRL, periph_parents, 0);
  320. zynq_clk_register_periph_clk(smc, 0, clk_output_name[smc], NULL,
  321. SLCR_SMC_CLK_CTRL, periph_parents, 0);
  322. zynq_clk_register_periph_clk(pcap, 0, clk_output_name[pcap], NULL,
  323. SLCR_PCAP_CLK_CTRL, periph_parents, 0);
  324. zynq_clk_register_periph_clk(sdio0, sdio1, clk_output_name[sdio0],
  325. clk_output_name[sdio1], SLCR_SDIO_CLK_CTRL,
  326. periph_parents, 1);
  327. zynq_clk_register_periph_clk(uart0, uart1, clk_output_name[uart0],
  328. clk_output_name[uart1], SLCR_UART_CLK_CTRL,
  329. periph_parents, 1);
  330. zynq_clk_register_periph_clk(spi0, spi1, clk_output_name[spi0],
  331. clk_output_name[spi1], SLCR_SPI_CLK_CTRL,
  332. periph_parents, 1);
  333. for (i = 0; i < ARRAY_SIZE(gem0_emio_input_names); i++) {
  334. int idx = of_property_match_string(np, "clock-names",
  335. gem0_emio_input_names[i]);
  336. if (idx >= 0)
  337. gem0_mux_parents[i + 1] = of_clk_get_parent_name(np,
  338. idx);
  339. }
  340. clk = clk_register_mux(NULL, "gem0_mux", periph_parents, 4,
  341. CLK_SET_RATE_NO_REPARENT, SLCR_GEM0_CLK_CTRL, 4, 2, 0,
  342. &gem0clk_lock);
  343. clk = clk_register_divider(NULL, "gem0_div0", "gem0_mux", 0,
  344. SLCR_GEM0_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  345. CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock);
  346. clk = clk_register_divider(NULL, "gem0_div1", "gem0_div0",
  347. CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 20, 6,
  348. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  349. &gem0clk_lock);
  350. clk = clk_register_mux(NULL, "gem0_emio_mux", gem0_mux_parents, 2,
  351. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  352. SLCR_GEM0_CLK_CTRL, 6, 1, 0,
  353. &gem0clk_lock);
  354. clks[gem0] = clk_register_gate(NULL, clk_output_name[gem0],
  355. "gem0_emio_mux", CLK_SET_RATE_PARENT,
  356. SLCR_GEM0_CLK_CTRL, 0, 0, &gem0clk_lock);
  357. for (i = 0; i < ARRAY_SIZE(gem1_emio_input_names); i++) {
  358. int idx = of_property_match_string(np, "clock-names",
  359. gem1_emio_input_names[i]);
  360. if (idx >= 0)
  361. gem1_mux_parents[i + 1] = of_clk_get_parent_name(np,
  362. idx);
  363. }
  364. clk = clk_register_mux(NULL, "gem1_mux", periph_parents, 4,
  365. CLK_SET_RATE_NO_REPARENT, SLCR_GEM1_CLK_CTRL, 4, 2, 0,
  366. &gem1clk_lock);
  367. clk = clk_register_divider(NULL, "gem1_div0", "gem1_mux", 0,
  368. SLCR_GEM1_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  369. CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock);
  370. clk = clk_register_divider(NULL, "gem1_div1", "gem1_div0",
  371. CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 20, 6,
  372. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  373. &gem1clk_lock);
  374. clk = clk_register_mux(NULL, "gem1_emio_mux", gem1_mux_parents, 2,
  375. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  376. SLCR_GEM1_CLK_CTRL, 6, 1, 0,
  377. &gem1clk_lock);
  378. clks[gem1] = clk_register_gate(NULL, clk_output_name[gem1],
  379. "gem1_emio_mux", CLK_SET_RATE_PARENT,
  380. SLCR_GEM1_CLK_CTRL, 0, 0, &gem1clk_lock);
  381. tmp = strlen("mio_clk_00x");
  382. clk_name = kmalloc(tmp, GFP_KERNEL);
  383. for (i = 0; i < NUM_MIO_PINS; i++) {
  384. int idx;
  385. snprintf(clk_name, tmp, "mio_clk_%2.2d", i);
  386. idx = of_property_match_string(np, "clock-names", clk_name);
  387. if (idx >= 0)
  388. can_mio_mux_parents[i] = of_clk_get_parent_name(np,
  389. idx);
  390. else
  391. can_mio_mux_parents[i] = dummy_nm;
  392. }
  393. kfree(clk_name);
  394. clk = clk_register_mux(NULL, "can_mux", periph_parents, 4,
  395. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_CLK_CTRL, 4, 2, 0,
  396. &canclk_lock);
  397. clk = clk_register_divider(NULL, "can_div0", "can_mux", 0,
  398. SLCR_CAN_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  399. CLK_DIVIDER_ALLOW_ZERO, &canclk_lock);
  400. clk = clk_register_divider(NULL, "can_div1", "can_div0",
  401. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 20, 6,
  402. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  403. &canclk_lock);
  404. clk = clk_register_gate(NULL, "can0_gate", "can_div1",
  405. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 0, 0,
  406. &canclk_lock);
  407. clk = clk_register_gate(NULL, "can1_gate", "can_div1",
  408. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 1, 0,
  409. &canclk_lock);
  410. clk = clk_register_mux(NULL, "can0_mio_mux",
  411. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  412. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 0, 6, 0,
  413. &canmioclk_lock);
  414. clk = clk_register_mux(NULL, "can1_mio_mux",
  415. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  416. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 16, 6,
  417. 0, &canmioclk_lock);
  418. clks[can0] = clk_register_mux(NULL, clk_output_name[can0],
  419. can0_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  420. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 6, 1, 0,
  421. &canmioclk_lock);
  422. clks[can1] = clk_register_mux(NULL, clk_output_name[can1],
  423. can1_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  424. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 22, 1,
  425. 0, &canmioclk_lock);
  426. for (i = 0; i < ARRAY_SIZE(dbgtrc_emio_input_names); i++) {
  427. int idx = of_property_match_string(np, "clock-names",
  428. dbgtrc_emio_input_names[i]);
  429. if (idx >= 0)
  430. dbg_emio_mux_parents[i + 1] = of_clk_get_parent_name(np,
  431. idx);
  432. }
  433. clk = clk_register_mux(NULL, "dbg_mux", periph_parents, 4,
  434. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 4, 2, 0,
  435. &dbgclk_lock);
  436. clk = clk_register_divider(NULL, "dbg_div", "dbg_mux", 0,
  437. SLCR_DBG_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  438. CLK_DIVIDER_ALLOW_ZERO, &dbgclk_lock);
  439. clk = clk_register_mux(NULL, "dbg_emio_mux", dbg_emio_mux_parents, 2,
  440. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 6, 1, 0,
  441. &dbgclk_lock);
  442. clks[dbg_trc] = clk_register_gate(NULL, clk_output_name[dbg_trc],
  443. "dbg_emio_mux", CLK_SET_RATE_PARENT, SLCR_DBG_CLK_CTRL,
  444. 0, 0, &dbgclk_lock);
  445. clks[dbg_apb] = clk_register_gate(NULL, clk_output_name[dbg_apb],
  446. clk_output_name[cpu_1x], 0, SLCR_DBG_CLK_CTRL, 1, 0,
  447. &dbgclk_lock);
  448. /* leave debug clocks in the state the bootloader set them up to */
  449. tmp = clk_readl(SLCR_DBG_CLK_CTRL);
  450. if (tmp & DBG_CLK_CTRL_CLKACT_TRC)
  451. if (clk_prepare_enable(clks[dbg_trc]))
  452. pr_warn("%s: trace clk enable failed\n", __func__);
  453. if (tmp & DBG_CLK_CTRL_CPU_1XCLKACT)
  454. if (clk_prepare_enable(clks[dbg_apb]))
  455. pr_warn("%s: debug APB clk enable failed\n", __func__);
  456. /* One gated clock for all APER clocks. */
  457. clks[dma] = clk_register_gate(NULL, clk_output_name[dma],
  458. clk_output_name[cpu_2x], 0, SLCR_APER_CLK_CTRL, 0, 0,
  459. &aperclk_lock);
  460. clks[usb0_aper] = clk_register_gate(NULL, clk_output_name[usb0_aper],
  461. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 2, 0,
  462. &aperclk_lock);
  463. clks[usb1_aper] = clk_register_gate(NULL, clk_output_name[usb1_aper],
  464. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 3, 0,
  465. &aperclk_lock);
  466. clks[gem0_aper] = clk_register_gate(NULL, clk_output_name[gem0_aper],
  467. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, 0,
  468. &aperclk_lock);
  469. clks[gem1_aper] = clk_register_gate(NULL, clk_output_name[gem1_aper],
  470. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 7, 0,
  471. &aperclk_lock);
  472. clks[sdio0_aper] = clk_register_gate(NULL, clk_output_name[sdio0_aper],
  473. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 10, 0,
  474. &aperclk_lock);
  475. clks[sdio1_aper] = clk_register_gate(NULL, clk_output_name[sdio1_aper],
  476. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 11, 0,
  477. &aperclk_lock);
  478. clks[spi0_aper] = clk_register_gate(NULL, clk_output_name[spi0_aper],
  479. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 14, 0,
  480. &aperclk_lock);
  481. clks[spi1_aper] = clk_register_gate(NULL, clk_output_name[spi1_aper],
  482. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 15, 0,
  483. &aperclk_lock);
  484. clks[can0_aper] = clk_register_gate(NULL, clk_output_name[can0_aper],
  485. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 16, 0,
  486. &aperclk_lock);
  487. clks[can1_aper] = clk_register_gate(NULL, clk_output_name[can1_aper],
  488. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 17, 0,
  489. &aperclk_lock);
  490. clks[i2c0_aper] = clk_register_gate(NULL, clk_output_name[i2c0_aper],
  491. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 18, 0,
  492. &aperclk_lock);
  493. clks[i2c1_aper] = clk_register_gate(NULL, clk_output_name[i2c1_aper],
  494. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 19, 0,
  495. &aperclk_lock);
  496. clks[uart0_aper] = clk_register_gate(NULL, clk_output_name[uart0_aper],
  497. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 20, 0,
  498. &aperclk_lock);
  499. clks[uart1_aper] = clk_register_gate(NULL, clk_output_name[uart1_aper],
  500. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 21, 0,
  501. &aperclk_lock);
  502. clks[gpio_aper] = clk_register_gate(NULL, clk_output_name[gpio_aper],
  503. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 22, 0,
  504. &aperclk_lock);
  505. clks[lqspi_aper] = clk_register_gate(NULL, clk_output_name[lqspi_aper],
  506. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 23, 0,
  507. &aperclk_lock);
  508. clks[smc_aper] = clk_register_gate(NULL, clk_output_name[smc_aper],
  509. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 24, 0,
  510. &aperclk_lock);
  511. for (i = 0; i < ARRAY_SIZE(clks); i++) {
  512. if (IS_ERR(clks[i])) {
  513. pr_err("Zynq clk %d: register failed with %ld\n",
  514. i, PTR_ERR(clks[i]));
  515. BUG();
  516. }
  517. }
  518. clk_data.clks = clks;
  519. clk_data.clk_num = ARRAY_SIZE(clks);
  520. of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
  521. }
  522. CLK_OF_DECLARE(zynq_clkc, "xlnx,ps7-clkc", zynq_clk_setup);
  523. void __init zynq_clock_init(void)
  524. {
  525. struct device_node *np;
  526. struct device_node *slcr;
  527. struct resource res;
  528. np = of_find_compatible_node(NULL, NULL, "xlnx,ps7-clkc");
  529. if (!np) {
  530. pr_err("%s: clkc node not found\n", __func__);
  531. goto np_err;
  532. }
  533. if (of_address_to_resource(np, 0, &res)) {
  534. pr_err("%s: failed to get resource\n", np->name);
  535. goto np_err;
  536. }
  537. slcr = of_get_parent(np);
  538. if (slcr->data) {
  539. zynq_clkc_base = (__force void __iomem *)slcr->data + res.start;
  540. } else {
  541. pr_err("%s: Unable to get I/O memory\n", np->name);
  542. of_node_put(slcr);
  543. goto np_err;
  544. }
  545. pr_info("%s: clkc starts at %p\n", __func__, zynq_clkc_base);
  546. of_node_put(slcr);
  547. of_node_put(np);
  548. return;
  549. np_err:
  550. of_node_put(np);
  551. BUG();
  552. }