random.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/kthread.h>
  252. #include <linux/percpu.h>
  253. #include <linux/cryptohash.h>
  254. #include <linux/fips.h>
  255. #include <linux/ptrace.h>
  256. #include <linux/kmemcheck.h>
  257. #include <linux/workqueue.h>
  258. #include <linux/irq.h>
  259. #include <linux/syscalls.h>
  260. #include <linux/completion.h>
  261. #include <asm/processor.h>
  262. #include <asm/uaccess.h>
  263. #include <asm/irq.h>
  264. #include <asm/irq_regs.h>
  265. #include <asm/io.h>
  266. #define CREATE_TRACE_POINTS
  267. #include <trace/events/random.h>
  268. /* #define ADD_INTERRUPT_BENCH */
  269. /*
  270. * Configuration information
  271. */
  272. #define INPUT_POOL_SHIFT 12
  273. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  274. #define OUTPUT_POOL_SHIFT 10
  275. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  276. #define SEC_XFER_SIZE 512
  277. #define EXTRACT_SIZE 10
  278. #define DEBUG_RANDOM_BOOT 0
  279. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  280. /*
  281. * To allow fractional bits to be tracked, the entropy_count field is
  282. * denominated in units of 1/8th bits.
  283. *
  284. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  285. * credit_entropy_bits() needs to be 64 bits wide.
  286. */
  287. #define ENTROPY_SHIFT 3
  288. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  289. /*
  290. * The minimum number of bits of entropy before we wake up a read on
  291. * /dev/random. Should be enough to do a significant reseed.
  292. */
  293. static int random_read_wakeup_bits = 64;
  294. /*
  295. * If the entropy count falls under this number of bits, then we
  296. * should wake up processes which are selecting or polling on write
  297. * access to /dev/random.
  298. */
  299. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  300. /*
  301. * The minimum number of seconds between urandom pool reseeding. We
  302. * do this to limit the amount of entropy that can be drained from the
  303. * input pool even if there are heavy demands on /dev/urandom.
  304. */
  305. static int random_min_urandom_seed = 60;
  306. /*
  307. * Originally, we used a primitive polynomial of degree .poolwords
  308. * over GF(2). The taps for various sizes are defined below. They
  309. * were chosen to be evenly spaced except for the last tap, which is 1
  310. * to get the twisting happening as fast as possible.
  311. *
  312. * For the purposes of better mixing, we use the CRC-32 polynomial as
  313. * well to make a (modified) twisted Generalized Feedback Shift
  314. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  315. * generators. ACM Transactions on Modeling and Computer Simulation
  316. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  317. * GFSR generators II. ACM Transactions on Modeling and Computer
  318. * Simulation 4:254-266)
  319. *
  320. * Thanks to Colin Plumb for suggesting this.
  321. *
  322. * The mixing operation is much less sensitive than the output hash,
  323. * where we use SHA-1. All that we want of mixing operation is that
  324. * it be a good non-cryptographic hash; i.e. it not produce collisions
  325. * when fed "random" data of the sort we expect to see. As long as
  326. * the pool state differs for different inputs, we have preserved the
  327. * input entropy and done a good job. The fact that an intelligent
  328. * attacker can construct inputs that will produce controlled
  329. * alterations to the pool's state is not important because we don't
  330. * consider such inputs to contribute any randomness. The only
  331. * property we need with respect to them is that the attacker can't
  332. * increase his/her knowledge of the pool's state. Since all
  333. * additions are reversible (knowing the final state and the input,
  334. * you can reconstruct the initial state), if an attacker has any
  335. * uncertainty about the initial state, he/she can only shuffle that
  336. * uncertainty about, but never cause any collisions (which would
  337. * decrease the uncertainty).
  338. *
  339. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  340. * Videau in their paper, "The Linux Pseudorandom Number Generator
  341. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  342. * paper, they point out that we are not using a true Twisted GFSR,
  343. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  344. * is, with only three taps, instead of the six that we are using).
  345. * As a result, the resulting polynomial is neither primitive nor
  346. * irreducible, and hence does not have a maximal period over
  347. * GF(2**32). They suggest a slight change to the generator
  348. * polynomial which improves the resulting TGFSR polynomial to be
  349. * irreducible, which we have made here.
  350. */
  351. static struct poolinfo {
  352. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  353. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  354. int tap1, tap2, tap3, tap4, tap5;
  355. } poolinfo_table[] = {
  356. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  357. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  358. { S(128), 104, 76, 51, 25, 1 },
  359. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  360. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  361. { S(32), 26, 19, 14, 7, 1 },
  362. #if 0
  363. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  364. { S(2048), 1638, 1231, 819, 411, 1 },
  365. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  366. { S(1024), 817, 615, 412, 204, 1 },
  367. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  368. { S(1024), 819, 616, 410, 207, 2 },
  369. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  370. { S(512), 411, 308, 208, 104, 1 },
  371. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  372. { S(512), 409, 307, 206, 102, 2 },
  373. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  374. { S(512), 409, 309, 205, 103, 2 },
  375. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  376. { S(256), 205, 155, 101, 52, 1 },
  377. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  378. { S(128), 103, 78, 51, 27, 2 },
  379. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  380. { S(64), 52, 39, 26, 14, 1 },
  381. #endif
  382. };
  383. /*
  384. * Static global variables
  385. */
  386. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  387. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  388. static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
  389. static struct fasync_struct *fasync;
  390. /**********************************************************************
  391. *
  392. * OS independent entropy store. Here are the functions which handle
  393. * storing entropy in an entropy pool.
  394. *
  395. **********************************************************************/
  396. struct entropy_store;
  397. struct entropy_store {
  398. /* read-only data: */
  399. const struct poolinfo *poolinfo;
  400. __u32 *pool;
  401. const char *name;
  402. struct entropy_store *pull;
  403. struct work_struct push_work;
  404. /* read-write data: */
  405. unsigned long last_pulled;
  406. spinlock_t lock;
  407. unsigned short add_ptr;
  408. unsigned short input_rotate;
  409. int entropy_count;
  410. int entropy_total;
  411. unsigned int initialized:1;
  412. unsigned int limit:1;
  413. unsigned int last_data_init:1;
  414. __u8 last_data[EXTRACT_SIZE];
  415. };
  416. static void push_to_pool(struct work_struct *work);
  417. static __u32 input_pool_data[INPUT_POOL_WORDS];
  418. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  419. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  420. static struct entropy_store input_pool = {
  421. .poolinfo = &poolinfo_table[0],
  422. .name = "input",
  423. .limit = 1,
  424. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  425. .pool = input_pool_data
  426. };
  427. static struct entropy_store blocking_pool = {
  428. .poolinfo = &poolinfo_table[1],
  429. .name = "blocking",
  430. .limit = 1,
  431. .pull = &input_pool,
  432. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  433. .pool = blocking_pool_data,
  434. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  435. push_to_pool),
  436. };
  437. static struct entropy_store nonblocking_pool = {
  438. .poolinfo = &poolinfo_table[1],
  439. .name = "nonblocking",
  440. .pull = &input_pool,
  441. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  442. .pool = nonblocking_pool_data,
  443. .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
  444. push_to_pool),
  445. };
  446. static __u32 const twist_table[8] = {
  447. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  448. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  449. /*
  450. * This function adds bytes into the entropy "pool". It does not
  451. * update the entropy estimate. The caller should call
  452. * credit_entropy_bits if this is appropriate.
  453. *
  454. * The pool is stirred with a primitive polynomial of the appropriate
  455. * degree, and then twisted. We twist by three bits at a time because
  456. * it's cheap to do so and helps slightly in the expected case where
  457. * the entropy is concentrated in the low-order bits.
  458. */
  459. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  460. int nbytes)
  461. {
  462. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  463. int input_rotate;
  464. int wordmask = r->poolinfo->poolwords - 1;
  465. const char *bytes = in;
  466. __u32 w;
  467. tap1 = r->poolinfo->tap1;
  468. tap2 = r->poolinfo->tap2;
  469. tap3 = r->poolinfo->tap3;
  470. tap4 = r->poolinfo->tap4;
  471. tap5 = r->poolinfo->tap5;
  472. input_rotate = r->input_rotate;
  473. i = r->add_ptr;
  474. /* mix one byte at a time to simplify size handling and churn faster */
  475. while (nbytes--) {
  476. w = rol32(*bytes++, input_rotate);
  477. i = (i - 1) & wordmask;
  478. /* XOR in the various taps */
  479. w ^= r->pool[i];
  480. w ^= r->pool[(i + tap1) & wordmask];
  481. w ^= r->pool[(i + tap2) & wordmask];
  482. w ^= r->pool[(i + tap3) & wordmask];
  483. w ^= r->pool[(i + tap4) & wordmask];
  484. w ^= r->pool[(i + tap5) & wordmask];
  485. /* Mix the result back in with a twist */
  486. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  487. /*
  488. * Normally, we add 7 bits of rotation to the pool.
  489. * At the beginning of the pool, add an extra 7 bits
  490. * rotation, so that successive passes spread the
  491. * input bits across the pool evenly.
  492. */
  493. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  494. }
  495. r->input_rotate = input_rotate;
  496. r->add_ptr = i;
  497. }
  498. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  499. int nbytes)
  500. {
  501. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  502. _mix_pool_bytes(r, in, nbytes);
  503. }
  504. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  505. int nbytes)
  506. {
  507. unsigned long flags;
  508. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  509. spin_lock_irqsave(&r->lock, flags);
  510. _mix_pool_bytes(r, in, nbytes);
  511. spin_unlock_irqrestore(&r->lock, flags);
  512. }
  513. struct fast_pool {
  514. __u32 pool[4];
  515. unsigned long last;
  516. unsigned short reg_idx;
  517. unsigned char count;
  518. };
  519. /*
  520. * This is a fast mixing routine used by the interrupt randomness
  521. * collector. It's hardcoded for an 128 bit pool and assumes that any
  522. * locks that might be needed are taken by the caller.
  523. */
  524. static void fast_mix(struct fast_pool *f)
  525. {
  526. __u32 a = f->pool[0], b = f->pool[1];
  527. __u32 c = f->pool[2], d = f->pool[3];
  528. a += b; c += d;
  529. b = rol32(b, 6); d = rol32(d, 27);
  530. d ^= a; b ^= c;
  531. a += b; c += d;
  532. b = rol32(b, 16); d = rol32(d, 14);
  533. d ^= a; b ^= c;
  534. a += b; c += d;
  535. b = rol32(b, 6); d = rol32(d, 27);
  536. d ^= a; b ^= c;
  537. a += b; c += d;
  538. b = rol32(b, 16); d = rol32(d, 14);
  539. d ^= a; b ^= c;
  540. f->pool[0] = a; f->pool[1] = b;
  541. f->pool[2] = c; f->pool[3] = d;
  542. f->count++;
  543. }
  544. /*
  545. * Credit (or debit) the entropy store with n bits of entropy.
  546. * Use credit_entropy_bits_safe() if the value comes from userspace
  547. * or otherwise should be checked for extreme values.
  548. */
  549. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  550. {
  551. int entropy_count, orig;
  552. const int pool_size = r->poolinfo->poolfracbits;
  553. int nfrac = nbits << ENTROPY_SHIFT;
  554. if (!nbits)
  555. return;
  556. retry:
  557. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  558. if (nfrac < 0) {
  559. /* Debit */
  560. entropy_count += nfrac;
  561. } else {
  562. /*
  563. * Credit: we have to account for the possibility of
  564. * overwriting already present entropy. Even in the
  565. * ideal case of pure Shannon entropy, new contributions
  566. * approach the full value asymptotically:
  567. *
  568. * entropy <- entropy + (pool_size - entropy) *
  569. * (1 - exp(-add_entropy/pool_size))
  570. *
  571. * For add_entropy <= pool_size/2 then
  572. * (1 - exp(-add_entropy/pool_size)) >=
  573. * (add_entropy/pool_size)*0.7869...
  574. * so we can approximate the exponential with
  575. * 3/4*add_entropy/pool_size and still be on the
  576. * safe side by adding at most pool_size/2 at a time.
  577. *
  578. * The use of pool_size-2 in the while statement is to
  579. * prevent rounding artifacts from making the loop
  580. * arbitrarily long; this limits the loop to log2(pool_size)*2
  581. * turns no matter how large nbits is.
  582. */
  583. int pnfrac = nfrac;
  584. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  585. /* The +2 corresponds to the /4 in the denominator */
  586. do {
  587. unsigned int anfrac = min(pnfrac, pool_size/2);
  588. unsigned int add =
  589. ((pool_size - entropy_count)*anfrac*3) >> s;
  590. entropy_count += add;
  591. pnfrac -= anfrac;
  592. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  593. }
  594. if (unlikely(entropy_count < 0)) {
  595. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  596. r->name, entropy_count);
  597. WARN_ON(1);
  598. entropy_count = 0;
  599. } else if (entropy_count > pool_size)
  600. entropy_count = pool_size;
  601. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  602. goto retry;
  603. r->entropy_total += nbits;
  604. if (!r->initialized && r->entropy_total > 128) {
  605. r->initialized = 1;
  606. r->entropy_total = 0;
  607. if (r == &nonblocking_pool) {
  608. prandom_reseed_late();
  609. wake_up_interruptible(&urandom_init_wait);
  610. pr_notice("random: %s pool is initialized\n", r->name);
  611. }
  612. }
  613. trace_credit_entropy_bits(r->name, nbits,
  614. entropy_count >> ENTROPY_SHIFT,
  615. r->entropy_total, _RET_IP_);
  616. if (r == &input_pool) {
  617. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  618. /* should we wake readers? */
  619. if (entropy_bits >= random_read_wakeup_bits) {
  620. wake_up_interruptible(&random_read_wait);
  621. kill_fasync(&fasync, SIGIO, POLL_IN);
  622. }
  623. /* If the input pool is getting full, send some
  624. * entropy to the two output pools, flipping back and
  625. * forth between them, until the output pools are 75%
  626. * full.
  627. */
  628. if (entropy_bits > random_write_wakeup_bits &&
  629. r->initialized &&
  630. r->entropy_total >= 2*random_read_wakeup_bits) {
  631. static struct entropy_store *last = &blocking_pool;
  632. struct entropy_store *other = &blocking_pool;
  633. if (last == &blocking_pool)
  634. other = &nonblocking_pool;
  635. if (other->entropy_count <=
  636. 3 * other->poolinfo->poolfracbits / 4)
  637. last = other;
  638. if (last->entropy_count <=
  639. 3 * last->poolinfo->poolfracbits / 4) {
  640. schedule_work(&last->push_work);
  641. r->entropy_total = 0;
  642. }
  643. }
  644. }
  645. }
  646. static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  647. {
  648. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  649. /* Cap the value to avoid overflows */
  650. nbits = min(nbits, nbits_max);
  651. nbits = max(nbits, -nbits_max);
  652. credit_entropy_bits(r, nbits);
  653. }
  654. /*********************************************************************
  655. *
  656. * Entropy input management
  657. *
  658. *********************************************************************/
  659. /* There is one of these per entropy source */
  660. struct timer_rand_state {
  661. cycles_t last_time;
  662. long last_delta, last_delta2;
  663. unsigned dont_count_entropy:1;
  664. };
  665. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  666. /*
  667. * Add device- or boot-specific data to the input and nonblocking
  668. * pools to help initialize them to unique values.
  669. *
  670. * None of this adds any entropy, it is meant to avoid the
  671. * problem of the nonblocking pool having similar initial state
  672. * across largely identical devices.
  673. */
  674. void add_device_randomness(const void *buf, unsigned int size)
  675. {
  676. unsigned long time = random_get_entropy() ^ jiffies;
  677. unsigned long flags;
  678. trace_add_device_randomness(size, _RET_IP_);
  679. spin_lock_irqsave(&input_pool.lock, flags);
  680. _mix_pool_bytes(&input_pool, buf, size);
  681. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  682. spin_unlock_irqrestore(&input_pool.lock, flags);
  683. spin_lock_irqsave(&nonblocking_pool.lock, flags);
  684. _mix_pool_bytes(&nonblocking_pool, buf, size);
  685. _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
  686. spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
  687. }
  688. EXPORT_SYMBOL(add_device_randomness);
  689. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  690. /*
  691. * This function adds entropy to the entropy "pool" by using timing
  692. * delays. It uses the timer_rand_state structure to make an estimate
  693. * of how many bits of entropy this call has added to the pool.
  694. *
  695. * The number "num" is also added to the pool - it should somehow describe
  696. * the type of event which just happened. This is currently 0-255 for
  697. * keyboard scan codes, and 256 upwards for interrupts.
  698. *
  699. */
  700. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  701. {
  702. struct entropy_store *r;
  703. struct {
  704. long jiffies;
  705. unsigned cycles;
  706. unsigned num;
  707. } sample;
  708. long delta, delta2, delta3;
  709. preempt_disable();
  710. sample.jiffies = jiffies;
  711. sample.cycles = random_get_entropy();
  712. sample.num = num;
  713. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  714. mix_pool_bytes(r, &sample, sizeof(sample));
  715. /*
  716. * Calculate number of bits of randomness we probably added.
  717. * We take into account the first, second and third-order deltas
  718. * in order to make our estimate.
  719. */
  720. if (!state->dont_count_entropy) {
  721. delta = sample.jiffies - state->last_time;
  722. state->last_time = sample.jiffies;
  723. delta2 = delta - state->last_delta;
  724. state->last_delta = delta;
  725. delta3 = delta2 - state->last_delta2;
  726. state->last_delta2 = delta2;
  727. if (delta < 0)
  728. delta = -delta;
  729. if (delta2 < 0)
  730. delta2 = -delta2;
  731. if (delta3 < 0)
  732. delta3 = -delta3;
  733. if (delta > delta2)
  734. delta = delta2;
  735. if (delta > delta3)
  736. delta = delta3;
  737. /*
  738. * delta is now minimum absolute delta.
  739. * Round down by 1 bit on general principles,
  740. * and limit entropy entimate to 12 bits.
  741. */
  742. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  743. }
  744. preempt_enable();
  745. }
  746. void add_input_randomness(unsigned int type, unsigned int code,
  747. unsigned int value)
  748. {
  749. static unsigned char last_value;
  750. /* ignore autorepeat and the like */
  751. if (value == last_value)
  752. return;
  753. last_value = value;
  754. add_timer_randomness(&input_timer_state,
  755. (type << 4) ^ code ^ (code >> 4) ^ value);
  756. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  757. }
  758. EXPORT_SYMBOL_GPL(add_input_randomness);
  759. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  760. #ifdef ADD_INTERRUPT_BENCH
  761. static unsigned long avg_cycles, avg_deviation;
  762. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  763. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  764. static void add_interrupt_bench(cycles_t start)
  765. {
  766. long delta = random_get_entropy() - start;
  767. /* Use a weighted moving average */
  768. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  769. avg_cycles += delta;
  770. /* And average deviation */
  771. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  772. avg_deviation += delta;
  773. }
  774. #else
  775. #define add_interrupt_bench(x)
  776. #endif
  777. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  778. {
  779. __u32 *ptr = (__u32 *) regs;
  780. if (regs == NULL)
  781. return 0;
  782. if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
  783. f->reg_idx = 0;
  784. return *(ptr + f->reg_idx++);
  785. }
  786. void add_interrupt_randomness(int irq, int irq_flags)
  787. {
  788. struct entropy_store *r;
  789. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  790. struct pt_regs *regs = get_irq_regs();
  791. unsigned long now = jiffies;
  792. cycles_t cycles = random_get_entropy();
  793. __u32 c_high, j_high;
  794. __u64 ip;
  795. unsigned long seed;
  796. int credit = 0;
  797. if (cycles == 0)
  798. cycles = get_reg(fast_pool, regs);
  799. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  800. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  801. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  802. fast_pool->pool[1] ^= now ^ c_high;
  803. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  804. fast_pool->pool[2] ^= ip;
  805. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  806. get_reg(fast_pool, regs);
  807. fast_mix(fast_pool);
  808. add_interrupt_bench(cycles);
  809. if ((fast_pool->count < 64) &&
  810. !time_after(now, fast_pool->last + HZ))
  811. return;
  812. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  813. if (!spin_trylock(&r->lock))
  814. return;
  815. fast_pool->last = now;
  816. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  817. /*
  818. * If we have architectural seed generator, produce a seed and
  819. * add it to the pool. For the sake of paranoia don't let the
  820. * architectural seed generator dominate the input from the
  821. * interrupt noise.
  822. */
  823. if (arch_get_random_seed_long(&seed)) {
  824. __mix_pool_bytes(r, &seed, sizeof(seed));
  825. credit = 1;
  826. }
  827. spin_unlock(&r->lock);
  828. fast_pool->count = 0;
  829. /* award one bit for the contents of the fast pool */
  830. credit_entropy_bits(r, credit + 1);
  831. }
  832. #ifdef CONFIG_BLOCK
  833. void add_disk_randomness(struct gendisk *disk)
  834. {
  835. if (!disk || !disk->random)
  836. return;
  837. /* first major is 1, so we get >= 0x200 here */
  838. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  839. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  840. }
  841. EXPORT_SYMBOL_GPL(add_disk_randomness);
  842. #endif
  843. /*********************************************************************
  844. *
  845. * Entropy extraction routines
  846. *
  847. *********************************************************************/
  848. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  849. size_t nbytes, int min, int rsvd);
  850. /*
  851. * This utility inline function is responsible for transferring entropy
  852. * from the primary pool to the secondary extraction pool. We make
  853. * sure we pull enough for a 'catastrophic reseed'.
  854. */
  855. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  856. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  857. {
  858. if (!r->pull ||
  859. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  860. r->entropy_count > r->poolinfo->poolfracbits)
  861. return;
  862. if (r->limit == 0 && random_min_urandom_seed) {
  863. unsigned long now = jiffies;
  864. if (time_before(now,
  865. r->last_pulled + random_min_urandom_seed * HZ))
  866. return;
  867. r->last_pulled = now;
  868. }
  869. _xfer_secondary_pool(r, nbytes);
  870. }
  871. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  872. {
  873. __u32 tmp[OUTPUT_POOL_WORDS];
  874. /* For /dev/random's pool, always leave two wakeups' worth */
  875. int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
  876. int bytes = nbytes;
  877. /* pull at least as much as a wakeup */
  878. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  879. /* but never more than the buffer size */
  880. bytes = min_t(int, bytes, sizeof(tmp));
  881. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  882. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  883. bytes = extract_entropy(r->pull, tmp, bytes,
  884. random_read_wakeup_bits / 8, rsvd_bytes);
  885. mix_pool_bytes(r, tmp, bytes);
  886. credit_entropy_bits(r, bytes*8);
  887. }
  888. /*
  889. * Used as a workqueue function so that when the input pool is getting
  890. * full, we can "spill over" some entropy to the output pools. That
  891. * way the output pools can store some of the excess entropy instead
  892. * of letting it go to waste.
  893. */
  894. static void push_to_pool(struct work_struct *work)
  895. {
  896. struct entropy_store *r = container_of(work, struct entropy_store,
  897. push_work);
  898. BUG_ON(!r);
  899. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  900. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  901. r->pull->entropy_count >> ENTROPY_SHIFT);
  902. }
  903. /*
  904. * This function decides how many bytes to actually take from the
  905. * given pool, and also debits the entropy count accordingly.
  906. */
  907. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  908. int reserved)
  909. {
  910. int entropy_count, orig;
  911. size_t ibytes, nfrac;
  912. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  913. /* Can we pull enough? */
  914. retry:
  915. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  916. ibytes = nbytes;
  917. /* If limited, never pull more than available */
  918. if (r->limit) {
  919. int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  920. if ((have_bytes -= reserved) < 0)
  921. have_bytes = 0;
  922. ibytes = min_t(size_t, ibytes, have_bytes);
  923. }
  924. if (ibytes < min)
  925. ibytes = 0;
  926. if (unlikely(entropy_count < 0)) {
  927. pr_warn("random: negative entropy count: pool %s count %d\n",
  928. r->name, entropy_count);
  929. WARN_ON(1);
  930. entropy_count = 0;
  931. }
  932. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  933. if ((size_t) entropy_count > nfrac)
  934. entropy_count -= nfrac;
  935. else
  936. entropy_count = 0;
  937. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  938. goto retry;
  939. trace_debit_entropy(r->name, 8 * ibytes);
  940. if (ibytes &&
  941. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  942. wake_up_interruptible(&random_write_wait);
  943. kill_fasync(&fasync, SIGIO, POLL_OUT);
  944. }
  945. return ibytes;
  946. }
  947. /*
  948. * This function does the actual extraction for extract_entropy and
  949. * extract_entropy_user.
  950. *
  951. * Note: we assume that .poolwords is a multiple of 16 words.
  952. */
  953. static void extract_buf(struct entropy_store *r, __u8 *out)
  954. {
  955. int i;
  956. union {
  957. __u32 w[5];
  958. unsigned long l[LONGS(20)];
  959. } hash;
  960. __u32 workspace[SHA_WORKSPACE_WORDS];
  961. unsigned long flags;
  962. /*
  963. * If we have an architectural hardware random number
  964. * generator, use it for SHA's initial vector
  965. */
  966. sha_init(hash.w);
  967. for (i = 0; i < LONGS(20); i++) {
  968. unsigned long v;
  969. if (!arch_get_random_long(&v))
  970. break;
  971. hash.l[i] = v;
  972. }
  973. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  974. spin_lock_irqsave(&r->lock, flags);
  975. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  976. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  977. /*
  978. * We mix the hash back into the pool to prevent backtracking
  979. * attacks (where the attacker knows the state of the pool
  980. * plus the current outputs, and attempts to find previous
  981. * ouputs), unless the hash function can be inverted. By
  982. * mixing at least a SHA1 worth of hash data back, we make
  983. * brute-forcing the feedback as hard as brute-forcing the
  984. * hash.
  985. */
  986. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  987. spin_unlock_irqrestore(&r->lock, flags);
  988. memzero_explicit(workspace, sizeof(workspace));
  989. /*
  990. * In case the hash function has some recognizable output
  991. * pattern, we fold it in half. Thus, we always feed back
  992. * twice as much data as we output.
  993. */
  994. hash.w[0] ^= hash.w[3];
  995. hash.w[1] ^= hash.w[4];
  996. hash.w[2] ^= rol32(hash.w[2], 16);
  997. memcpy(out, &hash, EXTRACT_SIZE);
  998. memzero_explicit(&hash, sizeof(hash));
  999. }
  1000. /*
  1001. * This function extracts randomness from the "entropy pool", and
  1002. * returns it in a buffer.
  1003. *
  1004. * The min parameter specifies the minimum amount we can pull before
  1005. * failing to avoid races that defeat catastrophic reseeding while the
  1006. * reserved parameter indicates how much entropy we must leave in the
  1007. * pool after each pull to avoid starving other readers.
  1008. */
  1009. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1010. size_t nbytes, int min, int reserved)
  1011. {
  1012. ssize_t ret = 0, i;
  1013. __u8 tmp[EXTRACT_SIZE];
  1014. unsigned long flags;
  1015. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1016. if (fips_enabled) {
  1017. spin_lock_irqsave(&r->lock, flags);
  1018. if (!r->last_data_init) {
  1019. r->last_data_init = 1;
  1020. spin_unlock_irqrestore(&r->lock, flags);
  1021. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1022. ENTROPY_BITS(r), _RET_IP_);
  1023. xfer_secondary_pool(r, EXTRACT_SIZE);
  1024. extract_buf(r, tmp);
  1025. spin_lock_irqsave(&r->lock, flags);
  1026. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1027. }
  1028. spin_unlock_irqrestore(&r->lock, flags);
  1029. }
  1030. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1031. xfer_secondary_pool(r, nbytes);
  1032. nbytes = account(r, nbytes, min, reserved);
  1033. while (nbytes) {
  1034. extract_buf(r, tmp);
  1035. if (fips_enabled) {
  1036. spin_lock_irqsave(&r->lock, flags);
  1037. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1038. panic("Hardware RNG duplicated output!\n");
  1039. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1040. spin_unlock_irqrestore(&r->lock, flags);
  1041. }
  1042. i = min_t(int, nbytes, EXTRACT_SIZE);
  1043. memcpy(buf, tmp, i);
  1044. nbytes -= i;
  1045. buf += i;
  1046. ret += i;
  1047. }
  1048. /* Wipe data just returned from memory */
  1049. memzero_explicit(tmp, sizeof(tmp));
  1050. return ret;
  1051. }
  1052. /*
  1053. * This function extracts randomness from the "entropy pool", and
  1054. * returns it in a userspace buffer.
  1055. */
  1056. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1057. size_t nbytes)
  1058. {
  1059. ssize_t ret = 0, i;
  1060. __u8 tmp[EXTRACT_SIZE];
  1061. int large_request = (nbytes > 256);
  1062. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1063. xfer_secondary_pool(r, nbytes);
  1064. nbytes = account(r, nbytes, 0, 0);
  1065. while (nbytes) {
  1066. if (large_request && need_resched()) {
  1067. if (signal_pending(current)) {
  1068. if (ret == 0)
  1069. ret = -ERESTARTSYS;
  1070. break;
  1071. }
  1072. schedule();
  1073. }
  1074. extract_buf(r, tmp);
  1075. i = min_t(int, nbytes, EXTRACT_SIZE);
  1076. if (copy_to_user(buf, tmp, i)) {
  1077. ret = -EFAULT;
  1078. break;
  1079. }
  1080. nbytes -= i;
  1081. buf += i;
  1082. ret += i;
  1083. }
  1084. /* Wipe data just returned from memory */
  1085. memzero_explicit(tmp, sizeof(tmp));
  1086. return ret;
  1087. }
  1088. /*
  1089. * This function is the exported kernel interface. It returns some
  1090. * number of good random numbers, suitable for key generation, seeding
  1091. * TCP sequence numbers, etc. It does not rely on the hardware random
  1092. * number generator. For random bytes direct from the hardware RNG
  1093. * (when available), use get_random_bytes_arch().
  1094. */
  1095. void get_random_bytes(void *buf, int nbytes)
  1096. {
  1097. #if DEBUG_RANDOM_BOOT > 0
  1098. if (unlikely(nonblocking_pool.initialized == 0))
  1099. printk(KERN_NOTICE "random: %pF get_random_bytes called "
  1100. "with %d bits of entropy available\n",
  1101. (void *) _RET_IP_,
  1102. nonblocking_pool.entropy_total);
  1103. #endif
  1104. trace_get_random_bytes(nbytes, _RET_IP_);
  1105. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  1106. }
  1107. EXPORT_SYMBOL(get_random_bytes);
  1108. /*
  1109. * This function will use the architecture-specific hardware random
  1110. * number generator if it is available. The arch-specific hw RNG will
  1111. * almost certainly be faster than what we can do in software, but it
  1112. * is impossible to verify that it is implemented securely (as
  1113. * opposed, to, say, the AES encryption of a sequence number using a
  1114. * key known by the NSA). So it's useful if we need the speed, but
  1115. * only if we're willing to trust the hardware manufacturer not to
  1116. * have put in a back door.
  1117. */
  1118. void get_random_bytes_arch(void *buf, int nbytes)
  1119. {
  1120. char *p = buf;
  1121. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1122. while (nbytes) {
  1123. unsigned long v;
  1124. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1125. if (!arch_get_random_long(&v))
  1126. break;
  1127. memcpy(p, &v, chunk);
  1128. p += chunk;
  1129. nbytes -= chunk;
  1130. }
  1131. if (nbytes)
  1132. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  1133. }
  1134. EXPORT_SYMBOL(get_random_bytes_arch);
  1135. /*
  1136. * init_std_data - initialize pool with system data
  1137. *
  1138. * @r: pool to initialize
  1139. *
  1140. * This function clears the pool's entropy count and mixes some system
  1141. * data into the pool to prepare it for use. The pool is not cleared
  1142. * as that can only decrease the entropy in the pool.
  1143. */
  1144. static void init_std_data(struct entropy_store *r)
  1145. {
  1146. int i;
  1147. ktime_t now = ktime_get_real();
  1148. unsigned long rv;
  1149. r->last_pulled = jiffies;
  1150. mix_pool_bytes(r, &now, sizeof(now));
  1151. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1152. if (!arch_get_random_seed_long(&rv) &&
  1153. !arch_get_random_long(&rv))
  1154. rv = random_get_entropy();
  1155. mix_pool_bytes(r, &rv, sizeof(rv));
  1156. }
  1157. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1158. }
  1159. /*
  1160. * Note that setup_arch() may call add_device_randomness()
  1161. * long before we get here. This allows seeding of the pools
  1162. * with some platform dependent data very early in the boot
  1163. * process. But it limits our options here. We must use
  1164. * statically allocated structures that already have all
  1165. * initializations complete at compile time. We should also
  1166. * take care not to overwrite the precious per platform data
  1167. * we were given.
  1168. */
  1169. static int rand_initialize(void)
  1170. {
  1171. init_std_data(&input_pool);
  1172. init_std_data(&blocking_pool);
  1173. init_std_data(&nonblocking_pool);
  1174. return 0;
  1175. }
  1176. early_initcall(rand_initialize);
  1177. #ifdef CONFIG_BLOCK
  1178. void rand_initialize_disk(struct gendisk *disk)
  1179. {
  1180. struct timer_rand_state *state;
  1181. /*
  1182. * If kzalloc returns null, we just won't use that entropy
  1183. * source.
  1184. */
  1185. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1186. if (state) {
  1187. state->last_time = INITIAL_JIFFIES;
  1188. disk->random = state;
  1189. }
  1190. }
  1191. #endif
  1192. static ssize_t
  1193. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1194. {
  1195. ssize_t n;
  1196. if (nbytes == 0)
  1197. return 0;
  1198. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1199. while (1) {
  1200. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1201. if (n < 0)
  1202. return n;
  1203. trace_random_read(n*8, (nbytes-n)*8,
  1204. ENTROPY_BITS(&blocking_pool),
  1205. ENTROPY_BITS(&input_pool));
  1206. if (n > 0)
  1207. return n;
  1208. /* Pool is (near) empty. Maybe wait and retry. */
  1209. if (nonblock)
  1210. return -EAGAIN;
  1211. wait_event_interruptible(random_read_wait,
  1212. ENTROPY_BITS(&input_pool) >=
  1213. random_read_wakeup_bits);
  1214. if (signal_pending(current))
  1215. return -ERESTARTSYS;
  1216. }
  1217. }
  1218. static ssize_t
  1219. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1220. {
  1221. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1222. }
  1223. static ssize_t
  1224. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1225. {
  1226. int ret;
  1227. if (unlikely(nonblocking_pool.initialized == 0))
  1228. printk_once(KERN_NOTICE "random: %s urandom read "
  1229. "with %d bits of entropy available\n",
  1230. current->comm, nonblocking_pool.entropy_total);
  1231. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1232. ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1233. trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
  1234. ENTROPY_BITS(&input_pool));
  1235. return ret;
  1236. }
  1237. static unsigned int
  1238. random_poll(struct file *file, poll_table * wait)
  1239. {
  1240. unsigned int mask;
  1241. poll_wait(file, &random_read_wait, wait);
  1242. poll_wait(file, &random_write_wait, wait);
  1243. mask = 0;
  1244. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1245. mask |= POLLIN | POLLRDNORM;
  1246. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1247. mask |= POLLOUT | POLLWRNORM;
  1248. return mask;
  1249. }
  1250. static int
  1251. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1252. {
  1253. size_t bytes;
  1254. __u32 buf[16];
  1255. const char __user *p = buffer;
  1256. while (count > 0) {
  1257. bytes = min(count, sizeof(buf));
  1258. if (copy_from_user(&buf, p, bytes))
  1259. return -EFAULT;
  1260. count -= bytes;
  1261. p += bytes;
  1262. mix_pool_bytes(r, buf, bytes);
  1263. cond_resched();
  1264. }
  1265. return 0;
  1266. }
  1267. static ssize_t random_write(struct file *file, const char __user *buffer,
  1268. size_t count, loff_t *ppos)
  1269. {
  1270. size_t ret;
  1271. ret = write_pool(&blocking_pool, buffer, count);
  1272. if (ret)
  1273. return ret;
  1274. ret = write_pool(&nonblocking_pool, buffer, count);
  1275. if (ret)
  1276. return ret;
  1277. return (ssize_t)count;
  1278. }
  1279. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1280. {
  1281. int size, ent_count;
  1282. int __user *p = (int __user *)arg;
  1283. int retval;
  1284. switch (cmd) {
  1285. case RNDGETENTCNT:
  1286. /* inherently racy, no point locking */
  1287. ent_count = ENTROPY_BITS(&input_pool);
  1288. if (put_user(ent_count, p))
  1289. return -EFAULT;
  1290. return 0;
  1291. case RNDADDTOENTCNT:
  1292. if (!capable(CAP_SYS_ADMIN))
  1293. return -EPERM;
  1294. if (get_user(ent_count, p))
  1295. return -EFAULT;
  1296. credit_entropy_bits_safe(&input_pool, ent_count);
  1297. return 0;
  1298. case RNDADDENTROPY:
  1299. if (!capable(CAP_SYS_ADMIN))
  1300. return -EPERM;
  1301. if (get_user(ent_count, p++))
  1302. return -EFAULT;
  1303. if (ent_count < 0)
  1304. return -EINVAL;
  1305. if (get_user(size, p++))
  1306. return -EFAULT;
  1307. retval = write_pool(&input_pool, (const char __user *)p,
  1308. size);
  1309. if (retval < 0)
  1310. return retval;
  1311. credit_entropy_bits_safe(&input_pool, ent_count);
  1312. return 0;
  1313. case RNDZAPENTCNT:
  1314. case RNDCLEARPOOL:
  1315. /*
  1316. * Clear the entropy pool counters. We no longer clear
  1317. * the entropy pool, as that's silly.
  1318. */
  1319. if (!capable(CAP_SYS_ADMIN))
  1320. return -EPERM;
  1321. input_pool.entropy_count = 0;
  1322. nonblocking_pool.entropy_count = 0;
  1323. blocking_pool.entropy_count = 0;
  1324. return 0;
  1325. default:
  1326. return -EINVAL;
  1327. }
  1328. }
  1329. static int random_fasync(int fd, struct file *filp, int on)
  1330. {
  1331. return fasync_helper(fd, filp, on, &fasync);
  1332. }
  1333. const struct file_operations random_fops = {
  1334. .read = random_read,
  1335. .write = random_write,
  1336. .poll = random_poll,
  1337. .unlocked_ioctl = random_ioctl,
  1338. .fasync = random_fasync,
  1339. .llseek = noop_llseek,
  1340. };
  1341. const struct file_operations urandom_fops = {
  1342. .read = urandom_read,
  1343. .write = random_write,
  1344. .unlocked_ioctl = random_ioctl,
  1345. .fasync = random_fasync,
  1346. .llseek = noop_llseek,
  1347. };
  1348. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1349. unsigned int, flags)
  1350. {
  1351. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1352. return -EINVAL;
  1353. if (count > INT_MAX)
  1354. count = INT_MAX;
  1355. if (flags & GRND_RANDOM)
  1356. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1357. if (unlikely(nonblocking_pool.initialized == 0)) {
  1358. if (flags & GRND_NONBLOCK)
  1359. return -EAGAIN;
  1360. wait_event_interruptible(urandom_init_wait,
  1361. nonblocking_pool.initialized);
  1362. if (signal_pending(current))
  1363. return -ERESTARTSYS;
  1364. }
  1365. return urandom_read(NULL, buf, count, NULL);
  1366. }
  1367. /***************************************************************
  1368. * Random UUID interface
  1369. *
  1370. * Used here for a Boot ID, but can be useful for other kernel
  1371. * drivers.
  1372. ***************************************************************/
  1373. /*
  1374. * Generate random UUID
  1375. */
  1376. void generate_random_uuid(unsigned char uuid_out[16])
  1377. {
  1378. get_random_bytes(uuid_out, 16);
  1379. /* Set UUID version to 4 --- truly random generation */
  1380. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1381. /* Set the UUID variant to DCE */
  1382. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1383. }
  1384. EXPORT_SYMBOL(generate_random_uuid);
  1385. /********************************************************************
  1386. *
  1387. * Sysctl interface
  1388. *
  1389. ********************************************************************/
  1390. #ifdef CONFIG_SYSCTL
  1391. #include <linux/sysctl.h>
  1392. static int min_read_thresh = 8, min_write_thresh;
  1393. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1394. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1395. static char sysctl_bootid[16];
  1396. /*
  1397. * This function is used to return both the bootid UUID, and random
  1398. * UUID. The difference is in whether table->data is NULL; if it is,
  1399. * then a new UUID is generated and returned to the user.
  1400. *
  1401. * If the user accesses this via the proc interface, the UUID will be
  1402. * returned as an ASCII string in the standard UUID format; if via the
  1403. * sysctl system call, as 16 bytes of binary data.
  1404. */
  1405. static int proc_do_uuid(struct ctl_table *table, int write,
  1406. void __user *buffer, size_t *lenp, loff_t *ppos)
  1407. {
  1408. struct ctl_table fake_table;
  1409. unsigned char buf[64], tmp_uuid[16], *uuid;
  1410. uuid = table->data;
  1411. if (!uuid) {
  1412. uuid = tmp_uuid;
  1413. generate_random_uuid(uuid);
  1414. } else {
  1415. static DEFINE_SPINLOCK(bootid_spinlock);
  1416. spin_lock(&bootid_spinlock);
  1417. if (!uuid[8])
  1418. generate_random_uuid(uuid);
  1419. spin_unlock(&bootid_spinlock);
  1420. }
  1421. sprintf(buf, "%pU", uuid);
  1422. fake_table.data = buf;
  1423. fake_table.maxlen = sizeof(buf);
  1424. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1425. }
  1426. /*
  1427. * Return entropy available scaled to integral bits
  1428. */
  1429. static int proc_do_entropy(struct ctl_table *table, int write,
  1430. void __user *buffer, size_t *lenp, loff_t *ppos)
  1431. {
  1432. struct ctl_table fake_table;
  1433. int entropy_count;
  1434. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1435. fake_table.data = &entropy_count;
  1436. fake_table.maxlen = sizeof(entropy_count);
  1437. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1438. }
  1439. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1440. extern struct ctl_table random_table[];
  1441. struct ctl_table random_table[] = {
  1442. {
  1443. .procname = "poolsize",
  1444. .data = &sysctl_poolsize,
  1445. .maxlen = sizeof(int),
  1446. .mode = 0444,
  1447. .proc_handler = proc_dointvec,
  1448. },
  1449. {
  1450. .procname = "entropy_avail",
  1451. .maxlen = sizeof(int),
  1452. .mode = 0444,
  1453. .proc_handler = proc_do_entropy,
  1454. .data = &input_pool.entropy_count,
  1455. },
  1456. {
  1457. .procname = "read_wakeup_threshold",
  1458. .data = &random_read_wakeup_bits,
  1459. .maxlen = sizeof(int),
  1460. .mode = 0644,
  1461. .proc_handler = proc_dointvec_minmax,
  1462. .extra1 = &min_read_thresh,
  1463. .extra2 = &max_read_thresh,
  1464. },
  1465. {
  1466. .procname = "write_wakeup_threshold",
  1467. .data = &random_write_wakeup_bits,
  1468. .maxlen = sizeof(int),
  1469. .mode = 0644,
  1470. .proc_handler = proc_dointvec_minmax,
  1471. .extra1 = &min_write_thresh,
  1472. .extra2 = &max_write_thresh,
  1473. },
  1474. {
  1475. .procname = "urandom_min_reseed_secs",
  1476. .data = &random_min_urandom_seed,
  1477. .maxlen = sizeof(int),
  1478. .mode = 0644,
  1479. .proc_handler = proc_dointvec,
  1480. },
  1481. {
  1482. .procname = "boot_id",
  1483. .data = &sysctl_bootid,
  1484. .maxlen = 16,
  1485. .mode = 0444,
  1486. .proc_handler = proc_do_uuid,
  1487. },
  1488. {
  1489. .procname = "uuid",
  1490. .maxlen = 16,
  1491. .mode = 0444,
  1492. .proc_handler = proc_do_uuid,
  1493. },
  1494. #ifdef ADD_INTERRUPT_BENCH
  1495. {
  1496. .procname = "add_interrupt_avg_cycles",
  1497. .data = &avg_cycles,
  1498. .maxlen = sizeof(avg_cycles),
  1499. .mode = 0444,
  1500. .proc_handler = proc_doulongvec_minmax,
  1501. },
  1502. {
  1503. .procname = "add_interrupt_avg_deviation",
  1504. .data = &avg_deviation,
  1505. .maxlen = sizeof(avg_deviation),
  1506. .mode = 0444,
  1507. .proc_handler = proc_doulongvec_minmax,
  1508. },
  1509. #endif
  1510. { }
  1511. };
  1512. #endif /* CONFIG_SYSCTL */
  1513. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1514. int random_int_secret_init(void)
  1515. {
  1516. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1517. return 0;
  1518. }
  1519. /*
  1520. * Get a random word for internal kernel use only. Similar to urandom but
  1521. * with the goal of minimal entropy pool depletion. As a result, the random
  1522. * value is not cryptographically secure but for several uses the cost of
  1523. * depleting entropy is too high
  1524. */
  1525. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1526. unsigned int get_random_int(void)
  1527. {
  1528. __u32 *hash;
  1529. unsigned int ret;
  1530. if (arch_get_random_int(&ret))
  1531. return ret;
  1532. hash = get_cpu_var(get_random_int_hash);
  1533. hash[0] += current->pid + jiffies + random_get_entropy();
  1534. md5_transform(hash, random_int_secret);
  1535. ret = hash[0];
  1536. put_cpu_var(get_random_int_hash);
  1537. return ret;
  1538. }
  1539. EXPORT_SYMBOL(get_random_int);
  1540. /*
  1541. * randomize_range() returns a start address such that
  1542. *
  1543. * [...... <range> .....]
  1544. * start end
  1545. *
  1546. * a <range> with size "len" starting at the return value is inside in the
  1547. * area defined by [start, end], but is otherwise randomized.
  1548. */
  1549. unsigned long
  1550. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1551. {
  1552. unsigned long range = end - len - start;
  1553. if (end <= start + len)
  1554. return 0;
  1555. return PAGE_ALIGN(get_random_int() % range + start);
  1556. }
  1557. /* Interface for in-kernel drivers of true hardware RNGs.
  1558. * Those devices may produce endless random bits and will be throttled
  1559. * when our pool is full.
  1560. */
  1561. void add_hwgenerator_randomness(const char *buffer, size_t count,
  1562. size_t entropy)
  1563. {
  1564. struct entropy_store *poolp = &input_pool;
  1565. /* Suspend writing if we're above the trickle threshold.
  1566. * We'll be woken up again once below random_write_wakeup_thresh,
  1567. * or when the calling thread is about to terminate.
  1568. */
  1569. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  1570. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  1571. mix_pool_bytes(poolp, buffer, count);
  1572. credit_entropy_bits(poolp, entropy);
  1573. }
  1574. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);