gup.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. /*
  2. * Lockless get_user_pages_fast for s390
  3. *
  4. * Copyright IBM Corp. 2010
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  6. */
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/hugetlb.h>
  10. #include <linux/vmstat.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/rwsem.h>
  13. #include <asm/pgtable.h>
  14. /*
  15. * The performance critical leaf functions are made noinline otherwise gcc
  16. * inlines everything into a single function which results in too much
  17. * register pressure.
  18. */
  19. static inline int gup_pte_range(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
  20. unsigned long end, int write, struct page **pages, int *nr)
  21. {
  22. unsigned long mask;
  23. pte_t *ptep, pte;
  24. struct page *page;
  25. mask = (write ? _PAGE_PROTECT : 0) | _PAGE_INVALID | _PAGE_SPECIAL;
  26. ptep = ((pte_t *) pmd_deref(pmd)) + pte_index(addr);
  27. do {
  28. pte = *ptep;
  29. barrier();
  30. if ((pte_val(pte) & mask) != 0)
  31. return 0;
  32. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  33. page = pte_page(pte);
  34. if (!page_cache_get_speculative(page))
  35. return 0;
  36. if (unlikely(pte_val(pte) != pte_val(*ptep))) {
  37. put_page(page);
  38. return 0;
  39. }
  40. pages[*nr] = page;
  41. (*nr)++;
  42. } while (ptep++, addr += PAGE_SIZE, addr != end);
  43. return 1;
  44. }
  45. static inline int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
  46. unsigned long end, int write, struct page **pages, int *nr)
  47. {
  48. unsigned long mask, result;
  49. struct page *head, *page, *tail;
  50. int refs;
  51. result = write ? 0 : _SEGMENT_ENTRY_PROTECT;
  52. mask = result | _SEGMENT_ENTRY_INVALID;
  53. if ((pmd_val(pmd) & mask) != result)
  54. return 0;
  55. VM_BUG_ON(!pfn_valid(pmd_val(pmd) >> PAGE_SHIFT));
  56. refs = 0;
  57. head = pmd_page(pmd);
  58. page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  59. tail = page;
  60. do {
  61. VM_BUG_ON(compound_head(page) != head);
  62. pages[*nr] = page;
  63. (*nr)++;
  64. page++;
  65. refs++;
  66. } while (addr += PAGE_SIZE, addr != end);
  67. if (!page_cache_add_speculative(head, refs)) {
  68. *nr -= refs;
  69. return 0;
  70. }
  71. if (unlikely(pmd_val(pmd) != pmd_val(*pmdp))) {
  72. *nr -= refs;
  73. while (refs--)
  74. put_page(head);
  75. return 0;
  76. }
  77. /*
  78. * Any tail page need their mapcount reference taken before we
  79. * return.
  80. */
  81. while (refs--) {
  82. if (PageTail(tail))
  83. get_huge_page_tail(tail);
  84. tail++;
  85. }
  86. return 1;
  87. }
  88. static inline int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
  89. unsigned long end, int write, struct page **pages, int *nr)
  90. {
  91. unsigned long next;
  92. pmd_t *pmdp, pmd;
  93. pmdp = (pmd_t *) pudp;
  94. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  95. pmdp = (pmd_t *) pud_deref(pud);
  96. pmdp += pmd_index(addr);
  97. do {
  98. pmd = *pmdp;
  99. barrier();
  100. next = pmd_addr_end(addr, end);
  101. /*
  102. * The pmd_trans_splitting() check below explains why
  103. * pmdp_splitting_flush() has to serialize with
  104. * smp_call_function() against our disabled IRQs, to stop
  105. * this gup-fast code from running while we set the
  106. * splitting bit in the pmd. Returning zero will take
  107. * the slow path that will call wait_split_huge_page()
  108. * if the pmd is still in splitting state.
  109. */
  110. if (pmd_none(pmd) || pmd_trans_splitting(pmd))
  111. return 0;
  112. if (unlikely(pmd_large(pmd))) {
  113. if (!gup_huge_pmd(pmdp, pmd, addr, next,
  114. write, pages, nr))
  115. return 0;
  116. } else if (!gup_pte_range(pmdp, pmd, addr, next,
  117. write, pages, nr))
  118. return 0;
  119. } while (pmdp++, addr = next, addr != end);
  120. return 1;
  121. }
  122. static inline int gup_pud_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
  123. unsigned long end, int write, struct page **pages, int *nr)
  124. {
  125. unsigned long next;
  126. pud_t *pudp, pud;
  127. pudp = (pud_t *) pgdp;
  128. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  129. pudp = (pud_t *) pgd_deref(pgd);
  130. pudp += pud_index(addr);
  131. do {
  132. pud = *pudp;
  133. barrier();
  134. next = pud_addr_end(addr, end);
  135. if (pud_none(pud))
  136. return 0;
  137. if (!gup_pmd_range(pudp, pud, addr, next, write, pages, nr))
  138. return 0;
  139. } while (pudp++, addr = next, addr != end);
  140. return 1;
  141. }
  142. /*
  143. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  144. * back to the regular GUP.
  145. */
  146. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  147. struct page **pages)
  148. {
  149. struct mm_struct *mm = current->mm;
  150. unsigned long addr, len, end;
  151. unsigned long next, flags;
  152. pgd_t *pgdp, pgd;
  153. int nr = 0;
  154. start &= PAGE_MASK;
  155. addr = start;
  156. len = (unsigned long) nr_pages << PAGE_SHIFT;
  157. end = start + len;
  158. if ((end <= start) || (end > TASK_SIZE))
  159. return 0;
  160. /*
  161. * local_irq_save() doesn't prevent pagetable teardown, but does
  162. * prevent the pagetables from being freed on s390.
  163. *
  164. * So long as we atomically load page table pointers versus teardown,
  165. * we can follow the address down to the the page and take a ref on it.
  166. */
  167. local_irq_save(flags);
  168. pgdp = pgd_offset(mm, addr);
  169. do {
  170. pgd = *pgdp;
  171. barrier();
  172. next = pgd_addr_end(addr, end);
  173. if (pgd_none(pgd))
  174. break;
  175. if (!gup_pud_range(pgdp, pgd, addr, next, write, pages, &nr))
  176. break;
  177. } while (pgdp++, addr = next, addr != end);
  178. local_irq_restore(flags);
  179. return nr;
  180. }
  181. /**
  182. * get_user_pages_fast() - pin user pages in memory
  183. * @start: starting user address
  184. * @nr_pages: number of pages from start to pin
  185. * @write: whether pages will be written to
  186. * @pages: array that receives pointers to the pages pinned.
  187. * Should be at least nr_pages long.
  188. *
  189. * Attempt to pin user pages in memory without taking mm->mmap_sem.
  190. * If not successful, it will fall back to taking the lock and
  191. * calling get_user_pages().
  192. *
  193. * Returns number of pages pinned. This may be fewer than the number
  194. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  195. * were pinned, returns -errno.
  196. */
  197. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  198. struct page **pages)
  199. {
  200. struct mm_struct *mm = current->mm;
  201. int nr, ret;
  202. start &= PAGE_MASK;
  203. nr = __get_user_pages_fast(start, nr_pages, write, pages);
  204. if (nr == nr_pages)
  205. return nr;
  206. /* Try to get the remaining pages with get_user_pages */
  207. start += nr << PAGE_SHIFT;
  208. pages += nr;
  209. ret = get_user_pages_unlocked(current, mm, start,
  210. nr_pages - nr, write, 0, pages);
  211. /* Have to be a bit careful with return values */
  212. if (nr > 0)
  213. ret = (ret < 0) ? nr : ret + nr;
  214. return ret;
  215. }