interrupt.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define IOINT_SCHID_MASK 0x0000ffff
  29. #define IOINT_SSID_MASK 0x00030000
  30. #define IOINT_CSSID_MASK 0x03fc0000
  31. #define IOINT_AI_MASK 0x04000000
  32. #define PFAULT_INIT 0x0600
  33. #define PFAULT_DONE 0x0680
  34. #define VIRTIO_PARAM 0x0d00
  35. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  36. {
  37. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  38. }
  39. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  40. {
  41. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  42. }
  43. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  44. {
  45. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  46. }
  47. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  48. {
  49. if ((vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) ||
  50. (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO) ||
  51. (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT))
  52. return 0;
  53. return 1;
  54. }
  55. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  56. {
  57. if (psw_extint_disabled(vcpu) ||
  58. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  59. return 0;
  60. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  61. /* No timer interrupts when single stepping */
  62. return 0;
  63. return 1;
  64. }
  65. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  66. {
  67. if (!(vcpu->arch.sie_block->ckc <
  68. get_tod_clock_fast() + vcpu->arch.sie_block->epoch))
  69. return 0;
  70. return ckc_interrupts_enabled(vcpu);
  71. }
  72. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  73. {
  74. return !psw_extint_disabled(vcpu) &&
  75. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  76. }
  77. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  78. {
  79. return (vcpu->arch.sie_block->cputm >> 63) &&
  80. cpu_timer_interrupts_enabled(vcpu);
  81. }
  82. static inline int is_ioirq(unsigned long irq_type)
  83. {
  84. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  85. (irq_type <= IRQ_PEND_IO_ISC_7));
  86. }
  87. static uint64_t isc_to_isc_bits(int isc)
  88. {
  89. return (0x80 >> isc) << 24;
  90. }
  91. static inline u8 int_word_to_isc(u32 int_word)
  92. {
  93. return (int_word & 0x38000000) >> 27;
  94. }
  95. static inline unsigned long pending_floating_irqs(struct kvm_vcpu *vcpu)
  96. {
  97. return vcpu->kvm->arch.float_int.pending_irqs;
  98. }
  99. static inline unsigned long pending_local_irqs(struct kvm_vcpu *vcpu)
  100. {
  101. return vcpu->arch.local_int.pending_irqs;
  102. }
  103. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  104. unsigned long active_mask)
  105. {
  106. int i;
  107. for (i = 0; i <= MAX_ISC; i++)
  108. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  109. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  110. return active_mask;
  111. }
  112. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  113. {
  114. unsigned long active_mask;
  115. active_mask = pending_local_irqs(vcpu);
  116. active_mask |= pending_floating_irqs(vcpu);
  117. if (psw_extint_disabled(vcpu))
  118. active_mask &= ~IRQ_PEND_EXT_MASK;
  119. if (psw_ioint_disabled(vcpu))
  120. active_mask &= ~IRQ_PEND_IO_MASK;
  121. else
  122. active_mask = disable_iscs(vcpu, active_mask);
  123. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  124. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  125. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  126. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  127. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  128. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  129. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  130. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  131. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  132. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  133. if (psw_mchk_disabled(vcpu))
  134. active_mask &= ~IRQ_PEND_MCHK_MASK;
  135. if (!(vcpu->arch.sie_block->gcr[14] &
  136. vcpu->kvm->arch.float_int.mchk.cr14))
  137. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  138. /*
  139. * STOP irqs will never be actively delivered. They are triggered via
  140. * intercept requests and cleared when the stop intercept is performed.
  141. */
  142. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  143. return active_mask;
  144. }
  145. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  146. {
  147. atomic_set_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  148. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  149. }
  150. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  151. {
  152. atomic_clear_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  153. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  154. }
  155. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  156. {
  157. atomic_clear_mask(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  158. &vcpu->arch.sie_block->cpuflags);
  159. vcpu->arch.sie_block->lctl = 0x0000;
  160. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  161. if (guestdbg_enabled(vcpu)) {
  162. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  163. LCTL_CR10 | LCTL_CR11);
  164. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  165. }
  166. }
  167. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  168. {
  169. atomic_set_mask(flag, &vcpu->arch.sie_block->cpuflags);
  170. }
  171. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  172. {
  173. if (!(pending_floating_irqs(vcpu) & IRQ_PEND_IO_MASK))
  174. return;
  175. else if (psw_ioint_disabled(vcpu))
  176. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  177. else
  178. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  179. }
  180. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  181. {
  182. if (!(pending_local_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  183. return;
  184. if (psw_extint_disabled(vcpu))
  185. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  186. else
  187. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  188. }
  189. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  190. {
  191. if (!(pending_local_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  192. return;
  193. if (psw_mchk_disabled(vcpu))
  194. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  195. else
  196. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  197. }
  198. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  199. {
  200. if (kvm_s390_is_stop_irq_pending(vcpu))
  201. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  202. }
  203. /* Set interception request for non-deliverable interrupts */
  204. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  205. {
  206. set_intercept_indicators_io(vcpu);
  207. set_intercept_indicators_ext(vcpu);
  208. set_intercept_indicators_mchk(vcpu);
  209. set_intercept_indicators_stop(vcpu);
  210. }
  211. static u16 get_ilc(struct kvm_vcpu *vcpu)
  212. {
  213. switch (vcpu->arch.sie_block->icptcode) {
  214. case ICPT_INST:
  215. case ICPT_INSTPROGI:
  216. case ICPT_OPEREXC:
  217. case ICPT_PARTEXEC:
  218. case ICPT_IOINST:
  219. /* last instruction only stored for these icptcodes */
  220. return insn_length(vcpu->arch.sie_block->ipa >> 8);
  221. case ICPT_PROGI:
  222. return vcpu->arch.sie_block->pgmilc;
  223. default:
  224. return 0;
  225. }
  226. }
  227. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  228. {
  229. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  230. int rc;
  231. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  232. 0, 0);
  233. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  234. (u16 *)__LC_EXT_INT_CODE);
  235. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  236. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  237. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  238. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  239. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  240. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  241. return rc ? -EFAULT : 0;
  242. }
  243. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  244. {
  245. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  246. int rc;
  247. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  248. 0, 0);
  249. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  250. (u16 __user *)__LC_EXT_INT_CODE);
  251. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  252. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  253. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  254. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  255. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  256. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  257. return rc ? -EFAULT : 0;
  258. }
  259. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  260. {
  261. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  262. struct kvm_s390_ext_info ext;
  263. int rc;
  264. spin_lock(&li->lock);
  265. ext = li->irq.ext;
  266. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  267. li->irq.ext.ext_params2 = 0;
  268. spin_unlock(&li->lock);
  269. VCPU_EVENT(vcpu, 4, "interrupt: pfault init parm:%x,parm64:%llx",
  270. 0, ext.ext_params2);
  271. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  272. KVM_S390_INT_PFAULT_INIT,
  273. 0, ext.ext_params2);
  274. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  275. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  276. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  277. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  278. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  279. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  280. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  281. return rc ? -EFAULT : 0;
  282. }
  283. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  284. {
  285. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  286. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  287. struct kvm_s390_mchk_info mchk = {};
  288. unsigned long adtl_status_addr;
  289. int deliver = 0;
  290. int rc = 0;
  291. spin_lock(&fi->lock);
  292. spin_lock(&li->lock);
  293. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  294. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  295. /*
  296. * If there was an exigent machine check pending, then any
  297. * repressible machine checks that might have been pending
  298. * are indicated along with it, so always clear bits for
  299. * repressible and exigent interrupts
  300. */
  301. mchk = li->irq.mchk;
  302. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  303. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  304. memset(&li->irq.mchk, 0, sizeof(mchk));
  305. deliver = 1;
  306. }
  307. /*
  308. * We indicate floating repressible conditions along with
  309. * other pending conditions. Channel Report Pending and Channel
  310. * Subsystem damage are the only two and and are indicated by
  311. * bits in mcic and masked in cr14.
  312. */
  313. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  314. mchk.mcic |= fi->mchk.mcic;
  315. mchk.cr14 |= fi->mchk.cr14;
  316. memset(&fi->mchk, 0, sizeof(mchk));
  317. deliver = 1;
  318. }
  319. spin_unlock(&li->lock);
  320. spin_unlock(&fi->lock);
  321. if (deliver) {
  322. VCPU_EVENT(vcpu, 4, "interrupt: machine check mcic=%llx",
  323. mchk.mcic);
  324. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  325. KVM_S390_MCHK,
  326. mchk.cr14, mchk.mcic);
  327. rc = kvm_s390_vcpu_store_status(vcpu,
  328. KVM_S390_STORE_STATUS_PREFIXED);
  329. rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
  330. &adtl_status_addr,
  331. sizeof(unsigned long));
  332. rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
  333. adtl_status_addr);
  334. rc |= put_guest_lc(vcpu, mchk.mcic,
  335. (u64 __user *) __LC_MCCK_CODE);
  336. rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
  337. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  338. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
  339. &mchk.fixed_logout,
  340. sizeof(mchk.fixed_logout));
  341. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  342. &vcpu->arch.sie_block->gpsw,
  343. sizeof(psw_t));
  344. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  345. &vcpu->arch.sie_block->gpsw,
  346. sizeof(psw_t));
  347. }
  348. return rc ? -EFAULT : 0;
  349. }
  350. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  351. {
  352. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  353. int rc;
  354. VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu restart");
  355. vcpu->stat.deliver_restart_signal++;
  356. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  357. rc = write_guest_lc(vcpu,
  358. offsetof(struct _lowcore, restart_old_psw),
  359. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  360. rc |= read_guest_lc(vcpu, offsetof(struct _lowcore, restart_psw),
  361. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  362. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  363. return rc ? -EFAULT : 0;
  364. }
  365. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  366. {
  367. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  368. struct kvm_s390_prefix_info prefix;
  369. spin_lock(&li->lock);
  370. prefix = li->irq.prefix;
  371. li->irq.prefix.address = 0;
  372. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  373. spin_unlock(&li->lock);
  374. VCPU_EVENT(vcpu, 4, "interrupt: set prefix to %x", prefix.address);
  375. vcpu->stat.deliver_prefix_signal++;
  376. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  377. KVM_S390_SIGP_SET_PREFIX,
  378. prefix.address, 0);
  379. kvm_s390_set_prefix(vcpu, prefix.address);
  380. return 0;
  381. }
  382. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  383. {
  384. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  385. int rc;
  386. int cpu_addr;
  387. spin_lock(&li->lock);
  388. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  389. clear_bit(cpu_addr, li->sigp_emerg_pending);
  390. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  391. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  392. spin_unlock(&li->lock);
  393. VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp emerg");
  394. vcpu->stat.deliver_emergency_signal++;
  395. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  396. cpu_addr, 0);
  397. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  398. (u16 *)__LC_EXT_INT_CODE);
  399. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  400. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  401. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  402. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  403. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  404. return rc ? -EFAULT : 0;
  405. }
  406. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  407. {
  408. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  409. struct kvm_s390_extcall_info extcall;
  410. int rc;
  411. spin_lock(&li->lock);
  412. extcall = li->irq.extcall;
  413. li->irq.extcall.code = 0;
  414. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  415. spin_unlock(&li->lock);
  416. VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp ext call");
  417. vcpu->stat.deliver_external_call++;
  418. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  419. KVM_S390_INT_EXTERNAL_CALL,
  420. extcall.code, 0);
  421. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  422. (u16 *)__LC_EXT_INT_CODE);
  423. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  424. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  425. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  426. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  427. sizeof(psw_t));
  428. return rc ? -EFAULT : 0;
  429. }
  430. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  431. {
  432. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  433. struct kvm_s390_pgm_info pgm_info;
  434. int rc = 0, nullifying = false;
  435. u16 ilc = get_ilc(vcpu);
  436. spin_lock(&li->lock);
  437. pgm_info = li->irq.pgm;
  438. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  439. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  440. spin_unlock(&li->lock);
  441. VCPU_EVENT(vcpu, 4, "interrupt: pgm check code:%x, ilc:%x",
  442. pgm_info.code, ilc);
  443. vcpu->stat.deliver_program_int++;
  444. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  445. pgm_info.code, 0);
  446. switch (pgm_info.code & ~PGM_PER) {
  447. case PGM_AFX_TRANSLATION:
  448. case PGM_ASX_TRANSLATION:
  449. case PGM_EX_TRANSLATION:
  450. case PGM_LFX_TRANSLATION:
  451. case PGM_LSTE_SEQUENCE:
  452. case PGM_LSX_TRANSLATION:
  453. case PGM_LX_TRANSLATION:
  454. case PGM_PRIMARY_AUTHORITY:
  455. case PGM_SECONDARY_AUTHORITY:
  456. nullifying = true;
  457. /* fall through */
  458. case PGM_SPACE_SWITCH:
  459. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  460. (u64 *)__LC_TRANS_EXC_CODE);
  461. break;
  462. case PGM_ALEN_TRANSLATION:
  463. case PGM_ALE_SEQUENCE:
  464. case PGM_ASTE_INSTANCE:
  465. case PGM_ASTE_SEQUENCE:
  466. case PGM_ASTE_VALIDITY:
  467. case PGM_EXTENDED_AUTHORITY:
  468. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  469. (u8 *)__LC_EXC_ACCESS_ID);
  470. nullifying = true;
  471. break;
  472. case PGM_ASCE_TYPE:
  473. case PGM_PAGE_TRANSLATION:
  474. case PGM_REGION_FIRST_TRANS:
  475. case PGM_REGION_SECOND_TRANS:
  476. case PGM_REGION_THIRD_TRANS:
  477. case PGM_SEGMENT_TRANSLATION:
  478. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  479. (u64 *)__LC_TRANS_EXC_CODE);
  480. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  481. (u8 *)__LC_EXC_ACCESS_ID);
  482. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  483. (u8 *)__LC_OP_ACCESS_ID);
  484. nullifying = true;
  485. break;
  486. case PGM_MONITOR:
  487. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  488. (u16 *)__LC_MON_CLASS_NR);
  489. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  490. (u64 *)__LC_MON_CODE);
  491. break;
  492. case PGM_VECTOR_PROCESSING:
  493. case PGM_DATA:
  494. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  495. (u32 *)__LC_DATA_EXC_CODE);
  496. break;
  497. case PGM_PROTECTION:
  498. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  499. (u64 *)__LC_TRANS_EXC_CODE);
  500. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  501. (u8 *)__LC_EXC_ACCESS_ID);
  502. break;
  503. case PGM_STACK_FULL:
  504. case PGM_STACK_EMPTY:
  505. case PGM_STACK_SPECIFICATION:
  506. case PGM_STACK_TYPE:
  507. case PGM_STACK_OPERATION:
  508. case PGM_TRACE_TABEL:
  509. case PGM_CRYPTO_OPERATION:
  510. nullifying = true;
  511. break;
  512. }
  513. if (pgm_info.code & PGM_PER) {
  514. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  515. (u8 *) __LC_PER_CODE);
  516. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  517. (u8 *)__LC_PER_ATMID);
  518. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  519. (u64 *) __LC_PER_ADDRESS);
  520. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  521. (u8 *) __LC_PER_ACCESS_ID);
  522. }
  523. if (nullifying && vcpu->arch.sie_block->icptcode == ICPT_INST)
  524. kvm_s390_rewind_psw(vcpu, ilc);
  525. rc |= put_guest_lc(vcpu, ilc, (u16 *) __LC_PGM_ILC);
  526. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  527. (u64 *) __LC_LAST_BREAK);
  528. rc |= put_guest_lc(vcpu, pgm_info.code,
  529. (u16 *)__LC_PGM_INT_CODE);
  530. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  531. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  532. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  533. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  534. return rc ? -EFAULT : 0;
  535. }
  536. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  537. {
  538. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  539. struct kvm_s390_ext_info ext;
  540. int rc = 0;
  541. spin_lock(&fi->lock);
  542. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  543. spin_unlock(&fi->lock);
  544. return 0;
  545. }
  546. ext = fi->srv_signal;
  547. memset(&fi->srv_signal, 0, sizeof(ext));
  548. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  549. spin_unlock(&fi->lock);
  550. VCPU_EVENT(vcpu, 4, "interrupt: sclp parm:%x",
  551. ext.ext_params);
  552. vcpu->stat.deliver_service_signal++;
  553. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  554. ext.ext_params, 0);
  555. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  556. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  557. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  558. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  559. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  560. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  561. rc |= put_guest_lc(vcpu, ext.ext_params,
  562. (u32 *)__LC_EXT_PARAMS);
  563. return rc ? -EFAULT : 0;
  564. }
  565. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  566. {
  567. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  568. struct kvm_s390_interrupt_info *inti;
  569. int rc = 0;
  570. spin_lock(&fi->lock);
  571. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  572. struct kvm_s390_interrupt_info,
  573. list);
  574. if (inti) {
  575. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  576. KVM_S390_INT_PFAULT_DONE, 0,
  577. inti->ext.ext_params2);
  578. list_del(&inti->list);
  579. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  580. }
  581. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  582. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  583. spin_unlock(&fi->lock);
  584. if (inti) {
  585. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  586. (u16 *)__LC_EXT_INT_CODE);
  587. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  588. (u16 *)__LC_EXT_CPU_ADDR);
  589. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  590. &vcpu->arch.sie_block->gpsw,
  591. sizeof(psw_t));
  592. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  593. &vcpu->arch.sie_block->gpsw,
  594. sizeof(psw_t));
  595. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  596. (u64 *)__LC_EXT_PARAMS2);
  597. kfree(inti);
  598. }
  599. return rc ? -EFAULT : 0;
  600. }
  601. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  602. {
  603. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  604. struct kvm_s390_interrupt_info *inti;
  605. int rc = 0;
  606. spin_lock(&fi->lock);
  607. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  608. struct kvm_s390_interrupt_info,
  609. list);
  610. if (inti) {
  611. VCPU_EVENT(vcpu, 4,
  612. "interrupt: virtio parm:%x,parm64:%llx",
  613. inti->ext.ext_params, inti->ext.ext_params2);
  614. vcpu->stat.deliver_virtio_interrupt++;
  615. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  616. inti->type,
  617. inti->ext.ext_params,
  618. inti->ext.ext_params2);
  619. list_del(&inti->list);
  620. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  621. }
  622. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  623. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  624. spin_unlock(&fi->lock);
  625. if (inti) {
  626. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  627. (u16 *)__LC_EXT_INT_CODE);
  628. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  629. (u16 *)__LC_EXT_CPU_ADDR);
  630. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  631. &vcpu->arch.sie_block->gpsw,
  632. sizeof(psw_t));
  633. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  634. &vcpu->arch.sie_block->gpsw,
  635. sizeof(psw_t));
  636. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  637. (u32 *)__LC_EXT_PARAMS);
  638. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  639. (u64 *)__LC_EXT_PARAMS2);
  640. kfree(inti);
  641. }
  642. return rc ? -EFAULT : 0;
  643. }
  644. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  645. unsigned long irq_type)
  646. {
  647. struct list_head *isc_list;
  648. struct kvm_s390_float_interrupt *fi;
  649. struct kvm_s390_interrupt_info *inti = NULL;
  650. int rc = 0;
  651. fi = &vcpu->kvm->arch.float_int;
  652. spin_lock(&fi->lock);
  653. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  654. inti = list_first_entry_or_null(isc_list,
  655. struct kvm_s390_interrupt_info,
  656. list);
  657. if (inti) {
  658. VCPU_EVENT(vcpu, 4, "interrupt: I/O %llx", inti->type);
  659. vcpu->stat.deliver_io_int++;
  660. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  661. inti->type,
  662. ((__u32)inti->io.subchannel_id << 16) |
  663. inti->io.subchannel_nr,
  664. ((__u64)inti->io.io_int_parm << 32) |
  665. inti->io.io_int_word);
  666. list_del(&inti->list);
  667. fi->counters[FIRQ_CNTR_IO] -= 1;
  668. }
  669. if (list_empty(isc_list))
  670. clear_bit(irq_type, &fi->pending_irqs);
  671. spin_unlock(&fi->lock);
  672. if (inti) {
  673. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  674. (u16 *)__LC_SUBCHANNEL_ID);
  675. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  676. (u16 *)__LC_SUBCHANNEL_NR);
  677. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  678. (u32 *)__LC_IO_INT_PARM);
  679. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  680. (u32 *)__LC_IO_INT_WORD);
  681. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  682. &vcpu->arch.sie_block->gpsw,
  683. sizeof(psw_t));
  684. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  685. &vcpu->arch.sie_block->gpsw,
  686. sizeof(psw_t));
  687. kfree(inti);
  688. }
  689. return rc ? -EFAULT : 0;
  690. }
  691. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  692. static const deliver_irq_t deliver_irq_funcs[] = {
  693. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  694. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  695. [IRQ_PEND_PROG] = __deliver_prog,
  696. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  697. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  698. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  699. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  700. [IRQ_PEND_RESTART] = __deliver_restart,
  701. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  702. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  703. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  704. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  705. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  706. };
  707. /* Check whether an external call is pending (deliverable or not) */
  708. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  709. {
  710. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  711. uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  712. if (!sclp_has_sigpif())
  713. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  714. return (sigp_ctrl & SIGP_CTRL_C) &&
  715. (atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND);
  716. }
  717. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  718. {
  719. int rc;
  720. rc = !!deliverable_irqs(vcpu);
  721. if (!rc && kvm_cpu_has_pending_timer(vcpu))
  722. rc = 1;
  723. /* external call pending and deliverable */
  724. if (!rc && kvm_s390_ext_call_pending(vcpu) &&
  725. !psw_extint_disabled(vcpu) &&
  726. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  727. rc = 1;
  728. if (!rc && !exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  729. rc = 1;
  730. return rc;
  731. }
  732. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  733. {
  734. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  735. }
  736. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  737. {
  738. u64 now, sltime;
  739. vcpu->stat.exit_wait_state++;
  740. /* fast path */
  741. if (kvm_cpu_has_pending_timer(vcpu) || kvm_arch_vcpu_runnable(vcpu))
  742. return 0;
  743. if (psw_interrupts_disabled(vcpu)) {
  744. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  745. return -EOPNOTSUPP; /* disabled wait */
  746. }
  747. if (!ckc_interrupts_enabled(vcpu)) {
  748. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  749. __set_cpu_idle(vcpu);
  750. goto no_timer;
  751. }
  752. now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
  753. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  754. /* underflow */
  755. if (vcpu->arch.sie_block->ckc < now)
  756. return 0;
  757. __set_cpu_idle(vcpu);
  758. hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
  759. VCPU_EVENT(vcpu, 5, "enabled wait via clock comparator: %llx ns", sltime);
  760. no_timer:
  761. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  762. kvm_vcpu_block(vcpu);
  763. __unset_cpu_idle(vcpu);
  764. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  765. hrtimer_cancel(&vcpu->arch.ckc_timer);
  766. return 0;
  767. }
  768. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  769. {
  770. if (waitqueue_active(&vcpu->wq)) {
  771. /*
  772. * The vcpu gave up the cpu voluntarily, mark it as a good
  773. * yield-candidate.
  774. */
  775. vcpu->preempted = true;
  776. wake_up_interruptible(&vcpu->wq);
  777. vcpu->stat.halt_wakeup++;
  778. }
  779. }
  780. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  781. {
  782. struct kvm_vcpu *vcpu;
  783. u64 now, sltime;
  784. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  785. now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
  786. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  787. /*
  788. * If the monotonic clock runs faster than the tod clock we might be
  789. * woken up too early and have to go back to sleep to avoid deadlocks.
  790. */
  791. if (vcpu->arch.sie_block->ckc > now &&
  792. hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  793. return HRTIMER_RESTART;
  794. kvm_s390_vcpu_wakeup(vcpu);
  795. return HRTIMER_NORESTART;
  796. }
  797. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  798. {
  799. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  800. spin_lock(&li->lock);
  801. li->pending_irqs = 0;
  802. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  803. memset(&li->irq, 0, sizeof(li->irq));
  804. spin_unlock(&li->lock);
  805. /* clear pending external calls set by sigp interpretation facility */
  806. atomic_clear_mask(CPUSTAT_ECALL_PEND, li->cpuflags);
  807. vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl = 0;
  808. }
  809. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  810. {
  811. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  812. deliver_irq_t func;
  813. int rc = 0;
  814. unsigned long irq_type;
  815. unsigned long irqs;
  816. __reset_intercept_indicators(vcpu);
  817. /* pending ckc conditions might have been invalidated */
  818. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  819. if (ckc_irq_pending(vcpu))
  820. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  821. /* pending cpu timer conditions might have been invalidated */
  822. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  823. if (cpu_timer_irq_pending(vcpu))
  824. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  825. do {
  826. irqs = deliverable_irqs(vcpu);
  827. /* bits are in the order of interrupt priority */
  828. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  829. if (irq_type == IRQ_PEND_COUNT)
  830. break;
  831. if (is_ioirq(irq_type)) {
  832. rc = __deliver_io(vcpu, irq_type);
  833. } else {
  834. func = deliver_irq_funcs[irq_type];
  835. if (!func) {
  836. WARN_ON_ONCE(func == NULL);
  837. clear_bit(irq_type, &li->pending_irqs);
  838. continue;
  839. }
  840. rc = func(vcpu);
  841. }
  842. if (rc)
  843. break;
  844. } while (!rc);
  845. set_intercept_indicators(vcpu);
  846. return rc;
  847. }
  848. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  849. {
  850. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  851. li->irq.pgm = irq->u.pgm;
  852. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  853. return 0;
  854. }
  855. int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
  856. {
  857. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  858. struct kvm_s390_irq irq;
  859. VCPU_EVENT(vcpu, 3, "inject: program check %d (from kernel)", code);
  860. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, code,
  861. 0, 1);
  862. spin_lock(&li->lock);
  863. irq.u.pgm.code = code;
  864. __inject_prog(vcpu, &irq);
  865. BUG_ON(waitqueue_active(li->wq));
  866. spin_unlock(&li->lock);
  867. return 0;
  868. }
  869. int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu,
  870. struct kvm_s390_pgm_info *pgm_info)
  871. {
  872. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  873. struct kvm_s390_irq irq;
  874. int rc;
  875. VCPU_EVENT(vcpu, 3, "inject: prog irq %d (from kernel)",
  876. pgm_info->code);
  877. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  878. pgm_info->code, 0, 1);
  879. spin_lock(&li->lock);
  880. irq.u.pgm = *pgm_info;
  881. rc = __inject_prog(vcpu, &irq);
  882. BUG_ON(waitqueue_active(li->wq));
  883. spin_unlock(&li->lock);
  884. return rc;
  885. }
  886. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  887. {
  888. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  889. VCPU_EVENT(vcpu, 3, "inject: external irq params:%x, params2:%llx",
  890. irq->u.ext.ext_params, irq->u.ext.ext_params2);
  891. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  892. irq->u.ext.ext_params,
  893. irq->u.ext.ext_params2, 2);
  894. li->irq.ext = irq->u.ext;
  895. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  896. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  897. return 0;
  898. }
  899. static int __inject_extcall_sigpif(struct kvm_vcpu *vcpu, uint16_t src_id)
  900. {
  901. unsigned char new_val, old_val;
  902. uint8_t *sigp_ctrl = &vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  903. new_val = SIGP_CTRL_C | (src_id & SIGP_CTRL_SCN_MASK);
  904. old_val = *sigp_ctrl & ~SIGP_CTRL_C;
  905. if (cmpxchg(sigp_ctrl, old_val, new_val) != old_val) {
  906. /* another external call is pending */
  907. return -EBUSY;
  908. }
  909. atomic_set_mask(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  910. return 0;
  911. }
  912. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  913. {
  914. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  915. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  916. uint16_t src_id = irq->u.extcall.code;
  917. VCPU_EVENT(vcpu, 3, "inject: external call source-cpu:%u",
  918. src_id);
  919. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  920. src_id, 0, 2);
  921. /* sending vcpu invalid */
  922. if (src_id >= KVM_MAX_VCPUS ||
  923. kvm_get_vcpu(vcpu->kvm, src_id) == NULL)
  924. return -EINVAL;
  925. if (sclp_has_sigpif())
  926. return __inject_extcall_sigpif(vcpu, src_id);
  927. if (!test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  928. return -EBUSY;
  929. *extcall = irq->u.extcall;
  930. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  931. return 0;
  932. }
  933. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  934. {
  935. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  936. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  937. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x (from user)",
  938. irq->u.prefix.address);
  939. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  940. irq->u.prefix.address, 0, 2);
  941. if (!is_vcpu_stopped(vcpu))
  942. return -EBUSY;
  943. *prefix = irq->u.prefix;
  944. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  945. return 0;
  946. }
  947. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  948. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  949. {
  950. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  951. struct kvm_s390_stop_info *stop = &li->irq.stop;
  952. int rc = 0;
  953. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0, 2);
  954. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  955. return -EINVAL;
  956. if (is_vcpu_stopped(vcpu)) {
  957. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  958. rc = kvm_s390_store_status_unloaded(vcpu,
  959. KVM_S390_STORE_STATUS_NOADDR);
  960. return rc;
  961. }
  962. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  963. return -EBUSY;
  964. stop->flags = irq->u.stop.flags;
  965. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  966. return 0;
  967. }
  968. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  969. struct kvm_s390_irq *irq)
  970. {
  971. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  972. VCPU_EVENT(vcpu, 3, "inject: restart type %llx", irq->type);
  973. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0, 2);
  974. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  975. return 0;
  976. }
  977. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  978. struct kvm_s390_irq *irq)
  979. {
  980. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  981. VCPU_EVENT(vcpu, 3, "inject: emergency %u\n",
  982. irq->u.emerg.code);
  983. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  984. irq->u.emerg.code, 0, 2);
  985. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  986. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  987. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  988. return 0;
  989. }
  990. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  991. {
  992. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  993. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  994. VCPU_EVENT(vcpu, 5, "inject: machine check parm64:%llx",
  995. irq->u.mchk.mcic);
  996. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  997. irq->u.mchk.mcic, 2);
  998. /*
  999. * Because repressible machine checks can be indicated along with
  1000. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1001. * we need to combine cr14, mcic and external damage code.
  1002. * Failing storage address and the logout area should not be or'ed
  1003. * together, we just indicate the last occurrence of the corresponding
  1004. * machine check
  1005. */
  1006. mchk->cr14 |= irq->u.mchk.cr14;
  1007. mchk->mcic |= irq->u.mchk.mcic;
  1008. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1009. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1010. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1011. sizeof(mchk->fixed_logout));
  1012. if (mchk->mcic & MCHK_EX_MASK)
  1013. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1014. else if (mchk->mcic & MCHK_REP_MASK)
  1015. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1016. return 0;
  1017. }
  1018. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1019. {
  1020. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1021. VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CLOCK_COMP);
  1022. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1023. 0, 0, 2);
  1024. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1025. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  1026. return 0;
  1027. }
  1028. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1029. {
  1030. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1031. VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CPU_TIMER);
  1032. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1033. 0, 0, 2);
  1034. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1035. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  1036. return 0;
  1037. }
  1038. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1039. int isc, u32 schid)
  1040. {
  1041. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1042. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1043. struct kvm_s390_interrupt_info *iter;
  1044. u16 id = (schid & 0xffff0000U) >> 16;
  1045. u16 nr = schid & 0x0000ffffU;
  1046. spin_lock(&fi->lock);
  1047. list_for_each_entry(iter, isc_list, list) {
  1048. if (schid && (id != iter->io.subchannel_id ||
  1049. nr != iter->io.subchannel_nr))
  1050. continue;
  1051. /* found an appropriate entry */
  1052. list_del_init(&iter->list);
  1053. fi->counters[FIRQ_CNTR_IO] -= 1;
  1054. if (list_empty(isc_list))
  1055. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1056. spin_unlock(&fi->lock);
  1057. return iter;
  1058. }
  1059. spin_unlock(&fi->lock);
  1060. return NULL;
  1061. }
  1062. /*
  1063. * Dequeue and return an I/O interrupt matching any of the interruption
  1064. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1065. */
  1066. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1067. u64 isc_mask, u32 schid)
  1068. {
  1069. struct kvm_s390_interrupt_info *inti = NULL;
  1070. int isc;
  1071. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1072. if (isc_mask & isc_to_isc_bits(isc))
  1073. inti = get_io_int(kvm, isc, schid);
  1074. }
  1075. return inti;
  1076. }
  1077. #define SCCB_MASK 0xFFFFFFF8
  1078. #define SCCB_EVENT_PENDING 0x3
  1079. static int __inject_service(struct kvm *kvm,
  1080. struct kvm_s390_interrupt_info *inti)
  1081. {
  1082. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1083. spin_lock(&fi->lock);
  1084. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1085. /*
  1086. * Early versions of the QEMU s390 bios will inject several
  1087. * service interrupts after another without handling a
  1088. * condition code indicating busy.
  1089. * We will silently ignore those superfluous sccb values.
  1090. * A future version of QEMU will take care of serialization
  1091. * of servc requests
  1092. */
  1093. if (fi->srv_signal.ext_params & SCCB_MASK)
  1094. goto out;
  1095. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1096. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1097. out:
  1098. spin_unlock(&fi->lock);
  1099. kfree(inti);
  1100. return 0;
  1101. }
  1102. static int __inject_virtio(struct kvm *kvm,
  1103. struct kvm_s390_interrupt_info *inti)
  1104. {
  1105. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1106. spin_lock(&fi->lock);
  1107. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1108. spin_unlock(&fi->lock);
  1109. return -EBUSY;
  1110. }
  1111. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1112. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1113. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1114. spin_unlock(&fi->lock);
  1115. return 0;
  1116. }
  1117. static int __inject_pfault_done(struct kvm *kvm,
  1118. struct kvm_s390_interrupt_info *inti)
  1119. {
  1120. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1121. spin_lock(&fi->lock);
  1122. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1123. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1124. spin_unlock(&fi->lock);
  1125. return -EBUSY;
  1126. }
  1127. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1128. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1129. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1130. spin_unlock(&fi->lock);
  1131. return 0;
  1132. }
  1133. #define CR_PENDING_SUBCLASS 28
  1134. static int __inject_float_mchk(struct kvm *kvm,
  1135. struct kvm_s390_interrupt_info *inti)
  1136. {
  1137. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1138. spin_lock(&fi->lock);
  1139. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1140. fi->mchk.mcic |= inti->mchk.mcic;
  1141. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1142. spin_unlock(&fi->lock);
  1143. kfree(inti);
  1144. return 0;
  1145. }
  1146. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1147. {
  1148. struct kvm_s390_float_interrupt *fi;
  1149. struct list_head *list;
  1150. int isc;
  1151. fi = &kvm->arch.float_int;
  1152. spin_lock(&fi->lock);
  1153. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1154. spin_unlock(&fi->lock);
  1155. return -EBUSY;
  1156. }
  1157. fi->counters[FIRQ_CNTR_IO] += 1;
  1158. isc = int_word_to_isc(inti->io.io_int_word);
  1159. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1160. list_add_tail(&inti->list, list);
  1161. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1162. spin_unlock(&fi->lock);
  1163. return 0;
  1164. }
  1165. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1166. {
  1167. struct kvm_s390_local_interrupt *li;
  1168. struct kvm_s390_float_interrupt *fi;
  1169. struct kvm_vcpu *dst_vcpu = NULL;
  1170. int sigcpu;
  1171. u64 type = READ_ONCE(inti->type);
  1172. int rc;
  1173. fi = &kvm->arch.float_int;
  1174. switch (type) {
  1175. case KVM_S390_MCHK:
  1176. rc = __inject_float_mchk(kvm, inti);
  1177. break;
  1178. case KVM_S390_INT_VIRTIO:
  1179. rc = __inject_virtio(kvm, inti);
  1180. break;
  1181. case KVM_S390_INT_SERVICE:
  1182. rc = __inject_service(kvm, inti);
  1183. break;
  1184. case KVM_S390_INT_PFAULT_DONE:
  1185. rc = __inject_pfault_done(kvm, inti);
  1186. break;
  1187. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1188. rc = __inject_io(kvm, inti);
  1189. break;
  1190. default:
  1191. rc = -EINVAL;
  1192. }
  1193. if (rc)
  1194. return rc;
  1195. sigcpu = find_first_bit(fi->idle_mask, KVM_MAX_VCPUS);
  1196. if (sigcpu == KVM_MAX_VCPUS) {
  1197. do {
  1198. sigcpu = fi->next_rr_cpu++;
  1199. if (sigcpu == KVM_MAX_VCPUS)
  1200. sigcpu = fi->next_rr_cpu = 0;
  1201. } while (kvm_get_vcpu(kvm, sigcpu) == NULL);
  1202. }
  1203. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1204. li = &dst_vcpu->arch.local_int;
  1205. spin_lock(&li->lock);
  1206. switch (type) {
  1207. case KVM_S390_MCHK:
  1208. atomic_set_mask(CPUSTAT_STOP_INT, li->cpuflags);
  1209. break;
  1210. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1211. atomic_set_mask(CPUSTAT_IO_INT, li->cpuflags);
  1212. break;
  1213. default:
  1214. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  1215. break;
  1216. }
  1217. spin_unlock(&li->lock);
  1218. kvm_s390_vcpu_wakeup(kvm_get_vcpu(kvm, sigcpu));
  1219. return 0;
  1220. }
  1221. int kvm_s390_inject_vm(struct kvm *kvm,
  1222. struct kvm_s390_interrupt *s390int)
  1223. {
  1224. struct kvm_s390_interrupt_info *inti;
  1225. int rc;
  1226. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1227. if (!inti)
  1228. return -ENOMEM;
  1229. inti->type = s390int->type;
  1230. switch (inti->type) {
  1231. case KVM_S390_INT_VIRTIO:
  1232. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1233. s390int->parm, s390int->parm64);
  1234. inti->ext.ext_params = s390int->parm;
  1235. inti->ext.ext_params2 = s390int->parm64;
  1236. break;
  1237. case KVM_S390_INT_SERVICE:
  1238. VM_EVENT(kvm, 5, "inject: sclp parm:%x", s390int->parm);
  1239. inti->ext.ext_params = s390int->parm;
  1240. break;
  1241. case KVM_S390_INT_PFAULT_DONE:
  1242. inti->ext.ext_params2 = s390int->parm64;
  1243. break;
  1244. case KVM_S390_MCHK:
  1245. VM_EVENT(kvm, 5, "inject: machine check parm64:%llx",
  1246. s390int->parm64);
  1247. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1248. inti->mchk.mcic = s390int->parm64;
  1249. break;
  1250. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1251. if (inti->type & IOINT_AI_MASK)
  1252. VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)");
  1253. else
  1254. VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x",
  1255. s390int->type & IOINT_CSSID_MASK,
  1256. s390int->type & IOINT_SSID_MASK,
  1257. s390int->type & IOINT_SCHID_MASK);
  1258. inti->io.subchannel_id = s390int->parm >> 16;
  1259. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1260. inti->io.io_int_parm = s390int->parm64 >> 32;
  1261. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1262. break;
  1263. default:
  1264. kfree(inti);
  1265. return -EINVAL;
  1266. }
  1267. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1268. 2);
  1269. rc = __inject_vm(kvm, inti);
  1270. if (rc)
  1271. kfree(inti);
  1272. return rc;
  1273. }
  1274. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1275. struct kvm_s390_interrupt_info *inti)
  1276. {
  1277. return __inject_vm(kvm, inti);
  1278. }
  1279. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1280. struct kvm_s390_irq *irq)
  1281. {
  1282. irq->type = s390int->type;
  1283. switch (irq->type) {
  1284. case KVM_S390_PROGRAM_INT:
  1285. if (s390int->parm & 0xffff0000)
  1286. return -EINVAL;
  1287. irq->u.pgm.code = s390int->parm;
  1288. break;
  1289. case KVM_S390_SIGP_SET_PREFIX:
  1290. irq->u.prefix.address = s390int->parm;
  1291. break;
  1292. case KVM_S390_SIGP_STOP:
  1293. irq->u.stop.flags = s390int->parm;
  1294. break;
  1295. case KVM_S390_INT_EXTERNAL_CALL:
  1296. if (s390int->parm & 0xffff0000)
  1297. return -EINVAL;
  1298. irq->u.extcall.code = s390int->parm;
  1299. break;
  1300. case KVM_S390_INT_EMERGENCY:
  1301. if (s390int->parm & 0xffff0000)
  1302. return -EINVAL;
  1303. irq->u.emerg.code = s390int->parm;
  1304. break;
  1305. case KVM_S390_MCHK:
  1306. irq->u.mchk.mcic = s390int->parm64;
  1307. break;
  1308. }
  1309. return 0;
  1310. }
  1311. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1312. {
  1313. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1314. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1315. }
  1316. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1317. {
  1318. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1319. spin_lock(&li->lock);
  1320. li->irq.stop.flags = 0;
  1321. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1322. spin_unlock(&li->lock);
  1323. }
  1324. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1325. {
  1326. int rc;
  1327. switch (irq->type) {
  1328. case KVM_S390_PROGRAM_INT:
  1329. VCPU_EVENT(vcpu, 3, "inject: program check %d (from user)",
  1330. irq->u.pgm.code);
  1331. rc = __inject_prog(vcpu, irq);
  1332. break;
  1333. case KVM_S390_SIGP_SET_PREFIX:
  1334. rc = __inject_set_prefix(vcpu, irq);
  1335. break;
  1336. case KVM_S390_SIGP_STOP:
  1337. rc = __inject_sigp_stop(vcpu, irq);
  1338. break;
  1339. case KVM_S390_RESTART:
  1340. rc = __inject_sigp_restart(vcpu, irq);
  1341. break;
  1342. case KVM_S390_INT_CLOCK_COMP:
  1343. rc = __inject_ckc(vcpu);
  1344. break;
  1345. case KVM_S390_INT_CPU_TIMER:
  1346. rc = __inject_cpu_timer(vcpu);
  1347. break;
  1348. case KVM_S390_INT_EXTERNAL_CALL:
  1349. rc = __inject_extcall(vcpu, irq);
  1350. break;
  1351. case KVM_S390_INT_EMERGENCY:
  1352. rc = __inject_sigp_emergency(vcpu, irq);
  1353. break;
  1354. case KVM_S390_MCHK:
  1355. rc = __inject_mchk(vcpu, irq);
  1356. break;
  1357. case KVM_S390_INT_PFAULT_INIT:
  1358. rc = __inject_pfault_init(vcpu, irq);
  1359. break;
  1360. case KVM_S390_INT_VIRTIO:
  1361. case KVM_S390_INT_SERVICE:
  1362. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1363. default:
  1364. rc = -EINVAL;
  1365. }
  1366. return rc;
  1367. }
  1368. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1369. {
  1370. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1371. int rc;
  1372. spin_lock(&li->lock);
  1373. rc = do_inject_vcpu(vcpu, irq);
  1374. spin_unlock(&li->lock);
  1375. if (!rc)
  1376. kvm_s390_vcpu_wakeup(vcpu);
  1377. return rc;
  1378. }
  1379. static inline void clear_irq_list(struct list_head *_list)
  1380. {
  1381. struct kvm_s390_interrupt_info *inti, *n;
  1382. list_for_each_entry_safe(inti, n, _list, list) {
  1383. list_del(&inti->list);
  1384. kfree(inti);
  1385. }
  1386. }
  1387. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1388. struct kvm_s390_irq *irq)
  1389. {
  1390. irq->type = inti->type;
  1391. switch (inti->type) {
  1392. case KVM_S390_INT_PFAULT_INIT:
  1393. case KVM_S390_INT_PFAULT_DONE:
  1394. case KVM_S390_INT_VIRTIO:
  1395. irq->u.ext = inti->ext;
  1396. break;
  1397. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1398. irq->u.io = inti->io;
  1399. break;
  1400. }
  1401. }
  1402. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1403. {
  1404. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1405. int i;
  1406. spin_lock(&fi->lock);
  1407. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1408. clear_irq_list(&fi->lists[i]);
  1409. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1410. fi->counters[i] = 0;
  1411. spin_unlock(&fi->lock);
  1412. };
  1413. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1414. {
  1415. struct kvm_s390_interrupt_info *inti;
  1416. struct kvm_s390_float_interrupt *fi;
  1417. struct kvm_s390_irq *buf;
  1418. struct kvm_s390_irq *irq;
  1419. int max_irqs;
  1420. int ret = 0;
  1421. int n = 0;
  1422. int i;
  1423. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1424. return -EINVAL;
  1425. /*
  1426. * We are already using -ENOMEM to signal
  1427. * userspace it may retry with a bigger buffer,
  1428. * so we need to use something else for this case
  1429. */
  1430. buf = vzalloc(len);
  1431. if (!buf)
  1432. return -ENOBUFS;
  1433. max_irqs = len / sizeof(struct kvm_s390_irq);
  1434. fi = &kvm->arch.float_int;
  1435. spin_lock(&fi->lock);
  1436. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1437. list_for_each_entry(inti, &fi->lists[i], list) {
  1438. if (n == max_irqs) {
  1439. /* signal userspace to try again */
  1440. ret = -ENOMEM;
  1441. goto out;
  1442. }
  1443. inti_to_irq(inti, &buf[n]);
  1444. n++;
  1445. }
  1446. }
  1447. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1448. if (n == max_irqs) {
  1449. /* signal userspace to try again */
  1450. ret = -ENOMEM;
  1451. goto out;
  1452. }
  1453. irq = (struct kvm_s390_irq *) &buf[n];
  1454. irq->type = KVM_S390_INT_SERVICE;
  1455. irq->u.ext = fi->srv_signal;
  1456. n++;
  1457. }
  1458. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1459. if (n == max_irqs) {
  1460. /* signal userspace to try again */
  1461. ret = -ENOMEM;
  1462. goto out;
  1463. }
  1464. irq = (struct kvm_s390_irq *) &buf[n];
  1465. irq->type = KVM_S390_MCHK;
  1466. irq->u.mchk = fi->mchk;
  1467. n++;
  1468. }
  1469. out:
  1470. spin_unlock(&fi->lock);
  1471. if (!ret && n > 0) {
  1472. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1473. ret = -EFAULT;
  1474. }
  1475. vfree(buf);
  1476. return ret < 0 ? ret : n;
  1477. }
  1478. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1479. {
  1480. int r;
  1481. switch (attr->group) {
  1482. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1483. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1484. attr->attr);
  1485. break;
  1486. default:
  1487. r = -EINVAL;
  1488. }
  1489. return r;
  1490. }
  1491. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1492. u64 addr)
  1493. {
  1494. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1495. void *target = NULL;
  1496. void __user *source;
  1497. u64 size;
  1498. if (get_user(inti->type, (u64 __user *)addr))
  1499. return -EFAULT;
  1500. switch (inti->type) {
  1501. case KVM_S390_INT_PFAULT_INIT:
  1502. case KVM_S390_INT_PFAULT_DONE:
  1503. case KVM_S390_INT_VIRTIO:
  1504. case KVM_S390_INT_SERVICE:
  1505. target = (void *) &inti->ext;
  1506. source = &uptr->u.ext;
  1507. size = sizeof(inti->ext);
  1508. break;
  1509. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1510. target = (void *) &inti->io;
  1511. source = &uptr->u.io;
  1512. size = sizeof(inti->io);
  1513. break;
  1514. case KVM_S390_MCHK:
  1515. target = (void *) &inti->mchk;
  1516. source = &uptr->u.mchk;
  1517. size = sizeof(inti->mchk);
  1518. break;
  1519. default:
  1520. return -EINVAL;
  1521. }
  1522. if (copy_from_user(target, source, size))
  1523. return -EFAULT;
  1524. return 0;
  1525. }
  1526. static int enqueue_floating_irq(struct kvm_device *dev,
  1527. struct kvm_device_attr *attr)
  1528. {
  1529. struct kvm_s390_interrupt_info *inti = NULL;
  1530. int r = 0;
  1531. int len = attr->attr;
  1532. if (len % sizeof(struct kvm_s390_irq) != 0)
  1533. return -EINVAL;
  1534. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1535. return -EINVAL;
  1536. while (len >= sizeof(struct kvm_s390_irq)) {
  1537. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1538. if (!inti)
  1539. return -ENOMEM;
  1540. r = copy_irq_from_user(inti, attr->addr);
  1541. if (r) {
  1542. kfree(inti);
  1543. return r;
  1544. }
  1545. r = __inject_vm(dev->kvm, inti);
  1546. if (r) {
  1547. kfree(inti);
  1548. return r;
  1549. }
  1550. len -= sizeof(struct kvm_s390_irq);
  1551. attr->addr += sizeof(struct kvm_s390_irq);
  1552. }
  1553. return r;
  1554. }
  1555. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1556. {
  1557. if (id >= MAX_S390_IO_ADAPTERS)
  1558. return NULL;
  1559. return kvm->arch.adapters[id];
  1560. }
  1561. static int register_io_adapter(struct kvm_device *dev,
  1562. struct kvm_device_attr *attr)
  1563. {
  1564. struct s390_io_adapter *adapter;
  1565. struct kvm_s390_io_adapter adapter_info;
  1566. if (copy_from_user(&adapter_info,
  1567. (void __user *)attr->addr, sizeof(adapter_info)))
  1568. return -EFAULT;
  1569. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1570. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1571. return -EINVAL;
  1572. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1573. if (!adapter)
  1574. return -ENOMEM;
  1575. INIT_LIST_HEAD(&adapter->maps);
  1576. init_rwsem(&adapter->maps_lock);
  1577. atomic_set(&adapter->nr_maps, 0);
  1578. adapter->id = adapter_info.id;
  1579. adapter->isc = adapter_info.isc;
  1580. adapter->maskable = adapter_info.maskable;
  1581. adapter->masked = false;
  1582. adapter->swap = adapter_info.swap;
  1583. dev->kvm->arch.adapters[adapter->id] = adapter;
  1584. return 0;
  1585. }
  1586. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1587. {
  1588. int ret;
  1589. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1590. if (!adapter || !adapter->maskable)
  1591. return -EINVAL;
  1592. ret = adapter->masked;
  1593. adapter->masked = masked;
  1594. return ret;
  1595. }
  1596. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1597. {
  1598. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1599. struct s390_map_info *map;
  1600. int ret;
  1601. if (!adapter || !addr)
  1602. return -EINVAL;
  1603. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1604. if (!map) {
  1605. ret = -ENOMEM;
  1606. goto out;
  1607. }
  1608. INIT_LIST_HEAD(&map->list);
  1609. map->guest_addr = addr;
  1610. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1611. if (map->addr == -EFAULT) {
  1612. ret = -EFAULT;
  1613. goto out;
  1614. }
  1615. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1616. if (ret < 0)
  1617. goto out;
  1618. BUG_ON(ret != 1);
  1619. down_write(&adapter->maps_lock);
  1620. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1621. list_add_tail(&map->list, &adapter->maps);
  1622. ret = 0;
  1623. } else {
  1624. put_page(map->page);
  1625. ret = -EINVAL;
  1626. }
  1627. up_write(&adapter->maps_lock);
  1628. out:
  1629. if (ret)
  1630. kfree(map);
  1631. return ret;
  1632. }
  1633. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1634. {
  1635. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1636. struct s390_map_info *map, *tmp;
  1637. int found = 0;
  1638. if (!adapter || !addr)
  1639. return -EINVAL;
  1640. down_write(&adapter->maps_lock);
  1641. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1642. if (map->guest_addr == addr) {
  1643. found = 1;
  1644. atomic_dec(&adapter->nr_maps);
  1645. list_del(&map->list);
  1646. put_page(map->page);
  1647. kfree(map);
  1648. break;
  1649. }
  1650. }
  1651. up_write(&adapter->maps_lock);
  1652. return found ? 0 : -EINVAL;
  1653. }
  1654. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1655. {
  1656. int i;
  1657. struct s390_map_info *map, *tmp;
  1658. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1659. if (!kvm->arch.adapters[i])
  1660. continue;
  1661. list_for_each_entry_safe(map, tmp,
  1662. &kvm->arch.adapters[i]->maps, list) {
  1663. list_del(&map->list);
  1664. put_page(map->page);
  1665. kfree(map);
  1666. }
  1667. kfree(kvm->arch.adapters[i]);
  1668. }
  1669. }
  1670. static int modify_io_adapter(struct kvm_device *dev,
  1671. struct kvm_device_attr *attr)
  1672. {
  1673. struct kvm_s390_io_adapter_req req;
  1674. struct s390_io_adapter *adapter;
  1675. int ret;
  1676. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1677. return -EFAULT;
  1678. adapter = get_io_adapter(dev->kvm, req.id);
  1679. if (!adapter)
  1680. return -EINVAL;
  1681. switch (req.type) {
  1682. case KVM_S390_IO_ADAPTER_MASK:
  1683. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1684. if (ret > 0)
  1685. ret = 0;
  1686. break;
  1687. case KVM_S390_IO_ADAPTER_MAP:
  1688. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1689. break;
  1690. case KVM_S390_IO_ADAPTER_UNMAP:
  1691. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1692. break;
  1693. default:
  1694. ret = -EINVAL;
  1695. }
  1696. return ret;
  1697. }
  1698. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1699. {
  1700. int r = 0;
  1701. unsigned int i;
  1702. struct kvm_vcpu *vcpu;
  1703. switch (attr->group) {
  1704. case KVM_DEV_FLIC_ENQUEUE:
  1705. r = enqueue_floating_irq(dev, attr);
  1706. break;
  1707. case KVM_DEV_FLIC_CLEAR_IRQS:
  1708. kvm_s390_clear_float_irqs(dev->kvm);
  1709. break;
  1710. case KVM_DEV_FLIC_APF_ENABLE:
  1711. dev->kvm->arch.gmap->pfault_enabled = 1;
  1712. break;
  1713. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1714. dev->kvm->arch.gmap->pfault_enabled = 0;
  1715. /*
  1716. * Make sure no async faults are in transition when
  1717. * clearing the queues. So we don't need to worry
  1718. * about late coming workers.
  1719. */
  1720. synchronize_srcu(&dev->kvm->srcu);
  1721. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  1722. kvm_clear_async_pf_completion_queue(vcpu);
  1723. break;
  1724. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1725. r = register_io_adapter(dev, attr);
  1726. break;
  1727. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1728. r = modify_io_adapter(dev, attr);
  1729. break;
  1730. default:
  1731. r = -EINVAL;
  1732. }
  1733. return r;
  1734. }
  1735. static int flic_create(struct kvm_device *dev, u32 type)
  1736. {
  1737. if (!dev)
  1738. return -EINVAL;
  1739. if (dev->kvm->arch.flic)
  1740. return -EINVAL;
  1741. dev->kvm->arch.flic = dev;
  1742. return 0;
  1743. }
  1744. static void flic_destroy(struct kvm_device *dev)
  1745. {
  1746. dev->kvm->arch.flic = NULL;
  1747. kfree(dev);
  1748. }
  1749. /* s390 floating irq controller (flic) */
  1750. struct kvm_device_ops kvm_flic_ops = {
  1751. .name = "kvm-flic",
  1752. .get_attr = flic_get_attr,
  1753. .set_attr = flic_set_attr,
  1754. .create = flic_create,
  1755. .destroy = flic_destroy,
  1756. };
  1757. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  1758. {
  1759. unsigned long bit;
  1760. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  1761. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  1762. }
  1763. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  1764. u64 addr)
  1765. {
  1766. struct s390_map_info *map;
  1767. if (!adapter)
  1768. return NULL;
  1769. list_for_each_entry(map, &adapter->maps, list) {
  1770. if (map->guest_addr == addr)
  1771. return map;
  1772. }
  1773. return NULL;
  1774. }
  1775. static int adapter_indicators_set(struct kvm *kvm,
  1776. struct s390_io_adapter *adapter,
  1777. struct kvm_s390_adapter_int *adapter_int)
  1778. {
  1779. unsigned long bit;
  1780. int summary_set, idx;
  1781. struct s390_map_info *info;
  1782. void *map;
  1783. info = get_map_info(adapter, adapter_int->ind_addr);
  1784. if (!info)
  1785. return -1;
  1786. map = page_address(info->page);
  1787. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  1788. set_bit(bit, map);
  1789. idx = srcu_read_lock(&kvm->srcu);
  1790. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1791. set_page_dirty_lock(info->page);
  1792. info = get_map_info(adapter, adapter_int->summary_addr);
  1793. if (!info) {
  1794. srcu_read_unlock(&kvm->srcu, idx);
  1795. return -1;
  1796. }
  1797. map = page_address(info->page);
  1798. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  1799. adapter->swap);
  1800. summary_set = test_and_set_bit(bit, map);
  1801. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1802. set_page_dirty_lock(info->page);
  1803. srcu_read_unlock(&kvm->srcu, idx);
  1804. return summary_set ? 0 : 1;
  1805. }
  1806. /*
  1807. * < 0 - not injected due to error
  1808. * = 0 - coalesced, summary indicator already active
  1809. * > 0 - injected interrupt
  1810. */
  1811. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  1812. struct kvm *kvm, int irq_source_id, int level,
  1813. bool line_status)
  1814. {
  1815. int ret;
  1816. struct s390_io_adapter *adapter;
  1817. /* We're only interested in the 0->1 transition. */
  1818. if (!level)
  1819. return 0;
  1820. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  1821. if (!adapter)
  1822. return -1;
  1823. down_read(&adapter->maps_lock);
  1824. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  1825. up_read(&adapter->maps_lock);
  1826. if ((ret > 0) && !adapter->masked) {
  1827. struct kvm_s390_interrupt s390int = {
  1828. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1829. .parm = 0,
  1830. .parm64 = (adapter->isc << 27) | 0x80000000,
  1831. };
  1832. ret = kvm_s390_inject_vm(kvm, &s390int);
  1833. if (ret == 0)
  1834. ret = 1;
  1835. }
  1836. return ret;
  1837. }
  1838. int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
  1839. const struct kvm_irq_routing_entry *ue)
  1840. {
  1841. int ret;
  1842. switch (ue->type) {
  1843. case KVM_IRQ_ROUTING_S390_ADAPTER:
  1844. e->set = set_adapter_int;
  1845. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  1846. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  1847. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  1848. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  1849. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  1850. ret = 0;
  1851. break;
  1852. default:
  1853. ret = -EINVAL;
  1854. }
  1855. return ret;
  1856. }
  1857. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  1858. int irq_source_id, int level, bool line_status)
  1859. {
  1860. return -EINVAL;
  1861. }
  1862. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  1863. {
  1864. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1865. struct kvm_s390_irq *buf;
  1866. int r = 0;
  1867. int n;
  1868. buf = vmalloc(len);
  1869. if (!buf)
  1870. return -ENOMEM;
  1871. if (copy_from_user((void *) buf, irqstate, len)) {
  1872. r = -EFAULT;
  1873. goto out_free;
  1874. }
  1875. /*
  1876. * Don't allow setting the interrupt state
  1877. * when there are already interrupts pending
  1878. */
  1879. spin_lock(&li->lock);
  1880. if (li->pending_irqs) {
  1881. r = -EBUSY;
  1882. goto out_unlock;
  1883. }
  1884. for (n = 0; n < len / sizeof(*buf); n++) {
  1885. r = do_inject_vcpu(vcpu, &buf[n]);
  1886. if (r)
  1887. break;
  1888. }
  1889. out_unlock:
  1890. spin_unlock(&li->lock);
  1891. out_free:
  1892. vfree(buf);
  1893. return r;
  1894. }
  1895. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  1896. struct kvm_s390_irq *irq,
  1897. unsigned long irq_type)
  1898. {
  1899. switch (irq_type) {
  1900. case IRQ_PEND_MCHK_EX:
  1901. case IRQ_PEND_MCHK_REP:
  1902. irq->type = KVM_S390_MCHK;
  1903. irq->u.mchk = li->irq.mchk;
  1904. break;
  1905. case IRQ_PEND_PROG:
  1906. irq->type = KVM_S390_PROGRAM_INT;
  1907. irq->u.pgm = li->irq.pgm;
  1908. break;
  1909. case IRQ_PEND_PFAULT_INIT:
  1910. irq->type = KVM_S390_INT_PFAULT_INIT;
  1911. irq->u.ext = li->irq.ext;
  1912. break;
  1913. case IRQ_PEND_EXT_EXTERNAL:
  1914. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  1915. irq->u.extcall = li->irq.extcall;
  1916. break;
  1917. case IRQ_PEND_EXT_CLOCK_COMP:
  1918. irq->type = KVM_S390_INT_CLOCK_COMP;
  1919. break;
  1920. case IRQ_PEND_EXT_CPU_TIMER:
  1921. irq->type = KVM_S390_INT_CPU_TIMER;
  1922. break;
  1923. case IRQ_PEND_SIGP_STOP:
  1924. irq->type = KVM_S390_SIGP_STOP;
  1925. irq->u.stop = li->irq.stop;
  1926. break;
  1927. case IRQ_PEND_RESTART:
  1928. irq->type = KVM_S390_RESTART;
  1929. break;
  1930. case IRQ_PEND_SET_PREFIX:
  1931. irq->type = KVM_S390_SIGP_SET_PREFIX;
  1932. irq->u.prefix = li->irq.prefix;
  1933. break;
  1934. }
  1935. }
  1936. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  1937. {
  1938. uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  1939. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  1940. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1941. unsigned long pending_irqs;
  1942. struct kvm_s390_irq irq;
  1943. unsigned long irq_type;
  1944. int cpuaddr;
  1945. int n = 0;
  1946. spin_lock(&li->lock);
  1947. pending_irqs = li->pending_irqs;
  1948. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  1949. sizeof(sigp_emerg_pending));
  1950. spin_unlock(&li->lock);
  1951. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  1952. memset(&irq, 0, sizeof(irq));
  1953. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  1954. continue;
  1955. if (n + sizeof(irq) > len)
  1956. return -ENOBUFS;
  1957. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  1958. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1959. return -EFAULT;
  1960. n += sizeof(irq);
  1961. }
  1962. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  1963. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  1964. memset(&irq, 0, sizeof(irq));
  1965. if (n + sizeof(irq) > len)
  1966. return -ENOBUFS;
  1967. irq.type = KVM_S390_INT_EMERGENCY;
  1968. irq.u.emerg.code = cpuaddr;
  1969. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1970. return -EFAULT;
  1971. n += sizeof(irq);
  1972. }
  1973. }
  1974. if ((sigp_ctrl & SIGP_CTRL_C) &&
  1975. (atomic_read(&vcpu->arch.sie_block->cpuflags) &
  1976. CPUSTAT_ECALL_PEND)) {
  1977. if (n + sizeof(irq) > len)
  1978. return -ENOBUFS;
  1979. memset(&irq, 0, sizeof(irq));
  1980. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  1981. irq.u.extcall.code = sigp_ctrl & SIGP_CTRL_SCN_MASK;
  1982. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1983. return -EFAULT;
  1984. n += sizeof(irq);
  1985. }
  1986. return n;
  1987. }