mips.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/kdebug.h>
  14. #include <linux/module.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/fs.h>
  17. #include <linux/bootmem.h>
  18. #include <asm/fpu.h>
  19. #include <asm/page.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/mmu_context.h>
  22. #include <asm/pgtable.h>
  23. #include <linux/kvm_host.h>
  24. #include "interrupt.h"
  25. #include "commpage.h"
  26. #define CREATE_TRACE_POINTS
  27. #include "trace.h"
  28. #ifndef VECTORSPACING
  29. #define VECTORSPACING 0x100 /* for EI/VI mode */
  30. #endif
  31. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  32. struct kvm_stats_debugfs_item debugfs_entries[] = {
  33. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  34. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  35. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  36. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  37. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  38. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  39. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  40. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  41. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  42. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  43. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  44. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  45. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  46. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  47. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  48. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  49. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  50. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  51. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  52. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  53. {NULL}
  54. };
  55. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  56. {
  57. int i;
  58. for_each_possible_cpu(i) {
  59. vcpu->arch.guest_kernel_asid[i] = 0;
  60. vcpu->arch.guest_user_asid[i] = 0;
  61. }
  62. return 0;
  63. }
  64. /*
  65. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  66. * Config7, so we are "runnable" if interrupts are pending
  67. */
  68. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  69. {
  70. return !!(vcpu->arch.pending_exceptions);
  71. }
  72. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  73. {
  74. return 1;
  75. }
  76. int kvm_arch_hardware_enable(void)
  77. {
  78. return 0;
  79. }
  80. int kvm_arch_hardware_setup(void)
  81. {
  82. return 0;
  83. }
  84. void kvm_arch_check_processor_compat(void *rtn)
  85. {
  86. *(int *)rtn = 0;
  87. }
  88. static void kvm_mips_init_tlbs(struct kvm *kvm)
  89. {
  90. unsigned long wired;
  91. /*
  92. * Add a wired entry to the TLB, it is used to map the commpage to
  93. * the Guest kernel
  94. */
  95. wired = read_c0_wired();
  96. write_c0_wired(wired + 1);
  97. mtc0_tlbw_hazard();
  98. kvm->arch.commpage_tlb = wired;
  99. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  100. kvm->arch.commpage_tlb);
  101. }
  102. static void kvm_mips_init_vm_percpu(void *arg)
  103. {
  104. struct kvm *kvm = (struct kvm *)arg;
  105. kvm_mips_init_tlbs(kvm);
  106. kvm_mips_callbacks->vm_init(kvm);
  107. }
  108. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  109. {
  110. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  111. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  112. __func__);
  113. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  114. }
  115. return 0;
  116. }
  117. void kvm_mips_free_vcpus(struct kvm *kvm)
  118. {
  119. unsigned int i;
  120. struct kvm_vcpu *vcpu;
  121. /* Put the pages we reserved for the guest pmap */
  122. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  123. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  124. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  125. }
  126. kfree(kvm->arch.guest_pmap);
  127. kvm_for_each_vcpu(i, vcpu, kvm) {
  128. kvm_arch_vcpu_free(vcpu);
  129. }
  130. mutex_lock(&kvm->lock);
  131. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  132. kvm->vcpus[i] = NULL;
  133. atomic_set(&kvm->online_vcpus, 0);
  134. mutex_unlock(&kvm->lock);
  135. }
  136. static void kvm_mips_uninit_tlbs(void *arg)
  137. {
  138. /* Restore wired count */
  139. write_c0_wired(0);
  140. mtc0_tlbw_hazard();
  141. /* Clear out all the TLBs */
  142. kvm_local_flush_tlb_all();
  143. }
  144. void kvm_arch_destroy_vm(struct kvm *kvm)
  145. {
  146. kvm_mips_free_vcpus(kvm);
  147. /* If this is the last instance, restore wired count */
  148. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  149. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  150. __func__);
  151. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  152. }
  153. }
  154. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  155. unsigned long arg)
  156. {
  157. return -ENOIOCTLCMD;
  158. }
  159. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  160. unsigned long npages)
  161. {
  162. return 0;
  163. }
  164. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  165. struct kvm_memory_slot *memslot,
  166. struct kvm_userspace_memory_region *mem,
  167. enum kvm_mr_change change)
  168. {
  169. return 0;
  170. }
  171. void kvm_arch_commit_memory_region(struct kvm *kvm,
  172. struct kvm_userspace_memory_region *mem,
  173. const struct kvm_memory_slot *old,
  174. enum kvm_mr_change change)
  175. {
  176. unsigned long npages = 0;
  177. int i;
  178. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  179. __func__, kvm, mem->slot, mem->guest_phys_addr,
  180. mem->memory_size, mem->userspace_addr);
  181. /* Setup Guest PMAP table */
  182. if (!kvm->arch.guest_pmap) {
  183. if (mem->slot == 0)
  184. npages = mem->memory_size >> PAGE_SHIFT;
  185. if (npages) {
  186. kvm->arch.guest_pmap_npages = npages;
  187. kvm->arch.guest_pmap =
  188. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  189. if (!kvm->arch.guest_pmap) {
  190. kvm_err("Failed to allocate guest PMAP");
  191. return;
  192. }
  193. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  194. npages, kvm->arch.guest_pmap);
  195. /* Now setup the page table */
  196. for (i = 0; i < npages; i++)
  197. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  198. }
  199. }
  200. }
  201. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  202. {
  203. int err, size, offset;
  204. void *gebase;
  205. int i;
  206. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  207. if (!vcpu) {
  208. err = -ENOMEM;
  209. goto out;
  210. }
  211. err = kvm_vcpu_init(vcpu, kvm, id);
  212. if (err)
  213. goto out_free_cpu;
  214. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  215. /*
  216. * Allocate space for host mode exception handlers that handle
  217. * guest mode exits
  218. */
  219. if (cpu_has_veic || cpu_has_vint)
  220. size = 0x200 + VECTORSPACING * 64;
  221. else
  222. size = 0x4000;
  223. /* Save Linux EBASE */
  224. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  225. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  226. if (!gebase) {
  227. err = -ENOMEM;
  228. goto out_free_cpu;
  229. }
  230. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  231. ALIGN(size, PAGE_SIZE), gebase);
  232. /* Save new ebase */
  233. vcpu->arch.guest_ebase = gebase;
  234. /* Copy L1 Guest Exception handler to correct offset */
  235. /* TLB Refill, EXL = 0 */
  236. memcpy(gebase, mips32_exception,
  237. mips32_exceptionEnd - mips32_exception);
  238. /* General Exception Entry point */
  239. memcpy(gebase + 0x180, mips32_exception,
  240. mips32_exceptionEnd - mips32_exception);
  241. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  242. for (i = 0; i < 8; i++) {
  243. kvm_debug("L1 Vectored handler @ %p\n",
  244. gebase + 0x200 + (i * VECTORSPACING));
  245. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  246. mips32_exceptionEnd - mips32_exception);
  247. }
  248. /* General handler, relocate to unmapped space for sanity's sake */
  249. offset = 0x2000;
  250. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  251. gebase + offset,
  252. mips32_GuestExceptionEnd - mips32_GuestException);
  253. memcpy(gebase + offset, mips32_GuestException,
  254. mips32_GuestExceptionEnd - mips32_GuestException);
  255. /* Invalidate the icache for these ranges */
  256. local_flush_icache_range((unsigned long)gebase,
  257. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  258. /*
  259. * Allocate comm page for guest kernel, a TLB will be reserved for
  260. * mapping GVA @ 0xFFFF8000 to this page
  261. */
  262. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  263. if (!vcpu->arch.kseg0_commpage) {
  264. err = -ENOMEM;
  265. goto out_free_gebase;
  266. }
  267. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  268. kvm_mips_commpage_init(vcpu);
  269. /* Init */
  270. vcpu->arch.last_sched_cpu = -1;
  271. /* Start off the timer */
  272. kvm_mips_init_count(vcpu);
  273. return vcpu;
  274. out_free_gebase:
  275. kfree(gebase);
  276. out_free_cpu:
  277. kfree(vcpu);
  278. out:
  279. return ERR_PTR(err);
  280. }
  281. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  282. {
  283. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  284. kvm_vcpu_uninit(vcpu);
  285. kvm_mips_dump_stats(vcpu);
  286. kfree(vcpu->arch.guest_ebase);
  287. kfree(vcpu->arch.kseg0_commpage);
  288. kfree(vcpu);
  289. }
  290. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  291. {
  292. kvm_arch_vcpu_free(vcpu);
  293. }
  294. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  295. struct kvm_guest_debug *dbg)
  296. {
  297. return -ENOIOCTLCMD;
  298. }
  299. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  300. {
  301. int r = 0;
  302. sigset_t sigsaved;
  303. if (vcpu->sigset_active)
  304. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  305. if (vcpu->mmio_needed) {
  306. if (!vcpu->mmio_is_write)
  307. kvm_mips_complete_mmio_load(vcpu, run);
  308. vcpu->mmio_needed = 0;
  309. }
  310. lose_fpu(1);
  311. local_irq_disable();
  312. /* Check if we have any exceptions/interrupts pending */
  313. kvm_mips_deliver_interrupts(vcpu,
  314. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  315. kvm_guest_enter();
  316. /* Disable hardware page table walking while in guest */
  317. htw_stop();
  318. r = __kvm_mips_vcpu_run(run, vcpu);
  319. /* Re-enable HTW before enabling interrupts */
  320. htw_start();
  321. kvm_guest_exit();
  322. local_irq_enable();
  323. if (vcpu->sigset_active)
  324. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  325. return r;
  326. }
  327. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  328. struct kvm_mips_interrupt *irq)
  329. {
  330. int intr = (int)irq->irq;
  331. struct kvm_vcpu *dvcpu = NULL;
  332. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  333. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  334. (int)intr);
  335. if (irq->cpu == -1)
  336. dvcpu = vcpu;
  337. else
  338. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  339. if (intr == 2 || intr == 3 || intr == 4) {
  340. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  341. } else if (intr == -2 || intr == -3 || intr == -4) {
  342. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  343. } else {
  344. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  345. irq->cpu, irq->irq);
  346. return -EINVAL;
  347. }
  348. dvcpu->arch.wait = 0;
  349. if (waitqueue_active(&dvcpu->wq))
  350. wake_up_interruptible(&dvcpu->wq);
  351. return 0;
  352. }
  353. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  354. struct kvm_mp_state *mp_state)
  355. {
  356. return -ENOIOCTLCMD;
  357. }
  358. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  359. struct kvm_mp_state *mp_state)
  360. {
  361. return -ENOIOCTLCMD;
  362. }
  363. static u64 kvm_mips_get_one_regs[] = {
  364. KVM_REG_MIPS_R0,
  365. KVM_REG_MIPS_R1,
  366. KVM_REG_MIPS_R2,
  367. KVM_REG_MIPS_R3,
  368. KVM_REG_MIPS_R4,
  369. KVM_REG_MIPS_R5,
  370. KVM_REG_MIPS_R6,
  371. KVM_REG_MIPS_R7,
  372. KVM_REG_MIPS_R8,
  373. KVM_REG_MIPS_R9,
  374. KVM_REG_MIPS_R10,
  375. KVM_REG_MIPS_R11,
  376. KVM_REG_MIPS_R12,
  377. KVM_REG_MIPS_R13,
  378. KVM_REG_MIPS_R14,
  379. KVM_REG_MIPS_R15,
  380. KVM_REG_MIPS_R16,
  381. KVM_REG_MIPS_R17,
  382. KVM_REG_MIPS_R18,
  383. KVM_REG_MIPS_R19,
  384. KVM_REG_MIPS_R20,
  385. KVM_REG_MIPS_R21,
  386. KVM_REG_MIPS_R22,
  387. KVM_REG_MIPS_R23,
  388. KVM_REG_MIPS_R24,
  389. KVM_REG_MIPS_R25,
  390. KVM_REG_MIPS_R26,
  391. KVM_REG_MIPS_R27,
  392. KVM_REG_MIPS_R28,
  393. KVM_REG_MIPS_R29,
  394. KVM_REG_MIPS_R30,
  395. KVM_REG_MIPS_R31,
  396. KVM_REG_MIPS_HI,
  397. KVM_REG_MIPS_LO,
  398. KVM_REG_MIPS_PC,
  399. KVM_REG_MIPS_CP0_INDEX,
  400. KVM_REG_MIPS_CP0_CONTEXT,
  401. KVM_REG_MIPS_CP0_USERLOCAL,
  402. KVM_REG_MIPS_CP0_PAGEMASK,
  403. KVM_REG_MIPS_CP0_WIRED,
  404. KVM_REG_MIPS_CP0_HWRENA,
  405. KVM_REG_MIPS_CP0_BADVADDR,
  406. KVM_REG_MIPS_CP0_COUNT,
  407. KVM_REG_MIPS_CP0_ENTRYHI,
  408. KVM_REG_MIPS_CP0_COMPARE,
  409. KVM_REG_MIPS_CP0_STATUS,
  410. KVM_REG_MIPS_CP0_CAUSE,
  411. KVM_REG_MIPS_CP0_EPC,
  412. KVM_REG_MIPS_CP0_PRID,
  413. KVM_REG_MIPS_CP0_CONFIG,
  414. KVM_REG_MIPS_CP0_CONFIG1,
  415. KVM_REG_MIPS_CP0_CONFIG2,
  416. KVM_REG_MIPS_CP0_CONFIG3,
  417. KVM_REG_MIPS_CP0_CONFIG4,
  418. KVM_REG_MIPS_CP0_CONFIG5,
  419. KVM_REG_MIPS_CP0_CONFIG7,
  420. KVM_REG_MIPS_CP0_ERROREPC,
  421. KVM_REG_MIPS_COUNT_CTL,
  422. KVM_REG_MIPS_COUNT_RESUME,
  423. KVM_REG_MIPS_COUNT_HZ,
  424. };
  425. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  426. const struct kvm_one_reg *reg)
  427. {
  428. struct mips_coproc *cop0 = vcpu->arch.cop0;
  429. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  430. int ret;
  431. s64 v;
  432. s64 vs[2];
  433. unsigned int idx;
  434. switch (reg->id) {
  435. /* General purpose registers */
  436. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  437. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  438. break;
  439. case KVM_REG_MIPS_HI:
  440. v = (long)vcpu->arch.hi;
  441. break;
  442. case KVM_REG_MIPS_LO:
  443. v = (long)vcpu->arch.lo;
  444. break;
  445. case KVM_REG_MIPS_PC:
  446. v = (long)vcpu->arch.pc;
  447. break;
  448. /* Floating point registers */
  449. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  450. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  451. return -EINVAL;
  452. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  453. /* Odd singles in top of even double when FR=0 */
  454. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  455. v = get_fpr32(&fpu->fpr[idx], 0);
  456. else
  457. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  458. break;
  459. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  460. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  461. return -EINVAL;
  462. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  463. /* Can't access odd doubles in FR=0 mode */
  464. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  465. return -EINVAL;
  466. v = get_fpr64(&fpu->fpr[idx], 0);
  467. break;
  468. case KVM_REG_MIPS_FCR_IR:
  469. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  470. return -EINVAL;
  471. v = boot_cpu_data.fpu_id;
  472. break;
  473. case KVM_REG_MIPS_FCR_CSR:
  474. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  475. return -EINVAL;
  476. v = fpu->fcr31;
  477. break;
  478. /* MIPS SIMD Architecture (MSA) registers */
  479. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  480. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  481. return -EINVAL;
  482. /* Can't access MSA registers in FR=0 mode */
  483. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  484. return -EINVAL;
  485. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  486. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  487. /* least significant byte first */
  488. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  489. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  490. #else
  491. /* most significant byte first */
  492. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  493. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  494. #endif
  495. break;
  496. case KVM_REG_MIPS_MSA_IR:
  497. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  498. return -EINVAL;
  499. v = boot_cpu_data.msa_id;
  500. break;
  501. case KVM_REG_MIPS_MSA_CSR:
  502. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  503. return -EINVAL;
  504. v = fpu->msacsr;
  505. break;
  506. /* Co-processor 0 registers */
  507. case KVM_REG_MIPS_CP0_INDEX:
  508. v = (long)kvm_read_c0_guest_index(cop0);
  509. break;
  510. case KVM_REG_MIPS_CP0_CONTEXT:
  511. v = (long)kvm_read_c0_guest_context(cop0);
  512. break;
  513. case KVM_REG_MIPS_CP0_USERLOCAL:
  514. v = (long)kvm_read_c0_guest_userlocal(cop0);
  515. break;
  516. case KVM_REG_MIPS_CP0_PAGEMASK:
  517. v = (long)kvm_read_c0_guest_pagemask(cop0);
  518. break;
  519. case KVM_REG_MIPS_CP0_WIRED:
  520. v = (long)kvm_read_c0_guest_wired(cop0);
  521. break;
  522. case KVM_REG_MIPS_CP0_HWRENA:
  523. v = (long)kvm_read_c0_guest_hwrena(cop0);
  524. break;
  525. case KVM_REG_MIPS_CP0_BADVADDR:
  526. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  527. break;
  528. case KVM_REG_MIPS_CP0_ENTRYHI:
  529. v = (long)kvm_read_c0_guest_entryhi(cop0);
  530. break;
  531. case KVM_REG_MIPS_CP0_COMPARE:
  532. v = (long)kvm_read_c0_guest_compare(cop0);
  533. break;
  534. case KVM_REG_MIPS_CP0_STATUS:
  535. v = (long)kvm_read_c0_guest_status(cop0);
  536. break;
  537. case KVM_REG_MIPS_CP0_CAUSE:
  538. v = (long)kvm_read_c0_guest_cause(cop0);
  539. break;
  540. case KVM_REG_MIPS_CP0_EPC:
  541. v = (long)kvm_read_c0_guest_epc(cop0);
  542. break;
  543. case KVM_REG_MIPS_CP0_PRID:
  544. v = (long)kvm_read_c0_guest_prid(cop0);
  545. break;
  546. case KVM_REG_MIPS_CP0_CONFIG:
  547. v = (long)kvm_read_c0_guest_config(cop0);
  548. break;
  549. case KVM_REG_MIPS_CP0_CONFIG1:
  550. v = (long)kvm_read_c0_guest_config1(cop0);
  551. break;
  552. case KVM_REG_MIPS_CP0_CONFIG2:
  553. v = (long)kvm_read_c0_guest_config2(cop0);
  554. break;
  555. case KVM_REG_MIPS_CP0_CONFIG3:
  556. v = (long)kvm_read_c0_guest_config3(cop0);
  557. break;
  558. case KVM_REG_MIPS_CP0_CONFIG4:
  559. v = (long)kvm_read_c0_guest_config4(cop0);
  560. break;
  561. case KVM_REG_MIPS_CP0_CONFIG5:
  562. v = (long)kvm_read_c0_guest_config5(cop0);
  563. break;
  564. case KVM_REG_MIPS_CP0_CONFIG7:
  565. v = (long)kvm_read_c0_guest_config7(cop0);
  566. break;
  567. case KVM_REG_MIPS_CP0_ERROREPC:
  568. v = (long)kvm_read_c0_guest_errorepc(cop0);
  569. break;
  570. /* registers to be handled specially */
  571. case KVM_REG_MIPS_CP0_COUNT:
  572. case KVM_REG_MIPS_COUNT_CTL:
  573. case KVM_REG_MIPS_COUNT_RESUME:
  574. case KVM_REG_MIPS_COUNT_HZ:
  575. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  576. if (ret)
  577. return ret;
  578. break;
  579. default:
  580. return -EINVAL;
  581. }
  582. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  583. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  584. return put_user(v, uaddr64);
  585. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  586. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  587. u32 v32 = (u32)v;
  588. return put_user(v32, uaddr32);
  589. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  590. void __user *uaddr = (void __user *)(long)reg->addr;
  591. return copy_to_user(uaddr, vs, 16);
  592. } else {
  593. return -EINVAL;
  594. }
  595. }
  596. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  597. const struct kvm_one_reg *reg)
  598. {
  599. struct mips_coproc *cop0 = vcpu->arch.cop0;
  600. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  601. s64 v;
  602. s64 vs[2];
  603. unsigned int idx;
  604. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  605. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  606. if (get_user(v, uaddr64) != 0)
  607. return -EFAULT;
  608. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  609. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  610. s32 v32;
  611. if (get_user(v32, uaddr32) != 0)
  612. return -EFAULT;
  613. v = (s64)v32;
  614. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  615. void __user *uaddr = (void __user *)(long)reg->addr;
  616. return copy_from_user(vs, uaddr, 16);
  617. } else {
  618. return -EINVAL;
  619. }
  620. switch (reg->id) {
  621. /* General purpose registers */
  622. case KVM_REG_MIPS_R0:
  623. /* Silently ignore requests to set $0 */
  624. break;
  625. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  626. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  627. break;
  628. case KVM_REG_MIPS_HI:
  629. vcpu->arch.hi = v;
  630. break;
  631. case KVM_REG_MIPS_LO:
  632. vcpu->arch.lo = v;
  633. break;
  634. case KVM_REG_MIPS_PC:
  635. vcpu->arch.pc = v;
  636. break;
  637. /* Floating point registers */
  638. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  639. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  640. return -EINVAL;
  641. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  642. /* Odd singles in top of even double when FR=0 */
  643. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  644. set_fpr32(&fpu->fpr[idx], 0, v);
  645. else
  646. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  647. break;
  648. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  649. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  650. return -EINVAL;
  651. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  652. /* Can't access odd doubles in FR=0 mode */
  653. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  654. return -EINVAL;
  655. set_fpr64(&fpu->fpr[idx], 0, v);
  656. break;
  657. case KVM_REG_MIPS_FCR_IR:
  658. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  659. return -EINVAL;
  660. /* Read-only */
  661. break;
  662. case KVM_REG_MIPS_FCR_CSR:
  663. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  664. return -EINVAL;
  665. fpu->fcr31 = v;
  666. break;
  667. /* MIPS SIMD Architecture (MSA) registers */
  668. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  669. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  670. return -EINVAL;
  671. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  672. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  673. /* least significant byte first */
  674. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  675. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  676. #else
  677. /* most significant byte first */
  678. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  679. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  680. #endif
  681. break;
  682. case KVM_REG_MIPS_MSA_IR:
  683. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  684. return -EINVAL;
  685. /* Read-only */
  686. break;
  687. case KVM_REG_MIPS_MSA_CSR:
  688. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  689. return -EINVAL;
  690. fpu->msacsr = v;
  691. break;
  692. /* Co-processor 0 registers */
  693. case KVM_REG_MIPS_CP0_INDEX:
  694. kvm_write_c0_guest_index(cop0, v);
  695. break;
  696. case KVM_REG_MIPS_CP0_CONTEXT:
  697. kvm_write_c0_guest_context(cop0, v);
  698. break;
  699. case KVM_REG_MIPS_CP0_USERLOCAL:
  700. kvm_write_c0_guest_userlocal(cop0, v);
  701. break;
  702. case KVM_REG_MIPS_CP0_PAGEMASK:
  703. kvm_write_c0_guest_pagemask(cop0, v);
  704. break;
  705. case KVM_REG_MIPS_CP0_WIRED:
  706. kvm_write_c0_guest_wired(cop0, v);
  707. break;
  708. case KVM_REG_MIPS_CP0_HWRENA:
  709. kvm_write_c0_guest_hwrena(cop0, v);
  710. break;
  711. case KVM_REG_MIPS_CP0_BADVADDR:
  712. kvm_write_c0_guest_badvaddr(cop0, v);
  713. break;
  714. case KVM_REG_MIPS_CP0_ENTRYHI:
  715. kvm_write_c0_guest_entryhi(cop0, v);
  716. break;
  717. case KVM_REG_MIPS_CP0_STATUS:
  718. kvm_write_c0_guest_status(cop0, v);
  719. break;
  720. case KVM_REG_MIPS_CP0_EPC:
  721. kvm_write_c0_guest_epc(cop0, v);
  722. break;
  723. case KVM_REG_MIPS_CP0_PRID:
  724. kvm_write_c0_guest_prid(cop0, v);
  725. break;
  726. case KVM_REG_MIPS_CP0_ERROREPC:
  727. kvm_write_c0_guest_errorepc(cop0, v);
  728. break;
  729. /* registers to be handled specially */
  730. case KVM_REG_MIPS_CP0_COUNT:
  731. case KVM_REG_MIPS_CP0_COMPARE:
  732. case KVM_REG_MIPS_CP0_CAUSE:
  733. case KVM_REG_MIPS_CP0_CONFIG:
  734. case KVM_REG_MIPS_CP0_CONFIG1:
  735. case KVM_REG_MIPS_CP0_CONFIG2:
  736. case KVM_REG_MIPS_CP0_CONFIG3:
  737. case KVM_REG_MIPS_CP0_CONFIG4:
  738. case KVM_REG_MIPS_CP0_CONFIG5:
  739. case KVM_REG_MIPS_COUNT_CTL:
  740. case KVM_REG_MIPS_COUNT_RESUME:
  741. case KVM_REG_MIPS_COUNT_HZ:
  742. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  743. default:
  744. return -EINVAL;
  745. }
  746. return 0;
  747. }
  748. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  749. struct kvm_enable_cap *cap)
  750. {
  751. int r = 0;
  752. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  753. return -EINVAL;
  754. if (cap->flags)
  755. return -EINVAL;
  756. if (cap->args[0])
  757. return -EINVAL;
  758. switch (cap->cap) {
  759. case KVM_CAP_MIPS_FPU:
  760. vcpu->arch.fpu_enabled = true;
  761. break;
  762. case KVM_CAP_MIPS_MSA:
  763. vcpu->arch.msa_enabled = true;
  764. break;
  765. default:
  766. r = -EINVAL;
  767. break;
  768. }
  769. return r;
  770. }
  771. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  772. unsigned long arg)
  773. {
  774. struct kvm_vcpu *vcpu = filp->private_data;
  775. void __user *argp = (void __user *)arg;
  776. long r;
  777. switch (ioctl) {
  778. case KVM_SET_ONE_REG:
  779. case KVM_GET_ONE_REG: {
  780. struct kvm_one_reg reg;
  781. if (copy_from_user(&reg, argp, sizeof(reg)))
  782. return -EFAULT;
  783. if (ioctl == KVM_SET_ONE_REG)
  784. return kvm_mips_set_reg(vcpu, &reg);
  785. else
  786. return kvm_mips_get_reg(vcpu, &reg);
  787. }
  788. case KVM_GET_REG_LIST: {
  789. struct kvm_reg_list __user *user_list = argp;
  790. u64 __user *reg_dest;
  791. struct kvm_reg_list reg_list;
  792. unsigned n;
  793. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  794. return -EFAULT;
  795. n = reg_list.n;
  796. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  797. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  798. return -EFAULT;
  799. if (n < reg_list.n)
  800. return -E2BIG;
  801. reg_dest = user_list->reg;
  802. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  803. sizeof(kvm_mips_get_one_regs)))
  804. return -EFAULT;
  805. return 0;
  806. }
  807. case KVM_NMI:
  808. /* Treat the NMI as a CPU reset */
  809. r = kvm_mips_reset_vcpu(vcpu);
  810. break;
  811. case KVM_INTERRUPT:
  812. {
  813. struct kvm_mips_interrupt irq;
  814. r = -EFAULT;
  815. if (copy_from_user(&irq, argp, sizeof(irq)))
  816. goto out;
  817. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  818. irq.irq);
  819. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  820. break;
  821. }
  822. case KVM_ENABLE_CAP: {
  823. struct kvm_enable_cap cap;
  824. r = -EFAULT;
  825. if (copy_from_user(&cap, argp, sizeof(cap)))
  826. goto out;
  827. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  828. break;
  829. }
  830. default:
  831. r = -ENOIOCTLCMD;
  832. }
  833. out:
  834. return r;
  835. }
  836. /* Get (and clear) the dirty memory log for a memory slot. */
  837. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  838. {
  839. struct kvm_memory_slot *memslot;
  840. unsigned long ga, ga_end;
  841. int is_dirty = 0;
  842. int r;
  843. unsigned long n;
  844. mutex_lock(&kvm->slots_lock);
  845. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  846. if (r)
  847. goto out;
  848. /* If nothing is dirty, don't bother messing with page tables. */
  849. if (is_dirty) {
  850. memslot = &kvm->memslots->memslots[log->slot];
  851. ga = memslot->base_gfn << PAGE_SHIFT;
  852. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  853. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  854. ga_end);
  855. n = kvm_dirty_bitmap_bytes(memslot);
  856. memset(memslot->dirty_bitmap, 0, n);
  857. }
  858. r = 0;
  859. out:
  860. mutex_unlock(&kvm->slots_lock);
  861. return r;
  862. }
  863. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  864. {
  865. long r;
  866. switch (ioctl) {
  867. default:
  868. r = -ENOIOCTLCMD;
  869. }
  870. return r;
  871. }
  872. int kvm_arch_init(void *opaque)
  873. {
  874. if (kvm_mips_callbacks) {
  875. kvm_err("kvm: module already exists\n");
  876. return -EEXIST;
  877. }
  878. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  879. }
  880. void kvm_arch_exit(void)
  881. {
  882. kvm_mips_callbacks = NULL;
  883. }
  884. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  885. struct kvm_sregs *sregs)
  886. {
  887. return -ENOIOCTLCMD;
  888. }
  889. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  890. struct kvm_sregs *sregs)
  891. {
  892. return -ENOIOCTLCMD;
  893. }
  894. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  895. {
  896. }
  897. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  898. {
  899. return -ENOIOCTLCMD;
  900. }
  901. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  902. {
  903. return -ENOIOCTLCMD;
  904. }
  905. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  906. {
  907. return VM_FAULT_SIGBUS;
  908. }
  909. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  910. {
  911. int r;
  912. switch (ext) {
  913. case KVM_CAP_ONE_REG:
  914. case KVM_CAP_ENABLE_CAP:
  915. r = 1;
  916. break;
  917. case KVM_CAP_COALESCED_MMIO:
  918. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  919. break;
  920. case KVM_CAP_MIPS_FPU:
  921. r = !!cpu_has_fpu;
  922. break;
  923. case KVM_CAP_MIPS_MSA:
  924. /*
  925. * We don't support MSA vector partitioning yet:
  926. * 1) It would require explicit support which can't be tested
  927. * yet due to lack of support in current hardware.
  928. * 2) It extends the state that would need to be saved/restored
  929. * by e.g. QEMU for migration.
  930. *
  931. * When vector partitioning hardware becomes available, support
  932. * could be added by requiring a flag when enabling
  933. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  934. * to save/restore the appropriate extra state.
  935. */
  936. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  937. break;
  938. default:
  939. r = 0;
  940. break;
  941. }
  942. return r;
  943. }
  944. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  945. {
  946. return kvm_mips_pending_timer(vcpu);
  947. }
  948. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  949. {
  950. int i;
  951. struct mips_coproc *cop0;
  952. if (!vcpu)
  953. return -1;
  954. kvm_debug("VCPU Register Dump:\n");
  955. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  956. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  957. for (i = 0; i < 32; i += 4) {
  958. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  959. vcpu->arch.gprs[i],
  960. vcpu->arch.gprs[i + 1],
  961. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  962. }
  963. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  964. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  965. cop0 = vcpu->arch.cop0;
  966. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  967. kvm_read_c0_guest_status(cop0),
  968. kvm_read_c0_guest_cause(cop0));
  969. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  970. return 0;
  971. }
  972. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  973. {
  974. int i;
  975. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  976. vcpu->arch.gprs[i] = regs->gpr[i];
  977. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  978. vcpu->arch.hi = regs->hi;
  979. vcpu->arch.lo = regs->lo;
  980. vcpu->arch.pc = regs->pc;
  981. return 0;
  982. }
  983. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  984. {
  985. int i;
  986. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  987. regs->gpr[i] = vcpu->arch.gprs[i];
  988. regs->hi = vcpu->arch.hi;
  989. regs->lo = vcpu->arch.lo;
  990. regs->pc = vcpu->arch.pc;
  991. return 0;
  992. }
  993. static void kvm_mips_comparecount_func(unsigned long data)
  994. {
  995. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  996. kvm_mips_callbacks->queue_timer_int(vcpu);
  997. vcpu->arch.wait = 0;
  998. if (waitqueue_active(&vcpu->wq))
  999. wake_up_interruptible(&vcpu->wq);
  1000. }
  1001. /* low level hrtimer wake routine */
  1002. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1003. {
  1004. struct kvm_vcpu *vcpu;
  1005. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1006. kvm_mips_comparecount_func((unsigned long) vcpu);
  1007. return kvm_mips_count_timeout(vcpu);
  1008. }
  1009. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1010. {
  1011. kvm_mips_callbacks->vcpu_init(vcpu);
  1012. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1013. HRTIMER_MODE_REL);
  1014. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1015. return 0;
  1016. }
  1017. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1018. struct kvm_translation *tr)
  1019. {
  1020. return 0;
  1021. }
  1022. /* Initial guest state */
  1023. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1024. {
  1025. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1026. }
  1027. static void kvm_mips_set_c0_status(void)
  1028. {
  1029. uint32_t status = read_c0_status();
  1030. if (cpu_has_dsp)
  1031. status |= (ST0_MX);
  1032. write_c0_status(status);
  1033. ehb();
  1034. }
  1035. /*
  1036. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1037. */
  1038. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1039. {
  1040. uint32_t cause = vcpu->arch.host_cp0_cause;
  1041. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1042. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  1043. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1044. enum emulation_result er = EMULATE_DONE;
  1045. int ret = RESUME_GUEST;
  1046. /* re-enable HTW before enabling interrupts */
  1047. htw_start();
  1048. /* Set a default exit reason */
  1049. run->exit_reason = KVM_EXIT_UNKNOWN;
  1050. run->ready_for_interrupt_injection = 1;
  1051. /*
  1052. * Set the appropriate status bits based on host CPU features,
  1053. * before we hit the scheduler
  1054. */
  1055. kvm_mips_set_c0_status();
  1056. local_irq_enable();
  1057. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1058. cause, opc, run, vcpu);
  1059. /*
  1060. * Do a privilege check, if in UM most of these exit conditions end up
  1061. * causing an exception to be delivered to the Guest Kernel
  1062. */
  1063. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1064. if (er == EMULATE_PRIV_FAIL) {
  1065. goto skip_emul;
  1066. } else if (er == EMULATE_FAIL) {
  1067. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1068. ret = RESUME_HOST;
  1069. goto skip_emul;
  1070. }
  1071. switch (exccode) {
  1072. case T_INT:
  1073. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  1074. ++vcpu->stat.int_exits;
  1075. trace_kvm_exit(vcpu, INT_EXITS);
  1076. if (need_resched())
  1077. cond_resched();
  1078. ret = RESUME_GUEST;
  1079. break;
  1080. case T_COP_UNUSABLE:
  1081. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  1082. ++vcpu->stat.cop_unusable_exits;
  1083. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  1084. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1085. /* XXXKYMA: Might need to return to user space */
  1086. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1087. ret = RESUME_HOST;
  1088. break;
  1089. case T_TLB_MOD:
  1090. ++vcpu->stat.tlbmod_exits;
  1091. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  1092. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1093. break;
  1094. case T_TLB_ST_MISS:
  1095. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1096. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1097. badvaddr);
  1098. ++vcpu->stat.tlbmiss_st_exits;
  1099. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  1100. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1101. break;
  1102. case T_TLB_LD_MISS:
  1103. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1104. cause, opc, badvaddr);
  1105. ++vcpu->stat.tlbmiss_ld_exits;
  1106. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  1107. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1108. break;
  1109. case T_ADDR_ERR_ST:
  1110. ++vcpu->stat.addrerr_st_exits;
  1111. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  1112. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1113. break;
  1114. case T_ADDR_ERR_LD:
  1115. ++vcpu->stat.addrerr_ld_exits;
  1116. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  1117. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1118. break;
  1119. case T_SYSCALL:
  1120. ++vcpu->stat.syscall_exits;
  1121. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  1122. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1123. break;
  1124. case T_RES_INST:
  1125. ++vcpu->stat.resvd_inst_exits;
  1126. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  1127. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1128. break;
  1129. case T_BREAK:
  1130. ++vcpu->stat.break_inst_exits;
  1131. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  1132. ret = kvm_mips_callbacks->handle_break(vcpu);
  1133. break;
  1134. case T_TRAP:
  1135. ++vcpu->stat.trap_inst_exits;
  1136. trace_kvm_exit(vcpu, TRAP_INST_EXITS);
  1137. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1138. break;
  1139. case T_MSAFPE:
  1140. ++vcpu->stat.msa_fpe_exits;
  1141. trace_kvm_exit(vcpu, MSA_FPE_EXITS);
  1142. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1143. break;
  1144. case T_FPE:
  1145. ++vcpu->stat.fpe_exits;
  1146. trace_kvm_exit(vcpu, FPE_EXITS);
  1147. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1148. break;
  1149. case T_MSADIS:
  1150. ++vcpu->stat.msa_disabled_exits;
  1151. trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
  1152. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1153. break;
  1154. default:
  1155. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1156. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1157. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1158. kvm_arch_vcpu_dump_regs(vcpu);
  1159. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1160. ret = RESUME_HOST;
  1161. break;
  1162. }
  1163. skip_emul:
  1164. local_irq_disable();
  1165. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1166. kvm_mips_deliver_interrupts(vcpu, cause);
  1167. if (!(ret & RESUME_HOST)) {
  1168. /* Only check for signals if not already exiting to userspace */
  1169. if (signal_pending(current)) {
  1170. run->exit_reason = KVM_EXIT_INTR;
  1171. ret = (-EINTR << 2) | RESUME_HOST;
  1172. ++vcpu->stat.signal_exits;
  1173. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  1174. }
  1175. }
  1176. if (ret == RESUME_GUEST) {
  1177. /*
  1178. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1179. * is live), restore FCR31 / MSACSR.
  1180. *
  1181. * This should be before returning to the guest exception
  1182. * vector, as it may well cause an [MSA] FP exception if there
  1183. * are pending exception bits unmasked. (see
  1184. * kvm_mips_csr_die_notifier() for how that is handled).
  1185. */
  1186. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1187. read_c0_status() & ST0_CU1)
  1188. __kvm_restore_fcsr(&vcpu->arch);
  1189. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1190. read_c0_config5() & MIPS_CONF5_MSAEN)
  1191. __kvm_restore_msacsr(&vcpu->arch);
  1192. }
  1193. /* Disable HTW before returning to guest or host */
  1194. htw_stop();
  1195. return ret;
  1196. }
  1197. /* Enable FPU for guest and restore context */
  1198. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1199. {
  1200. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1201. unsigned int sr, cfg5;
  1202. preempt_disable();
  1203. sr = kvm_read_c0_guest_status(cop0);
  1204. /*
  1205. * If MSA state is already live, it is undefined how it interacts with
  1206. * FR=0 FPU state, and we don't want to hit reserved instruction
  1207. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1208. * play it safe and save it first.
  1209. *
  1210. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1211. * get called when guest CU1 is set, however we can't trust the guest
  1212. * not to clobber the status register directly via the commpage.
  1213. */
  1214. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1215. vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
  1216. kvm_lose_fpu(vcpu);
  1217. /*
  1218. * Enable FPU for guest
  1219. * We set FR and FRE according to guest context
  1220. */
  1221. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1222. if (cpu_has_fre) {
  1223. cfg5 = kvm_read_c0_guest_config5(cop0);
  1224. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1225. }
  1226. enable_fpu_hazard();
  1227. /* If guest FPU state not active, restore it now */
  1228. if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
  1229. __kvm_restore_fpu(&vcpu->arch);
  1230. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1231. }
  1232. preempt_enable();
  1233. }
  1234. #ifdef CONFIG_CPU_HAS_MSA
  1235. /* Enable MSA for guest and restore context */
  1236. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1237. {
  1238. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1239. unsigned int sr, cfg5;
  1240. preempt_disable();
  1241. /*
  1242. * Enable FPU if enabled in guest, since we're restoring FPU context
  1243. * anyway. We set FR and FRE according to guest context.
  1244. */
  1245. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1246. sr = kvm_read_c0_guest_status(cop0);
  1247. /*
  1248. * If FR=0 FPU state is already live, it is undefined how it
  1249. * interacts with MSA state, so play it safe and save it first.
  1250. */
  1251. if (!(sr & ST0_FR) &&
  1252. (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
  1253. KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
  1254. kvm_lose_fpu(vcpu);
  1255. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1256. if (sr & ST0_CU1 && cpu_has_fre) {
  1257. cfg5 = kvm_read_c0_guest_config5(cop0);
  1258. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1259. }
  1260. }
  1261. /* Enable MSA for guest */
  1262. set_c0_config5(MIPS_CONF5_MSAEN);
  1263. enable_fpu_hazard();
  1264. switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
  1265. case KVM_MIPS_FPU_FPU:
  1266. /*
  1267. * Guest FPU state already loaded, only restore upper MSA state
  1268. */
  1269. __kvm_restore_msa_upper(&vcpu->arch);
  1270. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
  1271. break;
  1272. case 0:
  1273. /* Neither FPU or MSA already active, restore full MSA state */
  1274. __kvm_restore_msa(&vcpu->arch);
  1275. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
  1276. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1277. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1278. break;
  1279. default:
  1280. break;
  1281. }
  1282. preempt_enable();
  1283. }
  1284. #endif
  1285. /* Drop FPU & MSA without saving it */
  1286. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1287. {
  1288. preempt_disable();
  1289. if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
  1290. disable_msa();
  1291. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
  1292. }
  1293. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1294. clear_c0_status(ST0_CU1 | ST0_FR);
  1295. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1296. }
  1297. preempt_enable();
  1298. }
  1299. /* Save and disable FPU & MSA */
  1300. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1301. {
  1302. /*
  1303. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1304. * in guest context (software), but the register state in the hardware
  1305. * may still be in use. This is why we explicitly re-enable the hardware
  1306. * before saving.
  1307. */
  1308. preempt_disable();
  1309. if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
  1310. set_c0_config5(MIPS_CONF5_MSAEN);
  1311. enable_fpu_hazard();
  1312. __kvm_save_msa(&vcpu->arch);
  1313. /* Disable MSA & FPU */
  1314. disable_msa();
  1315. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
  1316. clear_c0_status(ST0_CU1 | ST0_FR);
  1317. vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
  1318. } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1319. set_c0_status(ST0_CU1);
  1320. enable_fpu_hazard();
  1321. __kvm_save_fpu(&vcpu->arch);
  1322. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1323. /* Disable FPU */
  1324. clear_c0_status(ST0_CU1 | ST0_FR);
  1325. }
  1326. preempt_enable();
  1327. }
  1328. /*
  1329. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1330. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1331. * exception if cause bits are set in the value being written.
  1332. */
  1333. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1334. unsigned long cmd, void *ptr)
  1335. {
  1336. struct die_args *args = (struct die_args *)ptr;
  1337. struct pt_regs *regs = args->regs;
  1338. unsigned long pc;
  1339. /* Only interested in FPE and MSAFPE */
  1340. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1341. return NOTIFY_DONE;
  1342. /* Return immediately if guest context isn't active */
  1343. if (!(current->flags & PF_VCPU))
  1344. return NOTIFY_DONE;
  1345. /* Should never get here from user mode */
  1346. BUG_ON(user_mode(regs));
  1347. pc = instruction_pointer(regs);
  1348. switch (cmd) {
  1349. case DIE_FP:
  1350. /* match 2nd instruction in __kvm_restore_fcsr */
  1351. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1352. return NOTIFY_DONE;
  1353. break;
  1354. case DIE_MSAFP:
  1355. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1356. if (!cpu_has_msa ||
  1357. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1358. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1359. return NOTIFY_DONE;
  1360. break;
  1361. }
  1362. /* Move PC forward a little and continue executing */
  1363. instruction_pointer(regs) += 4;
  1364. return NOTIFY_STOP;
  1365. }
  1366. static struct notifier_block kvm_mips_csr_die_notifier = {
  1367. .notifier_call = kvm_mips_csr_die_notify,
  1368. };
  1369. int __init kvm_mips_init(void)
  1370. {
  1371. int ret;
  1372. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1373. if (ret)
  1374. return ret;
  1375. register_die_notifier(&kvm_mips_csr_die_notifier);
  1376. /*
  1377. * On MIPS, kernel modules are executed from "mapped space", which
  1378. * requires TLBs. The TLB handling code is statically linked with
  1379. * the rest of the kernel (tlb.c) to avoid the possibility of
  1380. * double faulting. The issue is that the TLB code references
  1381. * routines that are part of the the KVM module, which are only
  1382. * available once the module is loaded.
  1383. */
  1384. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  1385. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  1386. kvm_mips_is_error_pfn = is_error_pfn;
  1387. return 0;
  1388. }
  1389. void __exit kvm_mips_exit(void)
  1390. {
  1391. kvm_exit();
  1392. kvm_mips_gfn_to_pfn = NULL;
  1393. kvm_mips_release_pfn_clean = NULL;
  1394. kvm_mips_is_error_pfn = NULL;
  1395. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1396. }
  1397. module_init(kvm_mips_init);
  1398. module_exit(kvm_mips_exit);
  1399. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);