traps.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/sched.h>
  26. #include <linux/smp.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/bootmem.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/kgdb.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/kprobes.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kdb.h>
  37. #include <linux/irq.h>
  38. #include <linux/perf_event.h>
  39. #include <asm/bootinfo.h>
  40. #include <asm/branch.h>
  41. #include <asm/break.h>
  42. #include <asm/cop2.h>
  43. #include <asm/cpu.h>
  44. #include <asm/cpu-type.h>
  45. #include <asm/dsp.h>
  46. #include <asm/fpu.h>
  47. #include <asm/fpu_emulator.h>
  48. #include <asm/idle.h>
  49. #include <asm/mips-r2-to-r6-emul.h>
  50. #include <asm/mipsregs.h>
  51. #include <asm/mipsmtregs.h>
  52. #include <asm/module.h>
  53. #include <asm/msa.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/ptrace.h>
  56. #include <asm/sections.h>
  57. #include <asm/tlbdebug.h>
  58. #include <asm/traps.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/watch.h>
  61. #include <asm/mmu_context.h>
  62. #include <asm/types.h>
  63. #include <asm/stacktrace.h>
  64. #include <asm/uasm.h>
  65. extern void check_wait(void);
  66. extern asmlinkage void rollback_handle_int(void);
  67. extern asmlinkage void handle_int(void);
  68. extern u32 handle_tlbl[];
  69. extern u32 handle_tlbs[];
  70. extern u32 handle_tlbm[];
  71. extern asmlinkage void handle_adel(void);
  72. extern asmlinkage void handle_ades(void);
  73. extern asmlinkage void handle_ibe(void);
  74. extern asmlinkage void handle_dbe(void);
  75. extern asmlinkage void handle_sys(void);
  76. extern asmlinkage void handle_bp(void);
  77. extern asmlinkage void handle_ri(void);
  78. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  79. extern asmlinkage void handle_ri_rdhwr(void);
  80. extern asmlinkage void handle_cpu(void);
  81. extern asmlinkage void handle_ov(void);
  82. extern asmlinkage void handle_tr(void);
  83. extern asmlinkage void handle_msa_fpe(void);
  84. extern asmlinkage void handle_fpe(void);
  85. extern asmlinkage void handle_ftlb(void);
  86. extern asmlinkage void handle_msa(void);
  87. extern asmlinkage void handle_mdmx(void);
  88. extern asmlinkage void handle_watch(void);
  89. extern asmlinkage void handle_mt(void);
  90. extern asmlinkage void handle_dsp(void);
  91. extern asmlinkage void handle_mcheck(void);
  92. extern asmlinkage void handle_reserved(void);
  93. extern void tlb_do_page_fault_0(void);
  94. void (*board_be_init)(void);
  95. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  96. void (*board_nmi_handler_setup)(void);
  97. void (*board_ejtag_handler_setup)(void);
  98. void (*board_bind_eic_interrupt)(int irq, int regset);
  99. void (*board_ebase_setup)(void);
  100. void(*board_cache_error_setup)(void);
  101. static void show_raw_backtrace(unsigned long reg29)
  102. {
  103. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  104. unsigned long addr;
  105. printk("Call Trace:");
  106. #ifdef CONFIG_KALLSYMS
  107. printk("\n");
  108. #endif
  109. while (!kstack_end(sp)) {
  110. unsigned long __user *p =
  111. (unsigned long __user *)(unsigned long)sp++;
  112. if (__get_user(addr, p)) {
  113. printk(" (Bad stack address)");
  114. break;
  115. }
  116. if (__kernel_text_address(addr))
  117. print_ip_sym(addr);
  118. }
  119. printk("\n");
  120. }
  121. #ifdef CONFIG_KALLSYMS
  122. int raw_show_trace;
  123. static int __init set_raw_show_trace(char *str)
  124. {
  125. raw_show_trace = 1;
  126. return 1;
  127. }
  128. __setup("raw_show_trace", set_raw_show_trace);
  129. #endif
  130. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  131. {
  132. unsigned long sp = regs->regs[29];
  133. unsigned long ra = regs->regs[31];
  134. unsigned long pc = regs->cp0_epc;
  135. if (!task)
  136. task = current;
  137. if (raw_show_trace || !__kernel_text_address(pc)) {
  138. show_raw_backtrace(sp);
  139. return;
  140. }
  141. printk("Call Trace:\n");
  142. do {
  143. print_ip_sym(pc);
  144. pc = unwind_stack(task, &sp, pc, &ra);
  145. } while (pc);
  146. printk("\n");
  147. }
  148. /*
  149. * This routine abuses get_user()/put_user() to reference pointers
  150. * with at least a bit of error checking ...
  151. */
  152. static void show_stacktrace(struct task_struct *task,
  153. const struct pt_regs *regs)
  154. {
  155. const int field = 2 * sizeof(unsigned long);
  156. long stackdata;
  157. int i;
  158. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  159. printk("Stack :");
  160. i = 0;
  161. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  162. if (i && ((i % (64 / field)) == 0))
  163. printk("\n ");
  164. if (i > 39) {
  165. printk(" ...");
  166. break;
  167. }
  168. if (__get_user(stackdata, sp++)) {
  169. printk(" (Bad stack address)");
  170. break;
  171. }
  172. printk(" %0*lx", field, stackdata);
  173. i++;
  174. }
  175. printk("\n");
  176. show_backtrace(task, regs);
  177. }
  178. void show_stack(struct task_struct *task, unsigned long *sp)
  179. {
  180. struct pt_regs regs;
  181. if (sp) {
  182. regs.regs[29] = (unsigned long)sp;
  183. regs.regs[31] = 0;
  184. regs.cp0_epc = 0;
  185. } else {
  186. if (task && task != current) {
  187. regs.regs[29] = task->thread.reg29;
  188. regs.regs[31] = 0;
  189. regs.cp0_epc = task->thread.reg31;
  190. #ifdef CONFIG_KGDB_KDB
  191. } else if (atomic_read(&kgdb_active) != -1 &&
  192. kdb_current_regs) {
  193. memcpy(&regs, kdb_current_regs, sizeof(regs));
  194. #endif /* CONFIG_KGDB_KDB */
  195. } else {
  196. prepare_frametrace(&regs);
  197. }
  198. }
  199. show_stacktrace(task, &regs);
  200. }
  201. static void show_code(unsigned int __user *pc)
  202. {
  203. long i;
  204. unsigned short __user *pc16 = NULL;
  205. printk("\nCode:");
  206. if ((unsigned long)pc & 1)
  207. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  208. for(i = -3 ; i < 6 ; i++) {
  209. unsigned int insn;
  210. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  211. printk(" (Bad address in epc)\n");
  212. break;
  213. }
  214. printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  215. }
  216. }
  217. static void __show_regs(const struct pt_regs *regs)
  218. {
  219. const int field = 2 * sizeof(unsigned long);
  220. unsigned int cause = regs->cp0_cause;
  221. int i;
  222. show_regs_print_info(KERN_DEFAULT);
  223. /*
  224. * Saved main processor registers
  225. */
  226. for (i = 0; i < 32; ) {
  227. if ((i % 4) == 0)
  228. printk("$%2d :", i);
  229. if (i == 0)
  230. printk(" %0*lx", field, 0UL);
  231. else if (i == 26 || i == 27)
  232. printk(" %*s", field, "");
  233. else
  234. printk(" %0*lx", field, regs->regs[i]);
  235. i++;
  236. if ((i % 4) == 0)
  237. printk("\n");
  238. }
  239. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  240. printk("Acx : %0*lx\n", field, regs->acx);
  241. #endif
  242. printk("Hi : %0*lx\n", field, regs->hi);
  243. printk("Lo : %0*lx\n", field, regs->lo);
  244. /*
  245. * Saved cp0 registers
  246. */
  247. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  248. (void *) regs->cp0_epc);
  249. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  250. (void *) regs->regs[31]);
  251. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  252. if (cpu_has_3kex) {
  253. if (regs->cp0_status & ST0_KUO)
  254. printk("KUo ");
  255. if (regs->cp0_status & ST0_IEO)
  256. printk("IEo ");
  257. if (regs->cp0_status & ST0_KUP)
  258. printk("KUp ");
  259. if (regs->cp0_status & ST0_IEP)
  260. printk("IEp ");
  261. if (regs->cp0_status & ST0_KUC)
  262. printk("KUc ");
  263. if (regs->cp0_status & ST0_IEC)
  264. printk("IEc ");
  265. } else if (cpu_has_4kex) {
  266. if (regs->cp0_status & ST0_KX)
  267. printk("KX ");
  268. if (regs->cp0_status & ST0_SX)
  269. printk("SX ");
  270. if (regs->cp0_status & ST0_UX)
  271. printk("UX ");
  272. switch (regs->cp0_status & ST0_KSU) {
  273. case KSU_USER:
  274. printk("USER ");
  275. break;
  276. case KSU_SUPERVISOR:
  277. printk("SUPERVISOR ");
  278. break;
  279. case KSU_KERNEL:
  280. printk("KERNEL ");
  281. break;
  282. default:
  283. printk("BAD_MODE ");
  284. break;
  285. }
  286. if (regs->cp0_status & ST0_ERL)
  287. printk("ERL ");
  288. if (regs->cp0_status & ST0_EXL)
  289. printk("EXL ");
  290. if (regs->cp0_status & ST0_IE)
  291. printk("IE ");
  292. }
  293. printk("\n");
  294. printk("Cause : %08x\n", cause);
  295. cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  296. if (1 <= cause && cause <= 5)
  297. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  298. printk("PrId : %08x (%s)\n", read_c0_prid(),
  299. cpu_name_string());
  300. }
  301. /*
  302. * FIXME: really the generic show_regs should take a const pointer argument.
  303. */
  304. void show_regs(struct pt_regs *regs)
  305. {
  306. __show_regs((struct pt_regs *)regs);
  307. }
  308. void show_registers(struct pt_regs *regs)
  309. {
  310. const int field = 2 * sizeof(unsigned long);
  311. mm_segment_t old_fs = get_fs();
  312. __show_regs(regs);
  313. print_modules();
  314. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  315. current->comm, current->pid, current_thread_info(), current,
  316. field, current_thread_info()->tp_value);
  317. if (cpu_has_userlocal) {
  318. unsigned long tls;
  319. tls = read_c0_userlocal();
  320. if (tls != current_thread_info()->tp_value)
  321. printk("*HwTLS: %0*lx\n", field, tls);
  322. }
  323. if (!user_mode(regs))
  324. /* Necessary for getting the correct stack content */
  325. set_fs(KERNEL_DS);
  326. show_stacktrace(current, regs);
  327. show_code((unsigned int __user *) regs->cp0_epc);
  328. printk("\n");
  329. set_fs(old_fs);
  330. }
  331. static int regs_to_trapnr(struct pt_regs *regs)
  332. {
  333. return (regs->cp0_cause >> 2) & 0x1f;
  334. }
  335. static DEFINE_RAW_SPINLOCK(die_lock);
  336. void __noreturn die(const char *str, struct pt_regs *regs)
  337. {
  338. static int die_counter;
  339. int sig = SIGSEGV;
  340. oops_enter();
  341. if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
  342. SIGSEGV) == NOTIFY_STOP)
  343. sig = 0;
  344. console_verbose();
  345. raw_spin_lock_irq(&die_lock);
  346. bust_spinlocks(1);
  347. printk("%s[#%d]:\n", str, ++die_counter);
  348. show_registers(regs);
  349. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  350. raw_spin_unlock_irq(&die_lock);
  351. oops_exit();
  352. if (in_interrupt())
  353. panic("Fatal exception in interrupt");
  354. if (panic_on_oops) {
  355. printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
  356. ssleep(5);
  357. panic("Fatal exception");
  358. }
  359. if (regs && kexec_should_crash(current))
  360. crash_kexec(regs);
  361. do_exit(sig);
  362. }
  363. extern struct exception_table_entry __start___dbe_table[];
  364. extern struct exception_table_entry __stop___dbe_table[];
  365. __asm__(
  366. " .section __dbe_table, \"a\"\n"
  367. " .previous \n");
  368. /* Given an address, look for it in the exception tables. */
  369. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  370. {
  371. const struct exception_table_entry *e;
  372. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  373. if (!e)
  374. e = search_module_dbetables(addr);
  375. return e;
  376. }
  377. asmlinkage void do_be(struct pt_regs *regs)
  378. {
  379. const int field = 2 * sizeof(unsigned long);
  380. const struct exception_table_entry *fixup = NULL;
  381. int data = regs->cp0_cause & 4;
  382. int action = MIPS_BE_FATAL;
  383. enum ctx_state prev_state;
  384. prev_state = exception_enter();
  385. /* XXX For now. Fixme, this searches the wrong table ... */
  386. if (data && !user_mode(regs))
  387. fixup = search_dbe_tables(exception_epc(regs));
  388. if (fixup)
  389. action = MIPS_BE_FIXUP;
  390. if (board_be_handler)
  391. action = board_be_handler(regs, fixup != NULL);
  392. switch (action) {
  393. case MIPS_BE_DISCARD:
  394. goto out;
  395. case MIPS_BE_FIXUP:
  396. if (fixup) {
  397. regs->cp0_epc = fixup->nextinsn;
  398. goto out;
  399. }
  400. break;
  401. default:
  402. break;
  403. }
  404. /*
  405. * Assume it would be too dangerous to continue ...
  406. */
  407. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  408. data ? "Data" : "Instruction",
  409. field, regs->cp0_epc, field, regs->regs[31]);
  410. if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
  411. SIGBUS) == NOTIFY_STOP)
  412. goto out;
  413. die_if_kernel("Oops", regs);
  414. force_sig(SIGBUS, current);
  415. out:
  416. exception_exit(prev_state);
  417. }
  418. /*
  419. * ll/sc, rdhwr, sync emulation
  420. */
  421. #define OPCODE 0xfc000000
  422. #define BASE 0x03e00000
  423. #define RT 0x001f0000
  424. #define OFFSET 0x0000ffff
  425. #define LL 0xc0000000
  426. #define SC 0xe0000000
  427. #define SPEC0 0x00000000
  428. #define SPEC3 0x7c000000
  429. #define RD 0x0000f800
  430. #define FUNC 0x0000003f
  431. #define SYNC 0x0000000f
  432. #define RDHWR 0x0000003b
  433. /* microMIPS definitions */
  434. #define MM_POOL32A_FUNC 0xfc00ffff
  435. #define MM_RDHWR 0x00006b3c
  436. #define MM_RS 0x001f0000
  437. #define MM_RT 0x03e00000
  438. /*
  439. * The ll_bit is cleared by r*_switch.S
  440. */
  441. unsigned int ll_bit;
  442. struct task_struct *ll_task;
  443. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  444. {
  445. unsigned long value, __user *vaddr;
  446. long offset;
  447. /*
  448. * analyse the ll instruction that just caused a ri exception
  449. * and put the referenced address to addr.
  450. */
  451. /* sign extend offset */
  452. offset = opcode & OFFSET;
  453. offset <<= 16;
  454. offset >>= 16;
  455. vaddr = (unsigned long __user *)
  456. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  457. if ((unsigned long)vaddr & 3)
  458. return SIGBUS;
  459. if (get_user(value, vaddr))
  460. return SIGSEGV;
  461. preempt_disable();
  462. if (ll_task == NULL || ll_task == current) {
  463. ll_bit = 1;
  464. } else {
  465. ll_bit = 0;
  466. }
  467. ll_task = current;
  468. preempt_enable();
  469. regs->regs[(opcode & RT) >> 16] = value;
  470. return 0;
  471. }
  472. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  473. {
  474. unsigned long __user *vaddr;
  475. unsigned long reg;
  476. long offset;
  477. /*
  478. * analyse the sc instruction that just caused a ri exception
  479. * and put the referenced address to addr.
  480. */
  481. /* sign extend offset */
  482. offset = opcode & OFFSET;
  483. offset <<= 16;
  484. offset >>= 16;
  485. vaddr = (unsigned long __user *)
  486. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  487. reg = (opcode & RT) >> 16;
  488. if ((unsigned long)vaddr & 3)
  489. return SIGBUS;
  490. preempt_disable();
  491. if (ll_bit == 0 || ll_task != current) {
  492. regs->regs[reg] = 0;
  493. preempt_enable();
  494. return 0;
  495. }
  496. preempt_enable();
  497. if (put_user(regs->regs[reg], vaddr))
  498. return SIGSEGV;
  499. regs->regs[reg] = 1;
  500. return 0;
  501. }
  502. /*
  503. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  504. * opcodes are supposed to result in coprocessor unusable exceptions if
  505. * executed on ll/sc-less processors. That's the theory. In practice a
  506. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  507. * instead, so we're doing the emulation thing in both exception handlers.
  508. */
  509. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  510. {
  511. if ((opcode & OPCODE) == LL) {
  512. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  513. 1, regs, 0);
  514. return simulate_ll(regs, opcode);
  515. }
  516. if ((opcode & OPCODE) == SC) {
  517. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  518. 1, regs, 0);
  519. return simulate_sc(regs, opcode);
  520. }
  521. return -1; /* Must be something else ... */
  522. }
  523. /*
  524. * Simulate trapping 'rdhwr' instructions to provide user accessible
  525. * registers not implemented in hardware.
  526. */
  527. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  528. {
  529. struct thread_info *ti = task_thread_info(current);
  530. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  531. 1, regs, 0);
  532. switch (rd) {
  533. case 0: /* CPU number */
  534. regs->regs[rt] = smp_processor_id();
  535. return 0;
  536. case 1: /* SYNCI length */
  537. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  538. current_cpu_data.icache.linesz);
  539. return 0;
  540. case 2: /* Read count register */
  541. regs->regs[rt] = read_c0_count();
  542. return 0;
  543. case 3: /* Count register resolution */
  544. switch (current_cpu_type()) {
  545. case CPU_20KC:
  546. case CPU_25KF:
  547. regs->regs[rt] = 1;
  548. break;
  549. default:
  550. regs->regs[rt] = 2;
  551. }
  552. return 0;
  553. case 29:
  554. regs->regs[rt] = ti->tp_value;
  555. return 0;
  556. default:
  557. return -1;
  558. }
  559. }
  560. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  561. {
  562. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  563. int rd = (opcode & RD) >> 11;
  564. int rt = (opcode & RT) >> 16;
  565. simulate_rdhwr(regs, rd, rt);
  566. return 0;
  567. }
  568. /* Not ours. */
  569. return -1;
  570. }
  571. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
  572. {
  573. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  574. int rd = (opcode & MM_RS) >> 16;
  575. int rt = (opcode & MM_RT) >> 21;
  576. simulate_rdhwr(regs, rd, rt);
  577. return 0;
  578. }
  579. /* Not ours. */
  580. return -1;
  581. }
  582. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  583. {
  584. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  585. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  586. 1, regs, 0);
  587. return 0;
  588. }
  589. return -1; /* Must be something else ... */
  590. }
  591. asmlinkage void do_ov(struct pt_regs *regs)
  592. {
  593. enum ctx_state prev_state;
  594. siginfo_t info;
  595. prev_state = exception_enter();
  596. die_if_kernel("Integer overflow", regs);
  597. info.si_code = FPE_INTOVF;
  598. info.si_signo = SIGFPE;
  599. info.si_errno = 0;
  600. info.si_addr = (void __user *) regs->cp0_epc;
  601. force_sig_info(SIGFPE, &info, current);
  602. exception_exit(prev_state);
  603. }
  604. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  605. {
  606. struct siginfo si = { 0 };
  607. switch (sig) {
  608. case 0:
  609. return 0;
  610. case SIGFPE:
  611. si.si_addr = fault_addr;
  612. si.si_signo = sig;
  613. /*
  614. * Inexact can happen together with Overflow or Underflow.
  615. * Respect the mask to deliver the correct exception.
  616. */
  617. fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
  618. (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
  619. if (fcr31 & FPU_CSR_INV_X)
  620. si.si_code = FPE_FLTINV;
  621. else if (fcr31 & FPU_CSR_DIV_X)
  622. si.si_code = FPE_FLTDIV;
  623. else if (fcr31 & FPU_CSR_OVF_X)
  624. si.si_code = FPE_FLTOVF;
  625. else if (fcr31 & FPU_CSR_UDF_X)
  626. si.si_code = FPE_FLTUND;
  627. else if (fcr31 & FPU_CSR_INE_X)
  628. si.si_code = FPE_FLTRES;
  629. else
  630. si.si_code = __SI_FAULT;
  631. force_sig_info(sig, &si, current);
  632. return 1;
  633. case SIGBUS:
  634. si.si_addr = fault_addr;
  635. si.si_signo = sig;
  636. si.si_code = BUS_ADRERR;
  637. force_sig_info(sig, &si, current);
  638. return 1;
  639. case SIGSEGV:
  640. si.si_addr = fault_addr;
  641. si.si_signo = sig;
  642. down_read(&current->mm->mmap_sem);
  643. if (find_vma(current->mm, (unsigned long)fault_addr))
  644. si.si_code = SEGV_ACCERR;
  645. else
  646. si.si_code = SEGV_MAPERR;
  647. up_read(&current->mm->mmap_sem);
  648. force_sig_info(sig, &si, current);
  649. return 1;
  650. default:
  651. force_sig(sig, current);
  652. return 1;
  653. }
  654. }
  655. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  656. unsigned long old_epc, unsigned long old_ra)
  657. {
  658. union mips_instruction inst = { .word = opcode };
  659. void __user *fault_addr;
  660. unsigned long fcr31;
  661. int sig;
  662. /* If it's obviously not an FP instruction, skip it */
  663. switch (inst.i_format.opcode) {
  664. case cop1_op:
  665. case cop1x_op:
  666. case lwc1_op:
  667. case ldc1_op:
  668. case swc1_op:
  669. case sdc1_op:
  670. break;
  671. default:
  672. return -1;
  673. }
  674. /*
  675. * do_ri skipped over the instruction via compute_return_epc, undo
  676. * that for the FPU emulator.
  677. */
  678. regs->cp0_epc = old_epc;
  679. regs->regs[31] = old_ra;
  680. /* Save the FP context to struct thread_struct */
  681. lose_fpu(1);
  682. /* Run the emulator */
  683. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  684. &fault_addr);
  685. fcr31 = current->thread.fpu.fcr31;
  686. /*
  687. * We can't allow the emulated instruction to leave any of
  688. * the cause bits set in $fcr31.
  689. */
  690. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  691. /* Restore the hardware register state */
  692. own_fpu(1);
  693. /* Send a signal if required. */
  694. process_fpemu_return(sig, fault_addr, fcr31);
  695. return 0;
  696. }
  697. /*
  698. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  699. */
  700. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  701. {
  702. enum ctx_state prev_state;
  703. void __user *fault_addr;
  704. int sig;
  705. prev_state = exception_enter();
  706. if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
  707. SIGFPE) == NOTIFY_STOP)
  708. goto out;
  709. /* Clear FCSR.Cause before enabling interrupts */
  710. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
  711. local_irq_enable();
  712. die_if_kernel("FP exception in kernel code", regs);
  713. if (fcr31 & FPU_CSR_UNI_X) {
  714. /*
  715. * Unimplemented operation exception. If we've got the full
  716. * software emulator on-board, let's use it...
  717. *
  718. * Force FPU to dump state into task/thread context. We're
  719. * moving a lot of data here for what is probably a single
  720. * instruction, but the alternative is to pre-decode the FP
  721. * register operands before invoking the emulator, which seems
  722. * a bit extreme for what should be an infrequent event.
  723. */
  724. /* Ensure 'resume' not overwrite saved fp context again. */
  725. lose_fpu(1);
  726. /* Run the emulator */
  727. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  728. &fault_addr);
  729. fcr31 = current->thread.fpu.fcr31;
  730. /*
  731. * We can't allow the emulated instruction to leave any of
  732. * the cause bits set in $fcr31.
  733. */
  734. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  735. /* Restore the hardware register state */
  736. own_fpu(1); /* Using the FPU again. */
  737. } else {
  738. sig = SIGFPE;
  739. fault_addr = (void __user *) regs->cp0_epc;
  740. }
  741. /* Send a signal if required. */
  742. process_fpemu_return(sig, fault_addr, fcr31);
  743. out:
  744. exception_exit(prev_state);
  745. }
  746. void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
  747. const char *str)
  748. {
  749. siginfo_t info;
  750. char b[40];
  751. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  752. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  753. return;
  754. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  755. if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
  756. SIGTRAP) == NOTIFY_STOP)
  757. return;
  758. /*
  759. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  760. * insns, even for trap and break codes that indicate arithmetic
  761. * failures. Weird ...
  762. * But should we continue the brokenness??? --macro
  763. */
  764. switch (code) {
  765. case BRK_OVERFLOW:
  766. case BRK_DIVZERO:
  767. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  768. die_if_kernel(b, regs);
  769. if (code == BRK_DIVZERO)
  770. info.si_code = FPE_INTDIV;
  771. else
  772. info.si_code = FPE_INTOVF;
  773. info.si_signo = SIGFPE;
  774. info.si_errno = 0;
  775. info.si_addr = (void __user *) regs->cp0_epc;
  776. force_sig_info(SIGFPE, &info, current);
  777. break;
  778. case BRK_BUG:
  779. die_if_kernel("Kernel bug detected", regs);
  780. force_sig(SIGTRAP, current);
  781. break;
  782. case BRK_MEMU:
  783. /*
  784. * This breakpoint code is used by the FPU emulator to retake
  785. * control of the CPU after executing the instruction from the
  786. * delay slot of an emulated branch.
  787. *
  788. * Terminate if exception was recognized as a delay slot return
  789. * otherwise handle as normal.
  790. */
  791. if (do_dsemulret(regs))
  792. return;
  793. die_if_kernel("Math emu break/trap", regs);
  794. force_sig(SIGTRAP, current);
  795. break;
  796. default:
  797. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  798. die_if_kernel(b, regs);
  799. force_sig(SIGTRAP, current);
  800. }
  801. }
  802. asmlinkage void do_bp(struct pt_regs *regs)
  803. {
  804. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  805. unsigned int opcode, bcode;
  806. enum ctx_state prev_state;
  807. mm_segment_t seg;
  808. seg = get_fs();
  809. if (!user_mode(regs))
  810. set_fs(KERNEL_DS);
  811. prev_state = exception_enter();
  812. if (get_isa16_mode(regs->cp0_epc)) {
  813. u16 instr[2];
  814. if (__get_user(instr[0], (u16 __user *)epc))
  815. goto out_sigsegv;
  816. if (!cpu_has_mmips) {
  817. /* MIPS16e mode */
  818. bcode = (instr[0] >> 5) & 0x3f;
  819. } else if (mm_insn_16bit(instr[0])) {
  820. /* 16-bit microMIPS BREAK */
  821. bcode = instr[0] & 0xf;
  822. } else {
  823. /* 32-bit microMIPS BREAK */
  824. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  825. goto out_sigsegv;
  826. opcode = (instr[0] << 16) | instr[1];
  827. bcode = (opcode >> 6) & ((1 << 20) - 1);
  828. }
  829. } else {
  830. if (__get_user(opcode, (unsigned int __user *)epc))
  831. goto out_sigsegv;
  832. bcode = (opcode >> 6) & ((1 << 20) - 1);
  833. }
  834. /*
  835. * There is the ancient bug in the MIPS assemblers that the break
  836. * code starts left to bit 16 instead to bit 6 in the opcode.
  837. * Gas is bug-compatible, but not always, grrr...
  838. * We handle both cases with a simple heuristics. --macro
  839. */
  840. if (bcode >= (1 << 10))
  841. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  842. /*
  843. * notify the kprobe handlers, if instruction is likely to
  844. * pertain to them.
  845. */
  846. switch (bcode) {
  847. case BRK_KPROBE_BP:
  848. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  849. regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  850. goto out;
  851. else
  852. break;
  853. case BRK_KPROBE_SSTEPBP:
  854. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  855. regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  856. goto out;
  857. else
  858. break;
  859. default:
  860. break;
  861. }
  862. do_trap_or_bp(regs, bcode, "Break");
  863. out:
  864. set_fs(seg);
  865. exception_exit(prev_state);
  866. return;
  867. out_sigsegv:
  868. force_sig(SIGSEGV, current);
  869. goto out;
  870. }
  871. asmlinkage void do_tr(struct pt_regs *regs)
  872. {
  873. u32 opcode, tcode = 0;
  874. enum ctx_state prev_state;
  875. u16 instr[2];
  876. mm_segment_t seg;
  877. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  878. seg = get_fs();
  879. if (!user_mode(regs))
  880. set_fs(get_ds());
  881. prev_state = exception_enter();
  882. if (get_isa16_mode(regs->cp0_epc)) {
  883. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  884. __get_user(instr[1], (u16 __user *)(epc + 2)))
  885. goto out_sigsegv;
  886. opcode = (instr[0] << 16) | instr[1];
  887. /* Immediate versions don't provide a code. */
  888. if (!(opcode & OPCODE))
  889. tcode = (opcode >> 12) & ((1 << 4) - 1);
  890. } else {
  891. if (__get_user(opcode, (u32 __user *)epc))
  892. goto out_sigsegv;
  893. /* Immediate versions don't provide a code. */
  894. if (!(opcode & OPCODE))
  895. tcode = (opcode >> 6) & ((1 << 10) - 1);
  896. }
  897. do_trap_or_bp(regs, tcode, "Trap");
  898. out:
  899. set_fs(seg);
  900. exception_exit(prev_state);
  901. return;
  902. out_sigsegv:
  903. force_sig(SIGSEGV, current);
  904. goto out;
  905. }
  906. asmlinkage void do_ri(struct pt_regs *regs)
  907. {
  908. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  909. unsigned long old_epc = regs->cp0_epc;
  910. unsigned long old31 = regs->regs[31];
  911. enum ctx_state prev_state;
  912. unsigned int opcode = 0;
  913. int status = -1;
  914. /*
  915. * Avoid any kernel code. Just emulate the R2 instruction
  916. * as quickly as possible.
  917. */
  918. if (mipsr2_emulation && cpu_has_mips_r6 &&
  919. likely(user_mode(regs)) &&
  920. likely(get_user(opcode, epc) >= 0)) {
  921. unsigned long fcr31 = 0;
  922. status = mipsr2_decoder(regs, opcode, &fcr31);
  923. switch (status) {
  924. case 0:
  925. case SIGEMT:
  926. task_thread_info(current)->r2_emul_return = 1;
  927. return;
  928. case SIGILL:
  929. goto no_r2_instr;
  930. default:
  931. process_fpemu_return(status,
  932. &current->thread.cp0_baduaddr,
  933. fcr31);
  934. task_thread_info(current)->r2_emul_return = 1;
  935. return;
  936. }
  937. }
  938. no_r2_instr:
  939. prev_state = exception_enter();
  940. if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
  941. SIGILL) == NOTIFY_STOP)
  942. goto out;
  943. die_if_kernel("Reserved instruction in kernel code", regs);
  944. if (unlikely(compute_return_epc(regs) < 0))
  945. goto out;
  946. if (get_isa16_mode(regs->cp0_epc)) {
  947. unsigned short mmop[2] = { 0 };
  948. if (unlikely(get_user(mmop[0], epc) < 0))
  949. status = SIGSEGV;
  950. if (unlikely(get_user(mmop[1], epc) < 0))
  951. status = SIGSEGV;
  952. opcode = (mmop[0] << 16) | mmop[1];
  953. if (status < 0)
  954. status = simulate_rdhwr_mm(regs, opcode);
  955. } else {
  956. if (unlikely(get_user(opcode, epc) < 0))
  957. status = SIGSEGV;
  958. if (!cpu_has_llsc && status < 0)
  959. status = simulate_llsc(regs, opcode);
  960. if (status < 0)
  961. status = simulate_rdhwr_normal(regs, opcode);
  962. if (status < 0)
  963. status = simulate_sync(regs, opcode);
  964. if (status < 0)
  965. status = simulate_fp(regs, opcode, old_epc, old31);
  966. }
  967. if (status < 0)
  968. status = SIGILL;
  969. if (unlikely(status > 0)) {
  970. regs->cp0_epc = old_epc; /* Undo skip-over. */
  971. regs->regs[31] = old31;
  972. force_sig(status, current);
  973. }
  974. out:
  975. exception_exit(prev_state);
  976. }
  977. /*
  978. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  979. * emulated more than some threshold number of instructions, force migration to
  980. * a "CPU" that has FP support.
  981. */
  982. static void mt_ase_fp_affinity(void)
  983. {
  984. #ifdef CONFIG_MIPS_MT_FPAFF
  985. if (mt_fpemul_threshold > 0 &&
  986. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  987. /*
  988. * If there's no FPU present, or if the application has already
  989. * restricted the allowed set to exclude any CPUs with FPUs,
  990. * we'll skip the procedure.
  991. */
  992. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  993. cpumask_t tmask;
  994. current->thread.user_cpus_allowed
  995. = current->cpus_allowed;
  996. cpumask_and(&tmask, &current->cpus_allowed,
  997. &mt_fpu_cpumask);
  998. set_cpus_allowed_ptr(current, &tmask);
  999. set_thread_flag(TIF_FPUBOUND);
  1000. }
  1001. }
  1002. #endif /* CONFIG_MIPS_MT_FPAFF */
  1003. }
  1004. /*
  1005. * No lock; only written during early bootup by CPU 0.
  1006. */
  1007. static RAW_NOTIFIER_HEAD(cu2_chain);
  1008. int __ref register_cu2_notifier(struct notifier_block *nb)
  1009. {
  1010. return raw_notifier_chain_register(&cu2_chain, nb);
  1011. }
  1012. int cu2_notifier_call_chain(unsigned long val, void *v)
  1013. {
  1014. return raw_notifier_call_chain(&cu2_chain, val, v);
  1015. }
  1016. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1017. void *data)
  1018. {
  1019. struct pt_regs *regs = data;
  1020. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1021. "instruction", regs);
  1022. force_sig(SIGILL, current);
  1023. return NOTIFY_OK;
  1024. }
  1025. static int wait_on_fp_mode_switch(atomic_t *p)
  1026. {
  1027. /*
  1028. * The FP mode for this task is currently being switched. That may
  1029. * involve modifications to the format of this tasks FP context which
  1030. * make it unsafe to proceed with execution for the moment. Instead,
  1031. * schedule some other task.
  1032. */
  1033. schedule();
  1034. return 0;
  1035. }
  1036. static int enable_restore_fp_context(int msa)
  1037. {
  1038. int err, was_fpu_owner, prior_msa;
  1039. /*
  1040. * If an FP mode switch is currently underway, wait for it to
  1041. * complete before proceeding.
  1042. */
  1043. wait_on_atomic_t(&current->mm->context.fp_mode_switching,
  1044. wait_on_fp_mode_switch, TASK_KILLABLE);
  1045. if (!used_math()) {
  1046. /* First time FP context user. */
  1047. preempt_disable();
  1048. err = init_fpu();
  1049. if (msa && !err) {
  1050. enable_msa();
  1051. _init_msa_upper();
  1052. set_thread_flag(TIF_USEDMSA);
  1053. set_thread_flag(TIF_MSA_CTX_LIVE);
  1054. }
  1055. preempt_enable();
  1056. if (!err)
  1057. set_used_math();
  1058. return err;
  1059. }
  1060. /*
  1061. * This task has formerly used the FP context.
  1062. *
  1063. * If this thread has no live MSA vector context then we can simply
  1064. * restore the scalar FP context. If it has live MSA vector context
  1065. * (that is, it has or may have used MSA since last performing a
  1066. * function call) then we'll need to restore the vector context. This
  1067. * applies even if we're currently only executing a scalar FP
  1068. * instruction. This is because if we were to later execute an MSA
  1069. * instruction then we'd either have to:
  1070. *
  1071. * - Restore the vector context & clobber any registers modified by
  1072. * scalar FP instructions between now & then.
  1073. *
  1074. * or
  1075. *
  1076. * - Not restore the vector context & lose the most significant bits
  1077. * of all vector registers.
  1078. *
  1079. * Neither of those options is acceptable. We cannot restore the least
  1080. * significant bits of the registers now & only restore the most
  1081. * significant bits later because the most significant bits of any
  1082. * vector registers whose aliased FP register is modified now will have
  1083. * been zeroed. We'd have no way to know that when restoring the vector
  1084. * context & thus may load an outdated value for the most significant
  1085. * bits of a vector register.
  1086. */
  1087. if (!msa && !thread_msa_context_live())
  1088. return own_fpu(1);
  1089. /*
  1090. * This task is using or has previously used MSA. Thus we require
  1091. * that Status.FR == 1.
  1092. */
  1093. preempt_disable();
  1094. was_fpu_owner = is_fpu_owner();
  1095. err = own_fpu_inatomic(0);
  1096. if (err)
  1097. goto out;
  1098. enable_msa();
  1099. write_msa_csr(current->thread.fpu.msacsr);
  1100. set_thread_flag(TIF_USEDMSA);
  1101. /*
  1102. * If this is the first time that the task is using MSA and it has
  1103. * previously used scalar FP in this time slice then we already nave
  1104. * FP context which we shouldn't clobber. We do however need to clear
  1105. * the upper 64b of each vector register so that this task has no
  1106. * opportunity to see data left behind by another.
  1107. */
  1108. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1109. if (!prior_msa && was_fpu_owner) {
  1110. _init_msa_upper();
  1111. goto out;
  1112. }
  1113. if (!prior_msa) {
  1114. /*
  1115. * Restore the least significant 64b of each vector register
  1116. * from the existing scalar FP context.
  1117. */
  1118. _restore_fp(current);
  1119. /*
  1120. * The task has not formerly used MSA, so clear the upper 64b
  1121. * of each vector register such that it cannot see data left
  1122. * behind by another task.
  1123. */
  1124. _init_msa_upper();
  1125. } else {
  1126. /* We need to restore the vector context. */
  1127. restore_msa(current);
  1128. /* Restore the scalar FP control & status register */
  1129. if (!was_fpu_owner)
  1130. write_32bit_cp1_register(CP1_STATUS,
  1131. current->thread.fpu.fcr31);
  1132. }
  1133. out:
  1134. preempt_enable();
  1135. return 0;
  1136. }
  1137. asmlinkage void do_cpu(struct pt_regs *regs)
  1138. {
  1139. enum ctx_state prev_state;
  1140. unsigned int __user *epc;
  1141. unsigned long old_epc, old31;
  1142. void __user *fault_addr;
  1143. unsigned int opcode;
  1144. unsigned long fcr31;
  1145. unsigned int cpid;
  1146. int status, err;
  1147. unsigned long __maybe_unused flags;
  1148. int sig;
  1149. prev_state = exception_enter();
  1150. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1151. if (cpid != 2)
  1152. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1153. switch (cpid) {
  1154. case 0:
  1155. epc = (unsigned int __user *)exception_epc(regs);
  1156. old_epc = regs->cp0_epc;
  1157. old31 = regs->regs[31];
  1158. opcode = 0;
  1159. status = -1;
  1160. if (unlikely(compute_return_epc(regs) < 0))
  1161. break;
  1162. if (get_isa16_mode(regs->cp0_epc)) {
  1163. unsigned short mmop[2] = { 0 };
  1164. if (unlikely(get_user(mmop[0], epc) < 0))
  1165. status = SIGSEGV;
  1166. if (unlikely(get_user(mmop[1], epc) < 0))
  1167. status = SIGSEGV;
  1168. opcode = (mmop[0] << 16) | mmop[1];
  1169. if (status < 0)
  1170. status = simulate_rdhwr_mm(regs, opcode);
  1171. } else {
  1172. if (unlikely(get_user(opcode, epc) < 0))
  1173. status = SIGSEGV;
  1174. if (!cpu_has_llsc && status < 0)
  1175. status = simulate_llsc(regs, opcode);
  1176. if (status < 0)
  1177. status = simulate_rdhwr_normal(regs, opcode);
  1178. }
  1179. if (status < 0)
  1180. status = SIGILL;
  1181. if (unlikely(status > 0)) {
  1182. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1183. regs->regs[31] = old31;
  1184. force_sig(status, current);
  1185. }
  1186. break;
  1187. case 3:
  1188. /*
  1189. * The COP3 opcode space and consequently the CP0.Status.CU3
  1190. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1191. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1192. * up the space has been reused for COP1X instructions, that
  1193. * are enabled by the CP0.Status.CU1 bit and consequently
  1194. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1195. * exceptions. Some FPU-less processors that implement one
  1196. * of these ISAs however use this code erroneously for COP1X
  1197. * instructions. Therefore we redirect this trap to the FP
  1198. * emulator too.
  1199. */
  1200. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1201. force_sig(SIGILL, current);
  1202. break;
  1203. }
  1204. /* Fall through. */
  1205. case 1:
  1206. err = enable_restore_fp_context(0);
  1207. if (raw_cpu_has_fpu && !err)
  1208. break;
  1209. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1210. &fault_addr);
  1211. fcr31 = current->thread.fpu.fcr31;
  1212. /*
  1213. * We can't allow the emulated instruction to leave
  1214. * any of the cause bits set in $fcr31.
  1215. */
  1216. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  1217. /* Send a signal if required. */
  1218. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1219. mt_ase_fp_affinity();
  1220. break;
  1221. case 2:
  1222. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1223. break;
  1224. }
  1225. exception_exit(prev_state);
  1226. }
  1227. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1228. {
  1229. enum ctx_state prev_state;
  1230. prev_state = exception_enter();
  1231. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1232. regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
  1233. goto out;
  1234. /* Clear MSACSR.Cause before enabling interrupts */
  1235. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1236. local_irq_enable();
  1237. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1238. force_sig(SIGFPE, current);
  1239. out:
  1240. exception_exit(prev_state);
  1241. }
  1242. asmlinkage void do_msa(struct pt_regs *regs)
  1243. {
  1244. enum ctx_state prev_state;
  1245. int err;
  1246. prev_state = exception_enter();
  1247. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1248. force_sig(SIGILL, current);
  1249. goto out;
  1250. }
  1251. die_if_kernel("do_msa invoked from kernel context!", regs);
  1252. err = enable_restore_fp_context(1);
  1253. if (err)
  1254. force_sig(SIGILL, current);
  1255. out:
  1256. exception_exit(prev_state);
  1257. }
  1258. asmlinkage void do_mdmx(struct pt_regs *regs)
  1259. {
  1260. enum ctx_state prev_state;
  1261. prev_state = exception_enter();
  1262. force_sig(SIGILL, current);
  1263. exception_exit(prev_state);
  1264. }
  1265. /*
  1266. * Called with interrupts disabled.
  1267. */
  1268. asmlinkage void do_watch(struct pt_regs *regs)
  1269. {
  1270. enum ctx_state prev_state;
  1271. u32 cause;
  1272. prev_state = exception_enter();
  1273. /*
  1274. * Clear WP (bit 22) bit of cause register so we don't loop
  1275. * forever.
  1276. */
  1277. cause = read_c0_cause();
  1278. cause &= ~(1 << 22);
  1279. write_c0_cause(cause);
  1280. /*
  1281. * If the current thread has the watch registers loaded, save
  1282. * their values and send SIGTRAP. Otherwise another thread
  1283. * left the registers set, clear them and continue.
  1284. */
  1285. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1286. mips_read_watch_registers();
  1287. local_irq_enable();
  1288. force_sig(SIGTRAP, current);
  1289. } else {
  1290. mips_clear_watch_registers();
  1291. local_irq_enable();
  1292. }
  1293. exception_exit(prev_state);
  1294. }
  1295. asmlinkage void do_mcheck(struct pt_regs *regs)
  1296. {
  1297. const int field = 2 * sizeof(unsigned long);
  1298. int multi_match = regs->cp0_status & ST0_TS;
  1299. enum ctx_state prev_state;
  1300. prev_state = exception_enter();
  1301. show_regs(regs);
  1302. if (multi_match) {
  1303. pr_err("Index : %0x\n", read_c0_index());
  1304. pr_err("Pagemask: %0x\n", read_c0_pagemask());
  1305. pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
  1306. pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
  1307. pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
  1308. pr_err("Wired : %0x\n", read_c0_wired());
  1309. pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
  1310. if (cpu_has_htw) {
  1311. pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
  1312. pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
  1313. pr_err("PWCtl : %0x\n", read_c0_pwctl());
  1314. }
  1315. pr_err("\n");
  1316. dump_tlb_all();
  1317. }
  1318. show_code((unsigned int __user *) regs->cp0_epc);
  1319. /*
  1320. * Some chips may have other causes of machine check (e.g. SB1
  1321. * graduation timer)
  1322. */
  1323. panic("Caught Machine Check exception - %scaused by multiple "
  1324. "matching entries in the TLB.",
  1325. (multi_match) ? "" : "not ");
  1326. }
  1327. asmlinkage void do_mt(struct pt_regs *regs)
  1328. {
  1329. int subcode;
  1330. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1331. >> VPECONTROL_EXCPT_SHIFT;
  1332. switch (subcode) {
  1333. case 0:
  1334. printk(KERN_DEBUG "Thread Underflow\n");
  1335. break;
  1336. case 1:
  1337. printk(KERN_DEBUG "Thread Overflow\n");
  1338. break;
  1339. case 2:
  1340. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1341. break;
  1342. case 3:
  1343. printk(KERN_DEBUG "Gating Storage Exception\n");
  1344. break;
  1345. case 4:
  1346. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1347. break;
  1348. case 5:
  1349. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1350. break;
  1351. default:
  1352. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1353. subcode);
  1354. break;
  1355. }
  1356. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1357. force_sig(SIGILL, current);
  1358. }
  1359. asmlinkage void do_dsp(struct pt_regs *regs)
  1360. {
  1361. if (cpu_has_dsp)
  1362. panic("Unexpected DSP exception");
  1363. force_sig(SIGILL, current);
  1364. }
  1365. asmlinkage void do_reserved(struct pt_regs *regs)
  1366. {
  1367. /*
  1368. * Game over - no way to handle this if it ever occurs. Most probably
  1369. * caused by a new unknown cpu type or after another deadly
  1370. * hard/software error.
  1371. */
  1372. show_regs(regs);
  1373. panic("Caught reserved exception %ld - should not happen.",
  1374. (regs->cp0_cause & 0x7f) >> 2);
  1375. }
  1376. static int __initdata l1parity = 1;
  1377. static int __init nol1parity(char *s)
  1378. {
  1379. l1parity = 0;
  1380. return 1;
  1381. }
  1382. __setup("nol1par", nol1parity);
  1383. static int __initdata l2parity = 1;
  1384. static int __init nol2parity(char *s)
  1385. {
  1386. l2parity = 0;
  1387. return 1;
  1388. }
  1389. __setup("nol2par", nol2parity);
  1390. /*
  1391. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1392. * it different ways.
  1393. */
  1394. static inline void parity_protection_init(void)
  1395. {
  1396. switch (current_cpu_type()) {
  1397. case CPU_24K:
  1398. case CPU_34K:
  1399. case CPU_74K:
  1400. case CPU_1004K:
  1401. case CPU_1074K:
  1402. case CPU_INTERAPTIV:
  1403. case CPU_PROAPTIV:
  1404. case CPU_P5600:
  1405. case CPU_QEMU_GENERIC:
  1406. {
  1407. #define ERRCTL_PE 0x80000000
  1408. #define ERRCTL_L2P 0x00800000
  1409. unsigned long errctl;
  1410. unsigned int l1parity_present, l2parity_present;
  1411. errctl = read_c0_ecc();
  1412. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1413. /* probe L1 parity support */
  1414. write_c0_ecc(errctl | ERRCTL_PE);
  1415. back_to_back_c0_hazard();
  1416. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1417. /* probe L2 parity support */
  1418. write_c0_ecc(errctl|ERRCTL_L2P);
  1419. back_to_back_c0_hazard();
  1420. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1421. if (l1parity_present && l2parity_present) {
  1422. if (l1parity)
  1423. errctl |= ERRCTL_PE;
  1424. if (l1parity ^ l2parity)
  1425. errctl |= ERRCTL_L2P;
  1426. } else if (l1parity_present) {
  1427. if (l1parity)
  1428. errctl |= ERRCTL_PE;
  1429. } else if (l2parity_present) {
  1430. if (l2parity)
  1431. errctl |= ERRCTL_L2P;
  1432. } else {
  1433. /* No parity available */
  1434. }
  1435. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1436. write_c0_ecc(errctl);
  1437. back_to_back_c0_hazard();
  1438. errctl = read_c0_ecc();
  1439. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1440. if (l1parity_present)
  1441. printk(KERN_INFO "Cache parity protection %sabled\n",
  1442. (errctl & ERRCTL_PE) ? "en" : "dis");
  1443. if (l2parity_present) {
  1444. if (l1parity_present && l1parity)
  1445. errctl ^= ERRCTL_L2P;
  1446. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1447. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1448. }
  1449. }
  1450. break;
  1451. case CPU_5KC:
  1452. case CPU_5KE:
  1453. case CPU_LOONGSON1:
  1454. write_c0_ecc(0x80000000);
  1455. back_to_back_c0_hazard();
  1456. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1457. printk(KERN_INFO "Cache parity protection %sabled\n",
  1458. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1459. break;
  1460. case CPU_20KC:
  1461. case CPU_25KF:
  1462. /* Clear the DE bit (bit 16) in the c0_status register. */
  1463. printk(KERN_INFO "Enable cache parity protection for "
  1464. "MIPS 20KC/25KF CPUs.\n");
  1465. clear_c0_status(ST0_DE);
  1466. break;
  1467. default:
  1468. break;
  1469. }
  1470. }
  1471. asmlinkage void cache_parity_error(void)
  1472. {
  1473. const int field = 2 * sizeof(unsigned long);
  1474. unsigned int reg_val;
  1475. /* For the moment, report the problem and hang. */
  1476. printk("Cache error exception:\n");
  1477. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1478. reg_val = read_c0_cacheerr();
  1479. printk("c0_cacheerr == %08x\n", reg_val);
  1480. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1481. reg_val & (1<<30) ? "secondary" : "primary",
  1482. reg_val & (1<<31) ? "data" : "insn");
  1483. if ((cpu_has_mips_r2_r6) &&
  1484. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1485. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1486. reg_val & (1<<29) ? "ED " : "",
  1487. reg_val & (1<<28) ? "ET " : "",
  1488. reg_val & (1<<27) ? "ES " : "",
  1489. reg_val & (1<<26) ? "EE " : "",
  1490. reg_val & (1<<25) ? "EB " : "",
  1491. reg_val & (1<<24) ? "EI " : "",
  1492. reg_val & (1<<23) ? "E1 " : "",
  1493. reg_val & (1<<22) ? "E0 " : "");
  1494. } else {
  1495. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1496. reg_val & (1<<29) ? "ED " : "",
  1497. reg_val & (1<<28) ? "ET " : "",
  1498. reg_val & (1<<26) ? "EE " : "",
  1499. reg_val & (1<<25) ? "EB " : "",
  1500. reg_val & (1<<24) ? "EI " : "",
  1501. reg_val & (1<<23) ? "E1 " : "",
  1502. reg_val & (1<<22) ? "E0 " : "");
  1503. }
  1504. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1505. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1506. if (reg_val & (1<<22))
  1507. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1508. if (reg_val & (1<<23))
  1509. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1510. #endif
  1511. panic("Can't handle the cache error!");
  1512. }
  1513. asmlinkage void do_ftlb(void)
  1514. {
  1515. const int field = 2 * sizeof(unsigned long);
  1516. unsigned int reg_val;
  1517. /* For the moment, report the problem and hang. */
  1518. if ((cpu_has_mips_r2_r6) &&
  1519. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1520. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1521. read_c0_ecc());
  1522. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1523. reg_val = read_c0_cacheerr();
  1524. pr_err("c0_cacheerr == %08x\n", reg_val);
  1525. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1526. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1527. } else {
  1528. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1529. reg_val & (1<<30) ? "secondary" : "primary",
  1530. reg_val & (1<<31) ? "data" : "insn");
  1531. }
  1532. } else {
  1533. pr_err("FTLB error exception\n");
  1534. }
  1535. /* Just print the cacheerr bits for now */
  1536. cache_parity_error();
  1537. }
  1538. /*
  1539. * SDBBP EJTAG debug exception handler.
  1540. * We skip the instruction and return to the next instruction.
  1541. */
  1542. void ejtag_exception_handler(struct pt_regs *regs)
  1543. {
  1544. const int field = 2 * sizeof(unsigned long);
  1545. unsigned long depc, old_epc, old_ra;
  1546. unsigned int debug;
  1547. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1548. depc = read_c0_depc();
  1549. debug = read_c0_debug();
  1550. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1551. if (debug & 0x80000000) {
  1552. /*
  1553. * In branch delay slot.
  1554. * We cheat a little bit here and use EPC to calculate the
  1555. * debug return address (DEPC). EPC is restored after the
  1556. * calculation.
  1557. */
  1558. old_epc = regs->cp0_epc;
  1559. old_ra = regs->regs[31];
  1560. regs->cp0_epc = depc;
  1561. compute_return_epc(regs);
  1562. depc = regs->cp0_epc;
  1563. regs->cp0_epc = old_epc;
  1564. regs->regs[31] = old_ra;
  1565. } else
  1566. depc += 4;
  1567. write_c0_depc(depc);
  1568. #if 0
  1569. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1570. write_c0_debug(debug | 0x100);
  1571. #endif
  1572. }
  1573. /*
  1574. * NMI exception handler.
  1575. * No lock; only written during early bootup by CPU 0.
  1576. */
  1577. static RAW_NOTIFIER_HEAD(nmi_chain);
  1578. int register_nmi_notifier(struct notifier_block *nb)
  1579. {
  1580. return raw_notifier_chain_register(&nmi_chain, nb);
  1581. }
  1582. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1583. {
  1584. char str[100];
  1585. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1586. bust_spinlocks(1);
  1587. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1588. smp_processor_id(), regs->cp0_epc);
  1589. regs->cp0_epc = read_c0_errorepc();
  1590. die(str, regs);
  1591. }
  1592. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1593. unsigned long ebase;
  1594. unsigned long exception_handlers[32];
  1595. unsigned long vi_handlers[64];
  1596. void __init *set_except_vector(int n, void *addr)
  1597. {
  1598. unsigned long handler = (unsigned long) addr;
  1599. unsigned long old_handler;
  1600. #ifdef CONFIG_CPU_MICROMIPS
  1601. /*
  1602. * Only the TLB handlers are cache aligned with an even
  1603. * address. All other handlers are on an odd address and
  1604. * require no modification. Otherwise, MIPS32 mode will
  1605. * be entered when handling any TLB exceptions. That
  1606. * would be bad...since we must stay in microMIPS mode.
  1607. */
  1608. if (!(handler & 0x1))
  1609. handler |= 1;
  1610. #endif
  1611. old_handler = xchg(&exception_handlers[n], handler);
  1612. if (n == 0 && cpu_has_divec) {
  1613. #ifdef CONFIG_CPU_MICROMIPS
  1614. unsigned long jump_mask = ~((1 << 27) - 1);
  1615. #else
  1616. unsigned long jump_mask = ~((1 << 28) - 1);
  1617. #endif
  1618. u32 *buf = (u32 *)(ebase + 0x200);
  1619. unsigned int k0 = 26;
  1620. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1621. uasm_i_j(&buf, handler & ~jump_mask);
  1622. uasm_i_nop(&buf);
  1623. } else {
  1624. UASM_i_LA(&buf, k0, handler);
  1625. uasm_i_jr(&buf, k0);
  1626. uasm_i_nop(&buf);
  1627. }
  1628. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1629. }
  1630. return (void *)old_handler;
  1631. }
  1632. static void do_default_vi(void)
  1633. {
  1634. show_regs(get_irq_regs());
  1635. panic("Caught unexpected vectored interrupt.");
  1636. }
  1637. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1638. {
  1639. unsigned long handler;
  1640. unsigned long old_handler = vi_handlers[n];
  1641. int srssets = current_cpu_data.srsets;
  1642. u16 *h;
  1643. unsigned char *b;
  1644. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1645. if (addr == NULL) {
  1646. handler = (unsigned long) do_default_vi;
  1647. srs = 0;
  1648. } else
  1649. handler = (unsigned long) addr;
  1650. vi_handlers[n] = handler;
  1651. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1652. if (srs >= srssets)
  1653. panic("Shadow register set %d not supported", srs);
  1654. if (cpu_has_veic) {
  1655. if (board_bind_eic_interrupt)
  1656. board_bind_eic_interrupt(n, srs);
  1657. } else if (cpu_has_vint) {
  1658. /* SRSMap is only defined if shadow sets are implemented */
  1659. if (srssets > 1)
  1660. change_c0_srsmap(0xf << n*4, srs << n*4);
  1661. }
  1662. if (srs == 0) {
  1663. /*
  1664. * If no shadow set is selected then use the default handler
  1665. * that does normal register saving and standard interrupt exit
  1666. */
  1667. extern char except_vec_vi, except_vec_vi_lui;
  1668. extern char except_vec_vi_ori, except_vec_vi_end;
  1669. extern char rollback_except_vec_vi;
  1670. char *vec_start = using_rollback_handler() ?
  1671. &rollback_except_vec_vi : &except_vec_vi;
  1672. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1673. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1674. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1675. #else
  1676. const int lui_offset = &except_vec_vi_lui - vec_start;
  1677. const int ori_offset = &except_vec_vi_ori - vec_start;
  1678. #endif
  1679. const int handler_len = &except_vec_vi_end - vec_start;
  1680. if (handler_len > VECTORSPACING) {
  1681. /*
  1682. * Sigh... panicing won't help as the console
  1683. * is probably not configured :(
  1684. */
  1685. panic("VECTORSPACING too small");
  1686. }
  1687. set_handler(((unsigned long)b - ebase), vec_start,
  1688. #ifdef CONFIG_CPU_MICROMIPS
  1689. (handler_len - 1));
  1690. #else
  1691. handler_len);
  1692. #endif
  1693. h = (u16 *)(b + lui_offset);
  1694. *h = (handler >> 16) & 0xffff;
  1695. h = (u16 *)(b + ori_offset);
  1696. *h = (handler & 0xffff);
  1697. local_flush_icache_range((unsigned long)b,
  1698. (unsigned long)(b+handler_len));
  1699. }
  1700. else {
  1701. /*
  1702. * In other cases jump directly to the interrupt handler. It
  1703. * is the handler's responsibility to save registers if required
  1704. * (eg hi/lo) and return from the exception using "eret".
  1705. */
  1706. u32 insn;
  1707. h = (u16 *)b;
  1708. /* j handler */
  1709. #ifdef CONFIG_CPU_MICROMIPS
  1710. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1711. #else
  1712. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1713. #endif
  1714. h[0] = (insn >> 16) & 0xffff;
  1715. h[1] = insn & 0xffff;
  1716. h[2] = 0;
  1717. h[3] = 0;
  1718. local_flush_icache_range((unsigned long)b,
  1719. (unsigned long)(b+8));
  1720. }
  1721. return (void *)old_handler;
  1722. }
  1723. void *set_vi_handler(int n, vi_handler_t addr)
  1724. {
  1725. return set_vi_srs_handler(n, addr, 0);
  1726. }
  1727. extern void tlb_init(void);
  1728. /*
  1729. * Timer interrupt
  1730. */
  1731. int cp0_compare_irq;
  1732. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1733. int cp0_compare_irq_shift;
  1734. /*
  1735. * Performance counter IRQ or -1 if shared with timer
  1736. */
  1737. int cp0_perfcount_irq;
  1738. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1739. /*
  1740. * Fast debug channel IRQ or -1 if not present
  1741. */
  1742. int cp0_fdc_irq;
  1743. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1744. static int noulri;
  1745. static int __init ulri_disable(char *s)
  1746. {
  1747. pr_info("Disabling ulri\n");
  1748. noulri = 1;
  1749. return 1;
  1750. }
  1751. __setup("noulri", ulri_disable);
  1752. /* configure STATUS register */
  1753. static void configure_status(void)
  1754. {
  1755. /*
  1756. * Disable coprocessors and select 32-bit or 64-bit addressing
  1757. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1758. * flag that some firmware may have left set and the TS bit (for
  1759. * IP27). Set XX for ISA IV code to work.
  1760. */
  1761. unsigned int status_set = ST0_CU0;
  1762. #ifdef CONFIG_64BIT
  1763. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1764. #endif
  1765. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1766. status_set |= ST0_XX;
  1767. if (cpu_has_dsp)
  1768. status_set |= ST0_MX;
  1769. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1770. status_set);
  1771. }
  1772. /* configure HWRENA register */
  1773. static void configure_hwrena(void)
  1774. {
  1775. unsigned int hwrena = cpu_hwrena_impl_bits;
  1776. if (cpu_has_mips_r2_r6)
  1777. hwrena |= 0x0000000f;
  1778. if (!noulri && cpu_has_userlocal)
  1779. hwrena |= (1 << 29);
  1780. if (hwrena)
  1781. write_c0_hwrena(hwrena);
  1782. }
  1783. static void configure_exception_vector(void)
  1784. {
  1785. if (cpu_has_veic || cpu_has_vint) {
  1786. unsigned long sr = set_c0_status(ST0_BEV);
  1787. write_c0_ebase(ebase);
  1788. write_c0_status(sr);
  1789. /* Setting vector spacing enables EI/VI mode */
  1790. change_c0_intctl(0x3e0, VECTORSPACING);
  1791. }
  1792. if (cpu_has_divec) {
  1793. if (cpu_has_mipsmt) {
  1794. unsigned int vpflags = dvpe();
  1795. set_c0_cause(CAUSEF_IV);
  1796. evpe(vpflags);
  1797. } else
  1798. set_c0_cause(CAUSEF_IV);
  1799. }
  1800. }
  1801. void per_cpu_trap_init(bool is_boot_cpu)
  1802. {
  1803. unsigned int cpu = smp_processor_id();
  1804. configure_status();
  1805. configure_hwrena();
  1806. configure_exception_vector();
  1807. /*
  1808. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1809. *
  1810. * o read IntCtl.IPTI to determine the timer interrupt
  1811. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1812. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1813. */
  1814. if (cpu_has_mips_r2_r6) {
  1815. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1816. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1817. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1818. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1819. if (!cp0_fdc_irq)
  1820. cp0_fdc_irq = -1;
  1821. } else {
  1822. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1823. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1824. cp0_perfcount_irq = -1;
  1825. cp0_fdc_irq = -1;
  1826. }
  1827. if (!cpu_data[cpu].asid_cache)
  1828. cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
  1829. atomic_inc(&init_mm.mm_count);
  1830. current->active_mm = &init_mm;
  1831. BUG_ON(current->mm);
  1832. enter_lazy_tlb(&init_mm, current);
  1833. /* Boot CPU's cache setup in setup_arch(). */
  1834. if (!is_boot_cpu)
  1835. cpu_cache_init();
  1836. tlb_init();
  1837. TLBMISS_HANDLER_SETUP();
  1838. }
  1839. /* Install CPU exception handler */
  1840. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1841. {
  1842. #ifdef CONFIG_CPU_MICROMIPS
  1843. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1844. #else
  1845. memcpy((void *)(ebase + offset), addr, size);
  1846. #endif
  1847. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1848. }
  1849. static char panic_null_cerr[] =
  1850. "Trying to set NULL cache error exception handler";
  1851. /*
  1852. * Install uncached CPU exception handler.
  1853. * This is suitable only for the cache error exception which is the only
  1854. * exception handler that is being run uncached.
  1855. */
  1856. void set_uncached_handler(unsigned long offset, void *addr,
  1857. unsigned long size)
  1858. {
  1859. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1860. if (!addr)
  1861. panic(panic_null_cerr);
  1862. memcpy((void *)(uncached_ebase + offset), addr, size);
  1863. }
  1864. static int __initdata rdhwr_noopt;
  1865. static int __init set_rdhwr_noopt(char *str)
  1866. {
  1867. rdhwr_noopt = 1;
  1868. return 1;
  1869. }
  1870. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1871. void __init trap_init(void)
  1872. {
  1873. extern char except_vec3_generic;
  1874. extern char except_vec4;
  1875. extern char except_vec3_r4000;
  1876. unsigned long i;
  1877. check_wait();
  1878. #if defined(CONFIG_KGDB)
  1879. if (kgdb_early_setup)
  1880. return; /* Already done */
  1881. #endif
  1882. if (cpu_has_veic || cpu_has_vint) {
  1883. unsigned long size = 0x200 + VECTORSPACING*64;
  1884. ebase = (unsigned long)
  1885. __alloc_bootmem(size, 1 << fls(size), 0);
  1886. } else {
  1887. #ifdef CONFIG_KVM_GUEST
  1888. #define KVM_GUEST_KSEG0 0x40000000
  1889. ebase = KVM_GUEST_KSEG0;
  1890. #else
  1891. ebase = CKSEG0;
  1892. #endif
  1893. if (cpu_has_mips_r2_r6)
  1894. ebase += (read_c0_ebase() & 0x3ffff000);
  1895. }
  1896. if (cpu_has_mmips) {
  1897. unsigned int config3 = read_c0_config3();
  1898. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1899. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1900. else
  1901. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1902. }
  1903. if (board_ebase_setup)
  1904. board_ebase_setup();
  1905. per_cpu_trap_init(true);
  1906. /*
  1907. * Copy the generic exception handlers to their final destination.
  1908. * This will be overriden later as suitable for a particular
  1909. * configuration.
  1910. */
  1911. set_handler(0x180, &except_vec3_generic, 0x80);
  1912. /*
  1913. * Setup default vectors
  1914. */
  1915. for (i = 0; i <= 31; i++)
  1916. set_except_vector(i, handle_reserved);
  1917. /*
  1918. * Copy the EJTAG debug exception vector handler code to it's final
  1919. * destination.
  1920. */
  1921. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1922. board_ejtag_handler_setup();
  1923. /*
  1924. * Only some CPUs have the watch exceptions.
  1925. */
  1926. if (cpu_has_watch)
  1927. set_except_vector(23, handle_watch);
  1928. /*
  1929. * Initialise interrupt handlers
  1930. */
  1931. if (cpu_has_veic || cpu_has_vint) {
  1932. int nvec = cpu_has_veic ? 64 : 8;
  1933. for (i = 0; i < nvec; i++)
  1934. set_vi_handler(i, NULL);
  1935. }
  1936. else if (cpu_has_divec)
  1937. set_handler(0x200, &except_vec4, 0x8);
  1938. /*
  1939. * Some CPUs can enable/disable for cache parity detection, but does
  1940. * it different ways.
  1941. */
  1942. parity_protection_init();
  1943. /*
  1944. * The Data Bus Errors / Instruction Bus Errors are signaled
  1945. * by external hardware. Therefore these two exceptions
  1946. * may have board specific handlers.
  1947. */
  1948. if (board_be_init)
  1949. board_be_init();
  1950. set_except_vector(0, using_rollback_handler() ? rollback_handle_int
  1951. : handle_int);
  1952. set_except_vector(1, handle_tlbm);
  1953. set_except_vector(2, handle_tlbl);
  1954. set_except_vector(3, handle_tlbs);
  1955. set_except_vector(4, handle_adel);
  1956. set_except_vector(5, handle_ades);
  1957. set_except_vector(6, handle_ibe);
  1958. set_except_vector(7, handle_dbe);
  1959. set_except_vector(8, handle_sys);
  1960. set_except_vector(9, handle_bp);
  1961. set_except_vector(10, rdhwr_noopt ? handle_ri :
  1962. (cpu_has_vtag_icache ?
  1963. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1964. set_except_vector(11, handle_cpu);
  1965. set_except_vector(12, handle_ov);
  1966. set_except_vector(13, handle_tr);
  1967. set_except_vector(14, handle_msa_fpe);
  1968. if (current_cpu_type() == CPU_R6000 ||
  1969. current_cpu_type() == CPU_R6000A) {
  1970. /*
  1971. * The R6000 is the only R-series CPU that features a machine
  1972. * check exception (similar to the R4000 cache error) and
  1973. * unaligned ldc1/sdc1 exception. The handlers have not been
  1974. * written yet. Well, anyway there is no R6000 machine on the
  1975. * current list of targets for Linux/MIPS.
  1976. * (Duh, crap, there is someone with a triple R6k machine)
  1977. */
  1978. //set_except_vector(14, handle_mc);
  1979. //set_except_vector(15, handle_ndc);
  1980. }
  1981. if (board_nmi_handler_setup)
  1982. board_nmi_handler_setup();
  1983. if (cpu_has_fpu && !cpu_has_nofpuex)
  1984. set_except_vector(15, handle_fpe);
  1985. set_except_vector(16, handle_ftlb);
  1986. if (cpu_has_rixiex) {
  1987. set_except_vector(19, tlb_do_page_fault_0);
  1988. set_except_vector(20, tlb_do_page_fault_0);
  1989. }
  1990. set_except_vector(21, handle_msa);
  1991. set_except_vector(22, handle_mdmx);
  1992. if (cpu_has_mcheck)
  1993. set_except_vector(24, handle_mcheck);
  1994. if (cpu_has_mipsmt)
  1995. set_except_vector(25, handle_mt);
  1996. set_except_vector(26, handle_dsp);
  1997. if (board_cache_error_setup)
  1998. board_cache_error_setup();
  1999. if (cpu_has_vce)
  2000. /* Special exception: R4[04]00 uses also the divec space. */
  2001. set_handler(0x180, &except_vec3_r4000, 0x100);
  2002. else if (cpu_has_4kex)
  2003. set_handler(0x180, &except_vec3_generic, 0x80);
  2004. else
  2005. set_handler(0x080, &except_vec3_generic, 0x80);
  2006. local_flush_icache_range(ebase, ebase + 0x400);
  2007. sort_extable(__start___dbe_table, __stop___dbe_table);
  2008. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2009. }
  2010. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2011. void *v)
  2012. {
  2013. switch (cmd) {
  2014. case CPU_PM_ENTER_FAILED:
  2015. case CPU_PM_EXIT:
  2016. configure_status();
  2017. configure_hwrena();
  2018. configure_exception_vector();
  2019. /* Restore register with CPU number for TLB handlers */
  2020. TLBMISS_HANDLER_RESTORE();
  2021. break;
  2022. }
  2023. return NOTIFY_OK;
  2024. }
  2025. static struct notifier_block trap_pm_notifier_block = {
  2026. .notifier_call = trap_pm_notifier,
  2027. };
  2028. static int __init trap_pm_init(void)
  2029. {
  2030. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2031. }
  2032. arch_initcall(trap_pm_init);