dma-mapping.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. * SWIOTLB-based DMA API implementation
  3. *
  4. * Copyright (C) 2012 ARM Ltd.
  5. * Author: Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <linux/gfp.h>
  20. #include <linux/export.h>
  21. #include <linux/slab.h>
  22. #include <linux/genalloc.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/dma-contiguous.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/swiotlb.h>
  27. #include <asm/cacheflush.h>
  28. struct dma_map_ops *dma_ops;
  29. EXPORT_SYMBOL(dma_ops);
  30. static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
  31. bool coherent)
  32. {
  33. if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
  34. return pgprot_writecombine(prot);
  35. return prot;
  36. }
  37. static struct gen_pool *atomic_pool;
  38. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  39. static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
  40. static int __init early_coherent_pool(char *p)
  41. {
  42. atomic_pool_size = memparse(p, &p);
  43. return 0;
  44. }
  45. early_param("coherent_pool", early_coherent_pool);
  46. static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
  47. {
  48. unsigned long val;
  49. void *ptr = NULL;
  50. if (!atomic_pool) {
  51. WARN(1, "coherent pool not initialised!\n");
  52. return NULL;
  53. }
  54. val = gen_pool_alloc(atomic_pool, size);
  55. if (val) {
  56. phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
  57. *ret_page = phys_to_page(phys);
  58. ptr = (void *)val;
  59. memset(ptr, 0, size);
  60. }
  61. return ptr;
  62. }
  63. static bool __in_atomic_pool(void *start, size_t size)
  64. {
  65. return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
  66. }
  67. static int __free_from_pool(void *start, size_t size)
  68. {
  69. if (!__in_atomic_pool(start, size))
  70. return 0;
  71. gen_pool_free(atomic_pool, (unsigned long)start, size);
  72. return 1;
  73. }
  74. static void *__dma_alloc_coherent(struct device *dev, size_t size,
  75. dma_addr_t *dma_handle, gfp_t flags,
  76. struct dma_attrs *attrs)
  77. {
  78. if (dev == NULL) {
  79. WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
  80. return NULL;
  81. }
  82. if (IS_ENABLED(CONFIG_ZONE_DMA) &&
  83. dev->coherent_dma_mask <= DMA_BIT_MASK(32))
  84. flags |= GFP_DMA;
  85. if (IS_ENABLED(CONFIG_DMA_CMA) && (flags & __GFP_WAIT)) {
  86. struct page *page;
  87. void *addr;
  88. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  89. get_order(size));
  90. if (!page)
  91. return NULL;
  92. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  93. addr = page_address(page);
  94. memset(addr, 0, size);
  95. return addr;
  96. } else {
  97. return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
  98. }
  99. }
  100. static void __dma_free_coherent(struct device *dev, size_t size,
  101. void *vaddr, dma_addr_t dma_handle,
  102. struct dma_attrs *attrs)
  103. {
  104. bool freed;
  105. phys_addr_t paddr = dma_to_phys(dev, dma_handle);
  106. if (dev == NULL) {
  107. WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
  108. return;
  109. }
  110. freed = dma_release_from_contiguous(dev,
  111. phys_to_page(paddr),
  112. size >> PAGE_SHIFT);
  113. if (!freed)
  114. swiotlb_free_coherent(dev, size, vaddr, dma_handle);
  115. }
  116. static void *__dma_alloc(struct device *dev, size_t size,
  117. dma_addr_t *dma_handle, gfp_t flags,
  118. struct dma_attrs *attrs)
  119. {
  120. struct page *page;
  121. void *ptr, *coherent_ptr;
  122. bool coherent = is_device_dma_coherent(dev);
  123. size = PAGE_ALIGN(size);
  124. if (!coherent && !(flags & __GFP_WAIT)) {
  125. struct page *page = NULL;
  126. void *addr = __alloc_from_pool(size, &page, flags);
  127. if (addr)
  128. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  129. return addr;
  130. }
  131. ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
  132. if (!ptr)
  133. goto no_mem;
  134. /* no need for non-cacheable mapping if coherent */
  135. if (coherent)
  136. return ptr;
  137. /* remove any dirty cache lines on the kernel alias */
  138. __dma_flush_range(ptr, ptr + size);
  139. /* create a coherent mapping */
  140. page = virt_to_page(ptr);
  141. coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
  142. __get_dma_pgprot(attrs,
  143. __pgprot(PROT_NORMAL_NC), false),
  144. NULL);
  145. if (!coherent_ptr)
  146. goto no_map;
  147. return coherent_ptr;
  148. no_map:
  149. __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
  150. no_mem:
  151. *dma_handle = DMA_ERROR_CODE;
  152. return NULL;
  153. }
  154. static void __dma_free(struct device *dev, size_t size,
  155. void *vaddr, dma_addr_t dma_handle,
  156. struct dma_attrs *attrs)
  157. {
  158. void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
  159. size = PAGE_ALIGN(size);
  160. if (!is_device_dma_coherent(dev)) {
  161. if (__free_from_pool(vaddr, size))
  162. return;
  163. vunmap(vaddr);
  164. }
  165. __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
  166. }
  167. static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
  168. unsigned long offset, size_t size,
  169. enum dma_data_direction dir,
  170. struct dma_attrs *attrs)
  171. {
  172. dma_addr_t dev_addr;
  173. dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
  174. if (!is_device_dma_coherent(dev))
  175. __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  176. return dev_addr;
  177. }
  178. static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
  179. size_t size, enum dma_data_direction dir,
  180. struct dma_attrs *attrs)
  181. {
  182. if (!is_device_dma_coherent(dev))
  183. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  184. swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
  185. }
  186. static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
  187. int nelems, enum dma_data_direction dir,
  188. struct dma_attrs *attrs)
  189. {
  190. struct scatterlist *sg;
  191. int i, ret;
  192. ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
  193. if (!is_device_dma_coherent(dev))
  194. for_each_sg(sgl, sg, ret, i)
  195. __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  196. sg->length, dir);
  197. return ret;
  198. }
  199. static void __swiotlb_unmap_sg_attrs(struct device *dev,
  200. struct scatterlist *sgl, int nelems,
  201. enum dma_data_direction dir,
  202. struct dma_attrs *attrs)
  203. {
  204. struct scatterlist *sg;
  205. int i;
  206. if (!is_device_dma_coherent(dev))
  207. for_each_sg(sgl, sg, nelems, i)
  208. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  209. sg->length, dir);
  210. swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
  211. }
  212. static void __swiotlb_sync_single_for_cpu(struct device *dev,
  213. dma_addr_t dev_addr, size_t size,
  214. enum dma_data_direction dir)
  215. {
  216. if (!is_device_dma_coherent(dev))
  217. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  218. swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
  219. }
  220. static void __swiotlb_sync_single_for_device(struct device *dev,
  221. dma_addr_t dev_addr, size_t size,
  222. enum dma_data_direction dir)
  223. {
  224. swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
  225. if (!is_device_dma_coherent(dev))
  226. __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  227. }
  228. static void __swiotlb_sync_sg_for_cpu(struct device *dev,
  229. struct scatterlist *sgl, int nelems,
  230. enum dma_data_direction dir)
  231. {
  232. struct scatterlist *sg;
  233. int i;
  234. if (!is_device_dma_coherent(dev))
  235. for_each_sg(sgl, sg, nelems, i)
  236. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  237. sg->length, dir);
  238. swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
  239. }
  240. static void __swiotlb_sync_sg_for_device(struct device *dev,
  241. struct scatterlist *sgl, int nelems,
  242. enum dma_data_direction dir)
  243. {
  244. struct scatterlist *sg;
  245. int i;
  246. swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
  247. if (!is_device_dma_coherent(dev))
  248. for_each_sg(sgl, sg, nelems, i)
  249. __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  250. sg->length, dir);
  251. }
  252. /* vma->vm_page_prot must be set appropriately before calling this function */
  253. static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
  254. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  255. {
  256. int ret = -ENXIO;
  257. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
  258. PAGE_SHIFT;
  259. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  260. unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
  261. unsigned long off = vma->vm_pgoff;
  262. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  263. return ret;
  264. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  265. ret = remap_pfn_range(vma, vma->vm_start,
  266. pfn + off,
  267. vma->vm_end - vma->vm_start,
  268. vma->vm_page_prot);
  269. }
  270. return ret;
  271. }
  272. static int __swiotlb_mmap(struct device *dev,
  273. struct vm_area_struct *vma,
  274. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  275. struct dma_attrs *attrs)
  276. {
  277. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
  278. is_device_dma_coherent(dev));
  279. return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
  280. }
  281. static struct dma_map_ops swiotlb_dma_ops = {
  282. .alloc = __dma_alloc,
  283. .free = __dma_free,
  284. .mmap = __swiotlb_mmap,
  285. .map_page = __swiotlb_map_page,
  286. .unmap_page = __swiotlb_unmap_page,
  287. .map_sg = __swiotlb_map_sg_attrs,
  288. .unmap_sg = __swiotlb_unmap_sg_attrs,
  289. .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
  290. .sync_single_for_device = __swiotlb_sync_single_for_device,
  291. .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
  292. .sync_sg_for_device = __swiotlb_sync_sg_for_device,
  293. .dma_supported = swiotlb_dma_supported,
  294. .mapping_error = swiotlb_dma_mapping_error,
  295. };
  296. static int __init atomic_pool_init(void)
  297. {
  298. pgprot_t prot = __pgprot(PROT_NORMAL_NC);
  299. unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
  300. struct page *page;
  301. void *addr;
  302. unsigned int pool_size_order = get_order(atomic_pool_size);
  303. if (dev_get_cma_area(NULL))
  304. page = dma_alloc_from_contiguous(NULL, nr_pages,
  305. pool_size_order);
  306. else
  307. page = alloc_pages(GFP_DMA, pool_size_order);
  308. if (page) {
  309. int ret;
  310. void *page_addr = page_address(page);
  311. memset(page_addr, 0, atomic_pool_size);
  312. __dma_flush_range(page_addr, page_addr + atomic_pool_size);
  313. atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
  314. if (!atomic_pool)
  315. goto free_page;
  316. addr = dma_common_contiguous_remap(page, atomic_pool_size,
  317. VM_USERMAP, prot, atomic_pool_init);
  318. if (!addr)
  319. goto destroy_genpool;
  320. ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
  321. page_to_phys(page),
  322. atomic_pool_size, -1);
  323. if (ret)
  324. goto remove_mapping;
  325. gen_pool_set_algo(atomic_pool,
  326. gen_pool_first_fit_order_align,
  327. (void *)PAGE_SHIFT);
  328. pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
  329. atomic_pool_size / 1024);
  330. return 0;
  331. }
  332. goto out;
  333. remove_mapping:
  334. dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
  335. destroy_genpool:
  336. gen_pool_destroy(atomic_pool);
  337. atomic_pool = NULL;
  338. free_page:
  339. if (!dma_release_from_contiguous(NULL, page, nr_pages))
  340. __free_pages(page, pool_size_order);
  341. out:
  342. pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
  343. atomic_pool_size / 1024);
  344. return -ENOMEM;
  345. }
  346. static int __init arm64_dma_init(void)
  347. {
  348. int ret;
  349. dma_ops = &swiotlb_dma_ops;
  350. ret = atomic_pool_init();
  351. return ret;
  352. }
  353. arch_initcall(arm64_dma_init);
  354. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  355. static int __init dma_debug_do_init(void)
  356. {
  357. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  358. return 0;
  359. }
  360. fs_initcall(dma_debug_do_init);