process.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. /*
  2. * Based on arch/arm/kernel/process.c
  3. *
  4. * Original Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6. * Copyright (C) 2012 ARM Ltd.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <stdarg.h>
  21. #include <linux/compat.h>
  22. #include <linux/efi.h>
  23. #include <linux/export.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/mm.h>
  27. #include <linux/stddef.h>
  28. #include <linux/unistd.h>
  29. #include <linux/user.h>
  30. #include <linux/delay.h>
  31. #include <linux/reboot.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/init.h>
  35. #include <linux/cpu.h>
  36. #include <linux/elfcore.h>
  37. #include <linux/pm.h>
  38. #include <linux/tick.h>
  39. #include <linux/utsname.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/random.h>
  42. #include <linux/hw_breakpoint.h>
  43. #include <linux/personality.h>
  44. #include <linux/notifier.h>
  45. #include <asm/compat.h>
  46. #include <asm/cacheflush.h>
  47. #include <asm/fpsimd.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/processor.h>
  50. #include <asm/stacktrace.h>
  51. #ifdef CONFIG_CC_STACKPROTECTOR
  52. #include <linux/stackprotector.h>
  53. unsigned long __stack_chk_guard __read_mostly;
  54. EXPORT_SYMBOL(__stack_chk_guard);
  55. #endif
  56. void soft_restart(unsigned long addr)
  57. {
  58. setup_mm_for_reboot();
  59. cpu_soft_restart(virt_to_phys(cpu_reset), addr);
  60. /* Should never get here */
  61. BUG();
  62. }
  63. /*
  64. * Function pointers to optional machine specific functions
  65. */
  66. void (*pm_power_off)(void);
  67. EXPORT_SYMBOL_GPL(pm_power_off);
  68. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  69. /*
  70. * This is our default idle handler.
  71. */
  72. void arch_cpu_idle(void)
  73. {
  74. /*
  75. * This should do all the clock switching and wait for interrupt
  76. * tricks
  77. */
  78. cpu_do_idle();
  79. local_irq_enable();
  80. }
  81. #ifdef CONFIG_HOTPLUG_CPU
  82. void arch_cpu_idle_dead(void)
  83. {
  84. cpu_die();
  85. }
  86. #endif
  87. /*
  88. * Called by kexec, immediately prior to machine_kexec().
  89. *
  90. * This must completely disable all secondary CPUs; simply causing those CPUs
  91. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  92. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  93. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  94. * functionality embodied in disable_nonboot_cpus() to achieve this.
  95. */
  96. void machine_shutdown(void)
  97. {
  98. disable_nonboot_cpus();
  99. }
  100. /*
  101. * Halting simply requires that the secondary CPUs stop performing any
  102. * activity (executing tasks, handling interrupts). smp_send_stop()
  103. * achieves this.
  104. */
  105. void machine_halt(void)
  106. {
  107. local_irq_disable();
  108. smp_send_stop();
  109. while (1);
  110. }
  111. /*
  112. * Power-off simply requires that the secondary CPUs stop performing any
  113. * activity (executing tasks, handling interrupts). smp_send_stop()
  114. * achieves this. When the system power is turned off, it will take all CPUs
  115. * with it.
  116. */
  117. void machine_power_off(void)
  118. {
  119. local_irq_disable();
  120. smp_send_stop();
  121. if (pm_power_off)
  122. pm_power_off();
  123. }
  124. /*
  125. * Restart requires that the secondary CPUs stop performing any activity
  126. * while the primary CPU resets the system. Systems with a single CPU can
  127. * use soft_restart() as their machine descriptor's .restart hook, since that
  128. * will cause the only available CPU to reset. Systems with multiple CPUs must
  129. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  130. * This is required so that any code running after reset on the primary CPU
  131. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  132. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  133. * to use. Implementing such co-ordination would be essentially impossible.
  134. */
  135. void machine_restart(char *cmd)
  136. {
  137. /* Disable interrupts first */
  138. local_irq_disable();
  139. smp_send_stop();
  140. /*
  141. * UpdateCapsule() depends on the system being reset via
  142. * ResetSystem().
  143. */
  144. if (efi_enabled(EFI_RUNTIME_SERVICES))
  145. efi_reboot(reboot_mode, NULL);
  146. /* Now call the architecture specific reboot code. */
  147. if (arm_pm_restart)
  148. arm_pm_restart(reboot_mode, cmd);
  149. else
  150. do_kernel_restart(cmd);
  151. /*
  152. * Whoops - the architecture was unable to reboot.
  153. */
  154. printk("Reboot failed -- System halted\n");
  155. while (1);
  156. }
  157. void __show_regs(struct pt_regs *regs)
  158. {
  159. int i, top_reg;
  160. u64 lr, sp;
  161. if (compat_user_mode(regs)) {
  162. lr = regs->compat_lr;
  163. sp = regs->compat_sp;
  164. top_reg = 12;
  165. } else {
  166. lr = regs->regs[30];
  167. sp = regs->sp;
  168. top_reg = 29;
  169. }
  170. show_regs_print_info(KERN_DEFAULT);
  171. print_symbol("PC is at %s\n", instruction_pointer(regs));
  172. print_symbol("LR is at %s\n", lr);
  173. printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
  174. regs->pc, lr, regs->pstate);
  175. printk("sp : %016llx\n", sp);
  176. for (i = top_reg; i >= 0; i--) {
  177. printk("x%-2d: %016llx ", i, regs->regs[i]);
  178. if (i % 2 == 0)
  179. printk("\n");
  180. }
  181. printk("\n");
  182. }
  183. void show_regs(struct pt_regs * regs)
  184. {
  185. printk("\n");
  186. __show_regs(regs);
  187. }
  188. /*
  189. * Free current thread data structures etc..
  190. */
  191. void exit_thread(void)
  192. {
  193. }
  194. static void tls_thread_flush(void)
  195. {
  196. asm ("msr tpidr_el0, xzr");
  197. if (is_compat_task()) {
  198. current->thread.tp_value = 0;
  199. /*
  200. * We need to ensure ordering between the shadow state and the
  201. * hardware state, so that we don't corrupt the hardware state
  202. * with a stale shadow state during context switch.
  203. */
  204. barrier();
  205. asm ("msr tpidrro_el0, xzr");
  206. }
  207. }
  208. void flush_thread(void)
  209. {
  210. fpsimd_flush_thread();
  211. tls_thread_flush();
  212. flush_ptrace_hw_breakpoint(current);
  213. }
  214. void release_thread(struct task_struct *dead_task)
  215. {
  216. }
  217. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  218. {
  219. fpsimd_preserve_current_state();
  220. *dst = *src;
  221. return 0;
  222. }
  223. asmlinkage void ret_from_fork(void) asm("ret_from_fork");
  224. int copy_thread(unsigned long clone_flags, unsigned long stack_start,
  225. unsigned long stk_sz, struct task_struct *p)
  226. {
  227. struct pt_regs *childregs = task_pt_regs(p);
  228. unsigned long tls = p->thread.tp_value;
  229. memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
  230. if (likely(!(p->flags & PF_KTHREAD))) {
  231. *childregs = *current_pt_regs();
  232. childregs->regs[0] = 0;
  233. if (is_compat_thread(task_thread_info(p))) {
  234. if (stack_start)
  235. childregs->compat_sp = stack_start;
  236. } else {
  237. /*
  238. * Read the current TLS pointer from tpidr_el0 as it may be
  239. * out-of-sync with the saved value.
  240. */
  241. asm("mrs %0, tpidr_el0" : "=r" (tls));
  242. if (stack_start) {
  243. /* 16-byte aligned stack mandatory on AArch64 */
  244. if (stack_start & 15)
  245. return -EINVAL;
  246. childregs->sp = stack_start;
  247. }
  248. }
  249. /*
  250. * If a TLS pointer was passed to clone (4th argument), use it
  251. * for the new thread.
  252. */
  253. if (clone_flags & CLONE_SETTLS)
  254. tls = childregs->regs[3];
  255. } else {
  256. memset(childregs, 0, sizeof(struct pt_regs));
  257. childregs->pstate = PSR_MODE_EL1h;
  258. p->thread.cpu_context.x19 = stack_start;
  259. p->thread.cpu_context.x20 = stk_sz;
  260. }
  261. p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
  262. p->thread.cpu_context.sp = (unsigned long)childregs;
  263. p->thread.tp_value = tls;
  264. ptrace_hw_copy_thread(p);
  265. return 0;
  266. }
  267. static void tls_thread_switch(struct task_struct *next)
  268. {
  269. unsigned long tpidr, tpidrro;
  270. if (!is_compat_task()) {
  271. asm("mrs %0, tpidr_el0" : "=r" (tpidr));
  272. current->thread.tp_value = tpidr;
  273. }
  274. if (is_compat_thread(task_thread_info(next))) {
  275. tpidr = 0;
  276. tpidrro = next->thread.tp_value;
  277. } else {
  278. tpidr = next->thread.tp_value;
  279. tpidrro = 0;
  280. }
  281. asm(
  282. " msr tpidr_el0, %0\n"
  283. " msr tpidrro_el0, %1"
  284. : : "r" (tpidr), "r" (tpidrro));
  285. }
  286. /*
  287. * Thread switching.
  288. */
  289. struct task_struct *__switch_to(struct task_struct *prev,
  290. struct task_struct *next)
  291. {
  292. struct task_struct *last;
  293. fpsimd_thread_switch(next);
  294. tls_thread_switch(next);
  295. hw_breakpoint_thread_switch(next);
  296. contextidr_thread_switch(next);
  297. /*
  298. * Complete any pending TLB or cache maintenance on this CPU in case
  299. * the thread migrates to a different CPU.
  300. */
  301. dsb(ish);
  302. /* the actual thread switch */
  303. last = cpu_switch_to(prev, next);
  304. return last;
  305. }
  306. unsigned long get_wchan(struct task_struct *p)
  307. {
  308. struct stackframe frame;
  309. unsigned long stack_page;
  310. int count = 0;
  311. if (!p || p == current || p->state == TASK_RUNNING)
  312. return 0;
  313. frame.fp = thread_saved_fp(p);
  314. frame.sp = thread_saved_sp(p);
  315. frame.pc = thread_saved_pc(p);
  316. stack_page = (unsigned long)task_stack_page(p);
  317. do {
  318. if (frame.sp < stack_page ||
  319. frame.sp >= stack_page + THREAD_SIZE ||
  320. unwind_frame(&frame))
  321. return 0;
  322. if (!in_sched_functions(frame.pc))
  323. return frame.pc;
  324. } while (count ++ < 16);
  325. return 0;
  326. }
  327. unsigned long arch_align_stack(unsigned long sp)
  328. {
  329. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  330. sp -= get_random_int() & ~PAGE_MASK;
  331. return sp & ~0xf;
  332. }
  333. static unsigned long randomize_base(unsigned long base)
  334. {
  335. unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
  336. return randomize_range(base, range_end, 0) ? : base;
  337. }
  338. unsigned long arch_randomize_brk(struct mm_struct *mm)
  339. {
  340. return randomize_base(mm->brk);
  341. }