emulate.c 150 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  13. *
  14. * Avi Kivity <avi@qumranet.com>
  15. * Yaniv Kamay <yaniv@qumranet.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  21. */
  22. #include <linux/kvm_host.h>
  23. #include "kvm_cache_regs.h"
  24. #include <asm/kvm_emulate.h>
  25. #include <linux/stringify.h>
  26. #include <asm/debugreg.h>
  27. #include <asm/nospec-branch.h>
  28. #include "x86.h"
  29. #include "tss.h"
  30. #include "mmu.h"
  31. #include "pmu.h"
  32. /*
  33. * Operand types
  34. */
  35. #define OpNone 0ull
  36. #define OpImplicit 1ull /* No generic decode */
  37. #define OpReg 2ull /* Register */
  38. #define OpMem 3ull /* Memory */
  39. #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
  40. #define OpDI 5ull /* ES:DI/EDI/RDI */
  41. #define OpMem64 6ull /* Memory, 64-bit */
  42. #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
  43. #define OpDX 8ull /* DX register */
  44. #define OpCL 9ull /* CL register (for shifts) */
  45. #define OpImmByte 10ull /* 8-bit sign extended immediate */
  46. #define OpOne 11ull /* Implied 1 */
  47. #define OpImm 12ull /* Sign extended up to 32-bit immediate */
  48. #define OpMem16 13ull /* Memory operand (16-bit). */
  49. #define OpMem32 14ull /* Memory operand (32-bit). */
  50. #define OpImmU 15ull /* Immediate operand, zero extended */
  51. #define OpSI 16ull /* SI/ESI/RSI */
  52. #define OpImmFAddr 17ull /* Immediate far address */
  53. #define OpMemFAddr 18ull /* Far address in memory */
  54. #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
  55. #define OpES 20ull /* ES */
  56. #define OpCS 21ull /* CS */
  57. #define OpSS 22ull /* SS */
  58. #define OpDS 23ull /* DS */
  59. #define OpFS 24ull /* FS */
  60. #define OpGS 25ull /* GS */
  61. #define OpMem8 26ull /* 8-bit zero extended memory operand */
  62. #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
  63. #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
  64. #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
  65. #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
  66. #define OpBits 5 /* Width of operand field */
  67. #define OpMask ((1ull << OpBits) - 1)
  68. /*
  69. * Opcode effective-address decode tables.
  70. * Note that we only emulate instructions that have at least one memory
  71. * operand (excluding implicit stack references). We assume that stack
  72. * references and instruction fetches will never occur in special memory
  73. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  74. * not be handled.
  75. */
  76. /* Operand sizes: 8-bit operands or specified/overridden size. */
  77. #define ByteOp (1<<0) /* 8-bit operands. */
  78. /* Destination operand type. */
  79. #define DstShift 1
  80. #define ImplicitOps (OpImplicit << DstShift)
  81. #define DstReg (OpReg << DstShift)
  82. #define DstMem (OpMem << DstShift)
  83. #define DstAcc (OpAcc << DstShift)
  84. #define DstDI (OpDI << DstShift)
  85. #define DstMem64 (OpMem64 << DstShift)
  86. #define DstMem16 (OpMem16 << DstShift)
  87. #define DstImmUByte (OpImmUByte << DstShift)
  88. #define DstDX (OpDX << DstShift)
  89. #define DstAccLo (OpAccLo << DstShift)
  90. #define DstMask (OpMask << DstShift)
  91. /* Source operand type. */
  92. #define SrcShift 6
  93. #define SrcNone (OpNone << SrcShift)
  94. #define SrcReg (OpReg << SrcShift)
  95. #define SrcMem (OpMem << SrcShift)
  96. #define SrcMem16 (OpMem16 << SrcShift)
  97. #define SrcMem32 (OpMem32 << SrcShift)
  98. #define SrcImm (OpImm << SrcShift)
  99. #define SrcImmByte (OpImmByte << SrcShift)
  100. #define SrcOne (OpOne << SrcShift)
  101. #define SrcImmUByte (OpImmUByte << SrcShift)
  102. #define SrcImmU (OpImmU << SrcShift)
  103. #define SrcSI (OpSI << SrcShift)
  104. #define SrcXLat (OpXLat << SrcShift)
  105. #define SrcImmFAddr (OpImmFAddr << SrcShift)
  106. #define SrcMemFAddr (OpMemFAddr << SrcShift)
  107. #define SrcAcc (OpAcc << SrcShift)
  108. #define SrcImmU16 (OpImmU16 << SrcShift)
  109. #define SrcImm64 (OpImm64 << SrcShift)
  110. #define SrcDX (OpDX << SrcShift)
  111. #define SrcMem8 (OpMem8 << SrcShift)
  112. #define SrcAccHi (OpAccHi << SrcShift)
  113. #define SrcMask (OpMask << SrcShift)
  114. #define BitOp (1<<11)
  115. #define MemAbs (1<<12) /* Memory operand is absolute displacement */
  116. #define String (1<<13) /* String instruction (rep capable) */
  117. #define Stack (1<<14) /* Stack instruction (push/pop) */
  118. #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
  119. #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
  120. #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
  121. #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
  122. #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
  123. #define Escape (5<<15) /* Escape to coprocessor instruction */
  124. #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
  125. #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
  126. #define Sse (1<<18) /* SSE Vector instruction */
  127. /* Generic ModRM decode. */
  128. #define ModRM (1<<19)
  129. /* Destination is only written; never read. */
  130. #define Mov (1<<20)
  131. /* Misc flags */
  132. #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
  133. #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
  134. #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
  135. #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
  136. #define Undefined (1<<25) /* No Such Instruction */
  137. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  138. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  139. #define No64 (1<<28)
  140. #define PageTable (1 << 29) /* instruction used to write page table */
  141. #define NotImpl (1 << 30) /* instruction is not implemented */
  142. /* Source 2 operand type */
  143. #define Src2Shift (31)
  144. #define Src2None (OpNone << Src2Shift)
  145. #define Src2Mem (OpMem << Src2Shift)
  146. #define Src2CL (OpCL << Src2Shift)
  147. #define Src2ImmByte (OpImmByte << Src2Shift)
  148. #define Src2One (OpOne << Src2Shift)
  149. #define Src2Imm (OpImm << Src2Shift)
  150. #define Src2ES (OpES << Src2Shift)
  151. #define Src2CS (OpCS << Src2Shift)
  152. #define Src2SS (OpSS << Src2Shift)
  153. #define Src2DS (OpDS << Src2Shift)
  154. #define Src2FS (OpFS << Src2Shift)
  155. #define Src2GS (OpGS << Src2Shift)
  156. #define Src2Mask (OpMask << Src2Shift)
  157. #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
  158. #define AlignMask ((u64)7 << 41)
  159. #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
  160. #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
  161. #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
  162. #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
  163. #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
  164. #define NoWrite ((u64)1 << 45) /* No writeback */
  165. #define SrcWrite ((u64)1 << 46) /* Write back src operand */
  166. #define NoMod ((u64)1 << 47) /* Mod field is ignored */
  167. #define Intercept ((u64)1 << 48) /* Has valid intercept field */
  168. #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
  169. #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
  170. #define NearBranch ((u64)1 << 52) /* Near branches */
  171. #define No16 ((u64)1 << 53) /* No 16 bit operand */
  172. #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
  173. #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
  174. #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
  175. #define X2(x...) x, x
  176. #define X3(x...) X2(x), x
  177. #define X4(x...) X2(x), X2(x)
  178. #define X5(x...) X4(x), x
  179. #define X6(x...) X4(x), X2(x)
  180. #define X7(x...) X4(x), X3(x)
  181. #define X8(x...) X4(x), X4(x)
  182. #define X16(x...) X8(x), X8(x)
  183. #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
  184. #define FASTOP_SIZE 8
  185. /*
  186. * fastop functions have a special calling convention:
  187. *
  188. * dst: rax (in/out)
  189. * src: rdx (in/out)
  190. * src2: rcx (in)
  191. * flags: rflags (in/out)
  192. * ex: rsi (in:fastop pointer, out:zero if exception)
  193. *
  194. * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
  195. * different operand sizes can be reached by calculation, rather than a jump
  196. * table (which would be bigger than the code).
  197. *
  198. * fastop functions are declared as taking a never-defined fastop parameter,
  199. * so they can't be called from C directly.
  200. */
  201. struct fastop;
  202. struct opcode {
  203. u64 flags : 56;
  204. u64 intercept : 8;
  205. union {
  206. int (*execute)(struct x86_emulate_ctxt *ctxt);
  207. const struct opcode *group;
  208. const struct group_dual *gdual;
  209. const struct gprefix *gprefix;
  210. const struct escape *esc;
  211. const struct instr_dual *idual;
  212. const struct mode_dual *mdual;
  213. void (*fastop)(struct fastop *fake);
  214. } u;
  215. int (*check_perm)(struct x86_emulate_ctxt *ctxt);
  216. };
  217. struct group_dual {
  218. struct opcode mod012[8];
  219. struct opcode mod3[8];
  220. };
  221. struct gprefix {
  222. struct opcode pfx_no;
  223. struct opcode pfx_66;
  224. struct opcode pfx_f2;
  225. struct opcode pfx_f3;
  226. };
  227. struct escape {
  228. struct opcode op[8];
  229. struct opcode high[64];
  230. };
  231. struct instr_dual {
  232. struct opcode mod012;
  233. struct opcode mod3;
  234. };
  235. struct mode_dual {
  236. struct opcode mode32;
  237. struct opcode mode64;
  238. };
  239. #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
  240. enum x86_transfer_type {
  241. X86_TRANSFER_NONE,
  242. X86_TRANSFER_CALL_JMP,
  243. X86_TRANSFER_RET,
  244. X86_TRANSFER_TASK_SWITCH,
  245. };
  246. static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
  247. {
  248. if (!(ctxt->regs_valid & (1 << nr))) {
  249. ctxt->regs_valid |= 1 << nr;
  250. ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
  251. }
  252. return ctxt->_regs[nr];
  253. }
  254. static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
  255. {
  256. ctxt->regs_valid |= 1 << nr;
  257. ctxt->regs_dirty |= 1 << nr;
  258. return &ctxt->_regs[nr];
  259. }
  260. static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
  261. {
  262. reg_read(ctxt, nr);
  263. return reg_write(ctxt, nr);
  264. }
  265. static void writeback_registers(struct x86_emulate_ctxt *ctxt)
  266. {
  267. unsigned reg;
  268. for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
  269. ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
  270. }
  271. static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
  272. {
  273. ctxt->regs_dirty = 0;
  274. ctxt->regs_valid = 0;
  275. }
  276. /*
  277. * These EFLAGS bits are restored from saved value during emulation, and
  278. * any changes are written back to the saved value after emulation.
  279. */
  280. #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
  281. X86_EFLAGS_PF|X86_EFLAGS_CF)
  282. #ifdef CONFIG_X86_64
  283. #define ON64(x) x
  284. #else
  285. #define ON64(x)
  286. #endif
  287. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
  288. #define FOP_FUNC(name) \
  289. ".align " __stringify(FASTOP_SIZE) " \n\t" \
  290. ".type " name ", @function \n\t" \
  291. name ":\n\t"
  292. #define FOP_RET "ret \n\t"
  293. #define FOP_START(op) \
  294. extern void em_##op(struct fastop *fake); \
  295. asm(".pushsection .text, \"ax\" \n\t" \
  296. ".global em_" #op " \n\t" \
  297. FOP_FUNC("em_" #op)
  298. #define FOP_END \
  299. ".popsection")
  300. #define FOPNOP() \
  301. FOP_FUNC(__stringify(__UNIQUE_ID(nop))) \
  302. FOP_RET
  303. #define FOP1E(op, dst) \
  304. FOP_FUNC(#op "_" #dst) \
  305. "10: " #op " %" #dst " \n\t" FOP_RET
  306. #define FOP1EEX(op, dst) \
  307. FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
  308. #define FASTOP1(op) \
  309. FOP_START(op) \
  310. FOP1E(op##b, al) \
  311. FOP1E(op##w, ax) \
  312. FOP1E(op##l, eax) \
  313. ON64(FOP1E(op##q, rax)) \
  314. FOP_END
  315. /* 1-operand, using src2 (for MUL/DIV r/m) */
  316. #define FASTOP1SRC2(op, name) \
  317. FOP_START(name) \
  318. FOP1E(op, cl) \
  319. FOP1E(op, cx) \
  320. FOP1E(op, ecx) \
  321. ON64(FOP1E(op, rcx)) \
  322. FOP_END
  323. /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
  324. #define FASTOP1SRC2EX(op, name) \
  325. FOP_START(name) \
  326. FOP1EEX(op, cl) \
  327. FOP1EEX(op, cx) \
  328. FOP1EEX(op, ecx) \
  329. ON64(FOP1EEX(op, rcx)) \
  330. FOP_END
  331. #define FOP2E(op, dst, src) \
  332. FOP_FUNC(#op "_" #dst "_" #src) \
  333. #op " %" #src ", %" #dst " \n\t" FOP_RET
  334. #define FASTOP2(op) \
  335. FOP_START(op) \
  336. FOP2E(op##b, al, dl) \
  337. FOP2E(op##w, ax, dx) \
  338. FOP2E(op##l, eax, edx) \
  339. ON64(FOP2E(op##q, rax, rdx)) \
  340. FOP_END
  341. /* 2 operand, word only */
  342. #define FASTOP2W(op) \
  343. FOP_START(op) \
  344. FOPNOP() \
  345. FOP2E(op##w, ax, dx) \
  346. FOP2E(op##l, eax, edx) \
  347. ON64(FOP2E(op##q, rax, rdx)) \
  348. FOP_END
  349. /* 2 operand, src is CL */
  350. #define FASTOP2CL(op) \
  351. FOP_START(op) \
  352. FOP2E(op##b, al, cl) \
  353. FOP2E(op##w, ax, cl) \
  354. FOP2E(op##l, eax, cl) \
  355. ON64(FOP2E(op##q, rax, cl)) \
  356. FOP_END
  357. /* 2 operand, src and dest are reversed */
  358. #define FASTOP2R(op, name) \
  359. FOP_START(name) \
  360. FOP2E(op##b, dl, al) \
  361. FOP2E(op##w, dx, ax) \
  362. FOP2E(op##l, edx, eax) \
  363. ON64(FOP2E(op##q, rdx, rax)) \
  364. FOP_END
  365. #define FOP3E(op, dst, src, src2) \
  366. FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
  367. #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
  368. /* 3-operand, word-only, src2=cl */
  369. #define FASTOP3WCL(op) \
  370. FOP_START(op) \
  371. FOPNOP() \
  372. FOP3E(op##w, ax, dx, cl) \
  373. FOP3E(op##l, eax, edx, cl) \
  374. ON64(FOP3E(op##q, rax, rdx, cl)) \
  375. FOP_END
  376. /* Special case for SETcc - 1 instruction per cc */
  377. #define FOP_SETCC(op) \
  378. ".align 4 \n\t" \
  379. ".type " #op ", @function \n\t" \
  380. #op ": \n\t" \
  381. #op " %al \n\t" \
  382. FOP_RET
  383. asm(".pushsection .fixup, \"ax\"\n"
  384. ".global kvm_fastop_exception \n"
  385. "kvm_fastop_exception: xor %esi, %esi; ret\n"
  386. ".popsection");
  387. FOP_START(setcc)
  388. FOP_SETCC(seto)
  389. FOP_SETCC(setno)
  390. FOP_SETCC(setc)
  391. FOP_SETCC(setnc)
  392. FOP_SETCC(setz)
  393. FOP_SETCC(setnz)
  394. FOP_SETCC(setbe)
  395. FOP_SETCC(setnbe)
  396. FOP_SETCC(sets)
  397. FOP_SETCC(setns)
  398. FOP_SETCC(setp)
  399. FOP_SETCC(setnp)
  400. FOP_SETCC(setl)
  401. FOP_SETCC(setnl)
  402. FOP_SETCC(setle)
  403. FOP_SETCC(setnle)
  404. FOP_END;
  405. FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
  406. FOP_END;
  407. /*
  408. * XXX: inoutclob user must know where the argument is being expanded.
  409. * Relying on CC_HAVE_ASM_GOTO would allow us to remove _fault.
  410. */
  411. #define asm_safe(insn, inoutclob...) \
  412. ({ \
  413. int _fault = 0; \
  414. \
  415. asm volatile("1:" insn "\n" \
  416. "2:\n" \
  417. ".pushsection .fixup, \"ax\"\n" \
  418. "3: movl $1, %[_fault]\n" \
  419. " jmp 2b\n" \
  420. ".popsection\n" \
  421. _ASM_EXTABLE(1b, 3b) \
  422. : [_fault] "+qm"(_fault) inoutclob ); \
  423. \
  424. _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
  425. })
  426. static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
  427. enum x86_intercept intercept,
  428. enum x86_intercept_stage stage)
  429. {
  430. struct x86_instruction_info info = {
  431. .intercept = intercept,
  432. .rep_prefix = ctxt->rep_prefix,
  433. .modrm_mod = ctxt->modrm_mod,
  434. .modrm_reg = ctxt->modrm_reg,
  435. .modrm_rm = ctxt->modrm_rm,
  436. .src_val = ctxt->src.val64,
  437. .dst_val = ctxt->dst.val64,
  438. .src_bytes = ctxt->src.bytes,
  439. .dst_bytes = ctxt->dst.bytes,
  440. .ad_bytes = ctxt->ad_bytes,
  441. .next_rip = ctxt->eip,
  442. };
  443. return ctxt->ops->intercept(ctxt, &info, stage);
  444. }
  445. static void assign_masked(ulong *dest, ulong src, ulong mask)
  446. {
  447. *dest = (*dest & ~mask) | (src & mask);
  448. }
  449. static void assign_register(unsigned long *reg, u64 val, int bytes)
  450. {
  451. /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
  452. switch (bytes) {
  453. case 1:
  454. *(u8 *)reg = (u8)val;
  455. break;
  456. case 2:
  457. *(u16 *)reg = (u16)val;
  458. break;
  459. case 4:
  460. *reg = (u32)val;
  461. break; /* 64b: zero-extend */
  462. case 8:
  463. *reg = val;
  464. break;
  465. }
  466. }
  467. static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
  468. {
  469. return (1UL << (ctxt->ad_bytes << 3)) - 1;
  470. }
  471. static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
  472. {
  473. u16 sel;
  474. struct desc_struct ss;
  475. if (ctxt->mode == X86EMUL_MODE_PROT64)
  476. return ~0UL;
  477. ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
  478. return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
  479. }
  480. static int stack_size(struct x86_emulate_ctxt *ctxt)
  481. {
  482. return (__fls(stack_mask(ctxt)) + 1) >> 3;
  483. }
  484. /* Access/update address held in a register, based on addressing mode. */
  485. static inline unsigned long
  486. address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
  487. {
  488. if (ctxt->ad_bytes == sizeof(unsigned long))
  489. return reg;
  490. else
  491. return reg & ad_mask(ctxt);
  492. }
  493. static inline unsigned long
  494. register_address(struct x86_emulate_ctxt *ctxt, int reg)
  495. {
  496. return address_mask(ctxt, reg_read(ctxt, reg));
  497. }
  498. static void masked_increment(ulong *reg, ulong mask, int inc)
  499. {
  500. assign_masked(reg, *reg + inc, mask);
  501. }
  502. static inline void
  503. register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
  504. {
  505. ulong *preg = reg_rmw(ctxt, reg);
  506. assign_register(preg, *preg + inc, ctxt->ad_bytes);
  507. }
  508. static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
  509. {
  510. masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
  511. }
  512. static u32 desc_limit_scaled(struct desc_struct *desc)
  513. {
  514. u32 limit = get_desc_limit(desc);
  515. return desc->g ? (limit << 12) | 0xfff : limit;
  516. }
  517. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  518. {
  519. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  520. return 0;
  521. return ctxt->ops->get_cached_segment_base(ctxt, seg);
  522. }
  523. static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
  524. u32 error, bool valid)
  525. {
  526. WARN_ON(vec > 0x1f);
  527. ctxt->exception.vector = vec;
  528. ctxt->exception.error_code = error;
  529. ctxt->exception.error_code_valid = valid;
  530. return X86EMUL_PROPAGATE_FAULT;
  531. }
  532. static int emulate_db(struct x86_emulate_ctxt *ctxt)
  533. {
  534. return emulate_exception(ctxt, DB_VECTOR, 0, false);
  535. }
  536. static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
  537. {
  538. return emulate_exception(ctxt, GP_VECTOR, err, true);
  539. }
  540. static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
  541. {
  542. return emulate_exception(ctxt, SS_VECTOR, err, true);
  543. }
  544. static int emulate_ud(struct x86_emulate_ctxt *ctxt)
  545. {
  546. return emulate_exception(ctxt, UD_VECTOR, 0, false);
  547. }
  548. static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
  549. {
  550. return emulate_exception(ctxt, TS_VECTOR, err, true);
  551. }
  552. static int emulate_de(struct x86_emulate_ctxt *ctxt)
  553. {
  554. return emulate_exception(ctxt, DE_VECTOR, 0, false);
  555. }
  556. static int emulate_nm(struct x86_emulate_ctxt *ctxt)
  557. {
  558. return emulate_exception(ctxt, NM_VECTOR, 0, false);
  559. }
  560. static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
  561. {
  562. u16 selector;
  563. struct desc_struct desc;
  564. ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
  565. return selector;
  566. }
  567. static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
  568. unsigned seg)
  569. {
  570. u16 dummy;
  571. u32 base3;
  572. struct desc_struct desc;
  573. ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
  574. ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
  575. }
  576. /*
  577. * x86 defines three classes of vector instructions: explicitly
  578. * aligned, explicitly unaligned, and the rest, which change behaviour
  579. * depending on whether they're AVX encoded or not.
  580. *
  581. * Also included is CMPXCHG16B which is not a vector instruction, yet it is
  582. * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
  583. * 512 bytes of data must be aligned to a 16 byte boundary.
  584. */
  585. static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
  586. {
  587. u64 alignment = ctxt->d & AlignMask;
  588. if (likely(size < 16))
  589. return 1;
  590. switch (alignment) {
  591. case Unaligned:
  592. case Avx:
  593. return 1;
  594. case Aligned16:
  595. return 16;
  596. case Aligned:
  597. default:
  598. return size;
  599. }
  600. }
  601. static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
  602. struct segmented_address addr,
  603. unsigned *max_size, unsigned size,
  604. bool write, bool fetch,
  605. enum x86emul_mode mode, ulong *linear)
  606. {
  607. struct desc_struct desc;
  608. bool usable;
  609. ulong la;
  610. u32 lim;
  611. u16 sel;
  612. u8 va_bits;
  613. la = seg_base(ctxt, addr.seg) + addr.ea;
  614. *max_size = 0;
  615. switch (mode) {
  616. case X86EMUL_MODE_PROT64:
  617. *linear = la;
  618. va_bits = ctxt_virt_addr_bits(ctxt);
  619. if (get_canonical(la, va_bits) != la)
  620. goto bad;
  621. *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
  622. if (size > *max_size)
  623. goto bad;
  624. break;
  625. default:
  626. *linear = la = (u32)la;
  627. usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
  628. addr.seg);
  629. if (!usable)
  630. goto bad;
  631. /* code segment in protected mode or read-only data segment */
  632. if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
  633. || !(desc.type & 2)) && write)
  634. goto bad;
  635. /* unreadable code segment */
  636. if (!fetch && (desc.type & 8) && !(desc.type & 2))
  637. goto bad;
  638. lim = desc_limit_scaled(&desc);
  639. if (!(desc.type & 8) && (desc.type & 4)) {
  640. /* expand-down segment */
  641. if (addr.ea <= lim)
  642. goto bad;
  643. lim = desc.d ? 0xffffffff : 0xffff;
  644. }
  645. if (addr.ea > lim)
  646. goto bad;
  647. if (lim == 0xffffffff)
  648. *max_size = ~0u;
  649. else {
  650. *max_size = (u64)lim + 1 - addr.ea;
  651. if (size > *max_size)
  652. goto bad;
  653. }
  654. break;
  655. }
  656. if (la & (insn_alignment(ctxt, size) - 1))
  657. return emulate_gp(ctxt, 0);
  658. return X86EMUL_CONTINUE;
  659. bad:
  660. if (addr.seg == VCPU_SREG_SS)
  661. return emulate_ss(ctxt, 0);
  662. else
  663. return emulate_gp(ctxt, 0);
  664. }
  665. static int linearize(struct x86_emulate_ctxt *ctxt,
  666. struct segmented_address addr,
  667. unsigned size, bool write,
  668. ulong *linear)
  669. {
  670. unsigned max_size;
  671. return __linearize(ctxt, addr, &max_size, size, write, false,
  672. ctxt->mode, linear);
  673. }
  674. static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
  675. enum x86emul_mode mode)
  676. {
  677. ulong linear;
  678. int rc;
  679. unsigned max_size;
  680. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  681. .ea = dst };
  682. if (ctxt->op_bytes != sizeof(unsigned long))
  683. addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
  684. rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
  685. if (rc == X86EMUL_CONTINUE)
  686. ctxt->_eip = addr.ea;
  687. return rc;
  688. }
  689. static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
  690. {
  691. return assign_eip(ctxt, dst, ctxt->mode);
  692. }
  693. static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
  694. const struct desc_struct *cs_desc)
  695. {
  696. enum x86emul_mode mode = ctxt->mode;
  697. int rc;
  698. #ifdef CONFIG_X86_64
  699. if (ctxt->mode >= X86EMUL_MODE_PROT16) {
  700. if (cs_desc->l) {
  701. u64 efer = 0;
  702. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  703. if (efer & EFER_LMA)
  704. mode = X86EMUL_MODE_PROT64;
  705. } else
  706. mode = X86EMUL_MODE_PROT32; /* temporary value */
  707. }
  708. #endif
  709. if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
  710. mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  711. rc = assign_eip(ctxt, dst, mode);
  712. if (rc == X86EMUL_CONTINUE)
  713. ctxt->mode = mode;
  714. return rc;
  715. }
  716. static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
  717. {
  718. return assign_eip_near(ctxt, ctxt->_eip + rel);
  719. }
  720. static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
  721. void *data, unsigned size)
  722. {
  723. return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
  724. }
  725. static int linear_write_system(struct x86_emulate_ctxt *ctxt,
  726. ulong linear, void *data,
  727. unsigned int size)
  728. {
  729. return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
  730. }
  731. static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
  732. struct segmented_address addr,
  733. void *data,
  734. unsigned size)
  735. {
  736. int rc;
  737. ulong linear;
  738. rc = linearize(ctxt, addr, size, false, &linear);
  739. if (rc != X86EMUL_CONTINUE)
  740. return rc;
  741. return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
  742. }
  743. static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
  744. struct segmented_address addr,
  745. void *data,
  746. unsigned int size)
  747. {
  748. int rc;
  749. ulong linear;
  750. rc = linearize(ctxt, addr, size, true, &linear);
  751. if (rc != X86EMUL_CONTINUE)
  752. return rc;
  753. return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
  754. }
  755. /*
  756. * Prefetch the remaining bytes of the instruction without crossing page
  757. * boundary if they are not in fetch_cache yet.
  758. */
  759. static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
  760. {
  761. int rc;
  762. unsigned size, max_size;
  763. unsigned long linear;
  764. int cur_size = ctxt->fetch.end - ctxt->fetch.data;
  765. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  766. .ea = ctxt->eip + cur_size };
  767. /*
  768. * We do not know exactly how many bytes will be needed, and
  769. * __linearize is expensive, so fetch as much as possible. We
  770. * just have to avoid going beyond the 15 byte limit, the end
  771. * of the segment, or the end of the page.
  772. *
  773. * __linearize is called with size 0 so that it does not do any
  774. * boundary check itself. Instead, we use max_size to check
  775. * against op_size.
  776. */
  777. rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
  778. &linear);
  779. if (unlikely(rc != X86EMUL_CONTINUE))
  780. return rc;
  781. size = min_t(unsigned, 15UL ^ cur_size, max_size);
  782. size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
  783. /*
  784. * One instruction can only straddle two pages,
  785. * and one has been loaded at the beginning of
  786. * x86_decode_insn. So, if not enough bytes
  787. * still, we must have hit the 15-byte boundary.
  788. */
  789. if (unlikely(size < op_size))
  790. return emulate_gp(ctxt, 0);
  791. rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
  792. size, &ctxt->exception);
  793. if (unlikely(rc != X86EMUL_CONTINUE))
  794. return rc;
  795. ctxt->fetch.end += size;
  796. return X86EMUL_CONTINUE;
  797. }
  798. static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
  799. unsigned size)
  800. {
  801. unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
  802. if (unlikely(done_size < size))
  803. return __do_insn_fetch_bytes(ctxt, size - done_size);
  804. else
  805. return X86EMUL_CONTINUE;
  806. }
  807. /* Fetch next part of the instruction being emulated. */
  808. #define insn_fetch(_type, _ctxt) \
  809. ({ _type _x; \
  810. \
  811. rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
  812. if (rc != X86EMUL_CONTINUE) \
  813. goto done; \
  814. ctxt->_eip += sizeof(_type); \
  815. memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
  816. ctxt->fetch.ptr += sizeof(_type); \
  817. _x; \
  818. })
  819. #define insn_fetch_arr(_arr, _size, _ctxt) \
  820. ({ \
  821. rc = do_insn_fetch_bytes(_ctxt, _size); \
  822. if (rc != X86EMUL_CONTINUE) \
  823. goto done; \
  824. ctxt->_eip += (_size); \
  825. memcpy(_arr, ctxt->fetch.ptr, _size); \
  826. ctxt->fetch.ptr += (_size); \
  827. })
  828. /*
  829. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  830. * pointer into the block that addresses the relevant register.
  831. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  832. */
  833. static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
  834. int byteop)
  835. {
  836. void *p;
  837. int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
  838. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  839. p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
  840. else
  841. p = reg_rmw(ctxt, modrm_reg);
  842. return p;
  843. }
  844. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  845. struct segmented_address addr,
  846. u16 *size, unsigned long *address, int op_bytes)
  847. {
  848. int rc;
  849. if (op_bytes == 2)
  850. op_bytes = 3;
  851. *address = 0;
  852. rc = segmented_read_std(ctxt, addr, size, 2);
  853. if (rc != X86EMUL_CONTINUE)
  854. return rc;
  855. addr.ea += 2;
  856. rc = segmented_read_std(ctxt, addr, address, op_bytes);
  857. return rc;
  858. }
  859. FASTOP2(add);
  860. FASTOP2(or);
  861. FASTOP2(adc);
  862. FASTOP2(sbb);
  863. FASTOP2(and);
  864. FASTOP2(sub);
  865. FASTOP2(xor);
  866. FASTOP2(cmp);
  867. FASTOP2(test);
  868. FASTOP1SRC2(mul, mul_ex);
  869. FASTOP1SRC2(imul, imul_ex);
  870. FASTOP1SRC2EX(div, div_ex);
  871. FASTOP1SRC2EX(idiv, idiv_ex);
  872. FASTOP3WCL(shld);
  873. FASTOP3WCL(shrd);
  874. FASTOP2W(imul);
  875. FASTOP1(not);
  876. FASTOP1(neg);
  877. FASTOP1(inc);
  878. FASTOP1(dec);
  879. FASTOP2CL(rol);
  880. FASTOP2CL(ror);
  881. FASTOP2CL(rcl);
  882. FASTOP2CL(rcr);
  883. FASTOP2CL(shl);
  884. FASTOP2CL(shr);
  885. FASTOP2CL(sar);
  886. FASTOP2W(bsf);
  887. FASTOP2W(bsr);
  888. FASTOP2W(bt);
  889. FASTOP2W(bts);
  890. FASTOP2W(btr);
  891. FASTOP2W(btc);
  892. FASTOP2(xadd);
  893. FASTOP2R(cmp, cmp_r);
  894. static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
  895. {
  896. /* If src is zero, do not writeback, but update flags */
  897. if (ctxt->src.val == 0)
  898. ctxt->dst.type = OP_NONE;
  899. return fastop(ctxt, em_bsf);
  900. }
  901. static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
  902. {
  903. /* If src is zero, do not writeback, but update flags */
  904. if (ctxt->src.val == 0)
  905. ctxt->dst.type = OP_NONE;
  906. return fastop(ctxt, em_bsr);
  907. }
  908. static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
  909. {
  910. u8 rc;
  911. void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
  912. flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
  913. asm("push %[flags]; popf; " CALL_NOSPEC
  914. : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags));
  915. return rc;
  916. }
  917. static void fetch_register_operand(struct operand *op)
  918. {
  919. switch (op->bytes) {
  920. case 1:
  921. op->val = *(u8 *)op->addr.reg;
  922. break;
  923. case 2:
  924. op->val = *(u16 *)op->addr.reg;
  925. break;
  926. case 4:
  927. op->val = *(u32 *)op->addr.reg;
  928. break;
  929. case 8:
  930. op->val = *(u64 *)op->addr.reg;
  931. break;
  932. }
  933. }
  934. static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
  935. {
  936. switch (reg) {
  937. case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
  938. case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
  939. case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
  940. case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
  941. case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
  942. case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
  943. case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
  944. case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
  945. #ifdef CONFIG_X86_64
  946. case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
  947. case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
  948. case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
  949. case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
  950. case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
  951. case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
  952. case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
  953. case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
  954. #endif
  955. default: BUG();
  956. }
  957. }
  958. static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
  959. int reg)
  960. {
  961. switch (reg) {
  962. case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
  963. case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
  964. case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
  965. case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
  966. case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
  967. case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
  968. case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
  969. case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
  970. #ifdef CONFIG_X86_64
  971. case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
  972. case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
  973. case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
  974. case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
  975. case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
  976. case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
  977. case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
  978. case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
  979. #endif
  980. default: BUG();
  981. }
  982. }
  983. static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  984. {
  985. switch (reg) {
  986. case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
  987. case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
  988. case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
  989. case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
  990. case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
  991. case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
  992. case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
  993. case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
  994. default: BUG();
  995. }
  996. }
  997. static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  998. {
  999. switch (reg) {
  1000. case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
  1001. case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
  1002. case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
  1003. case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
  1004. case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
  1005. case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
  1006. case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
  1007. case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
  1008. default: BUG();
  1009. }
  1010. }
  1011. static int em_fninit(struct x86_emulate_ctxt *ctxt)
  1012. {
  1013. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  1014. return emulate_nm(ctxt);
  1015. asm volatile("fninit");
  1016. return X86EMUL_CONTINUE;
  1017. }
  1018. static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
  1019. {
  1020. u16 fcw;
  1021. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  1022. return emulate_nm(ctxt);
  1023. asm volatile("fnstcw %0": "+m"(fcw));
  1024. ctxt->dst.val = fcw;
  1025. return X86EMUL_CONTINUE;
  1026. }
  1027. static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
  1028. {
  1029. u16 fsw;
  1030. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  1031. return emulate_nm(ctxt);
  1032. asm volatile("fnstsw %0": "+m"(fsw));
  1033. ctxt->dst.val = fsw;
  1034. return X86EMUL_CONTINUE;
  1035. }
  1036. static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
  1037. struct operand *op)
  1038. {
  1039. unsigned reg = ctxt->modrm_reg;
  1040. if (!(ctxt->d & ModRM))
  1041. reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
  1042. if (ctxt->d & Sse) {
  1043. op->type = OP_XMM;
  1044. op->bytes = 16;
  1045. op->addr.xmm = reg;
  1046. read_sse_reg(ctxt, &op->vec_val, reg);
  1047. return;
  1048. }
  1049. if (ctxt->d & Mmx) {
  1050. reg &= 7;
  1051. op->type = OP_MM;
  1052. op->bytes = 8;
  1053. op->addr.mm = reg;
  1054. return;
  1055. }
  1056. op->type = OP_REG;
  1057. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1058. op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
  1059. fetch_register_operand(op);
  1060. op->orig_val = op->val;
  1061. }
  1062. static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
  1063. {
  1064. if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
  1065. ctxt->modrm_seg = VCPU_SREG_SS;
  1066. }
  1067. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  1068. struct operand *op)
  1069. {
  1070. u8 sib;
  1071. int index_reg, base_reg, scale;
  1072. int rc = X86EMUL_CONTINUE;
  1073. ulong modrm_ea = 0;
  1074. ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
  1075. index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
  1076. base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
  1077. ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
  1078. ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
  1079. ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
  1080. ctxt->modrm_seg = VCPU_SREG_DS;
  1081. if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
  1082. op->type = OP_REG;
  1083. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1084. op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
  1085. ctxt->d & ByteOp);
  1086. if (ctxt->d & Sse) {
  1087. op->type = OP_XMM;
  1088. op->bytes = 16;
  1089. op->addr.xmm = ctxt->modrm_rm;
  1090. read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
  1091. return rc;
  1092. }
  1093. if (ctxt->d & Mmx) {
  1094. op->type = OP_MM;
  1095. op->bytes = 8;
  1096. op->addr.mm = ctxt->modrm_rm & 7;
  1097. return rc;
  1098. }
  1099. fetch_register_operand(op);
  1100. return rc;
  1101. }
  1102. op->type = OP_MEM;
  1103. if (ctxt->ad_bytes == 2) {
  1104. unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
  1105. unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
  1106. unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
  1107. unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
  1108. /* 16-bit ModR/M decode. */
  1109. switch (ctxt->modrm_mod) {
  1110. case 0:
  1111. if (ctxt->modrm_rm == 6)
  1112. modrm_ea += insn_fetch(u16, ctxt);
  1113. break;
  1114. case 1:
  1115. modrm_ea += insn_fetch(s8, ctxt);
  1116. break;
  1117. case 2:
  1118. modrm_ea += insn_fetch(u16, ctxt);
  1119. break;
  1120. }
  1121. switch (ctxt->modrm_rm) {
  1122. case 0:
  1123. modrm_ea += bx + si;
  1124. break;
  1125. case 1:
  1126. modrm_ea += bx + di;
  1127. break;
  1128. case 2:
  1129. modrm_ea += bp + si;
  1130. break;
  1131. case 3:
  1132. modrm_ea += bp + di;
  1133. break;
  1134. case 4:
  1135. modrm_ea += si;
  1136. break;
  1137. case 5:
  1138. modrm_ea += di;
  1139. break;
  1140. case 6:
  1141. if (ctxt->modrm_mod != 0)
  1142. modrm_ea += bp;
  1143. break;
  1144. case 7:
  1145. modrm_ea += bx;
  1146. break;
  1147. }
  1148. if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
  1149. (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
  1150. ctxt->modrm_seg = VCPU_SREG_SS;
  1151. modrm_ea = (u16)modrm_ea;
  1152. } else {
  1153. /* 32/64-bit ModR/M decode. */
  1154. if ((ctxt->modrm_rm & 7) == 4) {
  1155. sib = insn_fetch(u8, ctxt);
  1156. index_reg |= (sib >> 3) & 7;
  1157. base_reg |= sib & 7;
  1158. scale = sib >> 6;
  1159. if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
  1160. modrm_ea += insn_fetch(s32, ctxt);
  1161. else {
  1162. modrm_ea += reg_read(ctxt, base_reg);
  1163. adjust_modrm_seg(ctxt, base_reg);
  1164. /* Increment ESP on POP [ESP] */
  1165. if ((ctxt->d & IncSP) &&
  1166. base_reg == VCPU_REGS_RSP)
  1167. modrm_ea += ctxt->op_bytes;
  1168. }
  1169. if (index_reg != 4)
  1170. modrm_ea += reg_read(ctxt, index_reg) << scale;
  1171. } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
  1172. modrm_ea += insn_fetch(s32, ctxt);
  1173. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1174. ctxt->rip_relative = 1;
  1175. } else {
  1176. base_reg = ctxt->modrm_rm;
  1177. modrm_ea += reg_read(ctxt, base_reg);
  1178. adjust_modrm_seg(ctxt, base_reg);
  1179. }
  1180. switch (ctxt->modrm_mod) {
  1181. case 1:
  1182. modrm_ea += insn_fetch(s8, ctxt);
  1183. break;
  1184. case 2:
  1185. modrm_ea += insn_fetch(s32, ctxt);
  1186. break;
  1187. }
  1188. }
  1189. op->addr.mem.ea = modrm_ea;
  1190. if (ctxt->ad_bytes != 8)
  1191. ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
  1192. done:
  1193. return rc;
  1194. }
  1195. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  1196. struct operand *op)
  1197. {
  1198. int rc = X86EMUL_CONTINUE;
  1199. op->type = OP_MEM;
  1200. switch (ctxt->ad_bytes) {
  1201. case 2:
  1202. op->addr.mem.ea = insn_fetch(u16, ctxt);
  1203. break;
  1204. case 4:
  1205. op->addr.mem.ea = insn_fetch(u32, ctxt);
  1206. break;
  1207. case 8:
  1208. op->addr.mem.ea = insn_fetch(u64, ctxt);
  1209. break;
  1210. }
  1211. done:
  1212. return rc;
  1213. }
  1214. static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
  1215. {
  1216. long sv = 0, mask;
  1217. if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
  1218. mask = ~((long)ctxt->dst.bytes * 8 - 1);
  1219. if (ctxt->src.bytes == 2)
  1220. sv = (s16)ctxt->src.val & (s16)mask;
  1221. else if (ctxt->src.bytes == 4)
  1222. sv = (s32)ctxt->src.val & (s32)mask;
  1223. else
  1224. sv = (s64)ctxt->src.val & (s64)mask;
  1225. ctxt->dst.addr.mem.ea = address_mask(ctxt,
  1226. ctxt->dst.addr.mem.ea + (sv >> 3));
  1227. }
  1228. /* only subword offset */
  1229. ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
  1230. }
  1231. static int read_emulated(struct x86_emulate_ctxt *ctxt,
  1232. unsigned long addr, void *dest, unsigned size)
  1233. {
  1234. int rc;
  1235. struct read_cache *mc = &ctxt->mem_read;
  1236. if (mc->pos < mc->end)
  1237. goto read_cached;
  1238. WARN_ON((mc->end + size) >= sizeof(mc->data));
  1239. rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
  1240. &ctxt->exception);
  1241. if (rc != X86EMUL_CONTINUE)
  1242. return rc;
  1243. mc->end += size;
  1244. read_cached:
  1245. memcpy(dest, mc->data + mc->pos, size);
  1246. mc->pos += size;
  1247. return X86EMUL_CONTINUE;
  1248. }
  1249. static int segmented_read(struct x86_emulate_ctxt *ctxt,
  1250. struct segmented_address addr,
  1251. void *data,
  1252. unsigned size)
  1253. {
  1254. int rc;
  1255. ulong linear;
  1256. rc = linearize(ctxt, addr, size, false, &linear);
  1257. if (rc != X86EMUL_CONTINUE)
  1258. return rc;
  1259. return read_emulated(ctxt, linear, data, size);
  1260. }
  1261. static int segmented_write(struct x86_emulate_ctxt *ctxt,
  1262. struct segmented_address addr,
  1263. const void *data,
  1264. unsigned size)
  1265. {
  1266. int rc;
  1267. ulong linear;
  1268. rc = linearize(ctxt, addr, size, true, &linear);
  1269. if (rc != X86EMUL_CONTINUE)
  1270. return rc;
  1271. return ctxt->ops->write_emulated(ctxt, linear, data, size,
  1272. &ctxt->exception);
  1273. }
  1274. static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
  1275. struct segmented_address addr,
  1276. const void *orig_data, const void *data,
  1277. unsigned size)
  1278. {
  1279. int rc;
  1280. ulong linear;
  1281. rc = linearize(ctxt, addr, size, true, &linear);
  1282. if (rc != X86EMUL_CONTINUE)
  1283. return rc;
  1284. return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
  1285. size, &ctxt->exception);
  1286. }
  1287. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  1288. unsigned int size, unsigned short port,
  1289. void *dest)
  1290. {
  1291. struct read_cache *rc = &ctxt->io_read;
  1292. if (rc->pos == rc->end) { /* refill pio read ahead */
  1293. unsigned int in_page, n;
  1294. unsigned int count = ctxt->rep_prefix ?
  1295. address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
  1296. in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
  1297. offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
  1298. PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
  1299. n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
  1300. if (n == 0)
  1301. n = 1;
  1302. rc->pos = rc->end = 0;
  1303. if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
  1304. return 0;
  1305. rc->end = n * size;
  1306. }
  1307. if (ctxt->rep_prefix && (ctxt->d & String) &&
  1308. !(ctxt->eflags & X86_EFLAGS_DF)) {
  1309. ctxt->dst.data = rc->data + rc->pos;
  1310. ctxt->dst.type = OP_MEM_STR;
  1311. ctxt->dst.count = (rc->end - rc->pos) / size;
  1312. rc->pos = rc->end;
  1313. } else {
  1314. memcpy(dest, rc->data + rc->pos, size);
  1315. rc->pos += size;
  1316. }
  1317. return 1;
  1318. }
  1319. static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
  1320. u16 index, struct desc_struct *desc)
  1321. {
  1322. struct desc_ptr dt;
  1323. ulong addr;
  1324. ctxt->ops->get_idt(ctxt, &dt);
  1325. if (dt.size < index * 8 + 7)
  1326. return emulate_gp(ctxt, index << 3 | 0x2);
  1327. addr = dt.address + index * 8;
  1328. return linear_read_system(ctxt, addr, desc, sizeof *desc);
  1329. }
  1330. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1331. u16 selector, struct desc_ptr *dt)
  1332. {
  1333. const struct x86_emulate_ops *ops = ctxt->ops;
  1334. u32 base3 = 0;
  1335. if (selector & 1 << 2) {
  1336. struct desc_struct desc;
  1337. u16 sel;
  1338. memset (dt, 0, sizeof *dt);
  1339. if (!ops->get_segment(ctxt, &sel, &desc, &base3,
  1340. VCPU_SREG_LDTR))
  1341. return;
  1342. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1343. dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
  1344. } else
  1345. ops->get_gdt(ctxt, dt);
  1346. }
  1347. static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
  1348. u16 selector, ulong *desc_addr_p)
  1349. {
  1350. struct desc_ptr dt;
  1351. u16 index = selector >> 3;
  1352. ulong addr;
  1353. get_descriptor_table_ptr(ctxt, selector, &dt);
  1354. if (dt.size < index * 8 + 7)
  1355. return emulate_gp(ctxt, selector & 0xfffc);
  1356. addr = dt.address + index * 8;
  1357. #ifdef CONFIG_X86_64
  1358. if (addr >> 32 != 0) {
  1359. u64 efer = 0;
  1360. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1361. if (!(efer & EFER_LMA))
  1362. addr &= (u32)-1;
  1363. }
  1364. #endif
  1365. *desc_addr_p = addr;
  1366. return X86EMUL_CONTINUE;
  1367. }
  1368. /* allowed just for 8 bytes segments */
  1369. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1370. u16 selector, struct desc_struct *desc,
  1371. ulong *desc_addr_p)
  1372. {
  1373. int rc;
  1374. rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
  1375. if (rc != X86EMUL_CONTINUE)
  1376. return rc;
  1377. return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
  1378. }
  1379. /* allowed just for 8 bytes segments */
  1380. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1381. u16 selector, struct desc_struct *desc)
  1382. {
  1383. int rc;
  1384. ulong addr;
  1385. rc = get_descriptor_ptr(ctxt, selector, &addr);
  1386. if (rc != X86EMUL_CONTINUE)
  1387. return rc;
  1388. return linear_write_system(ctxt, addr, desc, sizeof *desc);
  1389. }
  1390. static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1391. u16 selector, int seg, u8 cpl,
  1392. enum x86_transfer_type transfer,
  1393. struct desc_struct *desc)
  1394. {
  1395. struct desc_struct seg_desc, old_desc;
  1396. u8 dpl, rpl;
  1397. unsigned err_vec = GP_VECTOR;
  1398. u32 err_code = 0;
  1399. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1400. ulong desc_addr;
  1401. int ret;
  1402. u16 dummy;
  1403. u32 base3 = 0;
  1404. memset(&seg_desc, 0, sizeof seg_desc);
  1405. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1406. /* set real mode segment descriptor (keep limit etc. for
  1407. * unreal mode) */
  1408. ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
  1409. set_desc_base(&seg_desc, selector << 4);
  1410. goto load;
  1411. } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
  1412. /* VM86 needs a clean new segment descriptor */
  1413. set_desc_base(&seg_desc, selector << 4);
  1414. set_desc_limit(&seg_desc, 0xffff);
  1415. seg_desc.type = 3;
  1416. seg_desc.p = 1;
  1417. seg_desc.s = 1;
  1418. seg_desc.dpl = 3;
  1419. goto load;
  1420. }
  1421. rpl = selector & 3;
  1422. /* TR should be in GDT only */
  1423. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1424. goto exception;
  1425. /* NULL selector is not valid for TR, CS and (except for long mode) SS */
  1426. if (null_selector) {
  1427. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
  1428. goto exception;
  1429. if (seg == VCPU_SREG_SS) {
  1430. if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
  1431. goto exception;
  1432. /*
  1433. * ctxt->ops->set_segment expects the CPL to be in
  1434. * SS.DPL, so fake an expand-up 32-bit data segment.
  1435. */
  1436. seg_desc.type = 3;
  1437. seg_desc.p = 1;
  1438. seg_desc.s = 1;
  1439. seg_desc.dpl = cpl;
  1440. seg_desc.d = 1;
  1441. seg_desc.g = 1;
  1442. }
  1443. /* Skip all following checks */
  1444. goto load;
  1445. }
  1446. ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
  1447. if (ret != X86EMUL_CONTINUE)
  1448. return ret;
  1449. err_code = selector & 0xfffc;
  1450. err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
  1451. GP_VECTOR;
  1452. /* can't load system descriptor into segment selector */
  1453. if (seg <= VCPU_SREG_GS && !seg_desc.s) {
  1454. if (transfer == X86_TRANSFER_CALL_JMP)
  1455. return X86EMUL_UNHANDLEABLE;
  1456. goto exception;
  1457. }
  1458. if (!seg_desc.p) {
  1459. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1460. goto exception;
  1461. }
  1462. dpl = seg_desc.dpl;
  1463. switch (seg) {
  1464. case VCPU_SREG_SS:
  1465. /*
  1466. * segment is not a writable data segment or segment
  1467. * selector's RPL != CPL or segment selector's RPL != CPL
  1468. */
  1469. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1470. goto exception;
  1471. break;
  1472. case VCPU_SREG_CS:
  1473. if (!(seg_desc.type & 8))
  1474. goto exception;
  1475. if (seg_desc.type & 4) {
  1476. /* conforming */
  1477. if (dpl > cpl)
  1478. goto exception;
  1479. } else {
  1480. /* nonconforming */
  1481. if (rpl > cpl || dpl != cpl)
  1482. goto exception;
  1483. }
  1484. /* in long-mode d/b must be clear if l is set */
  1485. if (seg_desc.d && seg_desc.l) {
  1486. u64 efer = 0;
  1487. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1488. if (efer & EFER_LMA)
  1489. goto exception;
  1490. }
  1491. /* CS(RPL) <- CPL */
  1492. selector = (selector & 0xfffc) | cpl;
  1493. break;
  1494. case VCPU_SREG_TR:
  1495. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1496. goto exception;
  1497. old_desc = seg_desc;
  1498. seg_desc.type |= 2; /* busy */
  1499. ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
  1500. sizeof(seg_desc), &ctxt->exception);
  1501. if (ret != X86EMUL_CONTINUE)
  1502. return ret;
  1503. break;
  1504. case VCPU_SREG_LDTR:
  1505. if (seg_desc.s || seg_desc.type != 2)
  1506. goto exception;
  1507. break;
  1508. default: /* DS, ES, FS, or GS */
  1509. /*
  1510. * segment is not a data or readable code segment or
  1511. * ((segment is a data or nonconforming code segment)
  1512. * and (both RPL and CPL > DPL))
  1513. */
  1514. if ((seg_desc.type & 0xa) == 0x8 ||
  1515. (((seg_desc.type & 0xc) != 0xc) &&
  1516. (rpl > dpl && cpl > dpl)))
  1517. goto exception;
  1518. break;
  1519. }
  1520. if (seg_desc.s) {
  1521. /* mark segment as accessed */
  1522. if (!(seg_desc.type & 1)) {
  1523. seg_desc.type |= 1;
  1524. ret = write_segment_descriptor(ctxt, selector,
  1525. &seg_desc);
  1526. if (ret != X86EMUL_CONTINUE)
  1527. return ret;
  1528. }
  1529. } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
  1530. ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
  1531. if (ret != X86EMUL_CONTINUE)
  1532. return ret;
  1533. if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
  1534. ((u64)base3 << 32), ctxt))
  1535. return emulate_gp(ctxt, 0);
  1536. }
  1537. load:
  1538. ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
  1539. if (desc)
  1540. *desc = seg_desc;
  1541. return X86EMUL_CONTINUE;
  1542. exception:
  1543. return emulate_exception(ctxt, err_vec, err_code, true);
  1544. }
  1545. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1546. u16 selector, int seg)
  1547. {
  1548. u8 cpl = ctxt->ops->cpl(ctxt);
  1549. /*
  1550. * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
  1551. * they can load it at CPL<3 (Intel's manual says only LSS can,
  1552. * but it's wrong).
  1553. *
  1554. * However, the Intel manual says that putting IST=1/DPL=3 in
  1555. * an interrupt gate will result in SS=3 (the AMD manual instead
  1556. * says it doesn't), so allow SS=3 in __load_segment_descriptor
  1557. * and only forbid it here.
  1558. */
  1559. if (seg == VCPU_SREG_SS && selector == 3 &&
  1560. ctxt->mode == X86EMUL_MODE_PROT64)
  1561. return emulate_exception(ctxt, GP_VECTOR, 0, true);
  1562. return __load_segment_descriptor(ctxt, selector, seg, cpl,
  1563. X86_TRANSFER_NONE, NULL);
  1564. }
  1565. static void write_register_operand(struct operand *op)
  1566. {
  1567. return assign_register(op->addr.reg, op->val, op->bytes);
  1568. }
  1569. static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
  1570. {
  1571. switch (op->type) {
  1572. case OP_REG:
  1573. write_register_operand(op);
  1574. break;
  1575. case OP_MEM:
  1576. if (ctxt->lock_prefix)
  1577. return segmented_cmpxchg(ctxt,
  1578. op->addr.mem,
  1579. &op->orig_val,
  1580. &op->val,
  1581. op->bytes);
  1582. else
  1583. return segmented_write(ctxt,
  1584. op->addr.mem,
  1585. &op->val,
  1586. op->bytes);
  1587. break;
  1588. case OP_MEM_STR:
  1589. return segmented_write(ctxt,
  1590. op->addr.mem,
  1591. op->data,
  1592. op->bytes * op->count);
  1593. break;
  1594. case OP_XMM:
  1595. write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
  1596. break;
  1597. case OP_MM:
  1598. write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  1599. break;
  1600. case OP_NONE:
  1601. /* no writeback */
  1602. break;
  1603. default:
  1604. break;
  1605. }
  1606. return X86EMUL_CONTINUE;
  1607. }
  1608. static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
  1609. {
  1610. struct segmented_address addr;
  1611. rsp_increment(ctxt, -bytes);
  1612. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1613. addr.seg = VCPU_SREG_SS;
  1614. return segmented_write(ctxt, addr, data, bytes);
  1615. }
  1616. static int em_push(struct x86_emulate_ctxt *ctxt)
  1617. {
  1618. /* Disable writeback. */
  1619. ctxt->dst.type = OP_NONE;
  1620. return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
  1621. }
  1622. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1623. void *dest, int len)
  1624. {
  1625. int rc;
  1626. struct segmented_address addr;
  1627. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1628. addr.seg = VCPU_SREG_SS;
  1629. rc = segmented_read(ctxt, addr, dest, len);
  1630. if (rc != X86EMUL_CONTINUE)
  1631. return rc;
  1632. rsp_increment(ctxt, len);
  1633. return rc;
  1634. }
  1635. static int em_pop(struct x86_emulate_ctxt *ctxt)
  1636. {
  1637. return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1638. }
  1639. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1640. void *dest, int len)
  1641. {
  1642. int rc;
  1643. unsigned long val, change_mask;
  1644. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
  1645. int cpl = ctxt->ops->cpl(ctxt);
  1646. rc = emulate_pop(ctxt, &val, len);
  1647. if (rc != X86EMUL_CONTINUE)
  1648. return rc;
  1649. change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  1650. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
  1651. X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
  1652. X86_EFLAGS_AC | X86_EFLAGS_ID;
  1653. switch(ctxt->mode) {
  1654. case X86EMUL_MODE_PROT64:
  1655. case X86EMUL_MODE_PROT32:
  1656. case X86EMUL_MODE_PROT16:
  1657. if (cpl == 0)
  1658. change_mask |= X86_EFLAGS_IOPL;
  1659. if (cpl <= iopl)
  1660. change_mask |= X86_EFLAGS_IF;
  1661. break;
  1662. case X86EMUL_MODE_VM86:
  1663. if (iopl < 3)
  1664. return emulate_gp(ctxt, 0);
  1665. change_mask |= X86_EFLAGS_IF;
  1666. break;
  1667. default: /* real mode */
  1668. change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
  1669. break;
  1670. }
  1671. *(unsigned long *)dest =
  1672. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1673. return rc;
  1674. }
  1675. static int em_popf(struct x86_emulate_ctxt *ctxt)
  1676. {
  1677. ctxt->dst.type = OP_REG;
  1678. ctxt->dst.addr.reg = &ctxt->eflags;
  1679. ctxt->dst.bytes = ctxt->op_bytes;
  1680. return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1681. }
  1682. static int em_enter(struct x86_emulate_ctxt *ctxt)
  1683. {
  1684. int rc;
  1685. unsigned frame_size = ctxt->src.val;
  1686. unsigned nesting_level = ctxt->src2.val & 31;
  1687. ulong rbp;
  1688. if (nesting_level)
  1689. return X86EMUL_UNHANDLEABLE;
  1690. rbp = reg_read(ctxt, VCPU_REGS_RBP);
  1691. rc = push(ctxt, &rbp, stack_size(ctxt));
  1692. if (rc != X86EMUL_CONTINUE)
  1693. return rc;
  1694. assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
  1695. stack_mask(ctxt));
  1696. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
  1697. reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
  1698. stack_mask(ctxt));
  1699. return X86EMUL_CONTINUE;
  1700. }
  1701. static int em_leave(struct x86_emulate_ctxt *ctxt)
  1702. {
  1703. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
  1704. stack_mask(ctxt));
  1705. return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
  1706. }
  1707. static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
  1708. {
  1709. int seg = ctxt->src2.val;
  1710. ctxt->src.val = get_segment_selector(ctxt, seg);
  1711. if (ctxt->op_bytes == 4) {
  1712. rsp_increment(ctxt, -2);
  1713. ctxt->op_bytes = 2;
  1714. }
  1715. return em_push(ctxt);
  1716. }
  1717. static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
  1718. {
  1719. int seg = ctxt->src2.val;
  1720. unsigned long selector;
  1721. int rc;
  1722. rc = emulate_pop(ctxt, &selector, 2);
  1723. if (rc != X86EMUL_CONTINUE)
  1724. return rc;
  1725. if (ctxt->modrm_reg == VCPU_SREG_SS)
  1726. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  1727. if (ctxt->op_bytes > 2)
  1728. rsp_increment(ctxt, ctxt->op_bytes - 2);
  1729. rc = load_segment_descriptor(ctxt, (u16)selector, seg);
  1730. return rc;
  1731. }
  1732. static int em_pusha(struct x86_emulate_ctxt *ctxt)
  1733. {
  1734. unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
  1735. int rc = X86EMUL_CONTINUE;
  1736. int reg = VCPU_REGS_RAX;
  1737. while (reg <= VCPU_REGS_RDI) {
  1738. (reg == VCPU_REGS_RSP) ?
  1739. (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
  1740. rc = em_push(ctxt);
  1741. if (rc != X86EMUL_CONTINUE)
  1742. return rc;
  1743. ++reg;
  1744. }
  1745. return rc;
  1746. }
  1747. static int em_pushf(struct x86_emulate_ctxt *ctxt)
  1748. {
  1749. ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
  1750. return em_push(ctxt);
  1751. }
  1752. static int em_popa(struct x86_emulate_ctxt *ctxt)
  1753. {
  1754. int rc = X86EMUL_CONTINUE;
  1755. int reg = VCPU_REGS_RDI;
  1756. u32 val;
  1757. while (reg >= VCPU_REGS_RAX) {
  1758. if (reg == VCPU_REGS_RSP) {
  1759. rsp_increment(ctxt, ctxt->op_bytes);
  1760. --reg;
  1761. }
  1762. rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
  1763. if (rc != X86EMUL_CONTINUE)
  1764. break;
  1765. assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
  1766. --reg;
  1767. }
  1768. return rc;
  1769. }
  1770. static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1771. {
  1772. const struct x86_emulate_ops *ops = ctxt->ops;
  1773. int rc;
  1774. struct desc_ptr dt;
  1775. gva_t cs_addr;
  1776. gva_t eip_addr;
  1777. u16 cs, eip;
  1778. /* TODO: Add limit checks */
  1779. ctxt->src.val = ctxt->eflags;
  1780. rc = em_push(ctxt);
  1781. if (rc != X86EMUL_CONTINUE)
  1782. return rc;
  1783. ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
  1784. ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
  1785. rc = em_push(ctxt);
  1786. if (rc != X86EMUL_CONTINUE)
  1787. return rc;
  1788. ctxt->src.val = ctxt->_eip;
  1789. rc = em_push(ctxt);
  1790. if (rc != X86EMUL_CONTINUE)
  1791. return rc;
  1792. ops->get_idt(ctxt, &dt);
  1793. eip_addr = dt.address + (irq << 2);
  1794. cs_addr = dt.address + (irq << 2) + 2;
  1795. rc = linear_read_system(ctxt, cs_addr, &cs, 2);
  1796. if (rc != X86EMUL_CONTINUE)
  1797. return rc;
  1798. rc = linear_read_system(ctxt, eip_addr, &eip, 2);
  1799. if (rc != X86EMUL_CONTINUE)
  1800. return rc;
  1801. rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
  1802. if (rc != X86EMUL_CONTINUE)
  1803. return rc;
  1804. ctxt->_eip = eip;
  1805. return rc;
  1806. }
  1807. int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1808. {
  1809. int rc;
  1810. invalidate_registers(ctxt);
  1811. rc = __emulate_int_real(ctxt, irq);
  1812. if (rc == X86EMUL_CONTINUE)
  1813. writeback_registers(ctxt);
  1814. return rc;
  1815. }
  1816. static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
  1817. {
  1818. switch(ctxt->mode) {
  1819. case X86EMUL_MODE_REAL:
  1820. return __emulate_int_real(ctxt, irq);
  1821. case X86EMUL_MODE_VM86:
  1822. case X86EMUL_MODE_PROT16:
  1823. case X86EMUL_MODE_PROT32:
  1824. case X86EMUL_MODE_PROT64:
  1825. default:
  1826. /* Protected mode interrupts unimplemented yet */
  1827. return X86EMUL_UNHANDLEABLE;
  1828. }
  1829. }
  1830. static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
  1831. {
  1832. int rc = X86EMUL_CONTINUE;
  1833. unsigned long temp_eip = 0;
  1834. unsigned long temp_eflags = 0;
  1835. unsigned long cs = 0;
  1836. unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  1837. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
  1838. X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
  1839. X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
  1840. X86_EFLAGS_AC | X86_EFLAGS_ID |
  1841. X86_EFLAGS_FIXED;
  1842. unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
  1843. X86_EFLAGS_VIP;
  1844. /* TODO: Add stack limit check */
  1845. rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
  1846. if (rc != X86EMUL_CONTINUE)
  1847. return rc;
  1848. if (temp_eip & ~0xffff)
  1849. return emulate_gp(ctxt, 0);
  1850. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1851. if (rc != X86EMUL_CONTINUE)
  1852. return rc;
  1853. rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
  1854. if (rc != X86EMUL_CONTINUE)
  1855. return rc;
  1856. rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
  1857. if (rc != X86EMUL_CONTINUE)
  1858. return rc;
  1859. ctxt->_eip = temp_eip;
  1860. if (ctxt->op_bytes == 4)
  1861. ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
  1862. else if (ctxt->op_bytes == 2) {
  1863. ctxt->eflags &= ~0xffff;
  1864. ctxt->eflags |= temp_eflags;
  1865. }
  1866. ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
  1867. ctxt->eflags |= X86_EFLAGS_FIXED;
  1868. ctxt->ops->set_nmi_mask(ctxt, false);
  1869. return rc;
  1870. }
  1871. static int em_iret(struct x86_emulate_ctxt *ctxt)
  1872. {
  1873. switch(ctxt->mode) {
  1874. case X86EMUL_MODE_REAL:
  1875. return emulate_iret_real(ctxt);
  1876. case X86EMUL_MODE_VM86:
  1877. case X86EMUL_MODE_PROT16:
  1878. case X86EMUL_MODE_PROT32:
  1879. case X86EMUL_MODE_PROT64:
  1880. default:
  1881. /* iret from protected mode unimplemented yet */
  1882. return X86EMUL_UNHANDLEABLE;
  1883. }
  1884. }
  1885. static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
  1886. {
  1887. int rc;
  1888. unsigned short sel;
  1889. struct desc_struct new_desc;
  1890. u8 cpl = ctxt->ops->cpl(ctxt);
  1891. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1892. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
  1893. X86_TRANSFER_CALL_JMP,
  1894. &new_desc);
  1895. if (rc != X86EMUL_CONTINUE)
  1896. return rc;
  1897. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  1898. /* Error handling is not implemented. */
  1899. if (rc != X86EMUL_CONTINUE)
  1900. return X86EMUL_UNHANDLEABLE;
  1901. return rc;
  1902. }
  1903. static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
  1904. {
  1905. return assign_eip_near(ctxt, ctxt->src.val);
  1906. }
  1907. static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
  1908. {
  1909. int rc;
  1910. long int old_eip;
  1911. old_eip = ctxt->_eip;
  1912. rc = assign_eip_near(ctxt, ctxt->src.val);
  1913. if (rc != X86EMUL_CONTINUE)
  1914. return rc;
  1915. ctxt->src.val = old_eip;
  1916. rc = em_push(ctxt);
  1917. return rc;
  1918. }
  1919. static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
  1920. {
  1921. u64 old = ctxt->dst.orig_val64;
  1922. if (ctxt->dst.bytes == 16)
  1923. return X86EMUL_UNHANDLEABLE;
  1924. if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
  1925. ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
  1926. *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
  1927. *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
  1928. ctxt->eflags &= ~X86_EFLAGS_ZF;
  1929. } else {
  1930. ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
  1931. (u32) reg_read(ctxt, VCPU_REGS_RBX);
  1932. ctxt->eflags |= X86_EFLAGS_ZF;
  1933. }
  1934. return X86EMUL_CONTINUE;
  1935. }
  1936. static int em_ret(struct x86_emulate_ctxt *ctxt)
  1937. {
  1938. int rc;
  1939. unsigned long eip;
  1940. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1941. if (rc != X86EMUL_CONTINUE)
  1942. return rc;
  1943. return assign_eip_near(ctxt, eip);
  1944. }
  1945. static int em_ret_far(struct x86_emulate_ctxt *ctxt)
  1946. {
  1947. int rc;
  1948. unsigned long eip, cs;
  1949. int cpl = ctxt->ops->cpl(ctxt);
  1950. struct desc_struct new_desc;
  1951. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1952. if (rc != X86EMUL_CONTINUE)
  1953. return rc;
  1954. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1955. if (rc != X86EMUL_CONTINUE)
  1956. return rc;
  1957. /* Outer-privilege level return is not implemented */
  1958. if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
  1959. return X86EMUL_UNHANDLEABLE;
  1960. rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
  1961. X86_TRANSFER_RET,
  1962. &new_desc);
  1963. if (rc != X86EMUL_CONTINUE)
  1964. return rc;
  1965. rc = assign_eip_far(ctxt, eip, &new_desc);
  1966. /* Error handling is not implemented. */
  1967. if (rc != X86EMUL_CONTINUE)
  1968. return X86EMUL_UNHANDLEABLE;
  1969. return rc;
  1970. }
  1971. static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
  1972. {
  1973. int rc;
  1974. rc = em_ret_far(ctxt);
  1975. if (rc != X86EMUL_CONTINUE)
  1976. return rc;
  1977. rsp_increment(ctxt, ctxt->src.val);
  1978. return X86EMUL_CONTINUE;
  1979. }
  1980. static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
  1981. {
  1982. /* Save real source value, then compare EAX against destination. */
  1983. ctxt->dst.orig_val = ctxt->dst.val;
  1984. ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
  1985. ctxt->src.orig_val = ctxt->src.val;
  1986. ctxt->src.val = ctxt->dst.orig_val;
  1987. fastop(ctxt, em_cmp);
  1988. if (ctxt->eflags & X86_EFLAGS_ZF) {
  1989. /* Success: write back to memory; no update of EAX */
  1990. ctxt->src.type = OP_NONE;
  1991. ctxt->dst.val = ctxt->src.orig_val;
  1992. } else {
  1993. /* Failure: write the value we saw to EAX. */
  1994. ctxt->src.type = OP_REG;
  1995. ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  1996. ctxt->src.val = ctxt->dst.orig_val;
  1997. /* Create write-cycle to dest by writing the same value */
  1998. ctxt->dst.val = ctxt->dst.orig_val;
  1999. }
  2000. return X86EMUL_CONTINUE;
  2001. }
  2002. static int em_lseg(struct x86_emulate_ctxt *ctxt)
  2003. {
  2004. int seg = ctxt->src2.val;
  2005. unsigned short sel;
  2006. int rc;
  2007. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  2008. rc = load_segment_descriptor(ctxt, sel, seg);
  2009. if (rc != X86EMUL_CONTINUE)
  2010. return rc;
  2011. ctxt->dst.val = ctxt->src.val;
  2012. return rc;
  2013. }
  2014. static int emulator_has_longmode(struct x86_emulate_ctxt *ctxt)
  2015. {
  2016. u32 eax, ebx, ecx, edx;
  2017. eax = 0x80000001;
  2018. ecx = 0;
  2019. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
  2020. return edx & bit(X86_FEATURE_LM);
  2021. }
  2022. #define GET_SMSTATE(type, smbase, offset) \
  2023. ({ \
  2024. type __val; \
  2025. int r = ctxt->ops->read_phys(ctxt, smbase + offset, &__val, \
  2026. sizeof(__val)); \
  2027. if (r != X86EMUL_CONTINUE) \
  2028. return X86EMUL_UNHANDLEABLE; \
  2029. __val; \
  2030. })
  2031. static void rsm_set_desc_flags(struct desc_struct *desc, u32 flags)
  2032. {
  2033. desc->g = (flags >> 23) & 1;
  2034. desc->d = (flags >> 22) & 1;
  2035. desc->l = (flags >> 21) & 1;
  2036. desc->avl = (flags >> 20) & 1;
  2037. desc->p = (flags >> 15) & 1;
  2038. desc->dpl = (flags >> 13) & 3;
  2039. desc->s = (flags >> 12) & 1;
  2040. desc->type = (flags >> 8) & 15;
  2041. }
  2042. static int rsm_load_seg_32(struct x86_emulate_ctxt *ctxt, u64 smbase, int n)
  2043. {
  2044. struct desc_struct desc;
  2045. int offset;
  2046. u16 selector;
  2047. selector = GET_SMSTATE(u32, smbase, 0x7fa8 + n * 4);
  2048. if (n < 3)
  2049. offset = 0x7f84 + n * 12;
  2050. else
  2051. offset = 0x7f2c + (n - 3) * 12;
  2052. set_desc_base(&desc, GET_SMSTATE(u32, smbase, offset + 8));
  2053. set_desc_limit(&desc, GET_SMSTATE(u32, smbase, offset + 4));
  2054. rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, offset));
  2055. ctxt->ops->set_segment(ctxt, selector, &desc, 0, n);
  2056. return X86EMUL_CONTINUE;
  2057. }
  2058. static int rsm_load_seg_64(struct x86_emulate_ctxt *ctxt, u64 smbase, int n)
  2059. {
  2060. struct desc_struct desc;
  2061. int offset;
  2062. u16 selector;
  2063. u32 base3;
  2064. offset = 0x7e00 + n * 16;
  2065. selector = GET_SMSTATE(u16, smbase, offset);
  2066. rsm_set_desc_flags(&desc, GET_SMSTATE(u16, smbase, offset + 2) << 8);
  2067. set_desc_limit(&desc, GET_SMSTATE(u32, smbase, offset + 4));
  2068. set_desc_base(&desc, GET_SMSTATE(u32, smbase, offset + 8));
  2069. base3 = GET_SMSTATE(u32, smbase, offset + 12);
  2070. ctxt->ops->set_segment(ctxt, selector, &desc, base3, n);
  2071. return X86EMUL_CONTINUE;
  2072. }
  2073. static int rsm_enter_protected_mode(struct x86_emulate_ctxt *ctxt,
  2074. u64 cr0, u64 cr3, u64 cr4)
  2075. {
  2076. int bad;
  2077. u64 pcid;
  2078. /* In order to later set CR4.PCIDE, CR3[11:0] must be zero. */
  2079. pcid = 0;
  2080. if (cr4 & X86_CR4_PCIDE) {
  2081. pcid = cr3 & 0xfff;
  2082. cr3 &= ~0xfff;
  2083. }
  2084. bad = ctxt->ops->set_cr(ctxt, 3, cr3);
  2085. if (bad)
  2086. return X86EMUL_UNHANDLEABLE;
  2087. /*
  2088. * First enable PAE, long mode needs it before CR0.PG = 1 is set.
  2089. * Then enable protected mode. However, PCID cannot be enabled
  2090. * if EFER.LMA=0, so set it separately.
  2091. */
  2092. bad = ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PCIDE);
  2093. if (bad)
  2094. return X86EMUL_UNHANDLEABLE;
  2095. bad = ctxt->ops->set_cr(ctxt, 0, cr0);
  2096. if (bad)
  2097. return X86EMUL_UNHANDLEABLE;
  2098. if (cr4 & X86_CR4_PCIDE) {
  2099. bad = ctxt->ops->set_cr(ctxt, 4, cr4);
  2100. if (bad)
  2101. return X86EMUL_UNHANDLEABLE;
  2102. if (pcid) {
  2103. bad = ctxt->ops->set_cr(ctxt, 3, cr3 | pcid);
  2104. if (bad)
  2105. return X86EMUL_UNHANDLEABLE;
  2106. }
  2107. }
  2108. return X86EMUL_CONTINUE;
  2109. }
  2110. static int rsm_load_state_32(struct x86_emulate_ctxt *ctxt, u64 smbase)
  2111. {
  2112. struct desc_struct desc;
  2113. struct desc_ptr dt;
  2114. u16 selector;
  2115. u32 val, cr0, cr3, cr4;
  2116. int i;
  2117. cr0 = GET_SMSTATE(u32, smbase, 0x7ffc);
  2118. cr3 = GET_SMSTATE(u32, smbase, 0x7ff8);
  2119. ctxt->eflags = GET_SMSTATE(u32, smbase, 0x7ff4) | X86_EFLAGS_FIXED;
  2120. ctxt->_eip = GET_SMSTATE(u32, smbase, 0x7ff0);
  2121. for (i = 0; i < 8; i++)
  2122. *reg_write(ctxt, i) = GET_SMSTATE(u32, smbase, 0x7fd0 + i * 4);
  2123. val = GET_SMSTATE(u32, smbase, 0x7fcc);
  2124. ctxt->ops->set_dr(ctxt, 6, (val & DR6_VOLATILE) | DR6_FIXED_1);
  2125. val = GET_SMSTATE(u32, smbase, 0x7fc8);
  2126. ctxt->ops->set_dr(ctxt, 7, (val & DR7_VOLATILE) | DR7_FIXED_1);
  2127. selector = GET_SMSTATE(u32, smbase, 0x7fc4);
  2128. set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7f64));
  2129. set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7f60));
  2130. rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7f5c));
  2131. ctxt->ops->set_segment(ctxt, selector, &desc, 0, VCPU_SREG_TR);
  2132. selector = GET_SMSTATE(u32, smbase, 0x7fc0);
  2133. set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7f80));
  2134. set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7f7c));
  2135. rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7f78));
  2136. ctxt->ops->set_segment(ctxt, selector, &desc, 0, VCPU_SREG_LDTR);
  2137. dt.address = GET_SMSTATE(u32, smbase, 0x7f74);
  2138. dt.size = GET_SMSTATE(u32, smbase, 0x7f70);
  2139. ctxt->ops->set_gdt(ctxt, &dt);
  2140. dt.address = GET_SMSTATE(u32, smbase, 0x7f58);
  2141. dt.size = GET_SMSTATE(u32, smbase, 0x7f54);
  2142. ctxt->ops->set_idt(ctxt, &dt);
  2143. for (i = 0; i < 6; i++) {
  2144. int r = rsm_load_seg_32(ctxt, smbase, i);
  2145. if (r != X86EMUL_CONTINUE)
  2146. return r;
  2147. }
  2148. cr4 = GET_SMSTATE(u32, smbase, 0x7f14);
  2149. ctxt->ops->set_smbase(ctxt, GET_SMSTATE(u32, smbase, 0x7ef8));
  2150. return rsm_enter_protected_mode(ctxt, cr0, cr3, cr4);
  2151. }
  2152. static int rsm_load_state_64(struct x86_emulate_ctxt *ctxt, u64 smbase)
  2153. {
  2154. struct desc_struct desc;
  2155. struct desc_ptr dt;
  2156. u64 val, cr0, cr3, cr4;
  2157. u32 base3;
  2158. u16 selector;
  2159. int i, r;
  2160. for (i = 0; i < 16; i++)
  2161. *reg_write(ctxt, i) = GET_SMSTATE(u64, smbase, 0x7ff8 - i * 8);
  2162. ctxt->_eip = GET_SMSTATE(u64, smbase, 0x7f78);
  2163. ctxt->eflags = GET_SMSTATE(u32, smbase, 0x7f70) | X86_EFLAGS_FIXED;
  2164. val = GET_SMSTATE(u32, smbase, 0x7f68);
  2165. ctxt->ops->set_dr(ctxt, 6, (val & DR6_VOLATILE) | DR6_FIXED_1);
  2166. val = GET_SMSTATE(u32, smbase, 0x7f60);
  2167. ctxt->ops->set_dr(ctxt, 7, (val & DR7_VOLATILE) | DR7_FIXED_1);
  2168. cr0 = GET_SMSTATE(u64, smbase, 0x7f58);
  2169. cr3 = GET_SMSTATE(u64, smbase, 0x7f50);
  2170. cr4 = GET_SMSTATE(u64, smbase, 0x7f48);
  2171. ctxt->ops->set_smbase(ctxt, GET_SMSTATE(u32, smbase, 0x7f00));
  2172. val = GET_SMSTATE(u64, smbase, 0x7ed0);
  2173. ctxt->ops->set_msr(ctxt, MSR_EFER, val & ~EFER_LMA);
  2174. selector = GET_SMSTATE(u32, smbase, 0x7e90);
  2175. rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7e92) << 8);
  2176. set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7e94));
  2177. set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7e98));
  2178. base3 = GET_SMSTATE(u32, smbase, 0x7e9c);
  2179. ctxt->ops->set_segment(ctxt, selector, &desc, base3, VCPU_SREG_TR);
  2180. dt.size = GET_SMSTATE(u32, smbase, 0x7e84);
  2181. dt.address = GET_SMSTATE(u64, smbase, 0x7e88);
  2182. ctxt->ops->set_idt(ctxt, &dt);
  2183. selector = GET_SMSTATE(u32, smbase, 0x7e70);
  2184. rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7e72) << 8);
  2185. set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7e74));
  2186. set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7e78));
  2187. base3 = GET_SMSTATE(u32, smbase, 0x7e7c);
  2188. ctxt->ops->set_segment(ctxt, selector, &desc, base3, VCPU_SREG_LDTR);
  2189. dt.size = GET_SMSTATE(u32, smbase, 0x7e64);
  2190. dt.address = GET_SMSTATE(u64, smbase, 0x7e68);
  2191. ctxt->ops->set_gdt(ctxt, &dt);
  2192. r = rsm_enter_protected_mode(ctxt, cr0, cr3, cr4);
  2193. if (r != X86EMUL_CONTINUE)
  2194. return r;
  2195. for (i = 0; i < 6; i++) {
  2196. r = rsm_load_seg_64(ctxt, smbase, i);
  2197. if (r != X86EMUL_CONTINUE)
  2198. return r;
  2199. }
  2200. return X86EMUL_CONTINUE;
  2201. }
  2202. static int em_rsm(struct x86_emulate_ctxt *ctxt)
  2203. {
  2204. unsigned long cr0, cr4, efer;
  2205. u64 smbase;
  2206. int ret;
  2207. if ((ctxt->ops->get_hflags(ctxt) & X86EMUL_SMM_MASK) == 0)
  2208. return emulate_ud(ctxt);
  2209. /*
  2210. * Get back to real mode, to prepare a safe state in which to load
  2211. * CR0/CR3/CR4/EFER. It's all a bit more complicated if the vCPU
  2212. * supports long mode.
  2213. */
  2214. cr4 = ctxt->ops->get_cr(ctxt, 4);
  2215. if (emulator_has_longmode(ctxt)) {
  2216. struct desc_struct cs_desc;
  2217. /* Zero CR4.PCIDE before CR0.PG. */
  2218. if (cr4 & X86_CR4_PCIDE) {
  2219. ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PCIDE);
  2220. cr4 &= ~X86_CR4_PCIDE;
  2221. }
  2222. /* A 32-bit code segment is required to clear EFER.LMA. */
  2223. memset(&cs_desc, 0, sizeof(cs_desc));
  2224. cs_desc.type = 0xb;
  2225. cs_desc.s = cs_desc.g = cs_desc.p = 1;
  2226. ctxt->ops->set_segment(ctxt, 0, &cs_desc, 0, VCPU_SREG_CS);
  2227. }
  2228. /* For the 64-bit case, this will clear EFER.LMA. */
  2229. cr0 = ctxt->ops->get_cr(ctxt, 0);
  2230. if (cr0 & X86_CR0_PE)
  2231. ctxt->ops->set_cr(ctxt, 0, cr0 & ~(X86_CR0_PG | X86_CR0_PE));
  2232. /* Now clear CR4.PAE (which must be done before clearing EFER.LME). */
  2233. if (cr4 & X86_CR4_PAE)
  2234. ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PAE);
  2235. /* And finally go back to 32-bit mode. */
  2236. efer = 0;
  2237. ctxt->ops->set_msr(ctxt, MSR_EFER, efer);
  2238. smbase = ctxt->ops->get_smbase(ctxt);
  2239. /*
  2240. * Give pre_leave_smm() a chance to make ISA-specific changes to the
  2241. * vCPU state (e.g. enter guest mode) before loading state from the SMM
  2242. * state-save area.
  2243. */
  2244. if (ctxt->ops->pre_leave_smm(ctxt, smbase))
  2245. return X86EMUL_UNHANDLEABLE;
  2246. if (emulator_has_longmode(ctxt))
  2247. ret = rsm_load_state_64(ctxt, smbase + 0x8000);
  2248. else
  2249. ret = rsm_load_state_32(ctxt, smbase + 0x8000);
  2250. if (ret != X86EMUL_CONTINUE) {
  2251. /* FIXME: should triple fault */
  2252. return X86EMUL_UNHANDLEABLE;
  2253. }
  2254. if ((ctxt->ops->get_hflags(ctxt) & X86EMUL_SMM_INSIDE_NMI_MASK) == 0)
  2255. ctxt->ops->set_nmi_mask(ctxt, false);
  2256. ctxt->ops->set_hflags(ctxt, ctxt->ops->get_hflags(ctxt) &
  2257. ~(X86EMUL_SMM_INSIDE_NMI_MASK | X86EMUL_SMM_MASK));
  2258. return X86EMUL_CONTINUE;
  2259. }
  2260. static void
  2261. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  2262. struct desc_struct *cs, struct desc_struct *ss)
  2263. {
  2264. cs->l = 0; /* will be adjusted later */
  2265. set_desc_base(cs, 0); /* flat segment */
  2266. cs->g = 1; /* 4kb granularity */
  2267. set_desc_limit(cs, 0xfffff); /* 4GB limit */
  2268. cs->type = 0x0b; /* Read, Execute, Accessed */
  2269. cs->s = 1;
  2270. cs->dpl = 0; /* will be adjusted later */
  2271. cs->p = 1;
  2272. cs->d = 1;
  2273. cs->avl = 0;
  2274. set_desc_base(ss, 0); /* flat segment */
  2275. set_desc_limit(ss, 0xfffff); /* 4GB limit */
  2276. ss->g = 1; /* 4kb granularity */
  2277. ss->s = 1;
  2278. ss->type = 0x03; /* Read/Write, Accessed */
  2279. ss->d = 1; /* 32bit stack segment */
  2280. ss->dpl = 0;
  2281. ss->p = 1;
  2282. ss->l = 0;
  2283. ss->avl = 0;
  2284. }
  2285. static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
  2286. {
  2287. u32 eax, ebx, ecx, edx;
  2288. eax = ecx = 0;
  2289. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
  2290. return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
  2291. && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
  2292. && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
  2293. }
  2294. static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
  2295. {
  2296. const struct x86_emulate_ops *ops = ctxt->ops;
  2297. u32 eax, ebx, ecx, edx;
  2298. /*
  2299. * syscall should always be enabled in longmode - so only become
  2300. * vendor specific (cpuid) if other modes are active...
  2301. */
  2302. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2303. return true;
  2304. eax = 0x00000000;
  2305. ecx = 0x00000000;
  2306. ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
  2307. /*
  2308. * Intel ("GenuineIntel")
  2309. * remark: Intel CPUs only support "syscall" in 64bit
  2310. * longmode. Also an 64bit guest with a
  2311. * 32bit compat-app running will #UD !! While this
  2312. * behaviour can be fixed (by emulating) into AMD
  2313. * response - CPUs of AMD can't behave like Intel.
  2314. */
  2315. if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
  2316. ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
  2317. edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
  2318. return false;
  2319. /* AMD ("AuthenticAMD") */
  2320. if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
  2321. ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
  2322. edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
  2323. return true;
  2324. /* AMD ("AMDisbetter!") */
  2325. if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
  2326. ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
  2327. edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
  2328. return true;
  2329. /* Hygon ("HygonGenuine") */
  2330. if (ebx == X86EMUL_CPUID_VENDOR_HygonGenuine_ebx &&
  2331. ecx == X86EMUL_CPUID_VENDOR_HygonGenuine_ecx &&
  2332. edx == X86EMUL_CPUID_VENDOR_HygonGenuine_edx)
  2333. return true;
  2334. /*
  2335. * default: (not Intel, not AMD, not Hygon), apply Intel's
  2336. * stricter rules...
  2337. */
  2338. return false;
  2339. }
  2340. static int em_syscall(struct x86_emulate_ctxt *ctxt)
  2341. {
  2342. const struct x86_emulate_ops *ops = ctxt->ops;
  2343. struct desc_struct cs, ss;
  2344. u64 msr_data;
  2345. u16 cs_sel, ss_sel;
  2346. u64 efer = 0;
  2347. /* syscall is not available in real mode */
  2348. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2349. ctxt->mode == X86EMUL_MODE_VM86)
  2350. return emulate_ud(ctxt);
  2351. if (!(em_syscall_is_enabled(ctxt)))
  2352. return emulate_ud(ctxt);
  2353. ops->get_msr(ctxt, MSR_EFER, &efer);
  2354. setup_syscalls_segments(ctxt, &cs, &ss);
  2355. if (!(efer & EFER_SCE))
  2356. return emulate_ud(ctxt);
  2357. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2358. msr_data >>= 32;
  2359. cs_sel = (u16)(msr_data & 0xfffc);
  2360. ss_sel = (u16)(msr_data + 8);
  2361. if (efer & EFER_LMA) {
  2362. cs.d = 0;
  2363. cs.l = 1;
  2364. }
  2365. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2366. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2367. *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
  2368. if (efer & EFER_LMA) {
  2369. #ifdef CONFIG_X86_64
  2370. *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
  2371. ops->get_msr(ctxt,
  2372. ctxt->mode == X86EMUL_MODE_PROT64 ?
  2373. MSR_LSTAR : MSR_CSTAR, &msr_data);
  2374. ctxt->_eip = msr_data;
  2375. ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
  2376. ctxt->eflags &= ~msr_data;
  2377. ctxt->eflags |= X86_EFLAGS_FIXED;
  2378. #endif
  2379. } else {
  2380. /* legacy mode */
  2381. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2382. ctxt->_eip = (u32)msr_data;
  2383. ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
  2384. }
  2385. ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
  2386. return X86EMUL_CONTINUE;
  2387. }
  2388. static int em_sysenter(struct x86_emulate_ctxt *ctxt)
  2389. {
  2390. const struct x86_emulate_ops *ops = ctxt->ops;
  2391. struct desc_struct cs, ss;
  2392. u64 msr_data;
  2393. u16 cs_sel, ss_sel;
  2394. u64 efer = 0;
  2395. ops->get_msr(ctxt, MSR_EFER, &efer);
  2396. /* inject #GP if in real mode */
  2397. if (ctxt->mode == X86EMUL_MODE_REAL)
  2398. return emulate_gp(ctxt, 0);
  2399. /*
  2400. * Not recognized on AMD in compat mode (but is recognized in legacy
  2401. * mode).
  2402. */
  2403. if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
  2404. && !vendor_intel(ctxt))
  2405. return emulate_ud(ctxt);
  2406. /* sysenter/sysexit have not been tested in 64bit mode. */
  2407. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2408. return X86EMUL_UNHANDLEABLE;
  2409. setup_syscalls_segments(ctxt, &cs, &ss);
  2410. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2411. if ((msr_data & 0xfffc) == 0x0)
  2412. return emulate_gp(ctxt, 0);
  2413. ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
  2414. cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
  2415. ss_sel = cs_sel + 8;
  2416. if (efer & EFER_LMA) {
  2417. cs.d = 0;
  2418. cs.l = 1;
  2419. }
  2420. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2421. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2422. ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
  2423. ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
  2424. ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
  2425. *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
  2426. (u32)msr_data;
  2427. return X86EMUL_CONTINUE;
  2428. }
  2429. static int em_sysexit(struct x86_emulate_ctxt *ctxt)
  2430. {
  2431. const struct x86_emulate_ops *ops = ctxt->ops;
  2432. struct desc_struct cs, ss;
  2433. u64 msr_data, rcx, rdx;
  2434. int usermode;
  2435. u16 cs_sel = 0, ss_sel = 0;
  2436. /* inject #GP if in real mode or Virtual 8086 mode */
  2437. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2438. ctxt->mode == X86EMUL_MODE_VM86)
  2439. return emulate_gp(ctxt, 0);
  2440. setup_syscalls_segments(ctxt, &cs, &ss);
  2441. if ((ctxt->rex_prefix & 0x8) != 0x0)
  2442. usermode = X86EMUL_MODE_PROT64;
  2443. else
  2444. usermode = X86EMUL_MODE_PROT32;
  2445. rcx = reg_read(ctxt, VCPU_REGS_RCX);
  2446. rdx = reg_read(ctxt, VCPU_REGS_RDX);
  2447. cs.dpl = 3;
  2448. ss.dpl = 3;
  2449. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2450. switch (usermode) {
  2451. case X86EMUL_MODE_PROT32:
  2452. cs_sel = (u16)(msr_data + 16);
  2453. if ((msr_data & 0xfffc) == 0x0)
  2454. return emulate_gp(ctxt, 0);
  2455. ss_sel = (u16)(msr_data + 24);
  2456. rcx = (u32)rcx;
  2457. rdx = (u32)rdx;
  2458. break;
  2459. case X86EMUL_MODE_PROT64:
  2460. cs_sel = (u16)(msr_data + 32);
  2461. if (msr_data == 0x0)
  2462. return emulate_gp(ctxt, 0);
  2463. ss_sel = cs_sel + 8;
  2464. cs.d = 0;
  2465. cs.l = 1;
  2466. if (emul_is_noncanonical_address(rcx, ctxt) ||
  2467. emul_is_noncanonical_address(rdx, ctxt))
  2468. return emulate_gp(ctxt, 0);
  2469. break;
  2470. }
  2471. cs_sel |= SEGMENT_RPL_MASK;
  2472. ss_sel |= SEGMENT_RPL_MASK;
  2473. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2474. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2475. ctxt->_eip = rdx;
  2476. *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
  2477. return X86EMUL_CONTINUE;
  2478. }
  2479. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
  2480. {
  2481. int iopl;
  2482. if (ctxt->mode == X86EMUL_MODE_REAL)
  2483. return false;
  2484. if (ctxt->mode == X86EMUL_MODE_VM86)
  2485. return true;
  2486. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
  2487. return ctxt->ops->cpl(ctxt) > iopl;
  2488. }
  2489. #define VMWARE_PORT_VMPORT (0x5658)
  2490. #define VMWARE_PORT_VMRPC (0x5659)
  2491. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  2492. u16 port, u16 len)
  2493. {
  2494. const struct x86_emulate_ops *ops = ctxt->ops;
  2495. struct desc_struct tr_seg;
  2496. u32 base3;
  2497. int r;
  2498. u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
  2499. unsigned mask = (1 << len) - 1;
  2500. unsigned long base;
  2501. /*
  2502. * VMware allows access to these ports even if denied
  2503. * by TSS I/O permission bitmap. Mimic behavior.
  2504. */
  2505. if (enable_vmware_backdoor &&
  2506. ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
  2507. return true;
  2508. ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
  2509. if (!tr_seg.p)
  2510. return false;
  2511. if (desc_limit_scaled(&tr_seg) < 103)
  2512. return false;
  2513. base = get_desc_base(&tr_seg);
  2514. #ifdef CONFIG_X86_64
  2515. base |= ((u64)base3) << 32;
  2516. #endif
  2517. r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
  2518. if (r != X86EMUL_CONTINUE)
  2519. return false;
  2520. if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
  2521. return false;
  2522. r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
  2523. if (r != X86EMUL_CONTINUE)
  2524. return false;
  2525. if ((perm >> bit_idx) & mask)
  2526. return false;
  2527. return true;
  2528. }
  2529. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  2530. u16 port, u16 len)
  2531. {
  2532. if (ctxt->perm_ok)
  2533. return true;
  2534. if (emulator_bad_iopl(ctxt))
  2535. if (!emulator_io_port_access_allowed(ctxt, port, len))
  2536. return false;
  2537. ctxt->perm_ok = true;
  2538. return true;
  2539. }
  2540. static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
  2541. {
  2542. /*
  2543. * Intel CPUs mask the counter and pointers in quite strange
  2544. * manner when ECX is zero due to REP-string optimizations.
  2545. */
  2546. #ifdef CONFIG_X86_64
  2547. if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt))
  2548. return;
  2549. *reg_write(ctxt, VCPU_REGS_RCX) = 0;
  2550. switch (ctxt->b) {
  2551. case 0xa4: /* movsb */
  2552. case 0xa5: /* movsd/w */
  2553. *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
  2554. /* fall through */
  2555. case 0xaa: /* stosb */
  2556. case 0xab: /* stosd/w */
  2557. *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
  2558. }
  2559. #endif
  2560. }
  2561. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  2562. struct tss_segment_16 *tss)
  2563. {
  2564. tss->ip = ctxt->_eip;
  2565. tss->flag = ctxt->eflags;
  2566. tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
  2567. tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
  2568. tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
  2569. tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
  2570. tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
  2571. tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
  2572. tss->si = reg_read(ctxt, VCPU_REGS_RSI);
  2573. tss->di = reg_read(ctxt, VCPU_REGS_RDI);
  2574. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2575. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2576. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2577. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2578. tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
  2579. }
  2580. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  2581. struct tss_segment_16 *tss)
  2582. {
  2583. int ret;
  2584. u8 cpl;
  2585. ctxt->_eip = tss->ip;
  2586. ctxt->eflags = tss->flag | 2;
  2587. *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
  2588. *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
  2589. *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
  2590. *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
  2591. *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
  2592. *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
  2593. *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
  2594. *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
  2595. /*
  2596. * SDM says that segment selectors are loaded before segment
  2597. * descriptors
  2598. */
  2599. set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
  2600. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2601. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2602. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2603. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2604. cpl = tss->cs & 3;
  2605. /*
  2606. * Now load segment descriptors. If fault happens at this stage
  2607. * it is handled in a context of new task
  2608. */
  2609. ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
  2610. X86_TRANSFER_TASK_SWITCH, NULL);
  2611. if (ret != X86EMUL_CONTINUE)
  2612. return ret;
  2613. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2614. X86_TRANSFER_TASK_SWITCH, NULL);
  2615. if (ret != X86EMUL_CONTINUE)
  2616. return ret;
  2617. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2618. X86_TRANSFER_TASK_SWITCH, NULL);
  2619. if (ret != X86EMUL_CONTINUE)
  2620. return ret;
  2621. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2622. X86_TRANSFER_TASK_SWITCH, NULL);
  2623. if (ret != X86EMUL_CONTINUE)
  2624. return ret;
  2625. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2626. X86_TRANSFER_TASK_SWITCH, NULL);
  2627. if (ret != X86EMUL_CONTINUE)
  2628. return ret;
  2629. return X86EMUL_CONTINUE;
  2630. }
  2631. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  2632. u16 tss_selector, u16 old_tss_sel,
  2633. ulong old_tss_base, struct desc_struct *new_desc)
  2634. {
  2635. struct tss_segment_16 tss_seg;
  2636. int ret;
  2637. u32 new_tss_base = get_desc_base(new_desc);
  2638. ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof tss_seg);
  2639. if (ret != X86EMUL_CONTINUE)
  2640. return ret;
  2641. save_state_to_tss16(ctxt, &tss_seg);
  2642. ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof tss_seg);
  2643. if (ret != X86EMUL_CONTINUE)
  2644. return ret;
  2645. ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof tss_seg);
  2646. if (ret != X86EMUL_CONTINUE)
  2647. return ret;
  2648. if (old_tss_sel != 0xffff) {
  2649. tss_seg.prev_task_link = old_tss_sel;
  2650. ret = linear_write_system(ctxt, new_tss_base,
  2651. &tss_seg.prev_task_link,
  2652. sizeof tss_seg.prev_task_link);
  2653. if (ret != X86EMUL_CONTINUE)
  2654. return ret;
  2655. }
  2656. return load_state_from_tss16(ctxt, &tss_seg);
  2657. }
  2658. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  2659. struct tss_segment_32 *tss)
  2660. {
  2661. /* CR3 and ldt selector are not saved intentionally */
  2662. tss->eip = ctxt->_eip;
  2663. tss->eflags = ctxt->eflags;
  2664. tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
  2665. tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2666. tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
  2667. tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
  2668. tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
  2669. tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
  2670. tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
  2671. tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
  2672. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2673. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2674. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2675. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2676. tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
  2677. tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
  2678. }
  2679. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  2680. struct tss_segment_32 *tss)
  2681. {
  2682. int ret;
  2683. u8 cpl;
  2684. if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
  2685. return emulate_gp(ctxt, 0);
  2686. ctxt->_eip = tss->eip;
  2687. ctxt->eflags = tss->eflags | 2;
  2688. /* General purpose registers */
  2689. *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
  2690. *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
  2691. *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
  2692. *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
  2693. *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
  2694. *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
  2695. *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
  2696. *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
  2697. /*
  2698. * SDM says that segment selectors are loaded before segment
  2699. * descriptors. This is important because CPL checks will
  2700. * use CS.RPL.
  2701. */
  2702. set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
  2703. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2704. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2705. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2706. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2707. set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
  2708. set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
  2709. /*
  2710. * If we're switching between Protected Mode and VM86, we need to make
  2711. * sure to update the mode before loading the segment descriptors so
  2712. * that the selectors are interpreted correctly.
  2713. */
  2714. if (ctxt->eflags & X86_EFLAGS_VM) {
  2715. ctxt->mode = X86EMUL_MODE_VM86;
  2716. cpl = 3;
  2717. } else {
  2718. ctxt->mode = X86EMUL_MODE_PROT32;
  2719. cpl = tss->cs & 3;
  2720. }
  2721. /*
  2722. * Now load segment descriptors. If fault happenes at this stage
  2723. * it is handled in a context of new task
  2724. */
  2725. ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
  2726. cpl, X86_TRANSFER_TASK_SWITCH, NULL);
  2727. if (ret != X86EMUL_CONTINUE)
  2728. return ret;
  2729. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2730. X86_TRANSFER_TASK_SWITCH, NULL);
  2731. if (ret != X86EMUL_CONTINUE)
  2732. return ret;
  2733. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2734. X86_TRANSFER_TASK_SWITCH, NULL);
  2735. if (ret != X86EMUL_CONTINUE)
  2736. return ret;
  2737. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2738. X86_TRANSFER_TASK_SWITCH, NULL);
  2739. if (ret != X86EMUL_CONTINUE)
  2740. return ret;
  2741. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2742. X86_TRANSFER_TASK_SWITCH, NULL);
  2743. if (ret != X86EMUL_CONTINUE)
  2744. return ret;
  2745. ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
  2746. X86_TRANSFER_TASK_SWITCH, NULL);
  2747. if (ret != X86EMUL_CONTINUE)
  2748. return ret;
  2749. ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
  2750. X86_TRANSFER_TASK_SWITCH, NULL);
  2751. return ret;
  2752. }
  2753. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2754. u16 tss_selector, u16 old_tss_sel,
  2755. ulong old_tss_base, struct desc_struct *new_desc)
  2756. {
  2757. struct tss_segment_32 tss_seg;
  2758. int ret;
  2759. u32 new_tss_base = get_desc_base(new_desc);
  2760. u32 eip_offset = offsetof(struct tss_segment_32, eip);
  2761. u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
  2762. ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof tss_seg);
  2763. if (ret != X86EMUL_CONTINUE)
  2764. return ret;
  2765. save_state_to_tss32(ctxt, &tss_seg);
  2766. /* Only GP registers and segment selectors are saved */
  2767. ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
  2768. ldt_sel_offset - eip_offset);
  2769. if (ret != X86EMUL_CONTINUE)
  2770. return ret;
  2771. ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof tss_seg);
  2772. if (ret != X86EMUL_CONTINUE)
  2773. return ret;
  2774. if (old_tss_sel != 0xffff) {
  2775. tss_seg.prev_task_link = old_tss_sel;
  2776. ret = linear_write_system(ctxt, new_tss_base,
  2777. &tss_seg.prev_task_link,
  2778. sizeof tss_seg.prev_task_link);
  2779. if (ret != X86EMUL_CONTINUE)
  2780. return ret;
  2781. }
  2782. return load_state_from_tss32(ctxt, &tss_seg);
  2783. }
  2784. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2785. u16 tss_selector, int idt_index, int reason,
  2786. bool has_error_code, u32 error_code)
  2787. {
  2788. const struct x86_emulate_ops *ops = ctxt->ops;
  2789. struct desc_struct curr_tss_desc, next_tss_desc;
  2790. int ret;
  2791. u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
  2792. ulong old_tss_base =
  2793. ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
  2794. u32 desc_limit;
  2795. ulong desc_addr, dr7;
  2796. /* FIXME: old_tss_base == ~0 ? */
  2797. ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
  2798. if (ret != X86EMUL_CONTINUE)
  2799. return ret;
  2800. ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
  2801. if (ret != X86EMUL_CONTINUE)
  2802. return ret;
  2803. /* FIXME: check that next_tss_desc is tss */
  2804. /*
  2805. * Check privileges. The three cases are task switch caused by...
  2806. *
  2807. * 1. jmp/call/int to task gate: Check against DPL of the task gate
  2808. * 2. Exception/IRQ/iret: No check is performed
  2809. * 3. jmp/call to TSS/task-gate: No check is performed since the
  2810. * hardware checks it before exiting.
  2811. */
  2812. if (reason == TASK_SWITCH_GATE) {
  2813. if (idt_index != -1) {
  2814. /* Software interrupts */
  2815. struct desc_struct task_gate_desc;
  2816. int dpl;
  2817. ret = read_interrupt_descriptor(ctxt, idt_index,
  2818. &task_gate_desc);
  2819. if (ret != X86EMUL_CONTINUE)
  2820. return ret;
  2821. dpl = task_gate_desc.dpl;
  2822. if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
  2823. return emulate_gp(ctxt, (idt_index << 3) | 0x2);
  2824. }
  2825. }
  2826. desc_limit = desc_limit_scaled(&next_tss_desc);
  2827. if (!next_tss_desc.p ||
  2828. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2829. desc_limit < 0x2b)) {
  2830. return emulate_ts(ctxt, tss_selector & 0xfffc);
  2831. }
  2832. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2833. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2834. write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
  2835. }
  2836. if (reason == TASK_SWITCH_IRET)
  2837. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2838. /* set back link to prev task only if NT bit is set in eflags
  2839. note that old_tss_sel is not used after this point */
  2840. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2841. old_tss_sel = 0xffff;
  2842. if (next_tss_desc.type & 8)
  2843. ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
  2844. old_tss_base, &next_tss_desc);
  2845. else
  2846. ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
  2847. old_tss_base, &next_tss_desc);
  2848. if (ret != X86EMUL_CONTINUE)
  2849. return ret;
  2850. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2851. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2852. if (reason != TASK_SWITCH_IRET) {
  2853. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2854. write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
  2855. }
  2856. ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
  2857. ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
  2858. if (has_error_code) {
  2859. ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2860. ctxt->lock_prefix = 0;
  2861. ctxt->src.val = (unsigned long) error_code;
  2862. ret = em_push(ctxt);
  2863. }
  2864. ops->get_dr(ctxt, 7, &dr7);
  2865. ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
  2866. return ret;
  2867. }
  2868. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2869. u16 tss_selector, int idt_index, int reason,
  2870. bool has_error_code, u32 error_code)
  2871. {
  2872. int rc;
  2873. invalidate_registers(ctxt);
  2874. ctxt->_eip = ctxt->eip;
  2875. ctxt->dst.type = OP_NONE;
  2876. rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
  2877. has_error_code, error_code);
  2878. if (rc == X86EMUL_CONTINUE) {
  2879. ctxt->eip = ctxt->_eip;
  2880. writeback_registers(ctxt);
  2881. }
  2882. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2883. }
  2884. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
  2885. struct operand *op)
  2886. {
  2887. int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
  2888. register_address_increment(ctxt, reg, df * op->bytes);
  2889. op->addr.mem.ea = register_address(ctxt, reg);
  2890. }
  2891. static int em_das(struct x86_emulate_ctxt *ctxt)
  2892. {
  2893. u8 al, old_al;
  2894. bool af, cf, old_cf;
  2895. cf = ctxt->eflags & X86_EFLAGS_CF;
  2896. al = ctxt->dst.val;
  2897. old_al = al;
  2898. old_cf = cf;
  2899. cf = false;
  2900. af = ctxt->eflags & X86_EFLAGS_AF;
  2901. if ((al & 0x0f) > 9 || af) {
  2902. al -= 6;
  2903. cf = old_cf | (al >= 250);
  2904. af = true;
  2905. } else {
  2906. af = false;
  2907. }
  2908. if (old_al > 0x99 || old_cf) {
  2909. al -= 0x60;
  2910. cf = true;
  2911. }
  2912. ctxt->dst.val = al;
  2913. /* Set PF, ZF, SF */
  2914. ctxt->src.type = OP_IMM;
  2915. ctxt->src.val = 0;
  2916. ctxt->src.bytes = 1;
  2917. fastop(ctxt, em_or);
  2918. ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
  2919. if (cf)
  2920. ctxt->eflags |= X86_EFLAGS_CF;
  2921. if (af)
  2922. ctxt->eflags |= X86_EFLAGS_AF;
  2923. return X86EMUL_CONTINUE;
  2924. }
  2925. static int em_aam(struct x86_emulate_ctxt *ctxt)
  2926. {
  2927. u8 al, ah;
  2928. if (ctxt->src.val == 0)
  2929. return emulate_de(ctxt);
  2930. al = ctxt->dst.val & 0xff;
  2931. ah = al / ctxt->src.val;
  2932. al %= ctxt->src.val;
  2933. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
  2934. /* Set PF, ZF, SF */
  2935. ctxt->src.type = OP_IMM;
  2936. ctxt->src.val = 0;
  2937. ctxt->src.bytes = 1;
  2938. fastop(ctxt, em_or);
  2939. return X86EMUL_CONTINUE;
  2940. }
  2941. static int em_aad(struct x86_emulate_ctxt *ctxt)
  2942. {
  2943. u8 al = ctxt->dst.val & 0xff;
  2944. u8 ah = (ctxt->dst.val >> 8) & 0xff;
  2945. al = (al + (ah * ctxt->src.val)) & 0xff;
  2946. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
  2947. /* Set PF, ZF, SF */
  2948. ctxt->src.type = OP_IMM;
  2949. ctxt->src.val = 0;
  2950. ctxt->src.bytes = 1;
  2951. fastop(ctxt, em_or);
  2952. return X86EMUL_CONTINUE;
  2953. }
  2954. static int em_call(struct x86_emulate_ctxt *ctxt)
  2955. {
  2956. int rc;
  2957. long rel = ctxt->src.val;
  2958. ctxt->src.val = (unsigned long)ctxt->_eip;
  2959. rc = jmp_rel(ctxt, rel);
  2960. if (rc != X86EMUL_CONTINUE)
  2961. return rc;
  2962. return em_push(ctxt);
  2963. }
  2964. static int em_call_far(struct x86_emulate_ctxt *ctxt)
  2965. {
  2966. u16 sel, old_cs;
  2967. ulong old_eip;
  2968. int rc;
  2969. struct desc_struct old_desc, new_desc;
  2970. const struct x86_emulate_ops *ops = ctxt->ops;
  2971. int cpl = ctxt->ops->cpl(ctxt);
  2972. enum x86emul_mode prev_mode = ctxt->mode;
  2973. old_eip = ctxt->_eip;
  2974. ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
  2975. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  2976. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
  2977. X86_TRANSFER_CALL_JMP, &new_desc);
  2978. if (rc != X86EMUL_CONTINUE)
  2979. return rc;
  2980. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  2981. if (rc != X86EMUL_CONTINUE)
  2982. goto fail;
  2983. ctxt->src.val = old_cs;
  2984. rc = em_push(ctxt);
  2985. if (rc != X86EMUL_CONTINUE)
  2986. goto fail;
  2987. ctxt->src.val = old_eip;
  2988. rc = em_push(ctxt);
  2989. /* If we failed, we tainted the memory, but the very least we should
  2990. restore cs */
  2991. if (rc != X86EMUL_CONTINUE) {
  2992. pr_warn_once("faulting far call emulation tainted memory\n");
  2993. goto fail;
  2994. }
  2995. return rc;
  2996. fail:
  2997. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  2998. ctxt->mode = prev_mode;
  2999. return rc;
  3000. }
  3001. static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
  3002. {
  3003. int rc;
  3004. unsigned long eip;
  3005. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  3006. if (rc != X86EMUL_CONTINUE)
  3007. return rc;
  3008. rc = assign_eip_near(ctxt, eip);
  3009. if (rc != X86EMUL_CONTINUE)
  3010. return rc;
  3011. rsp_increment(ctxt, ctxt->src.val);
  3012. return X86EMUL_CONTINUE;
  3013. }
  3014. static int em_xchg(struct x86_emulate_ctxt *ctxt)
  3015. {
  3016. /* Write back the register source. */
  3017. ctxt->src.val = ctxt->dst.val;
  3018. write_register_operand(&ctxt->src);
  3019. /* Write back the memory destination with implicit LOCK prefix. */
  3020. ctxt->dst.val = ctxt->src.orig_val;
  3021. ctxt->lock_prefix = 1;
  3022. return X86EMUL_CONTINUE;
  3023. }
  3024. static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
  3025. {
  3026. ctxt->dst.val = ctxt->src2.val;
  3027. return fastop(ctxt, em_imul);
  3028. }
  3029. static int em_cwd(struct x86_emulate_ctxt *ctxt)
  3030. {
  3031. ctxt->dst.type = OP_REG;
  3032. ctxt->dst.bytes = ctxt->src.bytes;
  3033. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3034. ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
  3035. return X86EMUL_CONTINUE;
  3036. }
  3037. static int em_rdpid(struct x86_emulate_ctxt *ctxt)
  3038. {
  3039. u64 tsc_aux = 0;
  3040. if (ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux))
  3041. return emulate_gp(ctxt, 0);
  3042. ctxt->dst.val = tsc_aux;
  3043. return X86EMUL_CONTINUE;
  3044. }
  3045. static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
  3046. {
  3047. u64 tsc = 0;
  3048. ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
  3049. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
  3050. *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
  3051. return X86EMUL_CONTINUE;
  3052. }
  3053. static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
  3054. {
  3055. u64 pmc;
  3056. if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
  3057. return emulate_gp(ctxt, 0);
  3058. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
  3059. *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
  3060. return X86EMUL_CONTINUE;
  3061. }
  3062. static int em_mov(struct x86_emulate_ctxt *ctxt)
  3063. {
  3064. memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
  3065. return X86EMUL_CONTINUE;
  3066. }
  3067. #define FFL(x) bit(X86_FEATURE_##x)
  3068. static int em_movbe(struct x86_emulate_ctxt *ctxt)
  3069. {
  3070. u32 ebx, ecx, edx, eax = 1;
  3071. u16 tmp;
  3072. /*
  3073. * Check MOVBE is set in the guest-visible CPUID leaf.
  3074. */
  3075. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
  3076. if (!(ecx & FFL(MOVBE)))
  3077. return emulate_ud(ctxt);
  3078. switch (ctxt->op_bytes) {
  3079. case 2:
  3080. /*
  3081. * From MOVBE definition: "...When the operand size is 16 bits,
  3082. * the upper word of the destination register remains unchanged
  3083. * ..."
  3084. *
  3085. * Both casting ->valptr and ->val to u16 breaks strict aliasing
  3086. * rules so we have to do the operation almost per hand.
  3087. */
  3088. tmp = (u16)ctxt->src.val;
  3089. ctxt->dst.val &= ~0xffffUL;
  3090. ctxt->dst.val |= (unsigned long)swab16(tmp);
  3091. break;
  3092. case 4:
  3093. ctxt->dst.val = swab32((u32)ctxt->src.val);
  3094. break;
  3095. case 8:
  3096. ctxt->dst.val = swab64(ctxt->src.val);
  3097. break;
  3098. default:
  3099. BUG();
  3100. }
  3101. return X86EMUL_CONTINUE;
  3102. }
  3103. static int em_cr_write(struct x86_emulate_ctxt *ctxt)
  3104. {
  3105. if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
  3106. return emulate_gp(ctxt, 0);
  3107. /* Disable writeback. */
  3108. ctxt->dst.type = OP_NONE;
  3109. return X86EMUL_CONTINUE;
  3110. }
  3111. static int em_dr_write(struct x86_emulate_ctxt *ctxt)
  3112. {
  3113. unsigned long val;
  3114. if (ctxt->mode == X86EMUL_MODE_PROT64)
  3115. val = ctxt->src.val & ~0ULL;
  3116. else
  3117. val = ctxt->src.val & ~0U;
  3118. /* #UD condition is already handled. */
  3119. if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
  3120. return emulate_gp(ctxt, 0);
  3121. /* Disable writeback. */
  3122. ctxt->dst.type = OP_NONE;
  3123. return X86EMUL_CONTINUE;
  3124. }
  3125. static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
  3126. {
  3127. u64 msr_data;
  3128. msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
  3129. | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
  3130. if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
  3131. return emulate_gp(ctxt, 0);
  3132. return X86EMUL_CONTINUE;
  3133. }
  3134. static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
  3135. {
  3136. u64 msr_data;
  3137. if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
  3138. return emulate_gp(ctxt, 0);
  3139. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
  3140. *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
  3141. return X86EMUL_CONTINUE;
  3142. }
  3143. static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
  3144. {
  3145. if (segment > VCPU_SREG_GS &&
  3146. (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
  3147. ctxt->ops->cpl(ctxt) > 0)
  3148. return emulate_gp(ctxt, 0);
  3149. ctxt->dst.val = get_segment_selector(ctxt, segment);
  3150. if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
  3151. ctxt->dst.bytes = 2;
  3152. return X86EMUL_CONTINUE;
  3153. }
  3154. static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
  3155. {
  3156. if (ctxt->modrm_reg > VCPU_SREG_GS)
  3157. return emulate_ud(ctxt);
  3158. return em_store_sreg(ctxt, ctxt->modrm_reg);
  3159. }
  3160. static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
  3161. {
  3162. u16 sel = ctxt->src.val;
  3163. if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
  3164. return emulate_ud(ctxt);
  3165. if (ctxt->modrm_reg == VCPU_SREG_SS)
  3166. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  3167. /* Disable writeback. */
  3168. ctxt->dst.type = OP_NONE;
  3169. return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
  3170. }
  3171. static int em_sldt(struct x86_emulate_ctxt *ctxt)
  3172. {
  3173. return em_store_sreg(ctxt, VCPU_SREG_LDTR);
  3174. }
  3175. static int em_lldt(struct x86_emulate_ctxt *ctxt)
  3176. {
  3177. u16 sel = ctxt->src.val;
  3178. /* Disable writeback. */
  3179. ctxt->dst.type = OP_NONE;
  3180. return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
  3181. }
  3182. static int em_str(struct x86_emulate_ctxt *ctxt)
  3183. {
  3184. return em_store_sreg(ctxt, VCPU_SREG_TR);
  3185. }
  3186. static int em_ltr(struct x86_emulate_ctxt *ctxt)
  3187. {
  3188. u16 sel = ctxt->src.val;
  3189. /* Disable writeback. */
  3190. ctxt->dst.type = OP_NONE;
  3191. return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
  3192. }
  3193. static int em_invlpg(struct x86_emulate_ctxt *ctxt)
  3194. {
  3195. int rc;
  3196. ulong linear;
  3197. rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
  3198. if (rc == X86EMUL_CONTINUE)
  3199. ctxt->ops->invlpg(ctxt, linear);
  3200. /* Disable writeback. */
  3201. ctxt->dst.type = OP_NONE;
  3202. return X86EMUL_CONTINUE;
  3203. }
  3204. static int em_clts(struct x86_emulate_ctxt *ctxt)
  3205. {
  3206. ulong cr0;
  3207. cr0 = ctxt->ops->get_cr(ctxt, 0);
  3208. cr0 &= ~X86_CR0_TS;
  3209. ctxt->ops->set_cr(ctxt, 0, cr0);
  3210. return X86EMUL_CONTINUE;
  3211. }
  3212. static int em_hypercall(struct x86_emulate_ctxt *ctxt)
  3213. {
  3214. int rc = ctxt->ops->fix_hypercall(ctxt);
  3215. if (rc != X86EMUL_CONTINUE)
  3216. return rc;
  3217. /* Let the processor re-execute the fixed hypercall */
  3218. ctxt->_eip = ctxt->eip;
  3219. /* Disable writeback. */
  3220. ctxt->dst.type = OP_NONE;
  3221. return X86EMUL_CONTINUE;
  3222. }
  3223. static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
  3224. void (*get)(struct x86_emulate_ctxt *ctxt,
  3225. struct desc_ptr *ptr))
  3226. {
  3227. struct desc_ptr desc_ptr;
  3228. if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
  3229. ctxt->ops->cpl(ctxt) > 0)
  3230. return emulate_gp(ctxt, 0);
  3231. if (ctxt->mode == X86EMUL_MODE_PROT64)
  3232. ctxt->op_bytes = 8;
  3233. get(ctxt, &desc_ptr);
  3234. if (ctxt->op_bytes == 2) {
  3235. ctxt->op_bytes = 4;
  3236. desc_ptr.address &= 0x00ffffff;
  3237. }
  3238. /* Disable writeback. */
  3239. ctxt->dst.type = OP_NONE;
  3240. return segmented_write_std(ctxt, ctxt->dst.addr.mem,
  3241. &desc_ptr, 2 + ctxt->op_bytes);
  3242. }
  3243. static int em_sgdt(struct x86_emulate_ctxt *ctxt)
  3244. {
  3245. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
  3246. }
  3247. static int em_sidt(struct x86_emulate_ctxt *ctxt)
  3248. {
  3249. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
  3250. }
  3251. static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
  3252. {
  3253. struct desc_ptr desc_ptr;
  3254. int rc;
  3255. if (ctxt->mode == X86EMUL_MODE_PROT64)
  3256. ctxt->op_bytes = 8;
  3257. rc = read_descriptor(ctxt, ctxt->src.addr.mem,
  3258. &desc_ptr.size, &desc_ptr.address,
  3259. ctxt->op_bytes);
  3260. if (rc != X86EMUL_CONTINUE)
  3261. return rc;
  3262. if (ctxt->mode == X86EMUL_MODE_PROT64 &&
  3263. emul_is_noncanonical_address(desc_ptr.address, ctxt))
  3264. return emulate_gp(ctxt, 0);
  3265. if (lgdt)
  3266. ctxt->ops->set_gdt(ctxt, &desc_ptr);
  3267. else
  3268. ctxt->ops->set_idt(ctxt, &desc_ptr);
  3269. /* Disable writeback. */
  3270. ctxt->dst.type = OP_NONE;
  3271. return X86EMUL_CONTINUE;
  3272. }
  3273. static int em_lgdt(struct x86_emulate_ctxt *ctxt)
  3274. {
  3275. return em_lgdt_lidt(ctxt, true);
  3276. }
  3277. static int em_lidt(struct x86_emulate_ctxt *ctxt)
  3278. {
  3279. return em_lgdt_lidt(ctxt, false);
  3280. }
  3281. static int em_smsw(struct x86_emulate_ctxt *ctxt)
  3282. {
  3283. if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
  3284. ctxt->ops->cpl(ctxt) > 0)
  3285. return emulate_gp(ctxt, 0);
  3286. if (ctxt->dst.type == OP_MEM)
  3287. ctxt->dst.bytes = 2;
  3288. ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
  3289. return X86EMUL_CONTINUE;
  3290. }
  3291. static int em_lmsw(struct x86_emulate_ctxt *ctxt)
  3292. {
  3293. ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
  3294. | (ctxt->src.val & 0x0f));
  3295. ctxt->dst.type = OP_NONE;
  3296. return X86EMUL_CONTINUE;
  3297. }
  3298. static int em_loop(struct x86_emulate_ctxt *ctxt)
  3299. {
  3300. int rc = X86EMUL_CONTINUE;
  3301. register_address_increment(ctxt, VCPU_REGS_RCX, -1);
  3302. if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
  3303. (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
  3304. rc = jmp_rel(ctxt, ctxt->src.val);
  3305. return rc;
  3306. }
  3307. static int em_jcxz(struct x86_emulate_ctxt *ctxt)
  3308. {
  3309. int rc = X86EMUL_CONTINUE;
  3310. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
  3311. rc = jmp_rel(ctxt, ctxt->src.val);
  3312. return rc;
  3313. }
  3314. static int em_in(struct x86_emulate_ctxt *ctxt)
  3315. {
  3316. if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
  3317. &ctxt->dst.val))
  3318. return X86EMUL_IO_NEEDED;
  3319. return X86EMUL_CONTINUE;
  3320. }
  3321. static int em_out(struct x86_emulate_ctxt *ctxt)
  3322. {
  3323. ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
  3324. &ctxt->src.val, 1);
  3325. /* Disable writeback. */
  3326. ctxt->dst.type = OP_NONE;
  3327. return X86EMUL_CONTINUE;
  3328. }
  3329. static int em_cli(struct x86_emulate_ctxt *ctxt)
  3330. {
  3331. if (emulator_bad_iopl(ctxt))
  3332. return emulate_gp(ctxt, 0);
  3333. ctxt->eflags &= ~X86_EFLAGS_IF;
  3334. return X86EMUL_CONTINUE;
  3335. }
  3336. static int em_sti(struct x86_emulate_ctxt *ctxt)
  3337. {
  3338. if (emulator_bad_iopl(ctxt))
  3339. return emulate_gp(ctxt, 0);
  3340. ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
  3341. ctxt->eflags |= X86_EFLAGS_IF;
  3342. return X86EMUL_CONTINUE;
  3343. }
  3344. static int em_cpuid(struct x86_emulate_ctxt *ctxt)
  3345. {
  3346. u32 eax, ebx, ecx, edx;
  3347. u64 msr = 0;
  3348. ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
  3349. if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
  3350. ctxt->ops->cpl(ctxt)) {
  3351. return emulate_gp(ctxt, 0);
  3352. }
  3353. eax = reg_read(ctxt, VCPU_REGS_RAX);
  3354. ecx = reg_read(ctxt, VCPU_REGS_RCX);
  3355. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
  3356. *reg_write(ctxt, VCPU_REGS_RAX) = eax;
  3357. *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
  3358. *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
  3359. *reg_write(ctxt, VCPU_REGS_RDX) = edx;
  3360. return X86EMUL_CONTINUE;
  3361. }
  3362. static int em_sahf(struct x86_emulate_ctxt *ctxt)
  3363. {
  3364. u32 flags;
  3365. flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  3366. X86_EFLAGS_SF;
  3367. flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
  3368. ctxt->eflags &= ~0xffUL;
  3369. ctxt->eflags |= flags | X86_EFLAGS_FIXED;
  3370. return X86EMUL_CONTINUE;
  3371. }
  3372. static int em_lahf(struct x86_emulate_ctxt *ctxt)
  3373. {
  3374. *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
  3375. *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
  3376. return X86EMUL_CONTINUE;
  3377. }
  3378. static int em_bswap(struct x86_emulate_ctxt *ctxt)
  3379. {
  3380. switch (ctxt->op_bytes) {
  3381. #ifdef CONFIG_X86_64
  3382. case 8:
  3383. asm("bswap %0" : "+r"(ctxt->dst.val));
  3384. break;
  3385. #endif
  3386. default:
  3387. asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
  3388. break;
  3389. }
  3390. return X86EMUL_CONTINUE;
  3391. }
  3392. static int em_clflush(struct x86_emulate_ctxt *ctxt)
  3393. {
  3394. /* emulating clflush regardless of cpuid */
  3395. return X86EMUL_CONTINUE;
  3396. }
  3397. static int em_movsxd(struct x86_emulate_ctxt *ctxt)
  3398. {
  3399. ctxt->dst.val = (s32) ctxt->src.val;
  3400. return X86EMUL_CONTINUE;
  3401. }
  3402. static int check_fxsr(struct x86_emulate_ctxt *ctxt)
  3403. {
  3404. u32 eax = 1, ebx, ecx = 0, edx;
  3405. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
  3406. if (!(edx & FFL(FXSR)))
  3407. return emulate_ud(ctxt);
  3408. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  3409. return emulate_nm(ctxt);
  3410. /*
  3411. * Don't emulate a case that should never be hit, instead of working
  3412. * around a lack of fxsave64/fxrstor64 on old compilers.
  3413. */
  3414. if (ctxt->mode >= X86EMUL_MODE_PROT64)
  3415. return X86EMUL_UNHANDLEABLE;
  3416. return X86EMUL_CONTINUE;
  3417. }
  3418. /*
  3419. * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
  3420. * and restore MXCSR.
  3421. */
  3422. static size_t __fxstate_size(int nregs)
  3423. {
  3424. return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
  3425. }
  3426. static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
  3427. {
  3428. bool cr4_osfxsr;
  3429. if (ctxt->mode == X86EMUL_MODE_PROT64)
  3430. return __fxstate_size(16);
  3431. cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
  3432. return __fxstate_size(cr4_osfxsr ? 8 : 0);
  3433. }
  3434. /*
  3435. * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
  3436. * 1) 16 bit mode
  3437. * 2) 32 bit mode
  3438. * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
  3439. * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
  3440. * save and restore
  3441. * 3) 64-bit mode with REX.W prefix
  3442. * - like (2), but XMM 8-15 are being saved and restored
  3443. * 4) 64-bit mode without REX.W prefix
  3444. * - like (3), but FIP and FDP are 64 bit
  3445. *
  3446. * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
  3447. * desired result. (4) is not emulated.
  3448. *
  3449. * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
  3450. * and FPU DS) should match.
  3451. */
  3452. static int em_fxsave(struct x86_emulate_ctxt *ctxt)
  3453. {
  3454. struct fxregs_state fx_state;
  3455. int rc;
  3456. rc = check_fxsr(ctxt);
  3457. if (rc != X86EMUL_CONTINUE)
  3458. return rc;
  3459. rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
  3460. if (rc != X86EMUL_CONTINUE)
  3461. return rc;
  3462. return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
  3463. fxstate_size(ctxt));
  3464. }
  3465. /*
  3466. * FXRSTOR might restore XMM registers not provided by the guest. Fill
  3467. * in the host registers (via FXSAVE) instead, so they won't be modified.
  3468. * (preemption has to stay disabled until FXRSTOR).
  3469. *
  3470. * Use noinline to keep the stack for other functions called by callers small.
  3471. */
  3472. static noinline int fxregs_fixup(struct fxregs_state *fx_state,
  3473. const size_t used_size)
  3474. {
  3475. struct fxregs_state fx_tmp;
  3476. int rc;
  3477. rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
  3478. memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
  3479. __fxstate_size(16) - used_size);
  3480. return rc;
  3481. }
  3482. static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
  3483. {
  3484. struct fxregs_state fx_state;
  3485. int rc;
  3486. size_t size;
  3487. rc = check_fxsr(ctxt);
  3488. if (rc != X86EMUL_CONTINUE)
  3489. return rc;
  3490. size = fxstate_size(ctxt);
  3491. rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
  3492. if (rc != X86EMUL_CONTINUE)
  3493. return rc;
  3494. if (size < __fxstate_size(16)) {
  3495. rc = fxregs_fixup(&fx_state, size);
  3496. if (rc != X86EMUL_CONTINUE)
  3497. goto out;
  3498. }
  3499. if (fx_state.mxcsr >> 16) {
  3500. rc = emulate_gp(ctxt, 0);
  3501. goto out;
  3502. }
  3503. if (rc == X86EMUL_CONTINUE)
  3504. rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
  3505. out:
  3506. return rc;
  3507. }
  3508. static bool valid_cr(int nr)
  3509. {
  3510. switch (nr) {
  3511. case 0:
  3512. case 2 ... 4:
  3513. case 8:
  3514. return true;
  3515. default:
  3516. return false;
  3517. }
  3518. }
  3519. static int check_cr_read(struct x86_emulate_ctxt *ctxt)
  3520. {
  3521. if (!valid_cr(ctxt->modrm_reg))
  3522. return emulate_ud(ctxt);
  3523. return X86EMUL_CONTINUE;
  3524. }
  3525. static int check_cr_write(struct x86_emulate_ctxt *ctxt)
  3526. {
  3527. u64 new_val = ctxt->src.val64;
  3528. int cr = ctxt->modrm_reg;
  3529. u64 efer = 0;
  3530. static u64 cr_reserved_bits[] = {
  3531. 0xffffffff00000000ULL,
  3532. 0, 0, 0, /* CR3 checked later */
  3533. CR4_RESERVED_BITS,
  3534. 0, 0, 0,
  3535. CR8_RESERVED_BITS,
  3536. };
  3537. if (!valid_cr(cr))
  3538. return emulate_ud(ctxt);
  3539. if (new_val & cr_reserved_bits[cr])
  3540. return emulate_gp(ctxt, 0);
  3541. switch (cr) {
  3542. case 0: {
  3543. u64 cr4;
  3544. if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
  3545. ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
  3546. return emulate_gp(ctxt, 0);
  3547. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3548. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3549. if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
  3550. !(cr4 & X86_CR4_PAE))
  3551. return emulate_gp(ctxt, 0);
  3552. break;
  3553. }
  3554. case 3: {
  3555. u64 rsvd = 0;
  3556. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3557. if (efer & EFER_LMA) {
  3558. u64 maxphyaddr;
  3559. u32 eax, ebx, ecx, edx;
  3560. eax = 0x80000008;
  3561. ecx = 0;
  3562. if (ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx,
  3563. &edx, false))
  3564. maxphyaddr = eax & 0xff;
  3565. else
  3566. maxphyaddr = 36;
  3567. rsvd = rsvd_bits(maxphyaddr, 63);
  3568. if (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_PCIDE)
  3569. rsvd &= ~X86_CR3_PCID_NOFLUSH;
  3570. }
  3571. if (new_val & rsvd)
  3572. return emulate_gp(ctxt, 0);
  3573. break;
  3574. }
  3575. case 4: {
  3576. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3577. if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
  3578. return emulate_gp(ctxt, 0);
  3579. break;
  3580. }
  3581. }
  3582. return X86EMUL_CONTINUE;
  3583. }
  3584. static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
  3585. {
  3586. unsigned long dr7;
  3587. ctxt->ops->get_dr(ctxt, 7, &dr7);
  3588. /* Check if DR7.Global_Enable is set */
  3589. return dr7 & (1 << 13);
  3590. }
  3591. static int check_dr_read(struct x86_emulate_ctxt *ctxt)
  3592. {
  3593. int dr = ctxt->modrm_reg;
  3594. u64 cr4;
  3595. if (dr > 7)
  3596. return emulate_ud(ctxt);
  3597. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3598. if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
  3599. return emulate_ud(ctxt);
  3600. if (check_dr7_gd(ctxt)) {
  3601. ulong dr6;
  3602. ctxt->ops->get_dr(ctxt, 6, &dr6);
  3603. dr6 &= ~15;
  3604. dr6 |= DR6_BD | DR6_RTM;
  3605. ctxt->ops->set_dr(ctxt, 6, dr6);
  3606. return emulate_db(ctxt);
  3607. }
  3608. return X86EMUL_CONTINUE;
  3609. }
  3610. static int check_dr_write(struct x86_emulate_ctxt *ctxt)
  3611. {
  3612. u64 new_val = ctxt->src.val64;
  3613. int dr = ctxt->modrm_reg;
  3614. if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
  3615. return emulate_gp(ctxt, 0);
  3616. return check_dr_read(ctxt);
  3617. }
  3618. static int check_svme(struct x86_emulate_ctxt *ctxt)
  3619. {
  3620. u64 efer = 0;
  3621. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3622. if (!(efer & EFER_SVME))
  3623. return emulate_ud(ctxt);
  3624. return X86EMUL_CONTINUE;
  3625. }
  3626. static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
  3627. {
  3628. u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
  3629. /* Valid physical address? */
  3630. if (rax & 0xffff000000000000ULL)
  3631. return emulate_gp(ctxt, 0);
  3632. return check_svme(ctxt);
  3633. }
  3634. static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
  3635. {
  3636. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3637. if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
  3638. return emulate_ud(ctxt);
  3639. return X86EMUL_CONTINUE;
  3640. }
  3641. static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
  3642. {
  3643. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3644. u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
  3645. /*
  3646. * VMware allows access to these Pseduo-PMCs even when read via RDPMC
  3647. * in Ring3 when CR4.PCE=0.
  3648. */
  3649. if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
  3650. return X86EMUL_CONTINUE;
  3651. if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
  3652. ctxt->ops->check_pmc(ctxt, rcx))
  3653. return emulate_gp(ctxt, 0);
  3654. return X86EMUL_CONTINUE;
  3655. }
  3656. static int check_perm_in(struct x86_emulate_ctxt *ctxt)
  3657. {
  3658. ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
  3659. if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
  3660. return emulate_gp(ctxt, 0);
  3661. return X86EMUL_CONTINUE;
  3662. }
  3663. static int check_perm_out(struct x86_emulate_ctxt *ctxt)
  3664. {
  3665. ctxt->src.bytes = min(ctxt->src.bytes, 4u);
  3666. if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
  3667. return emulate_gp(ctxt, 0);
  3668. return X86EMUL_CONTINUE;
  3669. }
  3670. #define D(_y) { .flags = (_y) }
  3671. #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
  3672. #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
  3673. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3674. #define N D(NotImpl)
  3675. #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
  3676. #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
  3677. #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
  3678. #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
  3679. #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
  3680. #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
  3681. #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
  3682. #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
  3683. #define II(_f, _e, _i) \
  3684. { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
  3685. #define IIP(_f, _e, _i, _p) \
  3686. { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
  3687. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3688. #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
  3689. #define D2bv(_f) D((_f) | ByteOp), D(_f)
  3690. #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
  3691. #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
  3692. #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
  3693. #define I2bvIP(_f, _e, _i, _p) \
  3694. IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
  3695. #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
  3696. F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
  3697. F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
  3698. static const struct opcode group7_rm0[] = {
  3699. N,
  3700. I(SrcNone | Priv | EmulateOnUD, em_hypercall),
  3701. N, N, N, N, N, N,
  3702. };
  3703. static const struct opcode group7_rm1[] = {
  3704. DI(SrcNone | Priv, monitor),
  3705. DI(SrcNone | Priv, mwait),
  3706. N, N, N, N, N, N,
  3707. };
  3708. static const struct opcode group7_rm3[] = {
  3709. DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
  3710. II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
  3711. DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
  3712. DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
  3713. DIP(SrcNone | Prot | Priv, stgi, check_svme),
  3714. DIP(SrcNone | Prot | Priv, clgi, check_svme),
  3715. DIP(SrcNone | Prot | Priv, skinit, check_svme),
  3716. DIP(SrcNone | Prot | Priv, invlpga, check_svme),
  3717. };
  3718. static const struct opcode group7_rm7[] = {
  3719. N,
  3720. DIP(SrcNone, rdtscp, check_rdtsc),
  3721. N, N, N, N, N, N,
  3722. };
  3723. static const struct opcode group1[] = {
  3724. F(Lock, em_add),
  3725. F(Lock | PageTable, em_or),
  3726. F(Lock, em_adc),
  3727. F(Lock, em_sbb),
  3728. F(Lock | PageTable, em_and),
  3729. F(Lock, em_sub),
  3730. F(Lock, em_xor),
  3731. F(NoWrite, em_cmp),
  3732. };
  3733. static const struct opcode group1A[] = {
  3734. I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
  3735. };
  3736. static const struct opcode group2[] = {
  3737. F(DstMem | ModRM, em_rol),
  3738. F(DstMem | ModRM, em_ror),
  3739. F(DstMem | ModRM, em_rcl),
  3740. F(DstMem | ModRM, em_rcr),
  3741. F(DstMem | ModRM, em_shl),
  3742. F(DstMem | ModRM, em_shr),
  3743. F(DstMem | ModRM, em_shl),
  3744. F(DstMem | ModRM, em_sar),
  3745. };
  3746. static const struct opcode group3[] = {
  3747. F(DstMem | SrcImm | NoWrite, em_test),
  3748. F(DstMem | SrcImm | NoWrite, em_test),
  3749. F(DstMem | SrcNone | Lock, em_not),
  3750. F(DstMem | SrcNone | Lock, em_neg),
  3751. F(DstXacc | Src2Mem, em_mul_ex),
  3752. F(DstXacc | Src2Mem, em_imul_ex),
  3753. F(DstXacc | Src2Mem, em_div_ex),
  3754. F(DstXacc | Src2Mem, em_idiv_ex),
  3755. };
  3756. static const struct opcode group4[] = {
  3757. F(ByteOp | DstMem | SrcNone | Lock, em_inc),
  3758. F(ByteOp | DstMem | SrcNone | Lock, em_dec),
  3759. N, N, N, N, N, N,
  3760. };
  3761. static const struct opcode group5[] = {
  3762. F(DstMem | SrcNone | Lock, em_inc),
  3763. F(DstMem | SrcNone | Lock, em_dec),
  3764. I(SrcMem | NearBranch, em_call_near_abs),
  3765. I(SrcMemFAddr | ImplicitOps, em_call_far),
  3766. I(SrcMem | NearBranch, em_jmp_abs),
  3767. I(SrcMemFAddr | ImplicitOps, em_jmp_far),
  3768. I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
  3769. };
  3770. static const struct opcode group6[] = {
  3771. II(Prot | DstMem, em_sldt, sldt),
  3772. II(Prot | DstMem, em_str, str),
  3773. II(Prot | Priv | SrcMem16, em_lldt, lldt),
  3774. II(Prot | Priv | SrcMem16, em_ltr, ltr),
  3775. N, N, N, N,
  3776. };
  3777. static const struct group_dual group7 = { {
  3778. II(Mov | DstMem, em_sgdt, sgdt),
  3779. II(Mov | DstMem, em_sidt, sidt),
  3780. II(SrcMem | Priv, em_lgdt, lgdt),
  3781. II(SrcMem | Priv, em_lidt, lidt),
  3782. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3783. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3784. II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
  3785. }, {
  3786. EXT(0, group7_rm0),
  3787. EXT(0, group7_rm1),
  3788. N, EXT(0, group7_rm3),
  3789. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3790. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3791. EXT(0, group7_rm7),
  3792. } };
  3793. static const struct opcode group8[] = {
  3794. N, N, N, N,
  3795. F(DstMem | SrcImmByte | NoWrite, em_bt),
  3796. F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
  3797. F(DstMem | SrcImmByte | Lock, em_btr),
  3798. F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
  3799. };
  3800. /*
  3801. * The "memory" destination is actually always a register, since we come
  3802. * from the register case of group9.
  3803. */
  3804. static const struct gprefix pfx_0f_c7_7 = {
  3805. N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdtscp),
  3806. };
  3807. static const struct group_dual group9 = { {
  3808. N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
  3809. }, {
  3810. N, N, N, N, N, N, N,
  3811. GP(0, &pfx_0f_c7_7),
  3812. } };
  3813. static const struct opcode group11[] = {
  3814. I(DstMem | SrcImm | Mov | PageTable, em_mov),
  3815. X7(D(Undefined)),
  3816. };
  3817. static const struct gprefix pfx_0f_ae_7 = {
  3818. I(SrcMem | ByteOp, em_clflush), N, N, N,
  3819. };
  3820. static const struct group_dual group15 = { {
  3821. I(ModRM | Aligned16, em_fxsave),
  3822. I(ModRM | Aligned16, em_fxrstor),
  3823. N, N, N, N, N, GP(0, &pfx_0f_ae_7),
  3824. }, {
  3825. N, N, N, N, N, N, N, N,
  3826. } };
  3827. static const struct gprefix pfx_0f_6f_0f_7f = {
  3828. I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
  3829. };
  3830. static const struct instr_dual instr_dual_0f_2b = {
  3831. I(0, em_mov), N
  3832. };
  3833. static const struct gprefix pfx_0f_2b = {
  3834. ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
  3835. };
  3836. static const struct gprefix pfx_0f_10_0f_11 = {
  3837. I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
  3838. };
  3839. static const struct gprefix pfx_0f_28_0f_29 = {
  3840. I(Aligned, em_mov), I(Aligned, em_mov), N, N,
  3841. };
  3842. static const struct gprefix pfx_0f_e7 = {
  3843. N, I(Sse, em_mov), N, N,
  3844. };
  3845. static const struct escape escape_d9 = { {
  3846. N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
  3847. }, {
  3848. /* 0xC0 - 0xC7 */
  3849. N, N, N, N, N, N, N, N,
  3850. /* 0xC8 - 0xCF */
  3851. N, N, N, N, N, N, N, N,
  3852. /* 0xD0 - 0xC7 */
  3853. N, N, N, N, N, N, N, N,
  3854. /* 0xD8 - 0xDF */
  3855. N, N, N, N, N, N, N, N,
  3856. /* 0xE0 - 0xE7 */
  3857. N, N, N, N, N, N, N, N,
  3858. /* 0xE8 - 0xEF */
  3859. N, N, N, N, N, N, N, N,
  3860. /* 0xF0 - 0xF7 */
  3861. N, N, N, N, N, N, N, N,
  3862. /* 0xF8 - 0xFF */
  3863. N, N, N, N, N, N, N, N,
  3864. } };
  3865. static const struct escape escape_db = { {
  3866. N, N, N, N, N, N, N, N,
  3867. }, {
  3868. /* 0xC0 - 0xC7 */
  3869. N, N, N, N, N, N, N, N,
  3870. /* 0xC8 - 0xCF */
  3871. N, N, N, N, N, N, N, N,
  3872. /* 0xD0 - 0xC7 */
  3873. N, N, N, N, N, N, N, N,
  3874. /* 0xD8 - 0xDF */
  3875. N, N, N, N, N, N, N, N,
  3876. /* 0xE0 - 0xE7 */
  3877. N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
  3878. /* 0xE8 - 0xEF */
  3879. N, N, N, N, N, N, N, N,
  3880. /* 0xF0 - 0xF7 */
  3881. N, N, N, N, N, N, N, N,
  3882. /* 0xF8 - 0xFF */
  3883. N, N, N, N, N, N, N, N,
  3884. } };
  3885. static const struct escape escape_dd = { {
  3886. N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
  3887. }, {
  3888. /* 0xC0 - 0xC7 */
  3889. N, N, N, N, N, N, N, N,
  3890. /* 0xC8 - 0xCF */
  3891. N, N, N, N, N, N, N, N,
  3892. /* 0xD0 - 0xC7 */
  3893. N, N, N, N, N, N, N, N,
  3894. /* 0xD8 - 0xDF */
  3895. N, N, N, N, N, N, N, N,
  3896. /* 0xE0 - 0xE7 */
  3897. N, N, N, N, N, N, N, N,
  3898. /* 0xE8 - 0xEF */
  3899. N, N, N, N, N, N, N, N,
  3900. /* 0xF0 - 0xF7 */
  3901. N, N, N, N, N, N, N, N,
  3902. /* 0xF8 - 0xFF */
  3903. N, N, N, N, N, N, N, N,
  3904. } };
  3905. static const struct instr_dual instr_dual_0f_c3 = {
  3906. I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
  3907. };
  3908. static const struct mode_dual mode_dual_63 = {
  3909. N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
  3910. };
  3911. static const struct opcode opcode_table[256] = {
  3912. /* 0x00 - 0x07 */
  3913. F6ALU(Lock, em_add),
  3914. I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
  3915. I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
  3916. /* 0x08 - 0x0F */
  3917. F6ALU(Lock | PageTable, em_or),
  3918. I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
  3919. N,
  3920. /* 0x10 - 0x17 */
  3921. F6ALU(Lock, em_adc),
  3922. I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
  3923. I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
  3924. /* 0x18 - 0x1F */
  3925. F6ALU(Lock, em_sbb),
  3926. I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
  3927. I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
  3928. /* 0x20 - 0x27 */
  3929. F6ALU(Lock | PageTable, em_and), N, N,
  3930. /* 0x28 - 0x2F */
  3931. F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
  3932. /* 0x30 - 0x37 */
  3933. F6ALU(Lock, em_xor), N, N,
  3934. /* 0x38 - 0x3F */
  3935. F6ALU(NoWrite, em_cmp), N, N,
  3936. /* 0x40 - 0x4F */
  3937. X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
  3938. /* 0x50 - 0x57 */
  3939. X8(I(SrcReg | Stack, em_push)),
  3940. /* 0x58 - 0x5F */
  3941. X8(I(DstReg | Stack, em_pop)),
  3942. /* 0x60 - 0x67 */
  3943. I(ImplicitOps | Stack | No64, em_pusha),
  3944. I(ImplicitOps | Stack | No64, em_popa),
  3945. N, MD(ModRM, &mode_dual_63),
  3946. N, N, N, N,
  3947. /* 0x68 - 0x6F */
  3948. I(SrcImm | Mov | Stack, em_push),
  3949. I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
  3950. I(SrcImmByte | Mov | Stack, em_push),
  3951. I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
  3952. I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
  3953. I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
  3954. /* 0x70 - 0x7F */
  3955. X16(D(SrcImmByte | NearBranch)),
  3956. /* 0x80 - 0x87 */
  3957. G(ByteOp | DstMem | SrcImm, group1),
  3958. G(DstMem | SrcImm, group1),
  3959. G(ByteOp | DstMem | SrcImm | No64, group1),
  3960. G(DstMem | SrcImmByte, group1),
  3961. F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
  3962. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
  3963. /* 0x88 - 0x8F */
  3964. I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
  3965. I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
  3966. I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
  3967. D(ModRM | SrcMem | NoAccess | DstReg),
  3968. I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
  3969. G(0, group1A),
  3970. /* 0x90 - 0x97 */
  3971. DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
  3972. /* 0x98 - 0x9F */
  3973. D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
  3974. I(SrcImmFAddr | No64, em_call_far), N,
  3975. II(ImplicitOps | Stack, em_pushf, pushf),
  3976. II(ImplicitOps | Stack, em_popf, popf),
  3977. I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
  3978. /* 0xA0 - 0xA7 */
  3979. I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
  3980. I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
  3981. I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
  3982. F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
  3983. /* 0xA8 - 0xAF */
  3984. F2bv(DstAcc | SrcImm | NoWrite, em_test),
  3985. I2bv(SrcAcc | DstDI | Mov | String, em_mov),
  3986. I2bv(SrcSI | DstAcc | Mov | String, em_mov),
  3987. F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
  3988. /* 0xB0 - 0xB7 */
  3989. X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
  3990. /* 0xB8 - 0xBF */
  3991. X8(I(DstReg | SrcImm64 | Mov, em_mov)),
  3992. /* 0xC0 - 0xC7 */
  3993. G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
  3994. I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
  3995. I(ImplicitOps | NearBranch, em_ret),
  3996. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
  3997. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
  3998. G(ByteOp, group11), G(0, group11),
  3999. /* 0xC8 - 0xCF */
  4000. I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
  4001. I(ImplicitOps | SrcImmU16, em_ret_far_imm),
  4002. I(ImplicitOps, em_ret_far),
  4003. D(ImplicitOps), DI(SrcImmByte, intn),
  4004. D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
  4005. /* 0xD0 - 0xD7 */
  4006. G(Src2One | ByteOp, group2), G(Src2One, group2),
  4007. G(Src2CL | ByteOp, group2), G(Src2CL, group2),
  4008. I(DstAcc | SrcImmUByte | No64, em_aam),
  4009. I(DstAcc | SrcImmUByte | No64, em_aad),
  4010. F(DstAcc | ByteOp | No64, em_salc),
  4011. I(DstAcc | SrcXLat | ByteOp, em_mov),
  4012. /* 0xD8 - 0xDF */
  4013. N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
  4014. /* 0xE0 - 0xE7 */
  4015. X3(I(SrcImmByte | NearBranch, em_loop)),
  4016. I(SrcImmByte | NearBranch, em_jcxz),
  4017. I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
  4018. I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
  4019. /* 0xE8 - 0xEF */
  4020. I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
  4021. I(SrcImmFAddr | No64, em_jmp_far),
  4022. D(SrcImmByte | ImplicitOps | NearBranch),
  4023. I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
  4024. I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
  4025. /* 0xF0 - 0xF7 */
  4026. N, DI(ImplicitOps, icebp), N, N,
  4027. DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
  4028. G(ByteOp, group3), G(0, group3),
  4029. /* 0xF8 - 0xFF */
  4030. D(ImplicitOps), D(ImplicitOps),
  4031. I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
  4032. D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
  4033. };
  4034. static const struct opcode twobyte_table[256] = {
  4035. /* 0x00 - 0x0F */
  4036. G(0, group6), GD(0, &group7), N, N,
  4037. N, I(ImplicitOps | EmulateOnUD, em_syscall),
  4038. II(ImplicitOps | Priv, em_clts, clts), N,
  4039. DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
  4040. N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
  4041. /* 0x10 - 0x1F */
  4042. GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
  4043. GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
  4044. N, N, N, N, N, N,
  4045. D(ImplicitOps | ModRM | SrcMem | NoAccess),
  4046. N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
  4047. /* 0x20 - 0x2F */
  4048. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
  4049. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
  4050. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
  4051. check_cr_write),
  4052. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
  4053. check_dr_write),
  4054. N, N, N, N,
  4055. GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
  4056. GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
  4057. N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
  4058. N, N, N, N,
  4059. /* 0x30 - 0x3F */
  4060. II(ImplicitOps | Priv, em_wrmsr, wrmsr),
  4061. IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
  4062. II(ImplicitOps | Priv, em_rdmsr, rdmsr),
  4063. IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
  4064. I(ImplicitOps | EmulateOnUD, em_sysenter),
  4065. I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
  4066. N, N,
  4067. N, N, N, N, N, N, N, N,
  4068. /* 0x40 - 0x4F */
  4069. X16(D(DstReg | SrcMem | ModRM)),
  4070. /* 0x50 - 0x5F */
  4071. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  4072. /* 0x60 - 0x6F */
  4073. N, N, N, N,
  4074. N, N, N, N,
  4075. N, N, N, N,
  4076. N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
  4077. /* 0x70 - 0x7F */
  4078. N, N, N, N,
  4079. N, N, N, N,
  4080. N, N, N, N,
  4081. N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
  4082. /* 0x80 - 0x8F */
  4083. X16(D(SrcImm | NearBranch)),
  4084. /* 0x90 - 0x9F */
  4085. X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
  4086. /* 0xA0 - 0xA7 */
  4087. I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
  4088. II(ImplicitOps, em_cpuid, cpuid),
  4089. F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
  4090. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
  4091. F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
  4092. /* 0xA8 - 0xAF */
  4093. I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
  4094. II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
  4095. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
  4096. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
  4097. F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
  4098. GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
  4099. /* 0xB0 - 0xB7 */
  4100. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
  4101. I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
  4102. F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
  4103. I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
  4104. I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
  4105. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  4106. /* 0xB8 - 0xBF */
  4107. N, N,
  4108. G(BitOp, group8),
  4109. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
  4110. I(DstReg | SrcMem | ModRM, em_bsf_c),
  4111. I(DstReg | SrcMem | ModRM, em_bsr_c),
  4112. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  4113. /* 0xC0 - 0xC7 */
  4114. F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
  4115. N, ID(0, &instr_dual_0f_c3),
  4116. N, N, N, GD(0, &group9),
  4117. /* 0xC8 - 0xCF */
  4118. X8(I(DstReg, em_bswap)),
  4119. /* 0xD0 - 0xDF */
  4120. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  4121. /* 0xE0 - 0xEF */
  4122. N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
  4123. N, N, N, N, N, N, N, N,
  4124. /* 0xF0 - 0xFF */
  4125. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
  4126. };
  4127. static const struct instr_dual instr_dual_0f_38_f0 = {
  4128. I(DstReg | SrcMem | Mov, em_movbe), N
  4129. };
  4130. static const struct instr_dual instr_dual_0f_38_f1 = {
  4131. I(DstMem | SrcReg | Mov, em_movbe), N
  4132. };
  4133. static const struct gprefix three_byte_0f_38_f0 = {
  4134. ID(0, &instr_dual_0f_38_f0), N, N, N
  4135. };
  4136. static const struct gprefix three_byte_0f_38_f1 = {
  4137. ID(0, &instr_dual_0f_38_f1), N, N, N
  4138. };
  4139. /*
  4140. * Insns below are selected by the prefix which indexed by the third opcode
  4141. * byte.
  4142. */
  4143. static const struct opcode opcode_map_0f_38[256] = {
  4144. /* 0x00 - 0x7f */
  4145. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  4146. /* 0x80 - 0xef */
  4147. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  4148. /* 0xf0 - 0xf1 */
  4149. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
  4150. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
  4151. /* 0xf2 - 0xff */
  4152. N, N, X4(N), X8(N)
  4153. };
  4154. #undef D
  4155. #undef N
  4156. #undef G
  4157. #undef GD
  4158. #undef I
  4159. #undef GP
  4160. #undef EXT
  4161. #undef MD
  4162. #undef ID
  4163. #undef D2bv
  4164. #undef D2bvIP
  4165. #undef I2bv
  4166. #undef I2bvIP
  4167. #undef I6ALU
  4168. static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
  4169. {
  4170. unsigned size;
  4171. size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  4172. if (size == 8)
  4173. size = 4;
  4174. return size;
  4175. }
  4176. static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
  4177. unsigned size, bool sign_extension)
  4178. {
  4179. int rc = X86EMUL_CONTINUE;
  4180. op->type = OP_IMM;
  4181. op->bytes = size;
  4182. op->addr.mem.ea = ctxt->_eip;
  4183. /* NB. Immediates are sign-extended as necessary. */
  4184. switch (op->bytes) {
  4185. case 1:
  4186. op->val = insn_fetch(s8, ctxt);
  4187. break;
  4188. case 2:
  4189. op->val = insn_fetch(s16, ctxt);
  4190. break;
  4191. case 4:
  4192. op->val = insn_fetch(s32, ctxt);
  4193. break;
  4194. case 8:
  4195. op->val = insn_fetch(s64, ctxt);
  4196. break;
  4197. }
  4198. if (!sign_extension) {
  4199. switch (op->bytes) {
  4200. case 1:
  4201. op->val &= 0xff;
  4202. break;
  4203. case 2:
  4204. op->val &= 0xffff;
  4205. break;
  4206. case 4:
  4207. op->val &= 0xffffffff;
  4208. break;
  4209. }
  4210. }
  4211. done:
  4212. return rc;
  4213. }
  4214. static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
  4215. unsigned d)
  4216. {
  4217. int rc = X86EMUL_CONTINUE;
  4218. switch (d) {
  4219. case OpReg:
  4220. decode_register_operand(ctxt, op);
  4221. break;
  4222. case OpImmUByte:
  4223. rc = decode_imm(ctxt, op, 1, false);
  4224. break;
  4225. case OpMem:
  4226. ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  4227. mem_common:
  4228. *op = ctxt->memop;
  4229. ctxt->memopp = op;
  4230. if (ctxt->d & BitOp)
  4231. fetch_bit_operand(ctxt);
  4232. op->orig_val = op->val;
  4233. break;
  4234. case OpMem64:
  4235. ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
  4236. goto mem_common;
  4237. case OpAcc:
  4238. op->type = OP_REG;
  4239. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  4240. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  4241. fetch_register_operand(op);
  4242. op->orig_val = op->val;
  4243. break;
  4244. case OpAccLo:
  4245. op->type = OP_REG;
  4246. op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
  4247. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  4248. fetch_register_operand(op);
  4249. op->orig_val = op->val;
  4250. break;
  4251. case OpAccHi:
  4252. if (ctxt->d & ByteOp) {
  4253. op->type = OP_NONE;
  4254. break;
  4255. }
  4256. op->type = OP_REG;
  4257. op->bytes = ctxt->op_bytes;
  4258. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  4259. fetch_register_operand(op);
  4260. op->orig_val = op->val;
  4261. break;
  4262. case OpDI:
  4263. op->type = OP_MEM;
  4264. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  4265. op->addr.mem.ea =
  4266. register_address(ctxt, VCPU_REGS_RDI);
  4267. op->addr.mem.seg = VCPU_SREG_ES;
  4268. op->val = 0;
  4269. op->count = 1;
  4270. break;
  4271. case OpDX:
  4272. op->type = OP_REG;
  4273. op->bytes = 2;
  4274. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  4275. fetch_register_operand(op);
  4276. break;
  4277. case OpCL:
  4278. op->type = OP_IMM;
  4279. op->bytes = 1;
  4280. op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
  4281. break;
  4282. case OpImmByte:
  4283. rc = decode_imm(ctxt, op, 1, true);
  4284. break;
  4285. case OpOne:
  4286. op->type = OP_IMM;
  4287. op->bytes = 1;
  4288. op->val = 1;
  4289. break;
  4290. case OpImm:
  4291. rc = decode_imm(ctxt, op, imm_size(ctxt), true);
  4292. break;
  4293. case OpImm64:
  4294. rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
  4295. break;
  4296. case OpMem8:
  4297. ctxt->memop.bytes = 1;
  4298. if (ctxt->memop.type == OP_REG) {
  4299. ctxt->memop.addr.reg = decode_register(ctxt,
  4300. ctxt->modrm_rm, true);
  4301. fetch_register_operand(&ctxt->memop);
  4302. }
  4303. goto mem_common;
  4304. case OpMem16:
  4305. ctxt->memop.bytes = 2;
  4306. goto mem_common;
  4307. case OpMem32:
  4308. ctxt->memop.bytes = 4;
  4309. goto mem_common;
  4310. case OpImmU16:
  4311. rc = decode_imm(ctxt, op, 2, false);
  4312. break;
  4313. case OpImmU:
  4314. rc = decode_imm(ctxt, op, imm_size(ctxt), false);
  4315. break;
  4316. case OpSI:
  4317. op->type = OP_MEM;
  4318. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  4319. op->addr.mem.ea =
  4320. register_address(ctxt, VCPU_REGS_RSI);
  4321. op->addr.mem.seg = ctxt->seg_override;
  4322. op->val = 0;
  4323. op->count = 1;
  4324. break;
  4325. case OpXLat:
  4326. op->type = OP_MEM;
  4327. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  4328. op->addr.mem.ea =
  4329. address_mask(ctxt,
  4330. reg_read(ctxt, VCPU_REGS_RBX) +
  4331. (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
  4332. op->addr.mem.seg = ctxt->seg_override;
  4333. op->val = 0;
  4334. break;
  4335. case OpImmFAddr:
  4336. op->type = OP_IMM;
  4337. op->addr.mem.ea = ctxt->_eip;
  4338. op->bytes = ctxt->op_bytes + 2;
  4339. insn_fetch_arr(op->valptr, op->bytes, ctxt);
  4340. break;
  4341. case OpMemFAddr:
  4342. ctxt->memop.bytes = ctxt->op_bytes + 2;
  4343. goto mem_common;
  4344. case OpES:
  4345. op->type = OP_IMM;
  4346. op->val = VCPU_SREG_ES;
  4347. break;
  4348. case OpCS:
  4349. op->type = OP_IMM;
  4350. op->val = VCPU_SREG_CS;
  4351. break;
  4352. case OpSS:
  4353. op->type = OP_IMM;
  4354. op->val = VCPU_SREG_SS;
  4355. break;
  4356. case OpDS:
  4357. op->type = OP_IMM;
  4358. op->val = VCPU_SREG_DS;
  4359. break;
  4360. case OpFS:
  4361. op->type = OP_IMM;
  4362. op->val = VCPU_SREG_FS;
  4363. break;
  4364. case OpGS:
  4365. op->type = OP_IMM;
  4366. op->val = VCPU_SREG_GS;
  4367. break;
  4368. case OpImplicit:
  4369. /* Special instructions do their own operand decoding. */
  4370. default:
  4371. op->type = OP_NONE; /* Disable writeback. */
  4372. break;
  4373. }
  4374. done:
  4375. return rc;
  4376. }
  4377. int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
  4378. {
  4379. int rc = X86EMUL_CONTINUE;
  4380. int mode = ctxt->mode;
  4381. int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
  4382. bool op_prefix = false;
  4383. bool has_seg_override = false;
  4384. struct opcode opcode;
  4385. u16 dummy;
  4386. struct desc_struct desc;
  4387. ctxt->memop.type = OP_NONE;
  4388. ctxt->memopp = NULL;
  4389. ctxt->_eip = ctxt->eip;
  4390. ctxt->fetch.ptr = ctxt->fetch.data;
  4391. ctxt->fetch.end = ctxt->fetch.data + insn_len;
  4392. ctxt->opcode_len = 1;
  4393. if (insn_len > 0)
  4394. memcpy(ctxt->fetch.data, insn, insn_len);
  4395. else {
  4396. rc = __do_insn_fetch_bytes(ctxt, 1);
  4397. if (rc != X86EMUL_CONTINUE)
  4398. return rc;
  4399. }
  4400. switch (mode) {
  4401. case X86EMUL_MODE_REAL:
  4402. case X86EMUL_MODE_VM86:
  4403. def_op_bytes = def_ad_bytes = 2;
  4404. ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
  4405. if (desc.d)
  4406. def_op_bytes = def_ad_bytes = 4;
  4407. break;
  4408. case X86EMUL_MODE_PROT16:
  4409. def_op_bytes = def_ad_bytes = 2;
  4410. break;
  4411. case X86EMUL_MODE_PROT32:
  4412. def_op_bytes = def_ad_bytes = 4;
  4413. break;
  4414. #ifdef CONFIG_X86_64
  4415. case X86EMUL_MODE_PROT64:
  4416. def_op_bytes = 4;
  4417. def_ad_bytes = 8;
  4418. break;
  4419. #endif
  4420. default:
  4421. return EMULATION_FAILED;
  4422. }
  4423. ctxt->op_bytes = def_op_bytes;
  4424. ctxt->ad_bytes = def_ad_bytes;
  4425. /* Legacy prefixes. */
  4426. for (;;) {
  4427. switch (ctxt->b = insn_fetch(u8, ctxt)) {
  4428. case 0x66: /* operand-size override */
  4429. op_prefix = true;
  4430. /* switch between 2/4 bytes */
  4431. ctxt->op_bytes = def_op_bytes ^ 6;
  4432. break;
  4433. case 0x67: /* address-size override */
  4434. if (mode == X86EMUL_MODE_PROT64)
  4435. /* switch between 4/8 bytes */
  4436. ctxt->ad_bytes = def_ad_bytes ^ 12;
  4437. else
  4438. /* switch between 2/4 bytes */
  4439. ctxt->ad_bytes = def_ad_bytes ^ 6;
  4440. break;
  4441. case 0x26: /* ES override */
  4442. case 0x2e: /* CS override */
  4443. case 0x36: /* SS override */
  4444. case 0x3e: /* DS override */
  4445. has_seg_override = true;
  4446. ctxt->seg_override = (ctxt->b >> 3) & 3;
  4447. break;
  4448. case 0x64: /* FS override */
  4449. case 0x65: /* GS override */
  4450. has_seg_override = true;
  4451. ctxt->seg_override = ctxt->b & 7;
  4452. break;
  4453. case 0x40 ... 0x4f: /* REX */
  4454. if (mode != X86EMUL_MODE_PROT64)
  4455. goto done_prefixes;
  4456. ctxt->rex_prefix = ctxt->b;
  4457. continue;
  4458. case 0xf0: /* LOCK */
  4459. ctxt->lock_prefix = 1;
  4460. break;
  4461. case 0xf2: /* REPNE/REPNZ */
  4462. case 0xf3: /* REP/REPE/REPZ */
  4463. ctxt->rep_prefix = ctxt->b;
  4464. break;
  4465. default:
  4466. goto done_prefixes;
  4467. }
  4468. /* Any legacy prefix after a REX prefix nullifies its effect. */
  4469. ctxt->rex_prefix = 0;
  4470. }
  4471. done_prefixes:
  4472. /* REX prefix. */
  4473. if (ctxt->rex_prefix & 8)
  4474. ctxt->op_bytes = 8; /* REX.W */
  4475. /* Opcode byte(s). */
  4476. opcode = opcode_table[ctxt->b];
  4477. /* Two-byte opcode? */
  4478. if (ctxt->b == 0x0f) {
  4479. ctxt->opcode_len = 2;
  4480. ctxt->b = insn_fetch(u8, ctxt);
  4481. opcode = twobyte_table[ctxt->b];
  4482. /* 0F_38 opcode map */
  4483. if (ctxt->b == 0x38) {
  4484. ctxt->opcode_len = 3;
  4485. ctxt->b = insn_fetch(u8, ctxt);
  4486. opcode = opcode_map_0f_38[ctxt->b];
  4487. }
  4488. }
  4489. ctxt->d = opcode.flags;
  4490. if (ctxt->d & ModRM)
  4491. ctxt->modrm = insn_fetch(u8, ctxt);
  4492. /* vex-prefix instructions are not implemented */
  4493. if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
  4494. (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
  4495. ctxt->d = NotImpl;
  4496. }
  4497. while (ctxt->d & GroupMask) {
  4498. switch (ctxt->d & GroupMask) {
  4499. case Group:
  4500. goffset = (ctxt->modrm >> 3) & 7;
  4501. opcode = opcode.u.group[goffset];
  4502. break;
  4503. case GroupDual:
  4504. goffset = (ctxt->modrm >> 3) & 7;
  4505. if ((ctxt->modrm >> 6) == 3)
  4506. opcode = opcode.u.gdual->mod3[goffset];
  4507. else
  4508. opcode = opcode.u.gdual->mod012[goffset];
  4509. break;
  4510. case RMExt:
  4511. goffset = ctxt->modrm & 7;
  4512. opcode = opcode.u.group[goffset];
  4513. break;
  4514. case Prefix:
  4515. if (ctxt->rep_prefix && op_prefix)
  4516. return EMULATION_FAILED;
  4517. simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
  4518. switch (simd_prefix) {
  4519. case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
  4520. case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
  4521. case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
  4522. case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
  4523. }
  4524. break;
  4525. case Escape:
  4526. if (ctxt->modrm > 0xbf)
  4527. opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
  4528. else
  4529. opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
  4530. break;
  4531. case InstrDual:
  4532. if ((ctxt->modrm >> 6) == 3)
  4533. opcode = opcode.u.idual->mod3;
  4534. else
  4535. opcode = opcode.u.idual->mod012;
  4536. break;
  4537. case ModeDual:
  4538. if (ctxt->mode == X86EMUL_MODE_PROT64)
  4539. opcode = opcode.u.mdual->mode64;
  4540. else
  4541. opcode = opcode.u.mdual->mode32;
  4542. break;
  4543. default:
  4544. return EMULATION_FAILED;
  4545. }
  4546. ctxt->d &= ~(u64)GroupMask;
  4547. ctxt->d |= opcode.flags;
  4548. }
  4549. /* Unrecognised? */
  4550. if (ctxt->d == 0)
  4551. return EMULATION_FAILED;
  4552. ctxt->execute = opcode.u.execute;
  4553. if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
  4554. return EMULATION_FAILED;
  4555. if (unlikely(ctxt->d &
  4556. (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
  4557. No16))) {
  4558. /*
  4559. * These are copied unconditionally here, and checked unconditionally
  4560. * in x86_emulate_insn.
  4561. */
  4562. ctxt->check_perm = opcode.check_perm;
  4563. ctxt->intercept = opcode.intercept;
  4564. if (ctxt->d & NotImpl)
  4565. return EMULATION_FAILED;
  4566. if (mode == X86EMUL_MODE_PROT64) {
  4567. if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
  4568. ctxt->op_bytes = 8;
  4569. else if (ctxt->d & NearBranch)
  4570. ctxt->op_bytes = 8;
  4571. }
  4572. if (ctxt->d & Op3264) {
  4573. if (mode == X86EMUL_MODE_PROT64)
  4574. ctxt->op_bytes = 8;
  4575. else
  4576. ctxt->op_bytes = 4;
  4577. }
  4578. if ((ctxt->d & No16) && ctxt->op_bytes == 2)
  4579. ctxt->op_bytes = 4;
  4580. if (ctxt->d & Sse)
  4581. ctxt->op_bytes = 16;
  4582. else if (ctxt->d & Mmx)
  4583. ctxt->op_bytes = 8;
  4584. }
  4585. /* ModRM and SIB bytes. */
  4586. if (ctxt->d & ModRM) {
  4587. rc = decode_modrm(ctxt, &ctxt->memop);
  4588. if (!has_seg_override) {
  4589. has_seg_override = true;
  4590. ctxt->seg_override = ctxt->modrm_seg;
  4591. }
  4592. } else if (ctxt->d & MemAbs)
  4593. rc = decode_abs(ctxt, &ctxt->memop);
  4594. if (rc != X86EMUL_CONTINUE)
  4595. goto done;
  4596. if (!has_seg_override)
  4597. ctxt->seg_override = VCPU_SREG_DS;
  4598. ctxt->memop.addr.mem.seg = ctxt->seg_override;
  4599. /*
  4600. * Decode and fetch the source operand: register, memory
  4601. * or immediate.
  4602. */
  4603. rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
  4604. if (rc != X86EMUL_CONTINUE)
  4605. goto done;
  4606. /*
  4607. * Decode and fetch the second source operand: register, memory
  4608. * or immediate.
  4609. */
  4610. rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
  4611. if (rc != X86EMUL_CONTINUE)
  4612. goto done;
  4613. /* Decode and fetch the destination operand: register or memory. */
  4614. rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
  4615. if (ctxt->rip_relative && likely(ctxt->memopp))
  4616. ctxt->memopp->addr.mem.ea = address_mask(ctxt,
  4617. ctxt->memopp->addr.mem.ea + ctxt->_eip);
  4618. done:
  4619. return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
  4620. }
  4621. bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
  4622. {
  4623. return ctxt->d & PageTable;
  4624. }
  4625. static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
  4626. {
  4627. /* The second termination condition only applies for REPE
  4628. * and REPNE. Test if the repeat string operation prefix is
  4629. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  4630. * corresponding termination condition according to:
  4631. * - if REPE/REPZ and ZF = 0 then done
  4632. * - if REPNE/REPNZ and ZF = 1 then done
  4633. */
  4634. if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
  4635. (ctxt->b == 0xae) || (ctxt->b == 0xaf))
  4636. && (((ctxt->rep_prefix == REPE_PREFIX) &&
  4637. ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
  4638. || ((ctxt->rep_prefix == REPNE_PREFIX) &&
  4639. ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
  4640. return true;
  4641. return false;
  4642. }
  4643. static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
  4644. {
  4645. int rc;
  4646. rc = asm_safe("fwait");
  4647. if (unlikely(rc != X86EMUL_CONTINUE))
  4648. return emulate_exception(ctxt, MF_VECTOR, 0, false);
  4649. return X86EMUL_CONTINUE;
  4650. }
  4651. static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
  4652. struct operand *op)
  4653. {
  4654. if (op->type == OP_MM)
  4655. read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  4656. }
  4657. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
  4658. {
  4659. ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
  4660. if (!(ctxt->d & ByteOp))
  4661. fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
  4662. asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
  4663. : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
  4664. [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
  4665. : "c"(ctxt->src2.val));
  4666. ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
  4667. if (!fop) /* exception is returned in fop variable */
  4668. return emulate_de(ctxt);
  4669. return X86EMUL_CONTINUE;
  4670. }
  4671. void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4672. {
  4673. memset(&ctxt->rip_relative, 0,
  4674. (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
  4675. ctxt->io_read.pos = 0;
  4676. ctxt->io_read.end = 0;
  4677. ctxt->mem_read.end = 0;
  4678. }
  4679. int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
  4680. {
  4681. const struct x86_emulate_ops *ops = ctxt->ops;
  4682. int rc = X86EMUL_CONTINUE;
  4683. int saved_dst_type = ctxt->dst.type;
  4684. unsigned emul_flags;
  4685. ctxt->mem_read.pos = 0;
  4686. /* LOCK prefix is allowed only with some instructions */
  4687. if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
  4688. rc = emulate_ud(ctxt);
  4689. goto done;
  4690. }
  4691. if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
  4692. rc = emulate_ud(ctxt);
  4693. goto done;
  4694. }
  4695. emul_flags = ctxt->ops->get_hflags(ctxt);
  4696. if (unlikely(ctxt->d &
  4697. (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
  4698. if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
  4699. (ctxt->d & Undefined)) {
  4700. rc = emulate_ud(ctxt);
  4701. goto done;
  4702. }
  4703. if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
  4704. || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
  4705. rc = emulate_ud(ctxt);
  4706. goto done;
  4707. }
  4708. if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
  4709. rc = emulate_nm(ctxt);
  4710. goto done;
  4711. }
  4712. if (ctxt->d & Mmx) {
  4713. rc = flush_pending_x87_faults(ctxt);
  4714. if (rc != X86EMUL_CONTINUE)
  4715. goto done;
  4716. /*
  4717. * Now that we know the fpu is exception safe, we can fetch
  4718. * operands from it.
  4719. */
  4720. fetch_possible_mmx_operand(ctxt, &ctxt->src);
  4721. fetch_possible_mmx_operand(ctxt, &ctxt->src2);
  4722. if (!(ctxt->d & Mov))
  4723. fetch_possible_mmx_operand(ctxt, &ctxt->dst);
  4724. }
  4725. if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && ctxt->intercept) {
  4726. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4727. X86_ICPT_PRE_EXCEPT);
  4728. if (rc != X86EMUL_CONTINUE)
  4729. goto done;
  4730. }
  4731. /* Instruction can only be executed in protected mode */
  4732. if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
  4733. rc = emulate_ud(ctxt);
  4734. goto done;
  4735. }
  4736. /* Privileged instruction can be executed only in CPL=0 */
  4737. if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
  4738. if (ctxt->d & PrivUD)
  4739. rc = emulate_ud(ctxt);
  4740. else
  4741. rc = emulate_gp(ctxt, 0);
  4742. goto done;
  4743. }
  4744. /* Do instruction specific permission checks */
  4745. if (ctxt->d & CheckPerm) {
  4746. rc = ctxt->check_perm(ctxt);
  4747. if (rc != X86EMUL_CONTINUE)
  4748. goto done;
  4749. }
  4750. if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && (ctxt->d & Intercept)) {
  4751. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4752. X86_ICPT_POST_EXCEPT);
  4753. if (rc != X86EMUL_CONTINUE)
  4754. goto done;
  4755. }
  4756. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4757. /* All REP prefixes have the same first termination condition */
  4758. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
  4759. string_registers_quirk(ctxt);
  4760. ctxt->eip = ctxt->_eip;
  4761. ctxt->eflags &= ~X86_EFLAGS_RF;
  4762. goto done;
  4763. }
  4764. }
  4765. }
  4766. if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
  4767. rc = segmented_read(ctxt, ctxt->src.addr.mem,
  4768. ctxt->src.valptr, ctxt->src.bytes);
  4769. if (rc != X86EMUL_CONTINUE)
  4770. goto done;
  4771. ctxt->src.orig_val64 = ctxt->src.val64;
  4772. }
  4773. if (ctxt->src2.type == OP_MEM) {
  4774. rc = segmented_read(ctxt, ctxt->src2.addr.mem,
  4775. &ctxt->src2.val, ctxt->src2.bytes);
  4776. if (rc != X86EMUL_CONTINUE)
  4777. goto done;
  4778. }
  4779. if ((ctxt->d & DstMask) == ImplicitOps)
  4780. goto special_insn;
  4781. if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
  4782. /* optimisation - avoid slow emulated read if Mov */
  4783. rc = segmented_read(ctxt, ctxt->dst.addr.mem,
  4784. &ctxt->dst.val, ctxt->dst.bytes);
  4785. if (rc != X86EMUL_CONTINUE) {
  4786. if (!(ctxt->d & NoWrite) &&
  4787. rc == X86EMUL_PROPAGATE_FAULT &&
  4788. ctxt->exception.vector == PF_VECTOR)
  4789. ctxt->exception.error_code |= PFERR_WRITE_MASK;
  4790. goto done;
  4791. }
  4792. }
  4793. /* Copy full 64-bit value for CMPXCHG8B. */
  4794. ctxt->dst.orig_val64 = ctxt->dst.val64;
  4795. special_insn:
  4796. if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && (ctxt->d & Intercept)) {
  4797. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4798. X86_ICPT_POST_MEMACCESS);
  4799. if (rc != X86EMUL_CONTINUE)
  4800. goto done;
  4801. }
  4802. if (ctxt->rep_prefix && (ctxt->d & String))
  4803. ctxt->eflags |= X86_EFLAGS_RF;
  4804. else
  4805. ctxt->eflags &= ~X86_EFLAGS_RF;
  4806. if (ctxt->execute) {
  4807. if (ctxt->d & Fastop) {
  4808. void (*fop)(struct fastop *) = (void *)ctxt->execute;
  4809. rc = fastop(ctxt, fop);
  4810. if (rc != X86EMUL_CONTINUE)
  4811. goto done;
  4812. goto writeback;
  4813. }
  4814. rc = ctxt->execute(ctxt);
  4815. if (rc != X86EMUL_CONTINUE)
  4816. goto done;
  4817. goto writeback;
  4818. }
  4819. if (ctxt->opcode_len == 2)
  4820. goto twobyte_insn;
  4821. else if (ctxt->opcode_len == 3)
  4822. goto threebyte_insn;
  4823. switch (ctxt->b) {
  4824. case 0x70 ... 0x7f: /* jcc (short) */
  4825. if (test_cc(ctxt->b, ctxt->eflags))
  4826. rc = jmp_rel(ctxt, ctxt->src.val);
  4827. break;
  4828. case 0x8d: /* lea r16/r32, m */
  4829. ctxt->dst.val = ctxt->src.addr.mem.ea;
  4830. break;
  4831. case 0x90 ... 0x97: /* nop / xchg reg, rax */
  4832. if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
  4833. ctxt->dst.type = OP_NONE;
  4834. else
  4835. rc = em_xchg(ctxt);
  4836. break;
  4837. case 0x98: /* cbw/cwde/cdqe */
  4838. switch (ctxt->op_bytes) {
  4839. case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
  4840. case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
  4841. case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
  4842. }
  4843. break;
  4844. case 0xcc: /* int3 */
  4845. rc = emulate_int(ctxt, 3);
  4846. break;
  4847. case 0xcd: /* int n */
  4848. rc = emulate_int(ctxt, ctxt->src.val);
  4849. break;
  4850. case 0xce: /* into */
  4851. if (ctxt->eflags & X86_EFLAGS_OF)
  4852. rc = emulate_int(ctxt, 4);
  4853. break;
  4854. case 0xe9: /* jmp rel */
  4855. case 0xeb: /* jmp rel short */
  4856. rc = jmp_rel(ctxt, ctxt->src.val);
  4857. ctxt->dst.type = OP_NONE; /* Disable writeback. */
  4858. break;
  4859. case 0xf4: /* hlt */
  4860. ctxt->ops->halt(ctxt);
  4861. break;
  4862. case 0xf5: /* cmc */
  4863. /* complement carry flag from eflags reg */
  4864. ctxt->eflags ^= X86_EFLAGS_CF;
  4865. break;
  4866. case 0xf8: /* clc */
  4867. ctxt->eflags &= ~X86_EFLAGS_CF;
  4868. break;
  4869. case 0xf9: /* stc */
  4870. ctxt->eflags |= X86_EFLAGS_CF;
  4871. break;
  4872. case 0xfc: /* cld */
  4873. ctxt->eflags &= ~X86_EFLAGS_DF;
  4874. break;
  4875. case 0xfd: /* std */
  4876. ctxt->eflags |= X86_EFLAGS_DF;
  4877. break;
  4878. default:
  4879. goto cannot_emulate;
  4880. }
  4881. if (rc != X86EMUL_CONTINUE)
  4882. goto done;
  4883. writeback:
  4884. if (ctxt->d & SrcWrite) {
  4885. BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
  4886. rc = writeback(ctxt, &ctxt->src);
  4887. if (rc != X86EMUL_CONTINUE)
  4888. goto done;
  4889. }
  4890. if (!(ctxt->d & NoWrite)) {
  4891. rc = writeback(ctxt, &ctxt->dst);
  4892. if (rc != X86EMUL_CONTINUE)
  4893. goto done;
  4894. }
  4895. /*
  4896. * restore dst type in case the decoding will be reused
  4897. * (happens for string instruction )
  4898. */
  4899. ctxt->dst.type = saved_dst_type;
  4900. if ((ctxt->d & SrcMask) == SrcSI)
  4901. string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
  4902. if ((ctxt->d & DstMask) == DstDI)
  4903. string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
  4904. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4905. unsigned int count;
  4906. struct read_cache *r = &ctxt->io_read;
  4907. if ((ctxt->d & SrcMask) == SrcSI)
  4908. count = ctxt->src.count;
  4909. else
  4910. count = ctxt->dst.count;
  4911. register_address_increment(ctxt, VCPU_REGS_RCX, -count);
  4912. if (!string_insn_completed(ctxt)) {
  4913. /*
  4914. * Re-enter guest when pio read ahead buffer is empty
  4915. * or, if it is not used, after each 1024 iteration.
  4916. */
  4917. if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
  4918. (r->end == 0 || r->end != r->pos)) {
  4919. /*
  4920. * Reset read cache. Usually happens before
  4921. * decode, but since instruction is restarted
  4922. * we have to do it here.
  4923. */
  4924. ctxt->mem_read.end = 0;
  4925. writeback_registers(ctxt);
  4926. return EMULATION_RESTART;
  4927. }
  4928. goto done; /* skip rip writeback */
  4929. }
  4930. ctxt->eflags &= ~X86_EFLAGS_RF;
  4931. }
  4932. ctxt->eip = ctxt->_eip;
  4933. done:
  4934. if (rc == X86EMUL_PROPAGATE_FAULT) {
  4935. WARN_ON(ctxt->exception.vector > 0x1f);
  4936. ctxt->have_exception = true;
  4937. }
  4938. if (rc == X86EMUL_INTERCEPTED)
  4939. return EMULATION_INTERCEPTED;
  4940. if (rc == X86EMUL_CONTINUE)
  4941. writeback_registers(ctxt);
  4942. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  4943. twobyte_insn:
  4944. switch (ctxt->b) {
  4945. case 0x09: /* wbinvd */
  4946. (ctxt->ops->wbinvd)(ctxt);
  4947. break;
  4948. case 0x08: /* invd */
  4949. case 0x0d: /* GrpP (prefetch) */
  4950. case 0x18: /* Grp16 (prefetch/nop) */
  4951. case 0x1f: /* nop */
  4952. break;
  4953. case 0x20: /* mov cr, reg */
  4954. ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
  4955. break;
  4956. case 0x21: /* mov from dr to reg */
  4957. ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
  4958. break;
  4959. case 0x40 ... 0x4f: /* cmov */
  4960. if (test_cc(ctxt->b, ctxt->eflags))
  4961. ctxt->dst.val = ctxt->src.val;
  4962. else if (ctxt->op_bytes != 4)
  4963. ctxt->dst.type = OP_NONE; /* no writeback */
  4964. break;
  4965. case 0x80 ... 0x8f: /* jnz rel, etc*/
  4966. if (test_cc(ctxt->b, ctxt->eflags))
  4967. rc = jmp_rel(ctxt, ctxt->src.val);
  4968. break;
  4969. case 0x90 ... 0x9f: /* setcc r/m8 */
  4970. ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
  4971. break;
  4972. case 0xb6 ... 0xb7: /* movzx */
  4973. ctxt->dst.bytes = ctxt->op_bytes;
  4974. ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
  4975. : (u16) ctxt->src.val;
  4976. break;
  4977. case 0xbe ... 0xbf: /* movsx */
  4978. ctxt->dst.bytes = ctxt->op_bytes;
  4979. ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
  4980. (s16) ctxt->src.val;
  4981. break;
  4982. default:
  4983. goto cannot_emulate;
  4984. }
  4985. threebyte_insn:
  4986. if (rc != X86EMUL_CONTINUE)
  4987. goto done;
  4988. goto writeback;
  4989. cannot_emulate:
  4990. return EMULATION_FAILED;
  4991. }
  4992. void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
  4993. {
  4994. invalidate_registers(ctxt);
  4995. }
  4996. void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
  4997. {
  4998. writeback_registers(ctxt);
  4999. }
  5000. bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
  5001. {
  5002. if (ctxt->rep_prefix && (ctxt->d & String))
  5003. return false;
  5004. if (ctxt->d & TwoMemOp)
  5005. return false;
  5006. return true;
  5007. }