sdma_v3_0.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  50. {
  51. SDMA0_REGISTER_OFFSET,
  52. SDMA1_REGISTER_OFFSET
  53. };
  54. static const u32 golden_settings_tonga_a11[] =
  55. {
  56. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  58. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  59. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  60. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  61. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  62. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  63. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  65. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  66. };
  67. static const u32 tonga_mgcg_cgcg_init[] =
  68. {
  69. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  70. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  71. };
  72. static const u32 cz_golden_settings_a11[] =
  73. {
  74. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  75. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  76. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  77. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  78. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  79. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  80. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  82. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  83. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  84. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  85. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  86. };
  87. static const u32 cz_mgcg_cgcg_init[] =
  88. {
  89. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  90. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  91. };
  92. /*
  93. * sDMA - System DMA
  94. * Starting with CIK, the GPU has new asynchronous
  95. * DMA engines. These engines are used for compute
  96. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  97. * and each one supports 1 ring buffer used for gfx
  98. * and 2 queues used for compute.
  99. *
  100. * The programming model is very similar to the CP
  101. * (ring buffer, IBs, etc.), but sDMA has it's own
  102. * packet format that is different from the PM4 format
  103. * used by the CP. sDMA supports copying data, writing
  104. * embedded data, solid fills, and a number of other
  105. * things. It also has support for tiling/detiling of
  106. * buffers.
  107. */
  108. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  109. {
  110. switch (adev->asic_type) {
  111. case CHIP_TONGA:
  112. amdgpu_program_register_sequence(adev,
  113. tonga_mgcg_cgcg_init,
  114. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  115. amdgpu_program_register_sequence(adev,
  116. golden_settings_tonga_a11,
  117. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  118. break;
  119. case CHIP_CARRIZO:
  120. amdgpu_program_register_sequence(adev,
  121. cz_mgcg_cgcg_init,
  122. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  123. amdgpu_program_register_sequence(adev,
  124. cz_golden_settings_a11,
  125. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  126. break;
  127. default:
  128. break;
  129. }
  130. }
  131. /**
  132. * sdma_v3_0_init_microcode - load ucode images from disk
  133. *
  134. * @adev: amdgpu_device pointer
  135. *
  136. * Use the firmware interface to load the ucode images into
  137. * the driver (not loaded into hw).
  138. * Returns 0 on success, error on failure.
  139. */
  140. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  141. {
  142. const char *chip_name;
  143. char fw_name[30];
  144. int err, i;
  145. struct amdgpu_firmware_info *info = NULL;
  146. const struct common_firmware_header *header = NULL;
  147. const struct sdma_firmware_header_v1_0 *hdr;
  148. DRM_DEBUG("\n");
  149. switch (adev->asic_type) {
  150. case CHIP_TONGA:
  151. chip_name = "tonga";
  152. break;
  153. case CHIP_CARRIZO:
  154. chip_name = "carrizo";
  155. break;
  156. default: BUG();
  157. }
  158. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  159. if (i == 0)
  160. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  161. else
  162. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  163. err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
  164. if (err)
  165. goto out;
  166. err = amdgpu_ucode_validate(adev->sdma[i].fw);
  167. if (err)
  168. goto out;
  169. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  170. adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  171. adev->sdma[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  172. if (adev->firmware.smu_load) {
  173. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  174. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  175. info->fw = adev->sdma[i].fw;
  176. header = (const struct common_firmware_header *)info->fw->data;
  177. adev->firmware.fw_size +=
  178. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  179. }
  180. }
  181. out:
  182. if (err) {
  183. printk(KERN_ERR
  184. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  185. fw_name);
  186. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  187. release_firmware(adev->sdma[i].fw);
  188. adev->sdma[i].fw = NULL;
  189. }
  190. }
  191. return err;
  192. }
  193. /**
  194. * sdma_v3_0_ring_get_rptr - get the current read pointer
  195. *
  196. * @ring: amdgpu ring pointer
  197. *
  198. * Get the current rptr from the hardware (VI+).
  199. */
  200. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  201. {
  202. u32 rptr;
  203. /* XXX check if swapping is necessary on BE */
  204. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  205. return rptr;
  206. }
  207. /**
  208. * sdma_v3_0_ring_get_wptr - get the current write pointer
  209. *
  210. * @ring: amdgpu ring pointer
  211. *
  212. * Get the current wptr from the hardware (VI+).
  213. */
  214. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  215. {
  216. struct amdgpu_device *adev = ring->adev;
  217. u32 wptr;
  218. if (ring->use_doorbell) {
  219. /* XXX check if swapping is necessary on BE */
  220. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  221. } else {
  222. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  223. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  224. }
  225. return wptr;
  226. }
  227. /**
  228. * sdma_v3_0_ring_set_wptr - commit the write pointer
  229. *
  230. * @ring: amdgpu ring pointer
  231. *
  232. * Write the wptr back to the hardware (VI+).
  233. */
  234. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  235. {
  236. struct amdgpu_device *adev = ring->adev;
  237. if (ring->use_doorbell) {
  238. /* XXX check if swapping is necessary on BE */
  239. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  240. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  241. } else {
  242. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  243. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  244. }
  245. }
  246. /**
  247. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  248. *
  249. * @ring: amdgpu ring pointer
  250. * @ib: IB object to schedule
  251. *
  252. * Schedule an IB in the DMA ring (VI).
  253. */
  254. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  255. struct amdgpu_ib *ib)
  256. {
  257. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  258. u32 next_rptr = ring->wptr + 5;
  259. while ((next_rptr & 7) != 2)
  260. next_rptr++;
  261. next_rptr += 6;
  262. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  263. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  264. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  265. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  266. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  267. amdgpu_ring_write(ring, next_rptr);
  268. /* IB packet must end on a 8 DW boundary */
  269. while ((ring->wptr & 7) != 2)
  270. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
  271. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  272. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  273. /* base must be 32 byte aligned */
  274. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  275. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  276. amdgpu_ring_write(ring, ib->length_dw);
  277. amdgpu_ring_write(ring, 0);
  278. amdgpu_ring_write(ring, 0);
  279. }
  280. /**
  281. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  282. *
  283. * @ring: amdgpu ring pointer
  284. *
  285. * Emit an hdp flush packet on the requested DMA ring.
  286. */
  287. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  288. {
  289. u32 ref_and_mask = 0;
  290. if (ring == &ring->adev->sdma[0].ring)
  291. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  292. else
  293. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  294. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  295. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  296. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  297. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  298. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  299. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  300. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  301. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  302. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  303. }
  304. /**
  305. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  306. *
  307. * @ring: amdgpu ring pointer
  308. * @fence: amdgpu fence object
  309. *
  310. * Add a DMA fence packet to the ring to write
  311. * the fence seq number and DMA trap packet to generate
  312. * an interrupt if needed (VI).
  313. */
  314. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  315. unsigned flags)
  316. {
  317. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  318. /* write the fence */
  319. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  320. amdgpu_ring_write(ring, lower_32_bits(addr));
  321. amdgpu_ring_write(ring, upper_32_bits(addr));
  322. amdgpu_ring_write(ring, lower_32_bits(seq));
  323. /* optionally write high bits as well */
  324. if (write64bit) {
  325. addr += 4;
  326. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  327. amdgpu_ring_write(ring, lower_32_bits(addr));
  328. amdgpu_ring_write(ring, upper_32_bits(addr));
  329. amdgpu_ring_write(ring, upper_32_bits(seq));
  330. }
  331. /* generate an interrupt */
  332. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  333. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  334. }
  335. /**
  336. * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
  337. *
  338. * @ring: amdgpu_ring structure holding ring information
  339. * @semaphore: amdgpu semaphore object
  340. * @emit_wait: wait or signal semaphore
  341. *
  342. * Add a DMA semaphore packet to the ring wait on or signal
  343. * other rings (VI).
  344. */
  345. static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
  346. struct amdgpu_semaphore *semaphore,
  347. bool emit_wait)
  348. {
  349. u64 addr = semaphore->gpu_addr;
  350. u32 sig = emit_wait ? 0 : 1;
  351. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
  352. SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
  353. amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
  354. amdgpu_ring_write(ring, upper_32_bits(addr));
  355. return true;
  356. }
  357. /**
  358. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  359. *
  360. * @adev: amdgpu_device pointer
  361. *
  362. * Stop the gfx async dma ring buffers (VI).
  363. */
  364. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  365. {
  366. struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
  367. struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
  368. u32 rb_cntl, ib_cntl;
  369. int i;
  370. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  371. (adev->mman.buffer_funcs_ring == sdma1))
  372. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  373. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  374. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  375. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  376. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  377. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  378. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  379. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  380. }
  381. sdma0->ready = false;
  382. sdma1->ready = false;
  383. }
  384. /**
  385. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  386. *
  387. * @adev: amdgpu_device pointer
  388. *
  389. * Stop the compute async dma queues (VI).
  390. */
  391. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  392. {
  393. /* XXX todo */
  394. }
  395. /**
  396. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  397. *
  398. * @adev: amdgpu_device pointer
  399. * @enable: enable/disable the DMA MEs context switch.
  400. *
  401. * Halt or unhalt the async dma engines context switch (VI).
  402. */
  403. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  404. {
  405. u32 f32_cntl;
  406. int i;
  407. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  408. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  409. if (enable)
  410. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  411. AUTO_CTXSW_ENABLE, 1);
  412. else
  413. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  414. AUTO_CTXSW_ENABLE, 0);
  415. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  416. }
  417. }
  418. /**
  419. * sdma_v3_0_enable - stop the async dma engines
  420. *
  421. * @adev: amdgpu_device pointer
  422. * @enable: enable/disable the DMA MEs.
  423. *
  424. * Halt or unhalt the async dma engines (VI).
  425. */
  426. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  427. {
  428. u32 f32_cntl;
  429. int i;
  430. if (enable == false) {
  431. sdma_v3_0_gfx_stop(adev);
  432. sdma_v3_0_rlc_stop(adev);
  433. }
  434. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  435. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  436. if (enable)
  437. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  438. else
  439. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  440. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  441. }
  442. }
  443. /**
  444. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  445. *
  446. * @adev: amdgpu_device pointer
  447. *
  448. * Set up the gfx DMA ring buffers and enable them (VI).
  449. * Returns 0 for success, error for failure.
  450. */
  451. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  452. {
  453. struct amdgpu_ring *ring;
  454. u32 rb_cntl, ib_cntl;
  455. u32 rb_bufsz;
  456. u32 wb_offset;
  457. u32 doorbell;
  458. int i, j, r;
  459. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  460. ring = &adev->sdma[i].ring;
  461. wb_offset = (ring->rptr_offs * 4);
  462. mutex_lock(&adev->srbm_mutex);
  463. for (j = 0; j < 16; j++) {
  464. vi_srbm_select(adev, 0, 0, 0, j);
  465. /* SDMA GFX */
  466. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  467. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  468. }
  469. vi_srbm_select(adev, 0, 0, 0, 0);
  470. mutex_unlock(&adev->srbm_mutex);
  471. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  472. /* Set ring buffer size in dwords */
  473. rb_bufsz = order_base_2(ring->ring_size / 4);
  474. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  475. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  476. #ifdef __BIG_ENDIAN
  477. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  478. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  479. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  480. #endif
  481. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  482. /* Initialize the ring buffer's read and write pointers */
  483. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  484. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  485. /* set the wb address whether it's enabled or not */
  486. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  487. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  488. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  489. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  490. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  491. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  492. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  493. ring->wptr = 0;
  494. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  495. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  496. if (ring->use_doorbell) {
  497. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  498. OFFSET, ring->doorbell_index);
  499. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  500. } else {
  501. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  502. }
  503. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  504. /* enable DMA RB */
  505. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  506. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  507. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  508. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  509. #ifdef __BIG_ENDIAN
  510. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  511. #endif
  512. /* enable DMA IBs */
  513. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  514. ring->ready = true;
  515. r = amdgpu_ring_test_ring(ring);
  516. if (r) {
  517. ring->ready = false;
  518. return r;
  519. }
  520. if (adev->mman.buffer_funcs_ring == ring)
  521. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  522. }
  523. return 0;
  524. }
  525. /**
  526. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  527. *
  528. * @adev: amdgpu_device pointer
  529. *
  530. * Set up the compute DMA queues and enable them (VI).
  531. * Returns 0 for success, error for failure.
  532. */
  533. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  534. {
  535. /* XXX todo */
  536. return 0;
  537. }
  538. /**
  539. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  540. *
  541. * @adev: amdgpu_device pointer
  542. *
  543. * Loads the sDMA0/1 ucode.
  544. * Returns 0 for success, -EINVAL if the ucode is not available.
  545. */
  546. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  547. {
  548. const struct sdma_firmware_header_v1_0 *hdr;
  549. const __le32 *fw_data;
  550. u32 fw_size;
  551. int i, j;
  552. if (!adev->sdma[0].fw || !adev->sdma[1].fw)
  553. return -EINVAL;
  554. /* halt the MEs */
  555. sdma_v3_0_enable(adev, false);
  556. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  557. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  558. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  559. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  560. fw_data = (const __le32 *)
  561. (adev->sdma[i].fw->data +
  562. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  563. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  564. for (j = 0; j < fw_size; j++)
  565. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  566. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
  567. }
  568. return 0;
  569. }
  570. /**
  571. * sdma_v3_0_start - setup and start the async dma engines
  572. *
  573. * @adev: amdgpu_device pointer
  574. *
  575. * Set up the DMA engines and enable them (VI).
  576. * Returns 0 for success, error for failure.
  577. */
  578. static int sdma_v3_0_start(struct amdgpu_device *adev)
  579. {
  580. int r;
  581. if (!adev->firmware.smu_load) {
  582. r = sdma_v3_0_load_microcode(adev);
  583. if (r)
  584. return r;
  585. } else {
  586. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  587. AMDGPU_UCODE_ID_SDMA0);
  588. if (r)
  589. return -EINVAL;
  590. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  591. AMDGPU_UCODE_ID_SDMA1);
  592. if (r)
  593. return -EINVAL;
  594. }
  595. /* unhalt the MEs */
  596. sdma_v3_0_enable(adev, true);
  597. /* enable sdma ring preemption */
  598. sdma_v3_0_ctx_switch_enable(adev, true);
  599. /* start the gfx rings and rlc compute queues */
  600. r = sdma_v3_0_gfx_resume(adev);
  601. if (r)
  602. return r;
  603. r = sdma_v3_0_rlc_resume(adev);
  604. if (r)
  605. return r;
  606. return 0;
  607. }
  608. /**
  609. * sdma_v3_0_ring_test_ring - simple async dma engine test
  610. *
  611. * @ring: amdgpu_ring structure holding ring information
  612. *
  613. * Test the DMA engine by writing using it to write an
  614. * value to memory. (VI).
  615. * Returns 0 for success, error for failure.
  616. */
  617. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  618. {
  619. struct amdgpu_device *adev = ring->adev;
  620. unsigned i;
  621. unsigned index;
  622. int r;
  623. u32 tmp;
  624. u64 gpu_addr;
  625. r = amdgpu_wb_get(adev, &index);
  626. if (r) {
  627. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  628. return r;
  629. }
  630. gpu_addr = adev->wb.gpu_addr + (index * 4);
  631. tmp = 0xCAFEDEAD;
  632. adev->wb.wb[index] = cpu_to_le32(tmp);
  633. r = amdgpu_ring_lock(ring, 5);
  634. if (r) {
  635. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  636. amdgpu_wb_free(adev, index);
  637. return r;
  638. }
  639. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  640. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  641. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  642. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  643. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  644. amdgpu_ring_write(ring, 0xDEADBEEF);
  645. amdgpu_ring_unlock_commit(ring);
  646. for (i = 0; i < adev->usec_timeout; i++) {
  647. tmp = le32_to_cpu(adev->wb.wb[index]);
  648. if (tmp == 0xDEADBEEF)
  649. break;
  650. DRM_UDELAY(1);
  651. }
  652. if (i < adev->usec_timeout) {
  653. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  654. } else {
  655. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  656. ring->idx, tmp);
  657. r = -EINVAL;
  658. }
  659. amdgpu_wb_free(adev, index);
  660. return r;
  661. }
  662. /**
  663. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  664. *
  665. * @ring: amdgpu_ring structure holding ring information
  666. *
  667. * Test a simple IB in the DMA ring (VI).
  668. * Returns 0 on success, error on failure.
  669. */
  670. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  671. {
  672. struct amdgpu_device *adev = ring->adev;
  673. struct amdgpu_ib ib;
  674. unsigned i;
  675. unsigned index;
  676. int r;
  677. u32 tmp = 0;
  678. u64 gpu_addr;
  679. r = amdgpu_wb_get(adev, &index);
  680. if (r) {
  681. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  682. return r;
  683. }
  684. gpu_addr = adev->wb.gpu_addr + (index * 4);
  685. tmp = 0xCAFEDEAD;
  686. adev->wb.wb[index] = cpu_to_le32(tmp);
  687. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  688. if (r) {
  689. amdgpu_wb_free(adev, index);
  690. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  691. return r;
  692. }
  693. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  694. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  695. ib.ptr[1] = lower_32_bits(gpu_addr);
  696. ib.ptr[2] = upper_32_bits(gpu_addr);
  697. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  698. ib.ptr[4] = 0xDEADBEEF;
  699. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  700. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  701. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  702. ib.length_dw = 8;
  703. r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_UNDEFINED);
  704. if (r) {
  705. amdgpu_ib_free(adev, &ib);
  706. amdgpu_wb_free(adev, index);
  707. DRM_ERROR("amdgpu: failed to schedule ib (%d).\n", r);
  708. return r;
  709. }
  710. r = amdgpu_fence_wait(ib.fence, false);
  711. if (r) {
  712. amdgpu_ib_free(adev, &ib);
  713. amdgpu_wb_free(adev, index);
  714. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  715. return r;
  716. }
  717. for (i = 0; i < adev->usec_timeout; i++) {
  718. tmp = le32_to_cpu(adev->wb.wb[index]);
  719. if (tmp == 0xDEADBEEF)
  720. break;
  721. DRM_UDELAY(1);
  722. }
  723. if (i < adev->usec_timeout) {
  724. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  725. ib.fence->ring->idx, i);
  726. } else {
  727. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  728. r = -EINVAL;
  729. }
  730. amdgpu_ib_free(adev, &ib);
  731. amdgpu_wb_free(adev, index);
  732. return r;
  733. }
  734. /**
  735. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  736. *
  737. * @ib: indirect buffer to fill with commands
  738. * @pe: addr of the page entry
  739. * @src: src addr to copy from
  740. * @count: number of page entries to update
  741. *
  742. * Update PTEs by copying them from the GART using sDMA (CIK).
  743. */
  744. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  745. uint64_t pe, uint64_t src,
  746. unsigned count)
  747. {
  748. while (count) {
  749. unsigned bytes = count * 8;
  750. if (bytes > 0x1FFFF8)
  751. bytes = 0x1FFFF8;
  752. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  753. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  754. ib->ptr[ib->length_dw++] = bytes;
  755. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  756. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  757. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  758. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  759. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  760. pe += bytes;
  761. src += bytes;
  762. count -= bytes / 8;
  763. }
  764. }
  765. /**
  766. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  767. *
  768. * @ib: indirect buffer to fill with commands
  769. * @pe: addr of the page entry
  770. * @addr: dst addr to write into pe
  771. * @count: number of page entries to update
  772. * @incr: increase next addr by incr bytes
  773. * @flags: access flags
  774. *
  775. * Update PTEs by writing them manually using sDMA (CIK).
  776. */
  777. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  778. uint64_t pe,
  779. uint64_t addr, unsigned count,
  780. uint32_t incr, uint32_t flags)
  781. {
  782. uint64_t value;
  783. unsigned ndw;
  784. while (count) {
  785. ndw = count * 2;
  786. if (ndw > 0xFFFFE)
  787. ndw = 0xFFFFE;
  788. /* for non-physically contiguous pages (system) */
  789. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  790. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  791. ib->ptr[ib->length_dw++] = pe;
  792. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  793. ib->ptr[ib->length_dw++] = ndw;
  794. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  795. if (flags & AMDGPU_PTE_SYSTEM) {
  796. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  797. value &= 0xFFFFFFFFFFFFF000ULL;
  798. } else if (flags & AMDGPU_PTE_VALID) {
  799. value = addr;
  800. } else {
  801. value = 0;
  802. }
  803. addr += incr;
  804. value |= flags;
  805. ib->ptr[ib->length_dw++] = value;
  806. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  807. }
  808. }
  809. }
  810. /**
  811. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  812. *
  813. * @ib: indirect buffer to fill with commands
  814. * @pe: addr of the page entry
  815. * @addr: dst addr to write into pe
  816. * @count: number of page entries to update
  817. * @incr: increase next addr by incr bytes
  818. * @flags: access flags
  819. *
  820. * Update the page tables using sDMA (CIK).
  821. */
  822. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  823. uint64_t pe,
  824. uint64_t addr, unsigned count,
  825. uint32_t incr, uint32_t flags)
  826. {
  827. uint64_t value;
  828. unsigned ndw;
  829. while (count) {
  830. ndw = count;
  831. if (ndw > 0x7FFFF)
  832. ndw = 0x7FFFF;
  833. if (flags & AMDGPU_PTE_VALID)
  834. value = addr;
  835. else
  836. value = 0;
  837. /* for physically contiguous pages (vram) */
  838. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  839. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  840. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  841. ib->ptr[ib->length_dw++] = flags; /* mask */
  842. ib->ptr[ib->length_dw++] = 0;
  843. ib->ptr[ib->length_dw++] = value; /* value */
  844. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  845. ib->ptr[ib->length_dw++] = incr; /* increment size */
  846. ib->ptr[ib->length_dw++] = 0;
  847. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  848. pe += ndw * 8;
  849. addr += ndw * incr;
  850. count -= ndw;
  851. }
  852. }
  853. /**
  854. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  855. *
  856. * @ib: indirect buffer to fill with padding
  857. *
  858. */
  859. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  860. {
  861. while (ib->length_dw & 0x7)
  862. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  863. }
  864. /**
  865. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  866. *
  867. * @ring: amdgpu_ring pointer
  868. * @vm: amdgpu_vm pointer
  869. *
  870. * Update the page table base and flush the VM TLB
  871. * using sDMA (VI).
  872. */
  873. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  874. unsigned vm_id, uint64_t pd_addr)
  875. {
  876. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  877. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  878. if (vm_id < 8) {
  879. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  880. } else {
  881. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  882. }
  883. amdgpu_ring_write(ring, pd_addr >> 12);
  884. /* flush TLB */
  885. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  886. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  887. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  888. amdgpu_ring_write(ring, 1 << vm_id);
  889. /* wait for flush */
  890. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  891. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  892. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  893. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  894. amdgpu_ring_write(ring, 0);
  895. amdgpu_ring_write(ring, 0); /* reference */
  896. amdgpu_ring_write(ring, 0); /* mask */
  897. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  898. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  899. }
  900. static int sdma_v3_0_early_init(void *handle)
  901. {
  902. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  903. sdma_v3_0_set_ring_funcs(adev);
  904. sdma_v3_0_set_buffer_funcs(adev);
  905. sdma_v3_0_set_vm_pte_funcs(adev);
  906. sdma_v3_0_set_irq_funcs(adev);
  907. return 0;
  908. }
  909. static int sdma_v3_0_sw_init(void *handle)
  910. {
  911. struct amdgpu_ring *ring;
  912. int r;
  913. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  914. /* SDMA trap event */
  915. r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
  916. if (r)
  917. return r;
  918. /* SDMA Privileged inst */
  919. r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
  920. if (r)
  921. return r;
  922. /* SDMA Privileged inst */
  923. r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
  924. if (r)
  925. return r;
  926. r = sdma_v3_0_init_microcode(adev);
  927. if (r) {
  928. DRM_ERROR("Failed to load sdma firmware!\n");
  929. return r;
  930. }
  931. ring = &adev->sdma[0].ring;
  932. ring->ring_obj = NULL;
  933. ring->use_doorbell = true;
  934. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
  935. ring = &adev->sdma[1].ring;
  936. ring->ring_obj = NULL;
  937. ring->use_doorbell = true;
  938. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
  939. ring = &adev->sdma[0].ring;
  940. sprintf(ring->name, "sdma0");
  941. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  942. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  943. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
  944. AMDGPU_RING_TYPE_SDMA);
  945. if (r)
  946. return r;
  947. ring = &adev->sdma[1].ring;
  948. sprintf(ring->name, "sdma1");
  949. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  950. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  951. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
  952. AMDGPU_RING_TYPE_SDMA);
  953. if (r)
  954. return r;
  955. return r;
  956. }
  957. static int sdma_v3_0_sw_fini(void *handle)
  958. {
  959. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  960. amdgpu_ring_fini(&adev->sdma[0].ring);
  961. amdgpu_ring_fini(&adev->sdma[1].ring);
  962. return 0;
  963. }
  964. static int sdma_v3_0_hw_init(void *handle)
  965. {
  966. int r;
  967. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  968. sdma_v3_0_init_golden_registers(adev);
  969. r = sdma_v3_0_start(adev);
  970. if (r)
  971. return r;
  972. return r;
  973. }
  974. static int sdma_v3_0_hw_fini(void *handle)
  975. {
  976. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  977. sdma_v3_0_ctx_switch_enable(adev, false);
  978. sdma_v3_0_enable(adev, false);
  979. return 0;
  980. }
  981. static int sdma_v3_0_suspend(void *handle)
  982. {
  983. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  984. return sdma_v3_0_hw_fini(adev);
  985. }
  986. static int sdma_v3_0_resume(void *handle)
  987. {
  988. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  989. return sdma_v3_0_hw_init(adev);
  990. }
  991. static bool sdma_v3_0_is_idle(void *handle)
  992. {
  993. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  994. u32 tmp = RREG32(mmSRBM_STATUS2);
  995. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  996. SRBM_STATUS2__SDMA1_BUSY_MASK))
  997. return false;
  998. return true;
  999. }
  1000. static int sdma_v3_0_wait_for_idle(void *handle)
  1001. {
  1002. unsigned i;
  1003. u32 tmp;
  1004. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1005. for (i = 0; i < adev->usec_timeout; i++) {
  1006. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1007. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1008. if (!tmp)
  1009. return 0;
  1010. udelay(1);
  1011. }
  1012. return -ETIMEDOUT;
  1013. }
  1014. static void sdma_v3_0_print_status(void *handle)
  1015. {
  1016. int i, j;
  1017. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1018. dev_info(adev->dev, "VI SDMA registers\n");
  1019. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1020. RREG32(mmSRBM_STATUS2));
  1021. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  1022. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1023. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1024. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1025. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1026. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1027. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1028. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1029. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1030. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1031. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1032. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1033. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1034. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1035. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1036. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1037. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1038. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1039. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1040. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1041. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1042. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1043. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1044. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1045. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1046. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1047. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1048. mutex_lock(&adev->srbm_mutex);
  1049. for (j = 0; j < 16; j++) {
  1050. vi_srbm_select(adev, 0, 0, 0, j);
  1051. dev_info(adev->dev, " VM %d:\n", j);
  1052. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1053. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1054. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1055. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1056. }
  1057. vi_srbm_select(adev, 0, 0, 0, 0);
  1058. mutex_unlock(&adev->srbm_mutex);
  1059. }
  1060. }
  1061. static int sdma_v3_0_soft_reset(void *handle)
  1062. {
  1063. u32 srbm_soft_reset = 0;
  1064. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1065. u32 tmp = RREG32(mmSRBM_STATUS2);
  1066. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1067. /* sdma0 */
  1068. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1069. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1070. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1071. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1072. }
  1073. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1074. /* sdma1 */
  1075. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1076. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1077. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1078. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1079. }
  1080. if (srbm_soft_reset) {
  1081. sdma_v3_0_print_status((void *)adev);
  1082. tmp = RREG32(mmSRBM_SOFT_RESET);
  1083. tmp |= srbm_soft_reset;
  1084. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1085. WREG32(mmSRBM_SOFT_RESET, tmp);
  1086. tmp = RREG32(mmSRBM_SOFT_RESET);
  1087. udelay(50);
  1088. tmp &= ~srbm_soft_reset;
  1089. WREG32(mmSRBM_SOFT_RESET, tmp);
  1090. tmp = RREG32(mmSRBM_SOFT_RESET);
  1091. /* Wait a little for things to settle down */
  1092. udelay(50);
  1093. sdma_v3_0_print_status((void *)adev);
  1094. }
  1095. return 0;
  1096. }
  1097. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1098. struct amdgpu_irq_src *source,
  1099. unsigned type,
  1100. enum amdgpu_interrupt_state state)
  1101. {
  1102. u32 sdma_cntl;
  1103. switch (type) {
  1104. case AMDGPU_SDMA_IRQ_TRAP0:
  1105. switch (state) {
  1106. case AMDGPU_IRQ_STATE_DISABLE:
  1107. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1108. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1109. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1110. break;
  1111. case AMDGPU_IRQ_STATE_ENABLE:
  1112. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1113. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1114. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1115. break;
  1116. default:
  1117. break;
  1118. }
  1119. break;
  1120. case AMDGPU_SDMA_IRQ_TRAP1:
  1121. switch (state) {
  1122. case AMDGPU_IRQ_STATE_DISABLE:
  1123. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1124. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1125. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1126. break;
  1127. case AMDGPU_IRQ_STATE_ENABLE:
  1128. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1129. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1130. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1131. break;
  1132. default:
  1133. break;
  1134. }
  1135. break;
  1136. default:
  1137. break;
  1138. }
  1139. return 0;
  1140. }
  1141. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1142. struct amdgpu_irq_src *source,
  1143. struct amdgpu_iv_entry *entry)
  1144. {
  1145. u8 instance_id, queue_id;
  1146. instance_id = (entry->ring_id & 0x3) >> 0;
  1147. queue_id = (entry->ring_id & 0xc) >> 2;
  1148. DRM_DEBUG("IH: SDMA trap\n");
  1149. switch (instance_id) {
  1150. case 0:
  1151. switch (queue_id) {
  1152. case 0:
  1153. amdgpu_fence_process(&adev->sdma[0].ring);
  1154. break;
  1155. case 1:
  1156. /* XXX compute */
  1157. break;
  1158. case 2:
  1159. /* XXX compute */
  1160. break;
  1161. }
  1162. break;
  1163. case 1:
  1164. switch (queue_id) {
  1165. case 0:
  1166. amdgpu_fence_process(&adev->sdma[1].ring);
  1167. break;
  1168. case 1:
  1169. /* XXX compute */
  1170. break;
  1171. case 2:
  1172. /* XXX compute */
  1173. break;
  1174. }
  1175. break;
  1176. }
  1177. return 0;
  1178. }
  1179. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1180. struct amdgpu_irq_src *source,
  1181. struct amdgpu_iv_entry *entry)
  1182. {
  1183. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1184. schedule_work(&adev->reset_work);
  1185. return 0;
  1186. }
  1187. static int sdma_v3_0_set_clockgating_state(void *handle,
  1188. enum amd_clockgating_state state)
  1189. {
  1190. return 0;
  1191. }
  1192. static int sdma_v3_0_set_powergating_state(void *handle,
  1193. enum amd_powergating_state state)
  1194. {
  1195. return 0;
  1196. }
  1197. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1198. .early_init = sdma_v3_0_early_init,
  1199. .late_init = NULL,
  1200. .sw_init = sdma_v3_0_sw_init,
  1201. .sw_fini = sdma_v3_0_sw_fini,
  1202. .hw_init = sdma_v3_0_hw_init,
  1203. .hw_fini = sdma_v3_0_hw_fini,
  1204. .suspend = sdma_v3_0_suspend,
  1205. .resume = sdma_v3_0_resume,
  1206. .is_idle = sdma_v3_0_is_idle,
  1207. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1208. .soft_reset = sdma_v3_0_soft_reset,
  1209. .print_status = sdma_v3_0_print_status,
  1210. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1211. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1212. };
  1213. /**
  1214. * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
  1215. *
  1216. * @ring: amdgpu_ring structure holding ring information
  1217. *
  1218. * Check if the async DMA engine is locked up (VI).
  1219. * Returns true if the engine appears to be locked up, false if not.
  1220. */
  1221. static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
  1222. {
  1223. if (sdma_v3_0_is_idle(ring->adev)) {
  1224. amdgpu_ring_lockup_update(ring);
  1225. return false;
  1226. }
  1227. return amdgpu_ring_test_lockup(ring);
  1228. }
  1229. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1230. .get_rptr = sdma_v3_0_ring_get_rptr,
  1231. .get_wptr = sdma_v3_0_ring_get_wptr,
  1232. .set_wptr = sdma_v3_0_ring_set_wptr,
  1233. .parse_cs = NULL,
  1234. .emit_ib = sdma_v3_0_ring_emit_ib,
  1235. .emit_fence = sdma_v3_0_ring_emit_fence,
  1236. .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
  1237. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1238. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1239. .test_ring = sdma_v3_0_ring_test_ring,
  1240. .test_ib = sdma_v3_0_ring_test_ib,
  1241. .is_lockup = sdma_v3_0_ring_is_lockup,
  1242. };
  1243. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1244. {
  1245. adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
  1246. adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
  1247. }
  1248. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1249. .set = sdma_v3_0_set_trap_irq_state,
  1250. .process = sdma_v3_0_process_trap_irq,
  1251. };
  1252. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1253. .process = sdma_v3_0_process_illegal_inst_irq,
  1254. };
  1255. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1256. {
  1257. adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1258. adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1259. adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1260. }
  1261. /**
  1262. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1263. *
  1264. * @ring: amdgpu_ring structure holding ring information
  1265. * @src_offset: src GPU address
  1266. * @dst_offset: dst GPU address
  1267. * @byte_count: number of bytes to xfer
  1268. *
  1269. * Copy GPU buffers using the DMA engine (VI).
  1270. * Used by the amdgpu ttm implementation to move pages if
  1271. * registered as the asic copy callback.
  1272. */
  1273. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ring *ring,
  1274. uint64_t src_offset,
  1275. uint64_t dst_offset,
  1276. uint32_t byte_count)
  1277. {
  1278. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1279. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR));
  1280. amdgpu_ring_write(ring, byte_count);
  1281. amdgpu_ring_write(ring, 0); /* src/dst endian swap */
  1282. amdgpu_ring_write(ring, lower_32_bits(src_offset));
  1283. amdgpu_ring_write(ring, upper_32_bits(src_offset));
  1284. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1285. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1286. }
  1287. /**
  1288. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1289. *
  1290. * @ring: amdgpu_ring structure holding ring information
  1291. * @src_data: value to write to buffer
  1292. * @dst_offset: dst GPU address
  1293. * @byte_count: number of bytes to xfer
  1294. *
  1295. * Fill GPU buffers using the DMA engine (VI).
  1296. */
  1297. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
  1298. uint32_t src_data,
  1299. uint64_t dst_offset,
  1300. uint32_t byte_count)
  1301. {
  1302. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
  1303. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1304. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1305. amdgpu_ring_write(ring, src_data);
  1306. amdgpu_ring_write(ring, byte_count);
  1307. }
  1308. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1309. .copy_max_bytes = 0x1fffff,
  1310. .copy_num_dw = 7,
  1311. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1312. .fill_max_bytes = 0x1fffff,
  1313. .fill_num_dw = 5,
  1314. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1315. };
  1316. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1317. {
  1318. if (adev->mman.buffer_funcs == NULL) {
  1319. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1320. adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
  1321. }
  1322. }
  1323. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1324. .copy_pte = sdma_v3_0_vm_copy_pte,
  1325. .write_pte = sdma_v3_0_vm_write_pte,
  1326. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1327. .pad_ib = sdma_v3_0_vm_pad_ib,
  1328. };
  1329. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1330. {
  1331. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1332. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1333. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
  1334. }
  1335. }