segment.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_mode == GC_URGENT)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  159. }
  160. void f2fs_register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct inmem_pages *new;
  165. f2fs_trace_pid(page);
  166. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  167. SetPagePrivate(page);
  168. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  169. /* add atomic page indices to the list */
  170. new->page = page;
  171. INIT_LIST_HEAD(&new->list);
  172. /* increase reference count with clean state */
  173. mutex_lock(&fi->inmem_lock);
  174. get_page(page);
  175. list_add_tail(&new->list, &fi->inmem_pages);
  176. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  177. if (list_empty(&fi->inmem_ilist))
  178. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  179. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  180. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  181. mutex_unlock(&fi->inmem_lock);
  182. trace_f2fs_register_inmem_page(page, INMEM);
  183. }
  184. static int __revoke_inmem_pages(struct inode *inode,
  185. struct list_head *head, bool drop, bool recover)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  188. struct inmem_pages *cur, *tmp;
  189. int err = 0;
  190. list_for_each_entry_safe(cur, tmp, head, list) {
  191. struct page *page = cur->page;
  192. if (drop)
  193. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  194. lock_page(page);
  195. f2fs_wait_on_page_writeback(page, DATA, true);
  196. if (recover) {
  197. struct dnode_of_data dn;
  198. struct node_info ni;
  199. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  200. retry:
  201. set_new_dnode(&dn, inode, NULL, NULL, 0);
  202. err = f2fs_get_dnode_of_data(&dn, page->index,
  203. LOOKUP_NODE);
  204. if (err) {
  205. if (err == -ENOMEM) {
  206. congestion_wait(BLK_RW_ASYNC, HZ/50);
  207. cond_resched();
  208. goto retry;
  209. }
  210. err = -EAGAIN;
  211. goto next;
  212. }
  213. err = f2fs_get_node_info(sbi, dn.nid, &ni);
  214. if (err) {
  215. f2fs_put_dnode(&dn);
  216. return err;
  217. }
  218. if (cur->old_addr == NEW_ADDR) {
  219. f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
  220. f2fs_update_data_blkaddr(&dn, NEW_ADDR);
  221. } else
  222. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  223. cur->old_addr, ni.version, true, true);
  224. f2fs_put_dnode(&dn);
  225. }
  226. next:
  227. /* we don't need to invalidate this in the sccessful status */
  228. if (drop || recover)
  229. ClearPageUptodate(page);
  230. set_page_private(page, 0);
  231. ClearPagePrivate(page);
  232. f2fs_put_page(page, 1);
  233. list_del(&cur->list);
  234. kmem_cache_free(inmem_entry_slab, cur);
  235. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  236. }
  237. return err;
  238. }
  239. void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
  240. {
  241. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  242. struct inode *inode;
  243. struct f2fs_inode_info *fi;
  244. next:
  245. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  246. if (list_empty(head)) {
  247. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  248. return;
  249. }
  250. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  251. inode = igrab(&fi->vfs_inode);
  252. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  253. if (inode) {
  254. if (gc_failure) {
  255. if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
  256. goto drop;
  257. goto skip;
  258. }
  259. drop:
  260. set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  261. f2fs_drop_inmem_pages(inode);
  262. iput(inode);
  263. }
  264. skip:
  265. congestion_wait(BLK_RW_ASYNC, HZ/50);
  266. cond_resched();
  267. goto next;
  268. }
  269. void f2fs_drop_inmem_pages(struct inode *inode)
  270. {
  271. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  272. struct f2fs_inode_info *fi = F2FS_I(inode);
  273. mutex_lock(&fi->inmem_lock);
  274. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  275. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  276. if (!list_empty(&fi->inmem_ilist))
  277. list_del_init(&fi->inmem_ilist);
  278. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  279. mutex_unlock(&fi->inmem_lock);
  280. clear_inode_flag(inode, FI_ATOMIC_FILE);
  281. fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  282. stat_dec_atomic_write(inode);
  283. }
  284. void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
  285. {
  286. struct f2fs_inode_info *fi = F2FS_I(inode);
  287. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  288. struct list_head *head = &fi->inmem_pages;
  289. struct inmem_pages *cur = NULL;
  290. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  291. mutex_lock(&fi->inmem_lock);
  292. list_for_each_entry(cur, head, list) {
  293. if (cur->page == page)
  294. break;
  295. }
  296. f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
  297. list_del(&cur->list);
  298. mutex_unlock(&fi->inmem_lock);
  299. dec_page_count(sbi, F2FS_INMEM_PAGES);
  300. kmem_cache_free(inmem_entry_slab, cur);
  301. ClearPageUptodate(page);
  302. set_page_private(page, 0);
  303. ClearPagePrivate(page);
  304. f2fs_put_page(page, 0);
  305. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  306. }
  307. static int __f2fs_commit_inmem_pages(struct inode *inode)
  308. {
  309. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  310. struct f2fs_inode_info *fi = F2FS_I(inode);
  311. struct inmem_pages *cur, *tmp;
  312. struct f2fs_io_info fio = {
  313. .sbi = sbi,
  314. .ino = inode->i_ino,
  315. .type = DATA,
  316. .op = REQ_OP_WRITE,
  317. .op_flags = REQ_SYNC | REQ_PRIO,
  318. .io_type = FS_DATA_IO,
  319. };
  320. struct list_head revoke_list;
  321. pgoff_t last_idx = ULONG_MAX;
  322. int err = 0;
  323. INIT_LIST_HEAD(&revoke_list);
  324. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  325. struct page *page = cur->page;
  326. lock_page(page);
  327. if (page->mapping == inode->i_mapping) {
  328. trace_f2fs_commit_inmem_page(page, INMEM);
  329. set_page_dirty(page);
  330. f2fs_wait_on_page_writeback(page, DATA, true);
  331. if (clear_page_dirty_for_io(page)) {
  332. inode_dec_dirty_pages(inode);
  333. f2fs_remove_dirty_inode(inode);
  334. }
  335. retry:
  336. fio.page = page;
  337. fio.old_blkaddr = NULL_ADDR;
  338. fio.encrypted_page = NULL;
  339. fio.need_lock = LOCK_DONE;
  340. err = f2fs_do_write_data_page(&fio);
  341. if (err) {
  342. if (err == -ENOMEM) {
  343. congestion_wait(BLK_RW_ASYNC, HZ/50);
  344. cond_resched();
  345. goto retry;
  346. }
  347. unlock_page(page);
  348. break;
  349. }
  350. /* record old blkaddr for revoking */
  351. cur->old_addr = fio.old_blkaddr;
  352. last_idx = page->index;
  353. }
  354. unlock_page(page);
  355. list_move_tail(&cur->list, &revoke_list);
  356. }
  357. if (last_idx != ULONG_MAX)
  358. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  359. if (err) {
  360. /*
  361. * try to revoke all committed pages, but still we could fail
  362. * due to no memory or other reason, if that happened, EAGAIN
  363. * will be returned, which means in such case, transaction is
  364. * already not integrity, caller should use journal to do the
  365. * recovery or rewrite & commit last transaction. For other
  366. * error number, revoking was done by filesystem itself.
  367. */
  368. err = __revoke_inmem_pages(inode, &revoke_list, false, true);
  369. /* drop all uncommitted pages */
  370. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  371. } else {
  372. __revoke_inmem_pages(inode, &revoke_list, false, false);
  373. }
  374. return err;
  375. }
  376. int f2fs_commit_inmem_pages(struct inode *inode)
  377. {
  378. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  379. struct f2fs_inode_info *fi = F2FS_I(inode);
  380. int err;
  381. f2fs_balance_fs(sbi, true);
  382. f2fs_lock_op(sbi);
  383. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  384. mutex_lock(&fi->inmem_lock);
  385. err = __f2fs_commit_inmem_pages(inode);
  386. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  387. if (!list_empty(&fi->inmem_ilist))
  388. list_del_init(&fi->inmem_ilist);
  389. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  390. mutex_unlock(&fi->inmem_lock);
  391. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  392. f2fs_unlock_op(sbi);
  393. return err;
  394. }
  395. /*
  396. * This function balances dirty node and dentry pages.
  397. * In addition, it controls garbage collection.
  398. */
  399. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  400. {
  401. #ifdef CONFIG_F2FS_FAULT_INJECTION
  402. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  403. f2fs_show_injection_info(FAULT_CHECKPOINT);
  404. f2fs_stop_checkpoint(sbi, false);
  405. }
  406. #endif
  407. /* balance_fs_bg is able to be pending */
  408. if (need && excess_cached_nats(sbi))
  409. f2fs_balance_fs_bg(sbi);
  410. /*
  411. * We should do GC or end up with checkpoint, if there are so many dirty
  412. * dir/node pages without enough free segments.
  413. */
  414. if (has_not_enough_free_secs(sbi, 0, 0)) {
  415. mutex_lock(&sbi->gc_mutex);
  416. f2fs_gc(sbi, false, false, NULL_SEGNO);
  417. }
  418. }
  419. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  420. {
  421. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  422. return;
  423. /* try to shrink extent cache when there is no enough memory */
  424. if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
  425. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  426. /* check the # of cached NAT entries */
  427. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
  428. f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  429. if (!f2fs_available_free_memory(sbi, FREE_NIDS))
  430. f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
  431. else
  432. f2fs_build_free_nids(sbi, false, false);
  433. if (!is_idle(sbi) &&
  434. (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
  435. return;
  436. /* checkpoint is the only way to shrink partial cached entries */
  437. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
  438. !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
  439. excess_prefree_segs(sbi) ||
  440. excess_dirty_nats(sbi) ||
  441. excess_dirty_nodes(sbi) ||
  442. f2fs_time_over(sbi, CP_TIME)) {
  443. if (test_opt(sbi, DATA_FLUSH)) {
  444. struct blk_plug plug;
  445. blk_start_plug(&plug);
  446. f2fs_sync_dirty_inodes(sbi, FILE_INODE);
  447. blk_finish_plug(&plug);
  448. }
  449. f2fs_sync_fs(sbi->sb, true);
  450. stat_inc_bg_cp_count(sbi->stat_info);
  451. }
  452. }
  453. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  454. struct block_device *bdev)
  455. {
  456. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  457. int ret;
  458. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  459. bio_set_dev(bio, bdev);
  460. ret = submit_bio_wait(bio);
  461. bio_put(bio);
  462. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  463. test_opt(sbi, FLUSH_MERGE), ret);
  464. return ret;
  465. }
  466. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  467. {
  468. int ret = 0;
  469. int i;
  470. if (!sbi->s_ndevs)
  471. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  472. for (i = 0; i < sbi->s_ndevs; i++) {
  473. if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
  474. continue;
  475. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  476. if (ret)
  477. break;
  478. }
  479. return ret;
  480. }
  481. static int issue_flush_thread(void *data)
  482. {
  483. struct f2fs_sb_info *sbi = data;
  484. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  485. wait_queue_head_t *q = &fcc->flush_wait_queue;
  486. repeat:
  487. if (kthread_should_stop())
  488. return 0;
  489. sb_start_intwrite(sbi->sb);
  490. if (!llist_empty(&fcc->issue_list)) {
  491. struct flush_cmd *cmd, *next;
  492. int ret;
  493. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  494. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  495. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  496. ret = submit_flush_wait(sbi, cmd->ino);
  497. atomic_inc(&fcc->issued_flush);
  498. llist_for_each_entry_safe(cmd, next,
  499. fcc->dispatch_list, llnode) {
  500. cmd->ret = ret;
  501. complete(&cmd->wait);
  502. }
  503. fcc->dispatch_list = NULL;
  504. }
  505. sb_end_intwrite(sbi->sb);
  506. wait_event_interruptible(*q,
  507. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  508. goto repeat;
  509. }
  510. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  511. {
  512. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  513. struct flush_cmd cmd;
  514. int ret;
  515. if (test_opt(sbi, NOBARRIER))
  516. return 0;
  517. if (!test_opt(sbi, FLUSH_MERGE)) {
  518. ret = submit_flush_wait(sbi, ino);
  519. atomic_inc(&fcc->issued_flush);
  520. return ret;
  521. }
  522. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  523. ret = submit_flush_wait(sbi, ino);
  524. atomic_dec(&fcc->issing_flush);
  525. atomic_inc(&fcc->issued_flush);
  526. return ret;
  527. }
  528. cmd.ino = ino;
  529. init_completion(&cmd.wait);
  530. llist_add(&cmd.llnode, &fcc->issue_list);
  531. /* update issue_list before we wake up issue_flush thread */
  532. smp_mb();
  533. if (waitqueue_active(&fcc->flush_wait_queue))
  534. wake_up(&fcc->flush_wait_queue);
  535. if (fcc->f2fs_issue_flush) {
  536. wait_for_completion(&cmd.wait);
  537. atomic_dec(&fcc->issing_flush);
  538. } else {
  539. struct llist_node *list;
  540. list = llist_del_all(&fcc->issue_list);
  541. if (!list) {
  542. wait_for_completion(&cmd.wait);
  543. atomic_dec(&fcc->issing_flush);
  544. } else {
  545. struct flush_cmd *tmp, *next;
  546. ret = submit_flush_wait(sbi, ino);
  547. llist_for_each_entry_safe(tmp, next, list, llnode) {
  548. if (tmp == &cmd) {
  549. cmd.ret = ret;
  550. atomic_dec(&fcc->issing_flush);
  551. continue;
  552. }
  553. tmp->ret = ret;
  554. complete(&tmp->wait);
  555. }
  556. }
  557. }
  558. return cmd.ret;
  559. }
  560. int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
  561. {
  562. dev_t dev = sbi->sb->s_bdev->bd_dev;
  563. struct flush_cmd_control *fcc;
  564. int err = 0;
  565. if (SM_I(sbi)->fcc_info) {
  566. fcc = SM_I(sbi)->fcc_info;
  567. if (fcc->f2fs_issue_flush)
  568. return err;
  569. goto init_thread;
  570. }
  571. fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
  572. if (!fcc)
  573. return -ENOMEM;
  574. atomic_set(&fcc->issued_flush, 0);
  575. atomic_set(&fcc->issing_flush, 0);
  576. init_waitqueue_head(&fcc->flush_wait_queue);
  577. init_llist_head(&fcc->issue_list);
  578. SM_I(sbi)->fcc_info = fcc;
  579. if (!test_opt(sbi, FLUSH_MERGE))
  580. return err;
  581. init_thread:
  582. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  583. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  584. if (IS_ERR(fcc->f2fs_issue_flush)) {
  585. err = PTR_ERR(fcc->f2fs_issue_flush);
  586. kfree(fcc);
  587. SM_I(sbi)->fcc_info = NULL;
  588. return err;
  589. }
  590. return err;
  591. }
  592. void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  593. {
  594. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  595. if (fcc && fcc->f2fs_issue_flush) {
  596. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  597. fcc->f2fs_issue_flush = NULL;
  598. kthread_stop(flush_thread);
  599. }
  600. if (free) {
  601. kfree(fcc);
  602. SM_I(sbi)->fcc_info = NULL;
  603. }
  604. }
  605. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  606. {
  607. int ret = 0, i;
  608. if (!sbi->s_ndevs)
  609. return 0;
  610. for (i = 1; i < sbi->s_ndevs; i++) {
  611. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  612. continue;
  613. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  614. if (ret)
  615. break;
  616. spin_lock(&sbi->dev_lock);
  617. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  618. spin_unlock(&sbi->dev_lock);
  619. }
  620. return ret;
  621. }
  622. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  623. enum dirty_type dirty_type)
  624. {
  625. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  626. /* need not be added */
  627. if (IS_CURSEG(sbi, segno))
  628. return;
  629. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  630. dirty_i->nr_dirty[dirty_type]++;
  631. if (dirty_type == DIRTY) {
  632. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  633. enum dirty_type t = sentry->type;
  634. if (unlikely(t >= DIRTY)) {
  635. f2fs_bug_on(sbi, 1);
  636. return;
  637. }
  638. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  639. dirty_i->nr_dirty[t]++;
  640. }
  641. }
  642. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  643. enum dirty_type dirty_type)
  644. {
  645. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  646. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  647. dirty_i->nr_dirty[dirty_type]--;
  648. if (dirty_type == DIRTY) {
  649. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  650. enum dirty_type t = sentry->type;
  651. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  652. dirty_i->nr_dirty[t]--;
  653. if (get_valid_blocks(sbi, segno, true) == 0)
  654. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  655. dirty_i->victim_secmap);
  656. }
  657. }
  658. /*
  659. * Should not occur error such as -ENOMEM.
  660. * Adding dirty entry into seglist is not critical operation.
  661. * If a given segment is one of current working segments, it won't be added.
  662. */
  663. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  664. {
  665. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  666. unsigned short valid_blocks;
  667. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  668. return;
  669. mutex_lock(&dirty_i->seglist_lock);
  670. valid_blocks = get_valid_blocks(sbi, segno, false);
  671. if (valid_blocks == 0) {
  672. __locate_dirty_segment(sbi, segno, PRE);
  673. __remove_dirty_segment(sbi, segno, DIRTY);
  674. } else if (valid_blocks < sbi->blocks_per_seg) {
  675. __locate_dirty_segment(sbi, segno, DIRTY);
  676. } else {
  677. /* Recovery routine with SSR needs this */
  678. __remove_dirty_segment(sbi, segno, DIRTY);
  679. }
  680. mutex_unlock(&dirty_i->seglist_lock);
  681. }
  682. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  683. struct block_device *bdev, block_t lstart,
  684. block_t start, block_t len)
  685. {
  686. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  687. struct list_head *pend_list;
  688. struct discard_cmd *dc;
  689. f2fs_bug_on(sbi, !len);
  690. pend_list = &dcc->pend_list[plist_idx(len)];
  691. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  692. INIT_LIST_HEAD(&dc->list);
  693. dc->bdev = bdev;
  694. dc->lstart = lstart;
  695. dc->start = start;
  696. dc->len = len;
  697. dc->ref = 0;
  698. dc->state = D_PREP;
  699. dc->issuing = 0;
  700. dc->error = 0;
  701. init_completion(&dc->wait);
  702. list_add_tail(&dc->list, pend_list);
  703. spin_lock_init(&dc->lock);
  704. dc->bio_ref = 0;
  705. atomic_inc(&dcc->discard_cmd_cnt);
  706. dcc->undiscard_blks += len;
  707. return dc;
  708. }
  709. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  710. struct block_device *bdev, block_t lstart,
  711. block_t start, block_t len,
  712. struct rb_node *parent, struct rb_node **p)
  713. {
  714. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  715. struct discard_cmd *dc;
  716. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  717. rb_link_node(&dc->rb_node, parent, p);
  718. rb_insert_color(&dc->rb_node, &dcc->root);
  719. return dc;
  720. }
  721. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  722. struct discard_cmd *dc)
  723. {
  724. if (dc->state == D_DONE)
  725. atomic_sub(dc->issuing, &dcc->issing_discard);
  726. list_del(&dc->list);
  727. rb_erase(&dc->rb_node, &dcc->root);
  728. dcc->undiscard_blks -= dc->len;
  729. kmem_cache_free(discard_cmd_slab, dc);
  730. atomic_dec(&dcc->discard_cmd_cnt);
  731. }
  732. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  733. struct discard_cmd *dc)
  734. {
  735. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  736. unsigned long flags;
  737. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  738. spin_lock_irqsave(&dc->lock, flags);
  739. if (dc->bio_ref) {
  740. spin_unlock_irqrestore(&dc->lock, flags);
  741. return;
  742. }
  743. spin_unlock_irqrestore(&dc->lock, flags);
  744. f2fs_bug_on(sbi, dc->ref);
  745. if (dc->error == -EOPNOTSUPP)
  746. dc->error = 0;
  747. if (dc->error)
  748. f2fs_msg(sbi->sb, KERN_INFO,
  749. "Issue discard(%u, %u, %u) failed, ret: %d",
  750. dc->lstart, dc->start, dc->len, dc->error);
  751. __detach_discard_cmd(dcc, dc);
  752. }
  753. static void f2fs_submit_discard_endio(struct bio *bio)
  754. {
  755. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  756. unsigned long flags;
  757. dc->error = blk_status_to_errno(bio->bi_status);
  758. spin_lock_irqsave(&dc->lock, flags);
  759. dc->bio_ref--;
  760. if (!dc->bio_ref && dc->state == D_SUBMIT) {
  761. dc->state = D_DONE;
  762. complete_all(&dc->wait);
  763. }
  764. spin_unlock_irqrestore(&dc->lock, flags);
  765. bio_put(bio);
  766. }
  767. static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  768. block_t start, block_t end)
  769. {
  770. #ifdef CONFIG_F2FS_CHECK_FS
  771. struct seg_entry *sentry;
  772. unsigned int segno;
  773. block_t blk = start;
  774. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  775. unsigned long *map;
  776. while (blk < end) {
  777. segno = GET_SEGNO(sbi, blk);
  778. sentry = get_seg_entry(sbi, segno);
  779. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  780. if (end < START_BLOCK(sbi, segno + 1))
  781. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  782. else
  783. size = max_blocks;
  784. map = (unsigned long *)(sentry->cur_valid_map);
  785. offset = __find_rev_next_bit(map, size, offset);
  786. f2fs_bug_on(sbi, offset != size);
  787. blk = START_BLOCK(sbi, segno + 1);
  788. }
  789. #endif
  790. }
  791. static void __init_discard_policy(struct f2fs_sb_info *sbi,
  792. struct discard_policy *dpolicy,
  793. int discard_type, unsigned int granularity)
  794. {
  795. /* common policy */
  796. dpolicy->type = discard_type;
  797. dpolicy->sync = true;
  798. dpolicy->ordered = false;
  799. dpolicy->granularity = granularity;
  800. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  801. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  802. if (discard_type == DPOLICY_BG) {
  803. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  804. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  805. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  806. dpolicy->io_aware = true;
  807. dpolicy->sync = false;
  808. dpolicy->ordered = true;
  809. if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
  810. dpolicy->granularity = 1;
  811. dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  812. }
  813. } else if (discard_type == DPOLICY_FORCE) {
  814. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  815. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  816. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  817. dpolicy->io_aware = false;
  818. } else if (discard_type == DPOLICY_FSTRIM) {
  819. dpolicy->io_aware = false;
  820. } else if (discard_type == DPOLICY_UMOUNT) {
  821. dpolicy->max_requests = UINT_MAX;
  822. dpolicy->io_aware = false;
  823. }
  824. }
  825. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  826. struct block_device *bdev, block_t lstart,
  827. block_t start, block_t len);
  828. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  829. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  830. struct discard_policy *dpolicy,
  831. struct discard_cmd *dc,
  832. unsigned int *issued)
  833. {
  834. struct block_device *bdev = dc->bdev;
  835. struct request_queue *q = bdev_get_queue(bdev);
  836. unsigned int max_discard_blocks =
  837. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  838. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  839. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  840. &(dcc->fstrim_list) : &(dcc->wait_list);
  841. int flag = dpolicy->sync ? REQ_SYNC : 0;
  842. block_t lstart, start, len, total_len;
  843. int err = 0;
  844. if (dc->state != D_PREP)
  845. return;
  846. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  847. return;
  848. trace_f2fs_issue_discard(bdev, dc->start, dc->len);
  849. lstart = dc->lstart;
  850. start = dc->start;
  851. len = dc->len;
  852. total_len = len;
  853. dc->len = 0;
  854. while (total_len && *issued < dpolicy->max_requests && !err) {
  855. struct bio *bio = NULL;
  856. unsigned long flags;
  857. bool last = true;
  858. if (len > max_discard_blocks) {
  859. len = max_discard_blocks;
  860. last = false;
  861. }
  862. (*issued)++;
  863. if (*issued == dpolicy->max_requests)
  864. last = true;
  865. dc->len += len;
  866. #ifdef CONFIG_F2FS_FAULT_INJECTION
  867. if (time_to_inject(sbi, FAULT_DISCARD)) {
  868. f2fs_show_injection_info(FAULT_DISCARD);
  869. err = -EIO;
  870. goto submit;
  871. }
  872. #endif
  873. err = __blkdev_issue_discard(bdev,
  874. SECTOR_FROM_BLOCK(start),
  875. SECTOR_FROM_BLOCK(len),
  876. GFP_NOFS, 0, &bio);
  877. submit:
  878. if (!err && bio) {
  879. /*
  880. * should keep before submission to avoid D_DONE
  881. * right away
  882. */
  883. spin_lock_irqsave(&dc->lock, flags);
  884. if (last)
  885. dc->state = D_SUBMIT;
  886. else
  887. dc->state = D_PARTIAL;
  888. dc->bio_ref++;
  889. spin_unlock_irqrestore(&dc->lock, flags);
  890. atomic_inc(&dcc->issing_discard);
  891. dc->issuing++;
  892. list_move_tail(&dc->list, wait_list);
  893. /* sanity check on discard range */
  894. __check_sit_bitmap(sbi, start, start + len);
  895. bio->bi_private = dc;
  896. bio->bi_end_io = f2fs_submit_discard_endio;
  897. bio->bi_opf |= flag;
  898. submit_bio(bio);
  899. atomic_inc(&dcc->issued_discard);
  900. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  901. } else {
  902. spin_lock_irqsave(&dc->lock, flags);
  903. if (dc->state == D_PARTIAL)
  904. dc->state = D_SUBMIT;
  905. spin_unlock_irqrestore(&dc->lock, flags);
  906. __remove_discard_cmd(sbi, dc);
  907. err = -EIO;
  908. }
  909. lstart += len;
  910. start += len;
  911. total_len -= len;
  912. len = total_len;
  913. }
  914. if (len)
  915. __update_discard_tree_range(sbi, bdev, lstart, start, len);
  916. }
  917. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  918. struct block_device *bdev, block_t lstart,
  919. block_t start, block_t len,
  920. struct rb_node **insert_p,
  921. struct rb_node *insert_parent)
  922. {
  923. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  924. struct rb_node **p;
  925. struct rb_node *parent = NULL;
  926. struct discard_cmd *dc = NULL;
  927. if (insert_p && insert_parent) {
  928. parent = insert_parent;
  929. p = insert_p;
  930. goto do_insert;
  931. }
  932. p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  933. do_insert:
  934. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  935. if (!dc)
  936. return NULL;
  937. return dc;
  938. }
  939. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  940. struct discard_cmd *dc)
  941. {
  942. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  943. }
  944. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  945. struct discard_cmd *dc, block_t blkaddr)
  946. {
  947. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  948. struct discard_info di = dc->di;
  949. bool modified = false;
  950. if (dc->state == D_DONE || dc->len == 1) {
  951. __remove_discard_cmd(sbi, dc);
  952. return;
  953. }
  954. dcc->undiscard_blks -= di.len;
  955. if (blkaddr > di.lstart) {
  956. dc->len = blkaddr - dc->lstart;
  957. dcc->undiscard_blks += dc->len;
  958. __relocate_discard_cmd(dcc, dc);
  959. modified = true;
  960. }
  961. if (blkaddr < di.lstart + di.len - 1) {
  962. if (modified) {
  963. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  964. di.start + blkaddr + 1 - di.lstart,
  965. di.lstart + di.len - 1 - blkaddr,
  966. NULL, NULL);
  967. } else {
  968. dc->lstart++;
  969. dc->len--;
  970. dc->start++;
  971. dcc->undiscard_blks += dc->len;
  972. __relocate_discard_cmd(dcc, dc);
  973. }
  974. }
  975. }
  976. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  977. struct block_device *bdev, block_t lstart,
  978. block_t start, block_t len)
  979. {
  980. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  981. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  982. struct discard_cmd *dc;
  983. struct discard_info di = {0};
  984. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  985. struct request_queue *q = bdev_get_queue(bdev);
  986. unsigned int max_discard_blocks =
  987. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  988. block_t end = lstart + len;
  989. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  990. NULL, lstart,
  991. (struct rb_entry **)&prev_dc,
  992. (struct rb_entry **)&next_dc,
  993. &insert_p, &insert_parent, true);
  994. if (dc)
  995. prev_dc = dc;
  996. if (!prev_dc) {
  997. di.lstart = lstart;
  998. di.len = next_dc ? next_dc->lstart - lstart : len;
  999. di.len = min(di.len, len);
  1000. di.start = start;
  1001. }
  1002. while (1) {
  1003. struct rb_node *node;
  1004. bool merged = false;
  1005. struct discard_cmd *tdc = NULL;
  1006. if (prev_dc) {
  1007. di.lstart = prev_dc->lstart + prev_dc->len;
  1008. if (di.lstart < lstart)
  1009. di.lstart = lstart;
  1010. if (di.lstart >= end)
  1011. break;
  1012. if (!next_dc || next_dc->lstart > end)
  1013. di.len = end - di.lstart;
  1014. else
  1015. di.len = next_dc->lstart - di.lstart;
  1016. di.start = start + di.lstart - lstart;
  1017. }
  1018. if (!di.len)
  1019. goto next;
  1020. if (prev_dc && prev_dc->state == D_PREP &&
  1021. prev_dc->bdev == bdev &&
  1022. __is_discard_back_mergeable(&di, &prev_dc->di,
  1023. max_discard_blocks)) {
  1024. prev_dc->di.len += di.len;
  1025. dcc->undiscard_blks += di.len;
  1026. __relocate_discard_cmd(dcc, prev_dc);
  1027. di = prev_dc->di;
  1028. tdc = prev_dc;
  1029. merged = true;
  1030. }
  1031. if (next_dc && next_dc->state == D_PREP &&
  1032. next_dc->bdev == bdev &&
  1033. __is_discard_front_mergeable(&di, &next_dc->di,
  1034. max_discard_blocks)) {
  1035. next_dc->di.lstart = di.lstart;
  1036. next_dc->di.len += di.len;
  1037. next_dc->di.start = di.start;
  1038. dcc->undiscard_blks += di.len;
  1039. __relocate_discard_cmd(dcc, next_dc);
  1040. if (tdc)
  1041. __remove_discard_cmd(sbi, tdc);
  1042. merged = true;
  1043. }
  1044. if (!merged) {
  1045. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  1046. di.len, NULL, NULL);
  1047. }
  1048. next:
  1049. prev_dc = next_dc;
  1050. if (!prev_dc)
  1051. break;
  1052. node = rb_next(&prev_dc->rb_node);
  1053. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1054. }
  1055. }
  1056. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  1057. struct block_device *bdev, block_t blkstart, block_t blklen)
  1058. {
  1059. block_t lblkstart = blkstart;
  1060. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  1061. if (sbi->s_ndevs) {
  1062. int devi = f2fs_target_device_index(sbi, blkstart);
  1063. blkstart -= FDEV(devi).start_blk;
  1064. }
  1065. mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
  1066. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  1067. mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
  1068. return 0;
  1069. }
  1070. static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
  1071. struct discard_policy *dpolicy)
  1072. {
  1073. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1074. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  1075. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1076. struct discard_cmd *dc;
  1077. struct blk_plug plug;
  1078. unsigned int pos = dcc->next_pos;
  1079. unsigned int issued = 0;
  1080. bool io_interrupted = false;
  1081. mutex_lock(&dcc->cmd_lock);
  1082. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  1083. NULL, pos,
  1084. (struct rb_entry **)&prev_dc,
  1085. (struct rb_entry **)&next_dc,
  1086. &insert_p, &insert_parent, true);
  1087. if (!dc)
  1088. dc = next_dc;
  1089. blk_start_plug(&plug);
  1090. while (dc) {
  1091. struct rb_node *node;
  1092. if (dc->state != D_PREP)
  1093. goto next;
  1094. if (dpolicy->io_aware && !is_idle(sbi)) {
  1095. io_interrupted = true;
  1096. break;
  1097. }
  1098. dcc->next_pos = dc->lstart + dc->len;
  1099. __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1100. if (issued >= dpolicy->max_requests)
  1101. break;
  1102. next:
  1103. node = rb_next(&dc->rb_node);
  1104. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1105. }
  1106. blk_finish_plug(&plug);
  1107. if (!dc)
  1108. dcc->next_pos = 0;
  1109. mutex_unlock(&dcc->cmd_lock);
  1110. if (!issued && io_interrupted)
  1111. issued = -1;
  1112. return issued;
  1113. }
  1114. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  1115. struct discard_policy *dpolicy)
  1116. {
  1117. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1118. struct list_head *pend_list;
  1119. struct discard_cmd *dc, *tmp;
  1120. struct blk_plug plug;
  1121. int i, issued = 0;
  1122. bool io_interrupted = false;
  1123. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1124. if (i + 1 < dpolicy->granularity)
  1125. break;
  1126. if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
  1127. return __issue_discard_cmd_orderly(sbi, dpolicy);
  1128. pend_list = &dcc->pend_list[i];
  1129. mutex_lock(&dcc->cmd_lock);
  1130. if (list_empty(pend_list))
  1131. goto next;
  1132. if (unlikely(dcc->rbtree_check))
  1133. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  1134. &dcc->root));
  1135. blk_start_plug(&plug);
  1136. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1137. f2fs_bug_on(sbi, dc->state != D_PREP);
  1138. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1139. !is_idle(sbi)) {
  1140. io_interrupted = true;
  1141. break;
  1142. }
  1143. __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1144. if (issued >= dpolicy->max_requests)
  1145. break;
  1146. }
  1147. blk_finish_plug(&plug);
  1148. next:
  1149. mutex_unlock(&dcc->cmd_lock);
  1150. if (issued >= dpolicy->max_requests || io_interrupted)
  1151. break;
  1152. }
  1153. if (!issued && io_interrupted)
  1154. issued = -1;
  1155. return issued;
  1156. }
  1157. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1158. {
  1159. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1160. struct list_head *pend_list;
  1161. struct discard_cmd *dc, *tmp;
  1162. int i;
  1163. bool dropped = false;
  1164. mutex_lock(&dcc->cmd_lock);
  1165. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1166. pend_list = &dcc->pend_list[i];
  1167. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1168. f2fs_bug_on(sbi, dc->state != D_PREP);
  1169. __remove_discard_cmd(sbi, dc);
  1170. dropped = true;
  1171. }
  1172. }
  1173. mutex_unlock(&dcc->cmd_lock);
  1174. return dropped;
  1175. }
  1176. void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
  1177. {
  1178. __drop_discard_cmd(sbi);
  1179. }
  1180. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1181. struct discard_cmd *dc)
  1182. {
  1183. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1184. unsigned int len = 0;
  1185. wait_for_completion_io(&dc->wait);
  1186. mutex_lock(&dcc->cmd_lock);
  1187. f2fs_bug_on(sbi, dc->state != D_DONE);
  1188. dc->ref--;
  1189. if (!dc->ref) {
  1190. if (!dc->error)
  1191. len = dc->len;
  1192. __remove_discard_cmd(sbi, dc);
  1193. }
  1194. mutex_unlock(&dcc->cmd_lock);
  1195. return len;
  1196. }
  1197. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1198. struct discard_policy *dpolicy,
  1199. block_t start, block_t end)
  1200. {
  1201. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1202. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1203. &(dcc->fstrim_list) : &(dcc->wait_list);
  1204. struct discard_cmd *dc, *tmp;
  1205. bool need_wait;
  1206. unsigned int trimmed = 0;
  1207. next:
  1208. need_wait = false;
  1209. mutex_lock(&dcc->cmd_lock);
  1210. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1211. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1212. continue;
  1213. if (dc->len < dpolicy->granularity)
  1214. continue;
  1215. if (dc->state == D_DONE && !dc->ref) {
  1216. wait_for_completion_io(&dc->wait);
  1217. if (!dc->error)
  1218. trimmed += dc->len;
  1219. __remove_discard_cmd(sbi, dc);
  1220. } else {
  1221. dc->ref++;
  1222. need_wait = true;
  1223. break;
  1224. }
  1225. }
  1226. mutex_unlock(&dcc->cmd_lock);
  1227. if (need_wait) {
  1228. trimmed += __wait_one_discard_bio(sbi, dc);
  1229. goto next;
  1230. }
  1231. return trimmed;
  1232. }
  1233. static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1234. struct discard_policy *dpolicy)
  1235. {
  1236. struct discard_policy dp;
  1237. unsigned int discard_blks;
  1238. if (dpolicy)
  1239. return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1240. /* wait all */
  1241. __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
  1242. discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1243. __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
  1244. discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1245. return discard_blks;
  1246. }
  1247. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1248. static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1249. {
  1250. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1251. struct discard_cmd *dc;
  1252. bool need_wait = false;
  1253. mutex_lock(&dcc->cmd_lock);
  1254. dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
  1255. NULL, blkaddr);
  1256. if (dc) {
  1257. if (dc->state == D_PREP) {
  1258. __punch_discard_cmd(sbi, dc, blkaddr);
  1259. } else {
  1260. dc->ref++;
  1261. need_wait = true;
  1262. }
  1263. }
  1264. mutex_unlock(&dcc->cmd_lock);
  1265. if (need_wait)
  1266. __wait_one_discard_bio(sbi, dc);
  1267. }
  1268. void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
  1269. {
  1270. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1271. if (dcc && dcc->f2fs_issue_discard) {
  1272. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1273. dcc->f2fs_issue_discard = NULL;
  1274. kthread_stop(discard_thread);
  1275. }
  1276. }
  1277. /* This comes from f2fs_put_super */
  1278. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1279. {
  1280. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1281. struct discard_policy dpolicy;
  1282. bool dropped;
  1283. __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
  1284. dcc->discard_granularity);
  1285. __issue_discard_cmd(sbi, &dpolicy);
  1286. dropped = __drop_discard_cmd(sbi);
  1287. /* just to make sure there is no pending discard commands */
  1288. __wait_all_discard_cmd(sbi, NULL);
  1289. f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
  1290. return dropped;
  1291. }
  1292. static int issue_discard_thread(void *data)
  1293. {
  1294. struct f2fs_sb_info *sbi = data;
  1295. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1296. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1297. struct discard_policy dpolicy;
  1298. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1299. int issued;
  1300. set_freezable();
  1301. do {
  1302. __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
  1303. dcc->discard_granularity);
  1304. wait_event_interruptible_timeout(*q,
  1305. kthread_should_stop() || freezing(current) ||
  1306. dcc->discard_wake,
  1307. msecs_to_jiffies(wait_ms));
  1308. if (dcc->discard_wake)
  1309. dcc->discard_wake = 0;
  1310. if (try_to_freeze())
  1311. continue;
  1312. if (f2fs_readonly(sbi->sb))
  1313. continue;
  1314. if (kthread_should_stop())
  1315. return 0;
  1316. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1317. wait_ms = dpolicy.max_interval;
  1318. continue;
  1319. }
  1320. if (sbi->gc_mode == GC_URGENT)
  1321. __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
  1322. sb_start_intwrite(sbi->sb);
  1323. issued = __issue_discard_cmd(sbi, &dpolicy);
  1324. if (issued > 0) {
  1325. __wait_all_discard_cmd(sbi, &dpolicy);
  1326. wait_ms = dpolicy.min_interval;
  1327. } else if (issued == -1){
  1328. wait_ms = dpolicy.mid_interval;
  1329. } else {
  1330. wait_ms = dpolicy.max_interval;
  1331. }
  1332. sb_end_intwrite(sbi->sb);
  1333. } while (!kthread_should_stop());
  1334. return 0;
  1335. }
  1336. #ifdef CONFIG_BLK_DEV_ZONED
  1337. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1338. struct block_device *bdev, block_t blkstart, block_t blklen)
  1339. {
  1340. sector_t sector, nr_sects;
  1341. block_t lblkstart = blkstart;
  1342. int devi = 0;
  1343. if (sbi->s_ndevs) {
  1344. devi = f2fs_target_device_index(sbi, blkstart);
  1345. blkstart -= FDEV(devi).start_blk;
  1346. }
  1347. /*
  1348. * We need to know the type of the zone: for conventional zones,
  1349. * use regular discard if the drive supports it. For sequential
  1350. * zones, reset the zone write pointer.
  1351. */
  1352. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1353. case BLK_ZONE_TYPE_CONVENTIONAL:
  1354. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1355. return 0;
  1356. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1357. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1358. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1359. sector = SECTOR_FROM_BLOCK(blkstart);
  1360. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1361. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1362. nr_sects != bdev_zone_sectors(bdev)) {
  1363. f2fs_msg(sbi->sb, KERN_INFO,
  1364. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1365. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1366. blkstart, blklen);
  1367. return -EIO;
  1368. }
  1369. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1370. return blkdev_reset_zones(bdev, sector,
  1371. nr_sects, GFP_NOFS);
  1372. default:
  1373. /* Unknown zone type: broken device ? */
  1374. return -EIO;
  1375. }
  1376. }
  1377. #endif
  1378. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1379. struct block_device *bdev, block_t blkstart, block_t blklen)
  1380. {
  1381. #ifdef CONFIG_BLK_DEV_ZONED
  1382. if (f2fs_sb_has_blkzoned(sbi->sb) &&
  1383. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1384. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1385. #endif
  1386. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1387. }
  1388. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1389. block_t blkstart, block_t blklen)
  1390. {
  1391. sector_t start = blkstart, len = 0;
  1392. struct block_device *bdev;
  1393. struct seg_entry *se;
  1394. unsigned int offset;
  1395. block_t i;
  1396. int err = 0;
  1397. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1398. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1399. if (i != start) {
  1400. struct block_device *bdev2 =
  1401. f2fs_target_device(sbi, i, NULL);
  1402. if (bdev2 != bdev) {
  1403. err = __issue_discard_async(sbi, bdev,
  1404. start, len);
  1405. if (err)
  1406. return err;
  1407. bdev = bdev2;
  1408. start = i;
  1409. len = 0;
  1410. }
  1411. }
  1412. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1413. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1414. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1415. sbi->discard_blks--;
  1416. }
  1417. if (len)
  1418. err = __issue_discard_async(sbi, bdev, start, len);
  1419. return err;
  1420. }
  1421. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1422. bool check_only)
  1423. {
  1424. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1425. int max_blocks = sbi->blocks_per_seg;
  1426. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1427. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1428. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1429. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1430. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1431. unsigned int start = 0, end = -1;
  1432. bool force = (cpc->reason & CP_DISCARD);
  1433. struct discard_entry *de = NULL;
  1434. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1435. int i;
  1436. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1437. return false;
  1438. if (!force) {
  1439. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1440. SM_I(sbi)->dcc_info->nr_discards >=
  1441. SM_I(sbi)->dcc_info->max_discards)
  1442. return false;
  1443. }
  1444. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1445. for (i = 0; i < entries; i++)
  1446. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1447. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1448. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1449. SM_I(sbi)->dcc_info->max_discards) {
  1450. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1451. if (start >= max_blocks)
  1452. break;
  1453. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1454. if (force && start && end != max_blocks
  1455. && (end - start) < cpc->trim_minlen)
  1456. continue;
  1457. if (check_only)
  1458. return true;
  1459. if (!de) {
  1460. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1461. GFP_F2FS_ZERO);
  1462. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1463. list_add_tail(&de->list, head);
  1464. }
  1465. for (i = start; i < end; i++)
  1466. __set_bit_le(i, (void *)de->discard_map);
  1467. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1468. }
  1469. return false;
  1470. }
  1471. static void release_discard_addr(struct discard_entry *entry)
  1472. {
  1473. list_del(&entry->list);
  1474. kmem_cache_free(discard_entry_slab, entry);
  1475. }
  1476. void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
  1477. {
  1478. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1479. struct discard_entry *entry, *this;
  1480. /* drop caches */
  1481. list_for_each_entry_safe(entry, this, head, list)
  1482. release_discard_addr(entry);
  1483. }
  1484. /*
  1485. * Should call f2fs_clear_prefree_segments after checkpoint is done.
  1486. */
  1487. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1488. {
  1489. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1490. unsigned int segno;
  1491. mutex_lock(&dirty_i->seglist_lock);
  1492. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1493. __set_test_and_free(sbi, segno);
  1494. mutex_unlock(&dirty_i->seglist_lock);
  1495. }
  1496. void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
  1497. struct cp_control *cpc)
  1498. {
  1499. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1500. struct list_head *head = &dcc->entry_list;
  1501. struct discard_entry *entry, *this;
  1502. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1503. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1504. unsigned int start = 0, end = -1;
  1505. unsigned int secno, start_segno;
  1506. bool force = (cpc->reason & CP_DISCARD);
  1507. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  1508. mutex_lock(&dirty_i->seglist_lock);
  1509. while (1) {
  1510. int i;
  1511. if (need_align && end != -1)
  1512. end--;
  1513. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1514. if (start >= MAIN_SEGS(sbi))
  1515. break;
  1516. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1517. start + 1);
  1518. if (need_align) {
  1519. start = rounddown(start, sbi->segs_per_sec);
  1520. end = roundup(end, sbi->segs_per_sec);
  1521. }
  1522. for (i = start; i < end; i++) {
  1523. if (test_and_clear_bit(i, prefree_map))
  1524. dirty_i->nr_dirty[PRE]--;
  1525. }
  1526. if (!test_opt(sbi, DISCARD))
  1527. continue;
  1528. if (force && start >= cpc->trim_start &&
  1529. (end - 1) <= cpc->trim_end)
  1530. continue;
  1531. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1532. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1533. (end - start) << sbi->log_blocks_per_seg);
  1534. continue;
  1535. }
  1536. next:
  1537. secno = GET_SEC_FROM_SEG(sbi, start);
  1538. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1539. if (!IS_CURSEC(sbi, secno) &&
  1540. !get_valid_blocks(sbi, start, true))
  1541. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1542. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1543. start = start_segno + sbi->segs_per_sec;
  1544. if (start < end)
  1545. goto next;
  1546. else
  1547. end = start - 1;
  1548. }
  1549. mutex_unlock(&dirty_i->seglist_lock);
  1550. /* send small discards */
  1551. list_for_each_entry_safe(entry, this, head, list) {
  1552. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1553. bool is_valid = test_bit_le(0, entry->discard_map);
  1554. find_next:
  1555. if (is_valid) {
  1556. next_pos = find_next_zero_bit_le(entry->discard_map,
  1557. sbi->blocks_per_seg, cur_pos);
  1558. len = next_pos - cur_pos;
  1559. if (f2fs_sb_has_blkzoned(sbi->sb) ||
  1560. (force && len < cpc->trim_minlen))
  1561. goto skip;
  1562. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1563. len);
  1564. total_len += len;
  1565. } else {
  1566. next_pos = find_next_bit_le(entry->discard_map,
  1567. sbi->blocks_per_seg, cur_pos);
  1568. }
  1569. skip:
  1570. cur_pos = next_pos;
  1571. is_valid = !is_valid;
  1572. if (cur_pos < sbi->blocks_per_seg)
  1573. goto find_next;
  1574. release_discard_addr(entry);
  1575. dcc->nr_discards -= total_len;
  1576. }
  1577. wake_up_discard_thread(sbi, false);
  1578. }
  1579. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1580. {
  1581. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1582. struct discard_cmd_control *dcc;
  1583. int err = 0, i;
  1584. if (SM_I(sbi)->dcc_info) {
  1585. dcc = SM_I(sbi)->dcc_info;
  1586. goto init_thread;
  1587. }
  1588. dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
  1589. if (!dcc)
  1590. return -ENOMEM;
  1591. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1592. INIT_LIST_HEAD(&dcc->entry_list);
  1593. for (i = 0; i < MAX_PLIST_NUM; i++)
  1594. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1595. INIT_LIST_HEAD(&dcc->wait_list);
  1596. INIT_LIST_HEAD(&dcc->fstrim_list);
  1597. mutex_init(&dcc->cmd_lock);
  1598. atomic_set(&dcc->issued_discard, 0);
  1599. atomic_set(&dcc->issing_discard, 0);
  1600. atomic_set(&dcc->discard_cmd_cnt, 0);
  1601. dcc->nr_discards = 0;
  1602. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1603. dcc->undiscard_blks = 0;
  1604. dcc->next_pos = 0;
  1605. dcc->root = RB_ROOT;
  1606. dcc->rbtree_check = false;
  1607. init_waitqueue_head(&dcc->discard_wait_queue);
  1608. SM_I(sbi)->dcc_info = dcc;
  1609. init_thread:
  1610. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1611. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1612. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1613. err = PTR_ERR(dcc->f2fs_issue_discard);
  1614. kfree(dcc);
  1615. SM_I(sbi)->dcc_info = NULL;
  1616. return err;
  1617. }
  1618. return err;
  1619. }
  1620. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1621. {
  1622. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1623. if (!dcc)
  1624. return;
  1625. f2fs_stop_discard_thread(sbi);
  1626. kfree(dcc);
  1627. SM_I(sbi)->dcc_info = NULL;
  1628. }
  1629. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1630. {
  1631. struct sit_info *sit_i = SIT_I(sbi);
  1632. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1633. sit_i->dirty_sentries++;
  1634. return false;
  1635. }
  1636. return true;
  1637. }
  1638. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1639. unsigned int segno, int modified)
  1640. {
  1641. struct seg_entry *se = get_seg_entry(sbi, segno);
  1642. se->type = type;
  1643. if (modified)
  1644. __mark_sit_entry_dirty(sbi, segno);
  1645. }
  1646. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1647. {
  1648. struct seg_entry *se;
  1649. unsigned int segno, offset;
  1650. long int new_vblocks;
  1651. bool exist;
  1652. #ifdef CONFIG_F2FS_CHECK_FS
  1653. bool mir_exist;
  1654. #endif
  1655. segno = GET_SEGNO(sbi, blkaddr);
  1656. se = get_seg_entry(sbi, segno);
  1657. new_vblocks = se->valid_blocks + del;
  1658. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1659. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1660. (new_vblocks > sbi->blocks_per_seg)));
  1661. se->valid_blocks = new_vblocks;
  1662. se->mtime = get_mtime(sbi, false);
  1663. if (se->mtime > SIT_I(sbi)->max_mtime)
  1664. SIT_I(sbi)->max_mtime = se->mtime;
  1665. /* Update valid block bitmap */
  1666. if (del > 0) {
  1667. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1668. #ifdef CONFIG_F2FS_CHECK_FS
  1669. mir_exist = f2fs_test_and_set_bit(offset,
  1670. se->cur_valid_map_mir);
  1671. if (unlikely(exist != mir_exist)) {
  1672. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1673. "when setting bitmap, blk:%u, old bit:%d",
  1674. blkaddr, exist);
  1675. f2fs_bug_on(sbi, 1);
  1676. }
  1677. #endif
  1678. if (unlikely(exist)) {
  1679. f2fs_msg(sbi->sb, KERN_ERR,
  1680. "Bitmap was wrongly set, blk:%u", blkaddr);
  1681. f2fs_bug_on(sbi, 1);
  1682. se->valid_blocks--;
  1683. del = 0;
  1684. }
  1685. if (f2fs_discard_en(sbi) &&
  1686. !f2fs_test_and_set_bit(offset, se->discard_map))
  1687. sbi->discard_blks--;
  1688. /* don't overwrite by SSR to keep node chain */
  1689. if (IS_NODESEG(se->type)) {
  1690. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1691. se->ckpt_valid_blocks++;
  1692. }
  1693. } else {
  1694. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1695. #ifdef CONFIG_F2FS_CHECK_FS
  1696. mir_exist = f2fs_test_and_clear_bit(offset,
  1697. se->cur_valid_map_mir);
  1698. if (unlikely(exist != mir_exist)) {
  1699. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1700. "when clearing bitmap, blk:%u, old bit:%d",
  1701. blkaddr, exist);
  1702. f2fs_bug_on(sbi, 1);
  1703. }
  1704. #endif
  1705. if (unlikely(!exist)) {
  1706. f2fs_msg(sbi->sb, KERN_ERR,
  1707. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1708. f2fs_bug_on(sbi, 1);
  1709. se->valid_blocks++;
  1710. del = 0;
  1711. }
  1712. if (f2fs_discard_en(sbi) &&
  1713. f2fs_test_and_clear_bit(offset, se->discard_map))
  1714. sbi->discard_blks++;
  1715. }
  1716. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1717. se->ckpt_valid_blocks += del;
  1718. __mark_sit_entry_dirty(sbi, segno);
  1719. /* update total number of valid blocks to be written in ckpt area */
  1720. SIT_I(sbi)->written_valid_blocks += del;
  1721. if (sbi->segs_per_sec > 1)
  1722. get_sec_entry(sbi, segno)->valid_blocks += del;
  1723. }
  1724. void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1725. {
  1726. unsigned int segno = GET_SEGNO(sbi, addr);
  1727. struct sit_info *sit_i = SIT_I(sbi);
  1728. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1729. if (addr == NEW_ADDR)
  1730. return;
  1731. /* add it into sit main buffer */
  1732. down_write(&sit_i->sentry_lock);
  1733. update_sit_entry(sbi, addr, -1);
  1734. /* add it into dirty seglist */
  1735. locate_dirty_segment(sbi, segno);
  1736. up_write(&sit_i->sentry_lock);
  1737. }
  1738. bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1739. {
  1740. struct sit_info *sit_i = SIT_I(sbi);
  1741. unsigned int segno, offset;
  1742. struct seg_entry *se;
  1743. bool is_cp = false;
  1744. if (!is_valid_data_blkaddr(sbi, blkaddr))
  1745. return true;
  1746. down_read(&sit_i->sentry_lock);
  1747. segno = GET_SEGNO(sbi, blkaddr);
  1748. se = get_seg_entry(sbi, segno);
  1749. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1750. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1751. is_cp = true;
  1752. up_read(&sit_i->sentry_lock);
  1753. return is_cp;
  1754. }
  1755. /*
  1756. * This function should be resided under the curseg_mutex lock
  1757. */
  1758. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1759. struct f2fs_summary *sum)
  1760. {
  1761. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1762. void *addr = curseg->sum_blk;
  1763. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1764. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1765. }
  1766. /*
  1767. * Calculate the number of current summary pages for writing
  1768. */
  1769. int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1770. {
  1771. int valid_sum_count = 0;
  1772. int i, sum_in_page;
  1773. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1774. if (sbi->ckpt->alloc_type[i] == SSR)
  1775. valid_sum_count += sbi->blocks_per_seg;
  1776. else {
  1777. if (for_ra)
  1778. valid_sum_count += le16_to_cpu(
  1779. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1780. else
  1781. valid_sum_count += curseg_blkoff(sbi, i);
  1782. }
  1783. }
  1784. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1785. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1786. if (valid_sum_count <= sum_in_page)
  1787. return 1;
  1788. else if ((valid_sum_count - sum_in_page) <=
  1789. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1790. return 2;
  1791. return 3;
  1792. }
  1793. /*
  1794. * Caller should put this summary page
  1795. */
  1796. struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1797. {
  1798. return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
  1799. }
  1800. void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
  1801. void *src, block_t blk_addr)
  1802. {
  1803. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1804. memcpy(page_address(page), src, PAGE_SIZE);
  1805. set_page_dirty(page);
  1806. f2fs_put_page(page, 1);
  1807. }
  1808. static void write_sum_page(struct f2fs_sb_info *sbi,
  1809. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1810. {
  1811. f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1812. }
  1813. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1814. int type, block_t blk_addr)
  1815. {
  1816. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1817. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1818. struct f2fs_summary_block *src = curseg->sum_blk;
  1819. struct f2fs_summary_block *dst;
  1820. dst = (struct f2fs_summary_block *)page_address(page);
  1821. memset(dst, 0, PAGE_SIZE);
  1822. mutex_lock(&curseg->curseg_mutex);
  1823. down_read(&curseg->journal_rwsem);
  1824. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1825. up_read(&curseg->journal_rwsem);
  1826. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1827. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1828. mutex_unlock(&curseg->curseg_mutex);
  1829. set_page_dirty(page);
  1830. f2fs_put_page(page, 1);
  1831. }
  1832. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1833. {
  1834. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1835. unsigned int segno = curseg->segno + 1;
  1836. struct free_segmap_info *free_i = FREE_I(sbi);
  1837. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1838. return !test_bit(segno, free_i->free_segmap);
  1839. return 0;
  1840. }
  1841. /*
  1842. * Find a new segment from the free segments bitmap to right order
  1843. * This function should be returned with success, otherwise BUG
  1844. */
  1845. static void get_new_segment(struct f2fs_sb_info *sbi,
  1846. unsigned int *newseg, bool new_sec, int dir)
  1847. {
  1848. struct free_segmap_info *free_i = FREE_I(sbi);
  1849. unsigned int segno, secno, zoneno;
  1850. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1851. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1852. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1853. unsigned int left_start = hint;
  1854. bool init = true;
  1855. int go_left = 0;
  1856. int i;
  1857. spin_lock(&free_i->segmap_lock);
  1858. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1859. segno = find_next_zero_bit(free_i->free_segmap,
  1860. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1861. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1862. goto got_it;
  1863. }
  1864. find_other_zone:
  1865. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1866. if (secno >= MAIN_SECS(sbi)) {
  1867. if (dir == ALLOC_RIGHT) {
  1868. secno = find_next_zero_bit(free_i->free_secmap,
  1869. MAIN_SECS(sbi), 0);
  1870. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1871. } else {
  1872. go_left = 1;
  1873. left_start = hint - 1;
  1874. }
  1875. }
  1876. if (go_left == 0)
  1877. goto skip_left;
  1878. while (test_bit(left_start, free_i->free_secmap)) {
  1879. if (left_start > 0) {
  1880. left_start--;
  1881. continue;
  1882. }
  1883. left_start = find_next_zero_bit(free_i->free_secmap,
  1884. MAIN_SECS(sbi), 0);
  1885. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1886. break;
  1887. }
  1888. secno = left_start;
  1889. skip_left:
  1890. segno = GET_SEG_FROM_SEC(sbi, secno);
  1891. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1892. /* give up on finding another zone */
  1893. if (!init)
  1894. goto got_it;
  1895. if (sbi->secs_per_zone == 1)
  1896. goto got_it;
  1897. if (zoneno == old_zoneno)
  1898. goto got_it;
  1899. if (dir == ALLOC_LEFT) {
  1900. if (!go_left && zoneno + 1 >= total_zones)
  1901. goto got_it;
  1902. if (go_left && zoneno == 0)
  1903. goto got_it;
  1904. }
  1905. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1906. if (CURSEG_I(sbi, i)->zone == zoneno)
  1907. break;
  1908. if (i < NR_CURSEG_TYPE) {
  1909. /* zone is in user, try another */
  1910. if (go_left)
  1911. hint = zoneno * sbi->secs_per_zone - 1;
  1912. else if (zoneno + 1 >= total_zones)
  1913. hint = 0;
  1914. else
  1915. hint = (zoneno + 1) * sbi->secs_per_zone;
  1916. init = false;
  1917. goto find_other_zone;
  1918. }
  1919. got_it:
  1920. /* set it as dirty segment in free segmap */
  1921. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1922. __set_inuse(sbi, segno);
  1923. *newseg = segno;
  1924. spin_unlock(&free_i->segmap_lock);
  1925. }
  1926. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1927. {
  1928. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1929. struct summary_footer *sum_footer;
  1930. curseg->segno = curseg->next_segno;
  1931. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1932. curseg->next_blkoff = 0;
  1933. curseg->next_segno = NULL_SEGNO;
  1934. sum_footer = &(curseg->sum_blk->footer);
  1935. memset(sum_footer, 0, sizeof(struct summary_footer));
  1936. if (IS_DATASEG(type))
  1937. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1938. if (IS_NODESEG(type))
  1939. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1940. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1941. }
  1942. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1943. {
  1944. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1945. if (sbi->segs_per_sec != 1)
  1946. return CURSEG_I(sbi, type)->segno;
  1947. if (test_opt(sbi, NOHEAP) &&
  1948. (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
  1949. return 0;
  1950. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1951. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1952. /* find segments from 0 to reuse freed segments */
  1953. if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
  1954. return 0;
  1955. return CURSEG_I(sbi, type)->segno;
  1956. }
  1957. /*
  1958. * Allocate a current working segment.
  1959. * This function always allocates a free segment in LFS manner.
  1960. */
  1961. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1962. {
  1963. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1964. unsigned int segno = curseg->segno;
  1965. int dir = ALLOC_LEFT;
  1966. write_sum_page(sbi, curseg->sum_blk,
  1967. GET_SUM_BLOCK(sbi, segno));
  1968. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1969. dir = ALLOC_RIGHT;
  1970. if (test_opt(sbi, NOHEAP))
  1971. dir = ALLOC_RIGHT;
  1972. segno = __get_next_segno(sbi, type);
  1973. get_new_segment(sbi, &segno, new_sec, dir);
  1974. curseg->next_segno = segno;
  1975. reset_curseg(sbi, type, 1);
  1976. curseg->alloc_type = LFS;
  1977. }
  1978. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1979. struct curseg_info *seg, block_t start)
  1980. {
  1981. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1982. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1983. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1984. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1985. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1986. int i, pos;
  1987. for (i = 0; i < entries; i++)
  1988. target_map[i] = ckpt_map[i] | cur_map[i];
  1989. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1990. seg->next_blkoff = pos;
  1991. }
  1992. /*
  1993. * If a segment is written by LFS manner, next block offset is just obtained
  1994. * by increasing the current block offset. However, if a segment is written by
  1995. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1996. */
  1997. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1998. struct curseg_info *seg)
  1999. {
  2000. if (seg->alloc_type == SSR)
  2001. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  2002. else
  2003. seg->next_blkoff++;
  2004. }
  2005. /*
  2006. * This function always allocates a used segment(from dirty seglist) by SSR
  2007. * manner, so it should recover the existing segment information of valid blocks
  2008. */
  2009. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  2010. {
  2011. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2012. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2013. unsigned int new_segno = curseg->next_segno;
  2014. struct f2fs_summary_block *sum_node;
  2015. struct page *sum_page;
  2016. write_sum_page(sbi, curseg->sum_blk,
  2017. GET_SUM_BLOCK(sbi, curseg->segno));
  2018. __set_test_and_inuse(sbi, new_segno);
  2019. mutex_lock(&dirty_i->seglist_lock);
  2020. __remove_dirty_segment(sbi, new_segno, PRE);
  2021. __remove_dirty_segment(sbi, new_segno, DIRTY);
  2022. mutex_unlock(&dirty_i->seglist_lock);
  2023. reset_curseg(sbi, type, 1);
  2024. curseg->alloc_type = SSR;
  2025. __next_free_blkoff(sbi, curseg, 0);
  2026. sum_page = f2fs_get_sum_page(sbi, new_segno);
  2027. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  2028. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  2029. f2fs_put_page(sum_page, 1);
  2030. }
  2031. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  2032. {
  2033. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2034. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  2035. unsigned segno = NULL_SEGNO;
  2036. int i, cnt;
  2037. bool reversed = false;
  2038. /* f2fs_need_SSR() already forces to do this */
  2039. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  2040. curseg->next_segno = segno;
  2041. return 1;
  2042. }
  2043. /* For node segments, let's do SSR more intensively */
  2044. if (IS_NODESEG(type)) {
  2045. if (type >= CURSEG_WARM_NODE) {
  2046. reversed = true;
  2047. i = CURSEG_COLD_NODE;
  2048. } else {
  2049. i = CURSEG_HOT_NODE;
  2050. }
  2051. cnt = NR_CURSEG_NODE_TYPE;
  2052. } else {
  2053. if (type >= CURSEG_WARM_DATA) {
  2054. reversed = true;
  2055. i = CURSEG_COLD_DATA;
  2056. } else {
  2057. i = CURSEG_HOT_DATA;
  2058. }
  2059. cnt = NR_CURSEG_DATA_TYPE;
  2060. }
  2061. for (; cnt-- > 0; reversed ? i-- : i++) {
  2062. if (i == type)
  2063. continue;
  2064. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  2065. curseg->next_segno = segno;
  2066. return 1;
  2067. }
  2068. }
  2069. return 0;
  2070. }
  2071. /*
  2072. * flush out current segment and replace it with new segment
  2073. * This function should be returned with success, otherwise BUG
  2074. */
  2075. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  2076. int type, bool force)
  2077. {
  2078. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2079. if (force)
  2080. new_curseg(sbi, type, true);
  2081. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  2082. type == CURSEG_WARM_NODE)
  2083. new_curseg(sbi, type, false);
  2084. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  2085. new_curseg(sbi, type, false);
  2086. else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
  2087. change_curseg(sbi, type);
  2088. else
  2089. new_curseg(sbi, type, false);
  2090. stat_inc_seg_type(sbi, curseg);
  2091. }
  2092. void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
  2093. {
  2094. struct curseg_info *curseg;
  2095. unsigned int old_segno;
  2096. int i;
  2097. down_write(&SIT_I(sbi)->sentry_lock);
  2098. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2099. curseg = CURSEG_I(sbi, i);
  2100. old_segno = curseg->segno;
  2101. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  2102. locate_dirty_segment(sbi, old_segno);
  2103. }
  2104. up_write(&SIT_I(sbi)->sentry_lock);
  2105. }
  2106. static const struct segment_allocation default_salloc_ops = {
  2107. .allocate_segment = allocate_segment_by_default,
  2108. };
  2109. bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
  2110. struct cp_control *cpc)
  2111. {
  2112. __u64 trim_start = cpc->trim_start;
  2113. bool has_candidate = false;
  2114. down_write(&SIT_I(sbi)->sentry_lock);
  2115. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  2116. if (add_discard_addrs(sbi, cpc, true)) {
  2117. has_candidate = true;
  2118. break;
  2119. }
  2120. }
  2121. up_write(&SIT_I(sbi)->sentry_lock);
  2122. cpc->trim_start = trim_start;
  2123. return has_candidate;
  2124. }
  2125. static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  2126. struct discard_policy *dpolicy,
  2127. unsigned int start, unsigned int end)
  2128. {
  2129. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  2130. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  2131. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  2132. struct discard_cmd *dc;
  2133. struct blk_plug plug;
  2134. int issued;
  2135. unsigned int trimmed = 0;
  2136. next:
  2137. issued = 0;
  2138. mutex_lock(&dcc->cmd_lock);
  2139. if (unlikely(dcc->rbtree_check))
  2140. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  2141. &dcc->root));
  2142. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  2143. NULL, start,
  2144. (struct rb_entry **)&prev_dc,
  2145. (struct rb_entry **)&next_dc,
  2146. &insert_p, &insert_parent, true);
  2147. if (!dc)
  2148. dc = next_dc;
  2149. blk_start_plug(&plug);
  2150. while (dc && dc->lstart <= end) {
  2151. struct rb_node *node;
  2152. if (dc->len < dpolicy->granularity)
  2153. goto skip;
  2154. if (dc->state != D_PREP) {
  2155. list_move_tail(&dc->list, &dcc->fstrim_list);
  2156. goto skip;
  2157. }
  2158. __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  2159. if (issued >= dpolicy->max_requests) {
  2160. start = dc->lstart + dc->len;
  2161. blk_finish_plug(&plug);
  2162. mutex_unlock(&dcc->cmd_lock);
  2163. trimmed += __wait_all_discard_cmd(sbi, NULL);
  2164. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2165. goto next;
  2166. }
  2167. skip:
  2168. node = rb_next(&dc->rb_node);
  2169. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  2170. if (fatal_signal_pending(current))
  2171. break;
  2172. }
  2173. blk_finish_plug(&plug);
  2174. mutex_unlock(&dcc->cmd_lock);
  2175. return trimmed;
  2176. }
  2177. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  2178. {
  2179. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  2180. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  2181. unsigned int start_segno, end_segno;
  2182. block_t start_block, end_block;
  2183. struct cp_control cpc;
  2184. struct discard_policy dpolicy;
  2185. unsigned long long trimmed = 0;
  2186. int err = 0;
  2187. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  2188. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  2189. return -EINVAL;
  2190. if (end <= MAIN_BLKADDR(sbi))
  2191. return -EINVAL;
  2192. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  2193. f2fs_msg(sbi->sb, KERN_WARNING,
  2194. "Found FS corruption, run fsck to fix.");
  2195. return -EIO;
  2196. }
  2197. /* start/end segment number in main_area */
  2198. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  2199. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2200. GET_SEGNO(sbi, end);
  2201. if (need_align) {
  2202. start_segno = rounddown(start_segno, sbi->segs_per_sec);
  2203. end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
  2204. }
  2205. cpc.reason = CP_DISCARD;
  2206. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2207. cpc.trim_start = start_segno;
  2208. cpc.trim_end = end_segno;
  2209. if (sbi->discard_blks == 0)
  2210. goto out;
  2211. mutex_lock(&sbi->gc_mutex);
  2212. err = f2fs_write_checkpoint(sbi, &cpc);
  2213. mutex_unlock(&sbi->gc_mutex);
  2214. if (err)
  2215. goto out;
  2216. /*
  2217. * We filed discard candidates, but actually we don't need to wait for
  2218. * all of them, since they'll be issued in idle time along with runtime
  2219. * discard option. User configuration looks like using runtime discard
  2220. * or periodic fstrim instead of it.
  2221. */
  2222. if (test_opt(sbi, DISCARD))
  2223. goto out;
  2224. start_block = START_BLOCK(sbi, start_segno);
  2225. end_block = START_BLOCK(sbi, end_segno + 1);
  2226. __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2227. trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
  2228. start_block, end_block);
  2229. trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
  2230. start_block, end_block);
  2231. out:
  2232. if (!err)
  2233. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2234. return err;
  2235. }
  2236. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2237. {
  2238. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2239. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2240. return true;
  2241. return false;
  2242. }
  2243. int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
  2244. {
  2245. switch (hint) {
  2246. case WRITE_LIFE_SHORT:
  2247. return CURSEG_HOT_DATA;
  2248. case WRITE_LIFE_EXTREME:
  2249. return CURSEG_COLD_DATA;
  2250. default:
  2251. return CURSEG_WARM_DATA;
  2252. }
  2253. }
  2254. /* This returns write hints for each segment type. This hints will be
  2255. * passed down to block layer. There are mapping tables which depend on
  2256. * the mount option 'whint_mode'.
  2257. *
  2258. * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
  2259. *
  2260. * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
  2261. *
  2262. * User F2FS Block
  2263. * ---- ---- -----
  2264. * META WRITE_LIFE_NOT_SET
  2265. * HOT_NODE "
  2266. * WARM_NODE "
  2267. * COLD_NODE "
  2268. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2269. * extension list " "
  2270. *
  2271. * -- buffered io
  2272. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2273. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2274. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2275. * WRITE_LIFE_NONE " "
  2276. * WRITE_LIFE_MEDIUM " "
  2277. * WRITE_LIFE_LONG " "
  2278. *
  2279. * -- direct io
  2280. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2281. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2282. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2283. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2284. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2285. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2286. *
  2287. * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
  2288. *
  2289. * User F2FS Block
  2290. * ---- ---- -----
  2291. * META WRITE_LIFE_MEDIUM;
  2292. * HOT_NODE WRITE_LIFE_NOT_SET
  2293. * WARM_NODE "
  2294. * COLD_NODE WRITE_LIFE_NONE
  2295. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2296. * extension list " "
  2297. *
  2298. * -- buffered io
  2299. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2300. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2301. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
  2302. * WRITE_LIFE_NONE " "
  2303. * WRITE_LIFE_MEDIUM " "
  2304. * WRITE_LIFE_LONG " "
  2305. *
  2306. * -- direct io
  2307. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2308. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2309. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2310. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2311. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2312. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2313. */
  2314. enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
  2315. enum page_type type, enum temp_type temp)
  2316. {
  2317. if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
  2318. if (type == DATA) {
  2319. if (temp == WARM)
  2320. return WRITE_LIFE_NOT_SET;
  2321. else if (temp == HOT)
  2322. return WRITE_LIFE_SHORT;
  2323. else if (temp == COLD)
  2324. return WRITE_LIFE_EXTREME;
  2325. } else {
  2326. return WRITE_LIFE_NOT_SET;
  2327. }
  2328. } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
  2329. if (type == DATA) {
  2330. if (temp == WARM)
  2331. return WRITE_LIFE_LONG;
  2332. else if (temp == HOT)
  2333. return WRITE_LIFE_SHORT;
  2334. else if (temp == COLD)
  2335. return WRITE_LIFE_EXTREME;
  2336. } else if (type == NODE) {
  2337. if (temp == WARM || temp == HOT)
  2338. return WRITE_LIFE_NOT_SET;
  2339. else if (temp == COLD)
  2340. return WRITE_LIFE_NONE;
  2341. } else if (type == META) {
  2342. return WRITE_LIFE_MEDIUM;
  2343. }
  2344. }
  2345. return WRITE_LIFE_NOT_SET;
  2346. }
  2347. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2348. {
  2349. if (fio->type == DATA)
  2350. return CURSEG_HOT_DATA;
  2351. else
  2352. return CURSEG_HOT_NODE;
  2353. }
  2354. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2355. {
  2356. if (fio->type == DATA) {
  2357. struct inode *inode = fio->page->mapping->host;
  2358. if (S_ISDIR(inode->i_mode))
  2359. return CURSEG_HOT_DATA;
  2360. else
  2361. return CURSEG_COLD_DATA;
  2362. } else {
  2363. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2364. return CURSEG_WARM_NODE;
  2365. else
  2366. return CURSEG_COLD_NODE;
  2367. }
  2368. }
  2369. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2370. {
  2371. if (fio->type == DATA) {
  2372. struct inode *inode = fio->page->mapping->host;
  2373. if (is_cold_data(fio->page) || file_is_cold(inode))
  2374. return CURSEG_COLD_DATA;
  2375. if (file_is_hot(inode) ||
  2376. is_inode_flag_set(inode, FI_HOT_DATA) ||
  2377. f2fs_is_atomic_file(inode) ||
  2378. f2fs_is_volatile_file(inode))
  2379. return CURSEG_HOT_DATA;
  2380. return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
  2381. } else {
  2382. if (IS_DNODE(fio->page))
  2383. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2384. CURSEG_HOT_NODE;
  2385. return CURSEG_COLD_NODE;
  2386. }
  2387. }
  2388. static int __get_segment_type(struct f2fs_io_info *fio)
  2389. {
  2390. int type = 0;
  2391. switch (F2FS_OPTION(fio->sbi).active_logs) {
  2392. case 2:
  2393. type = __get_segment_type_2(fio);
  2394. break;
  2395. case 4:
  2396. type = __get_segment_type_4(fio);
  2397. break;
  2398. case 6:
  2399. type = __get_segment_type_6(fio);
  2400. break;
  2401. default:
  2402. f2fs_bug_on(fio->sbi, true);
  2403. }
  2404. if (IS_HOT(type))
  2405. fio->temp = HOT;
  2406. else if (IS_WARM(type))
  2407. fio->temp = WARM;
  2408. else
  2409. fio->temp = COLD;
  2410. return type;
  2411. }
  2412. void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2413. block_t old_blkaddr, block_t *new_blkaddr,
  2414. struct f2fs_summary *sum, int type,
  2415. struct f2fs_io_info *fio, bool add_list)
  2416. {
  2417. struct sit_info *sit_i = SIT_I(sbi);
  2418. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2419. down_read(&SM_I(sbi)->curseg_lock);
  2420. mutex_lock(&curseg->curseg_mutex);
  2421. down_write(&sit_i->sentry_lock);
  2422. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2423. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2424. /*
  2425. * __add_sum_entry should be resided under the curseg_mutex
  2426. * because, this function updates a summary entry in the
  2427. * current summary block.
  2428. */
  2429. __add_sum_entry(sbi, type, sum);
  2430. __refresh_next_blkoff(sbi, curseg);
  2431. stat_inc_block_count(sbi, curseg);
  2432. /*
  2433. * SIT information should be updated before segment allocation,
  2434. * since SSR needs latest valid block information.
  2435. */
  2436. update_sit_entry(sbi, *new_blkaddr, 1);
  2437. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2438. update_sit_entry(sbi, old_blkaddr, -1);
  2439. if (!__has_curseg_space(sbi, type))
  2440. sit_i->s_ops->allocate_segment(sbi, type, false);
  2441. /*
  2442. * segment dirty status should be updated after segment allocation,
  2443. * so we just need to update status only one time after previous
  2444. * segment being closed.
  2445. */
  2446. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2447. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2448. up_write(&sit_i->sentry_lock);
  2449. if (page && IS_NODESEG(type)) {
  2450. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2451. f2fs_inode_chksum_set(sbi, page);
  2452. }
  2453. if (add_list) {
  2454. struct f2fs_bio_info *io;
  2455. INIT_LIST_HEAD(&fio->list);
  2456. fio->in_list = true;
  2457. fio->retry = false;
  2458. io = sbi->write_io[fio->type] + fio->temp;
  2459. spin_lock(&io->io_lock);
  2460. list_add_tail(&fio->list, &io->io_list);
  2461. spin_unlock(&io->io_lock);
  2462. }
  2463. mutex_unlock(&curseg->curseg_mutex);
  2464. up_read(&SM_I(sbi)->curseg_lock);
  2465. }
  2466. static void update_device_state(struct f2fs_io_info *fio)
  2467. {
  2468. struct f2fs_sb_info *sbi = fio->sbi;
  2469. unsigned int devidx;
  2470. if (!sbi->s_ndevs)
  2471. return;
  2472. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2473. /* update device state for fsync */
  2474. f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2475. /* update device state for checkpoint */
  2476. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2477. spin_lock(&sbi->dev_lock);
  2478. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2479. spin_unlock(&sbi->dev_lock);
  2480. }
  2481. }
  2482. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2483. {
  2484. int type = __get_segment_type(fio);
  2485. bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
  2486. if (keep_order)
  2487. down_read(&fio->sbi->io_order_lock);
  2488. reallocate:
  2489. f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2490. &fio->new_blkaddr, sum, type, fio, true);
  2491. /* writeout dirty page into bdev */
  2492. f2fs_submit_page_write(fio);
  2493. if (fio->retry) {
  2494. fio->old_blkaddr = fio->new_blkaddr;
  2495. goto reallocate;
  2496. }
  2497. update_device_state(fio);
  2498. if (keep_order)
  2499. up_read(&fio->sbi->io_order_lock);
  2500. }
  2501. void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2502. enum iostat_type io_type)
  2503. {
  2504. struct f2fs_io_info fio = {
  2505. .sbi = sbi,
  2506. .type = META,
  2507. .temp = HOT,
  2508. .op = REQ_OP_WRITE,
  2509. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2510. .old_blkaddr = page->index,
  2511. .new_blkaddr = page->index,
  2512. .page = page,
  2513. .encrypted_page = NULL,
  2514. .in_list = false,
  2515. };
  2516. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2517. fio.op_flags &= ~REQ_META;
  2518. set_page_writeback(page);
  2519. ClearPageError(page);
  2520. f2fs_submit_page_write(&fio);
  2521. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2522. }
  2523. void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2524. {
  2525. struct f2fs_summary sum;
  2526. set_summary(&sum, nid, 0, 0);
  2527. do_write_page(&sum, fio);
  2528. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2529. }
  2530. void f2fs_outplace_write_data(struct dnode_of_data *dn,
  2531. struct f2fs_io_info *fio)
  2532. {
  2533. struct f2fs_sb_info *sbi = fio->sbi;
  2534. struct f2fs_summary sum;
  2535. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2536. set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
  2537. do_write_page(&sum, fio);
  2538. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2539. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2540. }
  2541. int f2fs_inplace_write_data(struct f2fs_io_info *fio)
  2542. {
  2543. int err;
  2544. struct f2fs_sb_info *sbi = fio->sbi;
  2545. fio->new_blkaddr = fio->old_blkaddr;
  2546. /* i/o temperature is needed for passing down write hints */
  2547. __get_segment_type(fio);
  2548. f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
  2549. GET_SEGNO(sbi, fio->new_blkaddr))->type));
  2550. stat_inc_inplace_blocks(fio->sbi);
  2551. err = f2fs_submit_page_bio(fio);
  2552. if (!err)
  2553. update_device_state(fio);
  2554. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2555. return err;
  2556. }
  2557. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2558. unsigned int segno)
  2559. {
  2560. int i;
  2561. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2562. if (CURSEG_I(sbi, i)->segno == segno)
  2563. break;
  2564. }
  2565. return i;
  2566. }
  2567. void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2568. block_t old_blkaddr, block_t new_blkaddr,
  2569. bool recover_curseg, bool recover_newaddr)
  2570. {
  2571. struct sit_info *sit_i = SIT_I(sbi);
  2572. struct curseg_info *curseg;
  2573. unsigned int segno, old_cursegno;
  2574. struct seg_entry *se;
  2575. int type;
  2576. unsigned short old_blkoff;
  2577. segno = GET_SEGNO(sbi, new_blkaddr);
  2578. se = get_seg_entry(sbi, segno);
  2579. type = se->type;
  2580. down_write(&SM_I(sbi)->curseg_lock);
  2581. if (!recover_curseg) {
  2582. /* for recovery flow */
  2583. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2584. if (old_blkaddr == NULL_ADDR)
  2585. type = CURSEG_COLD_DATA;
  2586. else
  2587. type = CURSEG_WARM_DATA;
  2588. }
  2589. } else {
  2590. if (IS_CURSEG(sbi, segno)) {
  2591. /* se->type is volatile as SSR allocation */
  2592. type = __f2fs_get_curseg(sbi, segno);
  2593. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2594. } else {
  2595. type = CURSEG_WARM_DATA;
  2596. }
  2597. }
  2598. f2fs_bug_on(sbi, !IS_DATASEG(type));
  2599. curseg = CURSEG_I(sbi, type);
  2600. mutex_lock(&curseg->curseg_mutex);
  2601. down_write(&sit_i->sentry_lock);
  2602. old_cursegno = curseg->segno;
  2603. old_blkoff = curseg->next_blkoff;
  2604. /* change the current segment */
  2605. if (segno != curseg->segno) {
  2606. curseg->next_segno = segno;
  2607. change_curseg(sbi, type);
  2608. }
  2609. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2610. __add_sum_entry(sbi, type, sum);
  2611. if (!recover_curseg || recover_newaddr)
  2612. update_sit_entry(sbi, new_blkaddr, 1);
  2613. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2614. update_sit_entry(sbi, old_blkaddr, -1);
  2615. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2616. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2617. locate_dirty_segment(sbi, old_cursegno);
  2618. if (recover_curseg) {
  2619. if (old_cursegno != curseg->segno) {
  2620. curseg->next_segno = old_cursegno;
  2621. change_curseg(sbi, type);
  2622. }
  2623. curseg->next_blkoff = old_blkoff;
  2624. }
  2625. up_write(&sit_i->sentry_lock);
  2626. mutex_unlock(&curseg->curseg_mutex);
  2627. up_write(&SM_I(sbi)->curseg_lock);
  2628. }
  2629. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2630. block_t old_addr, block_t new_addr,
  2631. unsigned char version, bool recover_curseg,
  2632. bool recover_newaddr)
  2633. {
  2634. struct f2fs_summary sum;
  2635. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2636. f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
  2637. recover_curseg, recover_newaddr);
  2638. f2fs_update_data_blkaddr(dn, new_addr);
  2639. }
  2640. void f2fs_wait_on_page_writeback(struct page *page,
  2641. enum page_type type, bool ordered)
  2642. {
  2643. if (PageWriteback(page)) {
  2644. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2645. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2646. 0, page->index, type);
  2647. if (ordered)
  2648. wait_on_page_writeback(page);
  2649. else
  2650. wait_for_stable_page(page);
  2651. }
  2652. }
  2653. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2654. {
  2655. struct page *cpage;
  2656. if (!is_valid_data_blkaddr(sbi, blkaddr))
  2657. return;
  2658. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2659. if (cpage) {
  2660. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2661. f2fs_put_page(cpage, 1);
  2662. }
  2663. }
  2664. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2665. {
  2666. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2667. struct curseg_info *seg_i;
  2668. unsigned char *kaddr;
  2669. struct page *page;
  2670. block_t start;
  2671. int i, j, offset;
  2672. start = start_sum_block(sbi);
  2673. page = f2fs_get_meta_page(sbi, start++);
  2674. if (IS_ERR(page))
  2675. return PTR_ERR(page);
  2676. kaddr = (unsigned char *)page_address(page);
  2677. /* Step 1: restore nat cache */
  2678. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2679. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2680. /* Step 2: restore sit cache */
  2681. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2682. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2683. offset = 2 * SUM_JOURNAL_SIZE;
  2684. /* Step 3: restore summary entries */
  2685. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2686. unsigned short blk_off;
  2687. unsigned int segno;
  2688. seg_i = CURSEG_I(sbi, i);
  2689. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2690. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2691. seg_i->next_segno = segno;
  2692. reset_curseg(sbi, i, 0);
  2693. seg_i->alloc_type = ckpt->alloc_type[i];
  2694. seg_i->next_blkoff = blk_off;
  2695. if (seg_i->alloc_type == SSR)
  2696. blk_off = sbi->blocks_per_seg;
  2697. for (j = 0; j < blk_off; j++) {
  2698. struct f2fs_summary *s;
  2699. s = (struct f2fs_summary *)(kaddr + offset);
  2700. seg_i->sum_blk->entries[j] = *s;
  2701. offset += SUMMARY_SIZE;
  2702. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2703. SUM_FOOTER_SIZE)
  2704. continue;
  2705. f2fs_put_page(page, 1);
  2706. page = NULL;
  2707. page = f2fs_get_meta_page(sbi, start++);
  2708. if (IS_ERR(page))
  2709. return PTR_ERR(page);
  2710. kaddr = (unsigned char *)page_address(page);
  2711. offset = 0;
  2712. }
  2713. }
  2714. f2fs_put_page(page, 1);
  2715. return 0;
  2716. }
  2717. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2718. {
  2719. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2720. struct f2fs_summary_block *sum;
  2721. struct curseg_info *curseg;
  2722. struct page *new;
  2723. unsigned short blk_off;
  2724. unsigned int segno = 0;
  2725. block_t blk_addr = 0;
  2726. int err = 0;
  2727. /* get segment number and block addr */
  2728. if (IS_DATASEG(type)) {
  2729. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2730. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2731. CURSEG_HOT_DATA]);
  2732. if (__exist_node_summaries(sbi))
  2733. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2734. else
  2735. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2736. } else {
  2737. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2738. CURSEG_HOT_NODE]);
  2739. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2740. CURSEG_HOT_NODE]);
  2741. if (__exist_node_summaries(sbi))
  2742. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2743. type - CURSEG_HOT_NODE);
  2744. else
  2745. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2746. }
  2747. new = f2fs_get_meta_page(sbi, blk_addr);
  2748. if (IS_ERR(new))
  2749. return PTR_ERR(new);
  2750. sum = (struct f2fs_summary_block *)page_address(new);
  2751. if (IS_NODESEG(type)) {
  2752. if (__exist_node_summaries(sbi)) {
  2753. struct f2fs_summary *ns = &sum->entries[0];
  2754. int i;
  2755. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2756. ns->version = 0;
  2757. ns->ofs_in_node = 0;
  2758. }
  2759. } else {
  2760. err = f2fs_restore_node_summary(sbi, segno, sum);
  2761. if (err)
  2762. goto out;
  2763. }
  2764. }
  2765. /* set uncompleted segment to curseg */
  2766. curseg = CURSEG_I(sbi, type);
  2767. mutex_lock(&curseg->curseg_mutex);
  2768. /* update journal info */
  2769. down_write(&curseg->journal_rwsem);
  2770. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2771. up_write(&curseg->journal_rwsem);
  2772. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2773. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2774. curseg->next_segno = segno;
  2775. reset_curseg(sbi, type, 0);
  2776. curseg->alloc_type = ckpt->alloc_type[type];
  2777. curseg->next_blkoff = blk_off;
  2778. mutex_unlock(&curseg->curseg_mutex);
  2779. out:
  2780. f2fs_put_page(new, 1);
  2781. return err;
  2782. }
  2783. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2784. {
  2785. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2786. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2787. int type = CURSEG_HOT_DATA;
  2788. int err;
  2789. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2790. int npages = f2fs_npages_for_summary_flush(sbi, true);
  2791. if (npages >= 2)
  2792. f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2793. META_CP, true);
  2794. /* restore for compacted data summary */
  2795. err = read_compacted_summaries(sbi);
  2796. if (err)
  2797. return err;
  2798. type = CURSEG_HOT_NODE;
  2799. }
  2800. if (__exist_node_summaries(sbi))
  2801. f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2802. NR_CURSEG_TYPE - type, META_CP, true);
  2803. for (; type <= CURSEG_COLD_NODE; type++) {
  2804. err = read_normal_summaries(sbi, type);
  2805. if (err)
  2806. return err;
  2807. }
  2808. /* sanity check for summary blocks */
  2809. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2810. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2811. return -EINVAL;
  2812. return 0;
  2813. }
  2814. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2815. {
  2816. struct page *page;
  2817. unsigned char *kaddr;
  2818. struct f2fs_summary *summary;
  2819. struct curseg_info *seg_i;
  2820. int written_size = 0;
  2821. int i, j;
  2822. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2823. kaddr = (unsigned char *)page_address(page);
  2824. memset(kaddr, 0, PAGE_SIZE);
  2825. /* Step 1: write nat cache */
  2826. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2827. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2828. written_size += SUM_JOURNAL_SIZE;
  2829. /* Step 2: write sit cache */
  2830. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2831. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2832. written_size += SUM_JOURNAL_SIZE;
  2833. /* Step 3: write summary entries */
  2834. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2835. unsigned short blkoff;
  2836. seg_i = CURSEG_I(sbi, i);
  2837. if (sbi->ckpt->alloc_type[i] == SSR)
  2838. blkoff = sbi->blocks_per_seg;
  2839. else
  2840. blkoff = curseg_blkoff(sbi, i);
  2841. for (j = 0; j < blkoff; j++) {
  2842. if (!page) {
  2843. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2844. kaddr = (unsigned char *)page_address(page);
  2845. memset(kaddr, 0, PAGE_SIZE);
  2846. written_size = 0;
  2847. }
  2848. summary = (struct f2fs_summary *)(kaddr + written_size);
  2849. *summary = seg_i->sum_blk->entries[j];
  2850. written_size += SUMMARY_SIZE;
  2851. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2852. SUM_FOOTER_SIZE)
  2853. continue;
  2854. set_page_dirty(page);
  2855. f2fs_put_page(page, 1);
  2856. page = NULL;
  2857. }
  2858. }
  2859. if (page) {
  2860. set_page_dirty(page);
  2861. f2fs_put_page(page, 1);
  2862. }
  2863. }
  2864. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2865. block_t blkaddr, int type)
  2866. {
  2867. int i, end;
  2868. if (IS_DATASEG(type))
  2869. end = type + NR_CURSEG_DATA_TYPE;
  2870. else
  2871. end = type + NR_CURSEG_NODE_TYPE;
  2872. for (i = type; i < end; i++)
  2873. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2874. }
  2875. void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2876. {
  2877. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2878. write_compacted_summaries(sbi, start_blk);
  2879. else
  2880. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2881. }
  2882. void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2883. {
  2884. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2885. }
  2886. int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2887. unsigned int val, int alloc)
  2888. {
  2889. int i;
  2890. if (type == NAT_JOURNAL) {
  2891. for (i = 0; i < nats_in_cursum(journal); i++) {
  2892. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2893. return i;
  2894. }
  2895. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2896. return update_nats_in_cursum(journal, 1);
  2897. } else if (type == SIT_JOURNAL) {
  2898. for (i = 0; i < sits_in_cursum(journal); i++)
  2899. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2900. return i;
  2901. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2902. return update_sits_in_cursum(journal, 1);
  2903. }
  2904. return -1;
  2905. }
  2906. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2907. unsigned int segno)
  2908. {
  2909. return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
  2910. }
  2911. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2912. unsigned int start)
  2913. {
  2914. struct sit_info *sit_i = SIT_I(sbi);
  2915. struct page *page;
  2916. pgoff_t src_off, dst_off;
  2917. src_off = current_sit_addr(sbi, start);
  2918. dst_off = next_sit_addr(sbi, src_off);
  2919. page = f2fs_grab_meta_page(sbi, dst_off);
  2920. seg_info_to_sit_page(sbi, page, start);
  2921. set_page_dirty(page);
  2922. set_to_next_sit(sit_i, start);
  2923. return page;
  2924. }
  2925. static struct sit_entry_set *grab_sit_entry_set(void)
  2926. {
  2927. struct sit_entry_set *ses =
  2928. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2929. ses->entry_cnt = 0;
  2930. INIT_LIST_HEAD(&ses->set_list);
  2931. return ses;
  2932. }
  2933. static void release_sit_entry_set(struct sit_entry_set *ses)
  2934. {
  2935. list_del(&ses->set_list);
  2936. kmem_cache_free(sit_entry_set_slab, ses);
  2937. }
  2938. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2939. struct list_head *head)
  2940. {
  2941. struct sit_entry_set *next = ses;
  2942. if (list_is_last(&ses->set_list, head))
  2943. return;
  2944. list_for_each_entry_continue(next, head, set_list)
  2945. if (ses->entry_cnt <= next->entry_cnt)
  2946. break;
  2947. list_move_tail(&ses->set_list, &next->set_list);
  2948. }
  2949. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2950. {
  2951. struct sit_entry_set *ses;
  2952. unsigned int start_segno = START_SEGNO(segno);
  2953. list_for_each_entry(ses, head, set_list) {
  2954. if (ses->start_segno == start_segno) {
  2955. ses->entry_cnt++;
  2956. adjust_sit_entry_set(ses, head);
  2957. return;
  2958. }
  2959. }
  2960. ses = grab_sit_entry_set();
  2961. ses->start_segno = start_segno;
  2962. ses->entry_cnt++;
  2963. list_add(&ses->set_list, head);
  2964. }
  2965. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2966. {
  2967. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2968. struct list_head *set_list = &sm_info->sit_entry_set;
  2969. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2970. unsigned int segno;
  2971. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2972. add_sit_entry(segno, set_list);
  2973. }
  2974. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2975. {
  2976. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2977. struct f2fs_journal *journal = curseg->journal;
  2978. int i;
  2979. down_write(&curseg->journal_rwsem);
  2980. for (i = 0; i < sits_in_cursum(journal); i++) {
  2981. unsigned int segno;
  2982. bool dirtied;
  2983. segno = le32_to_cpu(segno_in_journal(journal, i));
  2984. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2985. if (!dirtied)
  2986. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2987. }
  2988. update_sits_in_cursum(journal, -i);
  2989. up_write(&curseg->journal_rwsem);
  2990. }
  2991. /*
  2992. * CP calls this function, which flushes SIT entries including sit_journal,
  2993. * and moves prefree segs to free segs.
  2994. */
  2995. void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2996. {
  2997. struct sit_info *sit_i = SIT_I(sbi);
  2998. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2999. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3000. struct f2fs_journal *journal = curseg->journal;
  3001. struct sit_entry_set *ses, *tmp;
  3002. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  3003. bool to_journal = true;
  3004. struct seg_entry *se;
  3005. down_write(&sit_i->sentry_lock);
  3006. if (!sit_i->dirty_sentries)
  3007. goto out;
  3008. /*
  3009. * add and account sit entries of dirty bitmap in sit entry
  3010. * set temporarily
  3011. */
  3012. add_sits_in_set(sbi);
  3013. /*
  3014. * if there are no enough space in journal to store dirty sit
  3015. * entries, remove all entries from journal and add and account
  3016. * them in sit entry set.
  3017. */
  3018. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  3019. remove_sits_in_journal(sbi);
  3020. /*
  3021. * there are two steps to flush sit entries:
  3022. * #1, flush sit entries to journal in current cold data summary block.
  3023. * #2, flush sit entries to sit page.
  3024. */
  3025. list_for_each_entry_safe(ses, tmp, head, set_list) {
  3026. struct page *page = NULL;
  3027. struct f2fs_sit_block *raw_sit = NULL;
  3028. unsigned int start_segno = ses->start_segno;
  3029. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  3030. (unsigned long)MAIN_SEGS(sbi));
  3031. unsigned int segno = start_segno;
  3032. if (to_journal &&
  3033. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  3034. to_journal = false;
  3035. if (to_journal) {
  3036. down_write(&curseg->journal_rwsem);
  3037. } else {
  3038. page = get_next_sit_page(sbi, start_segno);
  3039. raw_sit = page_address(page);
  3040. }
  3041. /* flush dirty sit entries in region of current sit set */
  3042. for_each_set_bit_from(segno, bitmap, end) {
  3043. int offset, sit_offset;
  3044. se = get_seg_entry(sbi, segno);
  3045. #ifdef CONFIG_F2FS_CHECK_FS
  3046. if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
  3047. SIT_VBLOCK_MAP_SIZE))
  3048. f2fs_bug_on(sbi, 1);
  3049. #endif
  3050. /* add discard candidates */
  3051. if (!(cpc->reason & CP_DISCARD)) {
  3052. cpc->trim_start = segno;
  3053. add_discard_addrs(sbi, cpc, false);
  3054. }
  3055. if (to_journal) {
  3056. offset = f2fs_lookup_journal_in_cursum(journal,
  3057. SIT_JOURNAL, segno, 1);
  3058. f2fs_bug_on(sbi, offset < 0);
  3059. segno_in_journal(journal, offset) =
  3060. cpu_to_le32(segno);
  3061. seg_info_to_raw_sit(se,
  3062. &sit_in_journal(journal, offset));
  3063. check_block_count(sbi, segno,
  3064. &sit_in_journal(journal, offset));
  3065. } else {
  3066. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  3067. seg_info_to_raw_sit(se,
  3068. &raw_sit->entries[sit_offset]);
  3069. check_block_count(sbi, segno,
  3070. &raw_sit->entries[sit_offset]);
  3071. }
  3072. __clear_bit(segno, bitmap);
  3073. sit_i->dirty_sentries--;
  3074. ses->entry_cnt--;
  3075. }
  3076. if (to_journal)
  3077. up_write(&curseg->journal_rwsem);
  3078. else
  3079. f2fs_put_page(page, 1);
  3080. f2fs_bug_on(sbi, ses->entry_cnt);
  3081. release_sit_entry_set(ses);
  3082. }
  3083. f2fs_bug_on(sbi, !list_empty(head));
  3084. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  3085. out:
  3086. if (cpc->reason & CP_DISCARD) {
  3087. __u64 trim_start = cpc->trim_start;
  3088. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  3089. add_discard_addrs(sbi, cpc, false);
  3090. cpc->trim_start = trim_start;
  3091. }
  3092. up_write(&sit_i->sentry_lock);
  3093. set_prefree_as_free_segments(sbi);
  3094. }
  3095. static int build_sit_info(struct f2fs_sb_info *sbi)
  3096. {
  3097. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3098. struct sit_info *sit_i;
  3099. unsigned int sit_segs, start;
  3100. char *src_bitmap;
  3101. unsigned int bitmap_size;
  3102. /* allocate memory for SIT information */
  3103. sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
  3104. if (!sit_i)
  3105. return -ENOMEM;
  3106. SM_I(sbi)->sit_info = sit_i;
  3107. sit_i->sentries =
  3108. f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
  3109. MAIN_SEGS(sbi)),
  3110. GFP_KERNEL);
  3111. if (!sit_i->sentries)
  3112. return -ENOMEM;
  3113. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3114. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
  3115. GFP_KERNEL);
  3116. if (!sit_i->dirty_sentries_bitmap)
  3117. return -ENOMEM;
  3118. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3119. sit_i->sentries[start].cur_valid_map
  3120. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3121. sit_i->sentries[start].ckpt_valid_map
  3122. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3123. if (!sit_i->sentries[start].cur_valid_map ||
  3124. !sit_i->sentries[start].ckpt_valid_map)
  3125. return -ENOMEM;
  3126. #ifdef CONFIG_F2FS_CHECK_FS
  3127. sit_i->sentries[start].cur_valid_map_mir
  3128. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3129. if (!sit_i->sentries[start].cur_valid_map_mir)
  3130. return -ENOMEM;
  3131. #endif
  3132. if (f2fs_discard_en(sbi)) {
  3133. sit_i->sentries[start].discard_map
  3134. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
  3135. GFP_KERNEL);
  3136. if (!sit_i->sentries[start].discard_map)
  3137. return -ENOMEM;
  3138. }
  3139. }
  3140. sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3141. if (!sit_i->tmp_map)
  3142. return -ENOMEM;
  3143. if (sbi->segs_per_sec > 1) {
  3144. sit_i->sec_entries =
  3145. f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
  3146. MAIN_SECS(sbi)),
  3147. GFP_KERNEL);
  3148. if (!sit_i->sec_entries)
  3149. return -ENOMEM;
  3150. }
  3151. /* get information related with SIT */
  3152. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  3153. /* setup SIT bitmap from ckeckpoint pack */
  3154. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  3155. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  3156. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3157. if (!sit_i->sit_bitmap)
  3158. return -ENOMEM;
  3159. #ifdef CONFIG_F2FS_CHECK_FS
  3160. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3161. if (!sit_i->sit_bitmap_mir)
  3162. return -ENOMEM;
  3163. #endif
  3164. /* init SIT information */
  3165. sit_i->s_ops = &default_salloc_ops;
  3166. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  3167. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  3168. sit_i->written_valid_blocks = 0;
  3169. sit_i->bitmap_size = bitmap_size;
  3170. sit_i->dirty_sentries = 0;
  3171. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  3172. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  3173. sit_i->mounted_time = ktime_get_real_seconds();
  3174. init_rwsem(&sit_i->sentry_lock);
  3175. return 0;
  3176. }
  3177. static int build_free_segmap(struct f2fs_sb_info *sbi)
  3178. {
  3179. struct free_segmap_info *free_i;
  3180. unsigned int bitmap_size, sec_bitmap_size;
  3181. /* allocate memory for free segmap information */
  3182. free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
  3183. if (!free_i)
  3184. return -ENOMEM;
  3185. SM_I(sbi)->free_info = free_i;
  3186. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3187. free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
  3188. if (!free_i->free_segmap)
  3189. return -ENOMEM;
  3190. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3191. free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
  3192. if (!free_i->free_secmap)
  3193. return -ENOMEM;
  3194. /* set all segments as dirty temporarily */
  3195. memset(free_i->free_segmap, 0xff, bitmap_size);
  3196. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  3197. /* init free segmap information */
  3198. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  3199. free_i->free_segments = 0;
  3200. free_i->free_sections = 0;
  3201. spin_lock_init(&free_i->segmap_lock);
  3202. return 0;
  3203. }
  3204. static int build_curseg(struct f2fs_sb_info *sbi)
  3205. {
  3206. struct curseg_info *array;
  3207. int i;
  3208. array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
  3209. GFP_KERNEL);
  3210. if (!array)
  3211. return -ENOMEM;
  3212. SM_I(sbi)->curseg_array = array;
  3213. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3214. mutex_init(&array[i].curseg_mutex);
  3215. array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
  3216. if (!array[i].sum_blk)
  3217. return -ENOMEM;
  3218. init_rwsem(&array[i].journal_rwsem);
  3219. array[i].journal = f2fs_kzalloc(sbi,
  3220. sizeof(struct f2fs_journal), GFP_KERNEL);
  3221. if (!array[i].journal)
  3222. return -ENOMEM;
  3223. array[i].segno = NULL_SEGNO;
  3224. array[i].next_blkoff = 0;
  3225. }
  3226. return restore_curseg_summaries(sbi);
  3227. }
  3228. static int build_sit_entries(struct f2fs_sb_info *sbi)
  3229. {
  3230. struct sit_info *sit_i = SIT_I(sbi);
  3231. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3232. struct f2fs_journal *journal = curseg->journal;
  3233. struct seg_entry *se;
  3234. struct f2fs_sit_entry sit;
  3235. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  3236. unsigned int i, start, end;
  3237. unsigned int readed, start_blk = 0;
  3238. int err = 0;
  3239. block_t total_node_blocks = 0;
  3240. do {
  3241. readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  3242. META_SIT, true);
  3243. start = start_blk * sit_i->sents_per_block;
  3244. end = (start_blk + readed) * sit_i->sents_per_block;
  3245. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  3246. struct f2fs_sit_block *sit_blk;
  3247. struct page *page;
  3248. se = &sit_i->sentries[start];
  3249. page = get_current_sit_page(sbi, start);
  3250. sit_blk = (struct f2fs_sit_block *)page_address(page);
  3251. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  3252. f2fs_put_page(page, 1);
  3253. err = check_block_count(sbi, start, &sit);
  3254. if (err)
  3255. return err;
  3256. seg_info_from_raw_sit(se, &sit);
  3257. if (IS_NODESEG(se->type))
  3258. total_node_blocks += se->valid_blocks;
  3259. /* build discard map only one time */
  3260. if (f2fs_discard_en(sbi)) {
  3261. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3262. memset(se->discard_map, 0xff,
  3263. SIT_VBLOCK_MAP_SIZE);
  3264. } else {
  3265. memcpy(se->discard_map,
  3266. se->cur_valid_map,
  3267. SIT_VBLOCK_MAP_SIZE);
  3268. sbi->discard_blks +=
  3269. sbi->blocks_per_seg -
  3270. se->valid_blocks;
  3271. }
  3272. }
  3273. if (sbi->segs_per_sec > 1)
  3274. get_sec_entry(sbi, start)->valid_blocks +=
  3275. se->valid_blocks;
  3276. }
  3277. start_blk += readed;
  3278. } while (start_blk < sit_blk_cnt);
  3279. down_read(&curseg->journal_rwsem);
  3280. for (i = 0; i < sits_in_cursum(journal); i++) {
  3281. unsigned int old_valid_blocks;
  3282. start = le32_to_cpu(segno_in_journal(journal, i));
  3283. if (start >= MAIN_SEGS(sbi)) {
  3284. f2fs_msg(sbi->sb, KERN_ERR,
  3285. "Wrong journal entry on segno %u",
  3286. start);
  3287. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3288. err = -EINVAL;
  3289. break;
  3290. }
  3291. se = &sit_i->sentries[start];
  3292. sit = sit_in_journal(journal, i);
  3293. old_valid_blocks = se->valid_blocks;
  3294. if (IS_NODESEG(se->type))
  3295. total_node_blocks -= old_valid_blocks;
  3296. err = check_block_count(sbi, start, &sit);
  3297. if (err)
  3298. break;
  3299. seg_info_from_raw_sit(se, &sit);
  3300. if (IS_NODESEG(se->type))
  3301. total_node_blocks += se->valid_blocks;
  3302. if (f2fs_discard_en(sbi)) {
  3303. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3304. memset(se->discard_map, 0xff,
  3305. SIT_VBLOCK_MAP_SIZE);
  3306. } else {
  3307. memcpy(se->discard_map, se->cur_valid_map,
  3308. SIT_VBLOCK_MAP_SIZE);
  3309. sbi->discard_blks += old_valid_blocks;
  3310. sbi->discard_blks -= se->valid_blocks;
  3311. }
  3312. }
  3313. if (sbi->segs_per_sec > 1) {
  3314. get_sec_entry(sbi, start)->valid_blocks +=
  3315. se->valid_blocks;
  3316. get_sec_entry(sbi, start)->valid_blocks -=
  3317. old_valid_blocks;
  3318. }
  3319. }
  3320. up_read(&curseg->journal_rwsem);
  3321. if (!err && total_node_blocks != valid_node_count(sbi)) {
  3322. f2fs_msg(sbi->sb, KERN_ERR,
  3323. "SIT is corrupted node# %u vs %u",
  3324. total_node_blocks, valid_node_count(sbi));
  3325. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3326. err = -EINVAL;
  3327. }
  3328. return err;
  3329. }
  3330. static void init_free_segmap(struct f2fs_sb_info *sbi)
  3331. {
  3332. unsigned int start;
  3333. int type;
  3334. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3335. struct seg_entry *sentry = get_seg_entry(sbi, start);
  3336. if (!sentry->valid_blocks)
  3337. __set_free(sbi, start);
  3338. else
  3339. SIT_I(sbi)->written_valid_blocks +=
  3340. sentry->valid_blocks;
  3341. }
  3342. /* set use the current segments */
  3343. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  3344. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  3345. __set_test_and_inuse(sbi, curseg_t->segno);
  3346. }
  3347. }
  3348. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  3349. {
  3350. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3351. struct free_segmap_info *free_i = FREE_I(sbi);
  3352. unsigned int segno = 0, offset = 0;
  3353. unsigned short valid_blocks;
  3354. while (1) {
  3355. /* find dirty segment based on free segmap */
  3356. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  3357. if (segno >= MAIN_SEGS(sbi))
  3358. break;
  3359. offset = segno + 1;
  3360. valid_blocks = get_valid_blocks(sbi, segno, false);
  3361. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3362. continue;
  3363. if (valid_blocks > sbi->blocks_per_seg) {
  3364. f2fs_bug_on(sbi, 1);
  3365. continue;
  3366. }
  3367. mutex_lock(&dirty_i->seglist_lock);
  3368. __locate_dirty_segment(sbi, segno, DIRTY);
  3369. mutex_unlock(&dirty_i->seglist_lock);
  3370. }
  3371. }
  3372. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3373. {
  3374. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3375. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3376. dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
  3377. if (!dirty_i->victim_secmap)
  3378. return -ENOMEM;
  3379. return 0;
  3380. }
  3381. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3382. {
  3383. struct dirty_seglist_info *dirty_i;
  3384. unsigned int bitmap_size, i;
  3385. /* allocate memory for dirty segments list information */
  3386. dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
  3387. GFP_KERNEL);
  3388. if (!dirty_i)
  3389. return -ENOMEM;
  3390. SM_I(sbi)->dirty_info = dirty_i;
  3391. mutex_init(&dirty_i->seglist_lock);
  3392. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3393. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3394. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
  3395. GFP_KERNEL);
  3396. if (!dirty_i->dirty_segmap[i])
  3397. return -ENOMEM;
  3398. }
  3399. init_dirty_segmap(sbi);
  3400. return init_victim_secmap(sbi);
  3401. }
  3402. /*
  3403. * Update min, max modified time for cost-benefit GC algorithm
  3404. */
  3405. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3406. {
  3407. struct sit_info *sit_i = SIT_I(sbi);
  3408. unsigned int segno;
  3409. down_write(&sit_i->sentry_lock);
  3410. sit_i->min_mtime = ULLONG_MAX;
  3411. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3412. unsigned int i;
  3413. unsigned long long mtime = 0;
  3414. for (i = 0; i < sbi->segs_per_sec; i++)
  3415. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3416. mtime = div_u64(mtime, sbi->segs_per_sec);
  3417. if (sit_i->min_mtime > mtime)
  3418. sit_i->min_mtime = mtime;
  3419. }
  3420. sit_i->max_mtime = get_mtime(sbi, false);
  3421. up_write(&sit_i->sentry_lock);
  3422. }
  3423. int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
  3424. {
  3425. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3426. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3427. struct f2fs_sm_info *sm_info;
  3428. int err;
  3429. sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3430. if (!sm_info)
  3431. return -ENOMEM;
  3432. /* init sm info */
  3433. sbi->sm_info = sm_info;
  3434. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3435. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3436. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3437. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3438. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3439. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3440. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3441. sm_info->rec_prefree_segments = sm_info->main_segments *
  3442. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3443. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3444. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3445. if (!test_opt(sbi, LFS))
  3446. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3447. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3448. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3449. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3450. sm_info->min_ssr_sections = reserved_sections(sbi);
  3451. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3452. init_rwsem(&sm_info->curseg_lock);
  3453. if (!f2fs_readonly(sbi->sb)) {
  3454. err = f2fs_create_flush_cmd_control(sbi);
  3455. if (err)
  3456. return err;
  3457. }
  3458. err = create_discard_cmd_control(sbi);
  3459. if (err)
  3460. return err;
  3461. err = build_sit_info(sbi);
  3462. if (err)
  3463. return err;
  3464. err = build_free_segmap(sbi);
  3465. if (err)
  3466. return err;
  3467. err = build_curseg(sbi);
  3468. if (err)
  3469. return err;
  3470. /* reinit free segmap based on SIT */
  3471. err = build_sit_entries(sbi);
  3472. if (err)
  3473. return err;
  3474. init_free_segmap(sbi);
  3475. err = build_dirty_segmap(sbi);
  3476. if (err)
  3477. return err;
  3478. init_min_max_mtime(sbi);
  3479. return 0;
  3480. }
  3481. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3482. enum dirty_type dirty_type)
  3483. {
  3484. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3485. mutex_lock(&dirty_i->seglist_lock);
  3486. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3487. dirty_i->nr_dirty[dirty_type] = 0;
  3488. mutex_unlock(&dirty_i->seglist_lock);
  3489. }
  3490. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3491. {
  3492. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3493. kvfree(dirty_i->victim_secmap);
  3494. }
  3495. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3496. {
  3497. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3498. int i;
  3499. if (!dirty_i)
  3500. return;
  3501. /* discard pre-free/dirty segments list */
  3502. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3503. discard_dirty_segmap(sbi, i);
  3504. destroy_victim_secmap(sbi);
  3505. SM_I(sbi)->dirty_info = NULL;
  3506. kfree(dirty_i);
  3507. }
  3508. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3509. {
  3510. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3511. int i;
  3512. if (!array)
  3513. return;
  3514. SM_I(sbi)->curseg_array = NULL;
  3515. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3516. kfree(array[i].sum_blk);
  3517. kfree(array[i].journal);
  3518. }
  3519. kfree(array);
  3520. }
  3521. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3522. {
  3523. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3524. if (!free_i)
  3525. return;
  3526. SM_I(sbi)->free_info = NULL;
  3527. kvfree(free_i->free_segmap);
  3528. kvfree(free_i->free_secmap);
  3529. kfree(free_i);
  3530. }
  3531. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3532. {
  3533. struct sit_info *sit_i = SIT_I(sbi);
  3534. unsigned int start;
  3535. if (!sit_i)
  3536. return;
  3537. if (sit_i->sentries) {
  3538. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3539. kfree(sit_i->sentries[start].cur_valid_map);
  3540. #ifdef CONFIG_F2FS_CHECK_FS
  3541. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3542. #endif
  3543. kfree(sit_i->sentries[start].ckpt_valid_map);
  3544. kfree(sit_i->sentries[start].discard_map);
  3545. }
  3546. }
  3547. kfree(sit_i->tmp_map);
  3548. kvfree(sit_i->sentries);
  3549. kvfree(sit_i->sec_entries);
  3550. kvfree(sit_i->dirty_sentries_bitmap);
  3551. SM_I(sbi)->sit_info = NULL;
  3552. kfree(sit_i->sit_bitmap);
  3553. #ifdef CONFIG_F2FS_CHECK_FS
  3554. kfree(sit_i->sit_bitmap_mir);
  3555. #endif
  3556. kfree(sit_i);
  3557. }
  3558. void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
  3559. {
  3560. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3561. if (!sm_info)
  3562. return;
  3563. f2fs_destroy_flush_cmd_control(sbi, true);
  3564. destroy_discard_cmd_control(sbi);
  3565. destroy_dirty_segmap(sbi);
  3566. destroy_curseg(sbi);
  3567. destroy_free_segmap(sbi);
  3568. destroy_sit_info(sbi);
  3569. sbi->sm_info = NULL;
  3570. kfree(sm_info);
  3571. }
  3572. int __init f2fs_create_segment_manager_caches(void)
  3573. {
  3574. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3575. sizeof(struct discard_entry));
  3576. if (!discard_entry_slab)
  3577. goto fail;
  3578. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3579. sizeof(struct discard_cmd));
  3580. if (!discard_cmd_slab)
  3581. goto destroy_discard_entry;
  3582. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3583. sizeof(struct sit_entry_set));
  3584. if (!sit_entry_set_slab)
  3585. goto destroy_discard_cmd;
  3586. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3587. sizeof(struct inmem_pages));
  3588. if (!inmem_entry_slab)
  3589. goto destroy_sit_entry_set;
  3590. return 0;
  3591. destroy_sit_entry_set:
  3592. kmem_cache_destroy(sit_entry_set_slab);
  3593. destroy_discard_cmd:
  3594. kmem_cache_destroy(discard_cmd_slab);
  3595. destroy_discard_entry:
  3596. kmem_cache_destroy(discard_entry_slab);
  3597. fail:
  3598. return -ENOMEM;
  3599. }
  3600. void f2fs_destroy_segment_manager_caches(void)
  3601. {
  3602. kmem_cache_destroy(sit_entry_set_slab);
  3603. kmem_cache_destroy(discard_cmd_slab);
  3604. kmem_cache_destroy(discard_entry_slab);
  3605. kmem_cache_destroy(inmem_entry_slab);
  3606. }