tree_plugin.h 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #ifdef CONFIG_RCU_BOOST
  32. #include "../locking/rtmutex_common.h"
  33. /*
  34. * Control variables for per-CPU and per-rcu_node kthreads. These
  35. * handle all flavors of RCU.
  36. */
  37. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  38. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  39. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  40. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  41. #else /* #ifdef CONFIG_RCU_BOOST */
  42. /*
  43. * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  44. * all uses are in dead code. Provide a definition to keep the compiler
  45. * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  46. * This probably needs to be excluded from -rt builds.
  47. */
  48. #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  49. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  50. #ifdef CONFIG_RCU_NOCB_CPU
  51. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  52. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  53. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  54. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  55. /*
  56. * Check the RCU kernel configuration parameters and print informative
  57. * messages about anything out of the ordinary.
  58. */
  59. static void __init rcu_bootup_announce_oddness(void)
  60. {
  61. if (IS_ENABLED(CONFIG_RCU_TRACE))
  62. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  63. if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  64. (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  65. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  66. RCU_FANOUT);
  67. if (rcu_fanout_exact)
  68. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  69. if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  70. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  71. if (IS_ENABLED(CONFIG_PROVE_RCU))
  72. pr_info("\tRCU lockdep checking is enabled.\n");
  73. if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
  74. pr_info("\tRCU torture testing starts during boot.\n");
  75. if (RCU_NUM_LVLS >= 4)
  76. pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  77. if (RCU_FANOUT_LEAF != 16)
  78. pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  79. RCU_FANOUT_LEAF);
  80. if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  81. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  82. if (nr_cpu_ids != NR_CPUS)
  83. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  84. if (IS_ENABLED(CONFIG_RCU_BOOST))
  85. pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  86. }
  87. #ifdef CONFIG_PREEMPT_RCU
  88. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  89. static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
  90. static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
  91. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  92. bool wake);
  93. /*
  94. * Tell them what RCU they are running.
  95. */
  96. static void __init rcu_bootup_announce(void)
  97. {
  98. pr_info("Preemptible hierarchical RCU implementation.\n");
  99. rcu_bootup_announce_oddness();
  100. }
  101. /* Flags for rcu_preempt_ctxt_queue() decision table. */
  102. #define RCU_GP_TASKS 0x8
  103. #define RCU_EXP_TASKS 0x4
  104. #define RCU_GP_BLKD 0x2
  105. #define RCU_EXP_BLKD 0x1
  106. /*
  107. * Queues a task preempted within an RCU-preempt read-side critical
  108. * section into the appropriate location within the ->blkd_tasks list,
  109. * depending on the states of any ongoing normal and expedited grace
  110. * periods. The ->gp_tasks pointer indicates which element the normal
  111. * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
  112. * indicates which element the expedited grace period is waiting on (again,
  113. * NULL if none). If a grace period is waiting on a given element in the
  114. * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
  115. * adding a task to the tail of the list blocks any grace period that is
  116. * already waiting on one of the elements. In contrast, adding a task
  117. * to the head of the list won't block any grace period that is already
  118. * waiting on one of the elements.
  119. *
  120. * This queuing is imprecise, and can sometimes make an ongoing grace
  121. * period wait for a task that is not strictly speaking blocking it.
  122. * Given the choice, we needlessly block a normal grace period rather than
  123. * blocking an expedited grace period.
  124. *
  125. * Note that an endless sequence of expedited grace periods still cannot
  126. * indefinitely postpone a normal grace period. Eventually, all of the
  127. * fixed number of preempted tasks blocking the normal grace period that are
  128. * not also blocking the expedited grace period will resume and complete
  129. * their RCU read-side critical sections. At that point, the ->gp_tasks
  130. * pointer will equal the ->exp_tasks pointer, at which point the end of
  131. * the corresponding expedited grace period will also be the end of the
  132. * normal grace period.
  133. */
  134. static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
  135. __releases(rnp->lock) /* But leaves rrupts disabled. */
  136. {
  137. int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
  138. (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
  139. (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
  140. (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
  141. struct task_struct *t = current;
  142. /*
  143. * Decide where to queue the newly blocked task. In theory,
  144. * this could be an if-statement. In practice, when I tried
  145. * that, it was quite messy.
  146. */
  147. switch (blkd_state) {
  148. case 0:
  149. case RCU_EXP_TASKS:
  150. case RCU_EXP_TASKS + RCU_GP_BLKD:
  151. case RCU_GP_TASKS:
  152. case RCU_GP_TASKS + RCU_EXP_TASKS:
  153. /*
  154. * Blocking neither GP, or first task blocking the normal
  155. * GP but not blocking the already-waiting expedited GP.
  156. * Queue at the head of the list to avoid unnecessarily
  157. * blocking the already-waiting GPs.
  158. */
  159. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  160. break;
  161. case RCU_EXP_BLKD:
  162. case RCU_GP_BLKD:
  163. case RCU_GP_BLKD + RCU_EXP_BLKD:
  164. case RCU_GP_TASKS + RCU_EXP_BLKD:
  165. case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  166. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  167. /*
  168. * First task arriving that blocks either GP, or first task
  169. * arriving that blocks the expedited GP (with the normal
  170. * GP already waiting), or a task arriving that blocks
  171. * both GPs with both GPs already waiting. Queue at the
  172. * tail of the list to avoid any GP waiting on any of the
  173. * already queued tasks that are not blocking it.
  174. */
  175. list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
  176. break;
  177. case RCU_EXP_TASKS + RCU_EXP_BLKD:
  178. case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  179. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
  180. /*
  181. * Second or subsequent task blocking the expedited GP.
  182. * The task either does not block the normal GP, or is the
  183. * first task blocking the normal GP. Queue just after
  184. * the first task blocking the expedited GP.
  185. */
  186. list_add(&t->rcu_node_entry, rnp->exp_tasks);
  187. break;
  188. case RCU_GP_TASKS + RCU_GP_BLKD:
  189. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
  190. /*
  191. * Second or subsequent task blocking the normal GP.
  192. * The task does not block the expedited GP. Queue just
  193. * after the first task blocking the normal GP.
  194. */
  195. list_add(&t->rcu_node_entry, rnp->gp_tasks);
  196. break;
  197. default:
  198. /* Yet another exercise in excessive paranoia. */
  199. WARN_ON_ONCE(1);
  200. break;
  201. }
  202. /*
  203. * We have now queued the task. If it was the first one to
  204. * block either grace period, update the ->gp_tasks and/or
  205. * ->exp_tasks pointers, respectively, to reference the newly
  206. * blocked tasks.
  207. */
  208. if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
  209. rnp->gp_tasks = &t->rcu_node_entry;
  210. if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
  211. rnp->exp_tasks = &t->rcu_node_entry;
  212. raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
  213. /*
  214. * Report the quiescent state for the expedited GP. This expedited
  215. * GP should not be able to end until we report, so there should be
  216. * no need to check for a subsequent expedited GP. (Though we are
  217. * still in a quiescent state in any case.)
  218. */
  219. if (blkd_state & RCU_EXP_BLKD &&
  220. t->rcu_read_unlock_special.b.exp_need_qs) {
  221. t->rcu_read_unlock_special.b.exp_need_qs = false;
  222. rcu_report_exp_rdp(rdp->rsp, rdp, true);
  223. } else {
  224. WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
  225. }
  226. }
  227. /*
  228. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  229. * that this just means that the task currently running on the CPU is
  230. * not in a quiescent state. There might be any number of tasks blocked
  231. * while in an RCU read-side critical section.
  232. *
  233. * As with the other rcu_*_qs() functions, callers to this function
  234. * must disable preemption.
  235. */
  236. static void rcu_preempt_qs(void)
  237. {
  238. if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
  239. trace_rcu_grace_period(TPS("rcu_preempt"),
  240. __this_cpu_read(rcu_data_p->gpnum),
  241. TPS("cpuqs"));
  242. __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
  243. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  244. current->rcu_read_unlock_special.b.need_qs = false;
  245. }
  246. }
  247. /*
  248. * We have entered the scheduler, and the current task might soon be
  249. * context-switched away from. If this task is in an RCU read-side
  250. * critical section, we will no longer be able to rely on the CPU to
  251. * record that fact, so we enqueue the task on the blkd_tasks list.
  252. * The task will dequeue itself when it exits the outermost enclosing
  253. * RCU read-side critical section. Therefore, the current grace period
  254. * cannot be permitted to complete until the blkd_tasks list entries
  255. * predating the current grace period drain, in other words, until
  256. * rnp->gp_tasks becomes NULL.
  257. *
  258. * Caller must disable interrupts.
  259. */
  260. static void rcu_preempt_note_context_switch(void)
  261. {
  262. struct task_struct *t = current;
  263. struct rcu_data *rdp;
  264. struct rcu_node *rnp;
  265. if (t->rcu_read_lock_nesting > 0 &&
  266. !t->rcu_read_unlock_special.b.blocked) {
  267. /* Possibly blocking in an RCU read-side critical section. */
  268. rdp = this_cpu_ptr(rcu_state_p->rda);
  269. rnp = rdp->mynode;
  270. raw_spin_lock_rcu_node(rnp);
  271. t->rcu_read_unlock_special.b.blocked = true;
  272. t->rcu_blocked_node = rnp;
  273. /*
  274. * Verify the CPU's sanity, trace the preemption, and
  275. * then queue the task as required based on the states
  276. * of any ongoing and expedited grace periods.
  277. */
  278. WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
  279. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  280. trace_rcu_preempt_task(rdp->rsp->name,
  281. t->pid,
  282. (rnp->qsmask & rdp->grpmask)
  283. ? rnp->gpnum
  284. : rnp->gpnum + 1);
  285. rcu_preempt_ctxt_queue(rnp, rdp);
  286. } else if (t->rcu_read_lock_nesting < 0 &&
  287. t->rcu_read_unlock_special.s) {
  288. /*
  289. * Complete exit from RCU read-side critical section on
  290. * behalf of preempted instance of __rcu_read_unlock().
  291. */
  292. rcu_read_unlock_special(t);
  293. }
  294. /*
  295. * Either we were not in an RCU read-side critical section to
  296. * begin with, or we have now recorded that critical section
  297. * globally. Either way, we can now note a quiescent state
  298. * for this CPU. Again, if we were in an RCU read-side critical
  299. * section, and if that critical section was blocking the current
  300. * grace period, then the fact that the task has been enqueued
  301. * means that we continue to block the current grace period.
  302. */
  303. rcu_preempt_qs();
  304. }
  305. /*
  306. * Check for preempted RCU readers blocking the current grace period
  307. * for the specified rcu_node structure. If the caller needs a reliable
  308. * answer, it must hold the rcu_node's ->lock.
  309. */
  310. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  311. {
  312. return rnp->gp_tasks != NULL;
  313. }
  314. /*
  315. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  316. * returning NULL if at the end of the list.
  317. */
  318. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  319. struct rcu_node *rnp)
  320. {
  321. struct list_head *np;
  322. np = t->rcu_node_entry.next;
  323. if (np == &rnp->blkd_tasks)
  324. np = NULL;
  325. return np;
  326. }
  327. /*
  328. * Return true if the specified rcu_node structure has tasks that were
  329. * preempted within an RCU read-side critical section.
  330. */
  331. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  332. {
  333. return !list_empty(&rnp->blkd_tasks);
  334. }
  335. /*
  336. * Handle special cases during rcu_read_unlock(), such as needing to
  337. * notify RCU core processing or task having blocked during the RCU
  338. * read-side critical section.
  339. */
  340. void rcu_read_unlock_special(struct task_struct *t)
  341. {
  342. bool empty_exp;
  343. bool empty_norm;
  344. bool empty_exp_now;
  345. unsigned long flags;
  346. struct list_head *np;
  347. bool drop_boost_mutex = false;
  348. struct rcu_data *rdp;
  349. struct rcu_node *rnp;
  350. union rcu_special special;
  351. /* NMI handlers cannot block and cannot safely manipulate state. */
  352. if (in_nmi())
  353. return;
  354. local_irq_save(flags);
  355. /*
  356. * If RCU core is waiting for this CPU to exit its critical section,
  357. * report the fact that it has exited. Because irqs are disabled,
  358. * t->rcu_read_unlock_special cannot change.
  359. */
  360. special = t->rcu_read_unlock_special;
  361. if (special.b.need_qs) {
  362. rcu_preempt_qs();
  363. t->rcu_read_unlock_special.b.need_qs = false;
  364. if (!t->rcu_read_unlock_special.s) {
  365. local_irq_restore(flags);
  366. return;
  367. }
  368. }
  369. /*
  370. * Respond to a request for an expedited grace period, but only if
  371. * we were not preempted, meaning that we were running on the same
  372. * CPU throughout. If we were preempted, the exp_need_qs flag
  373. * would have been cleared at the time of the first preemption,
  374. * and the quiescent state would be reported when we were dequeued.
  375. */
  376. if (special.b.exp_need_qs) {
  377. WARN_ON_ONCE(special.b.blocked);
  378. t->rcu_read_unlock_special.b.exp_need_qs = false;
  379. rdp = this_cpu_ptr(rcu_state_p->rda);
  380. rcu_report_exp_rdp(rcu_state_p, rdp, true);
  381. if (!t->rcu_read_unlock_special.s) {
  382. local_irq_restore(flags);
  383. return;
  384. }
  385. }
  386. /* Hardware IRQ handlers cannot block, complain if they get here. */
  387. if (in_irq() || in_serving_softirq()) {
  388. lockdep_rcu_suspicious(__FILE__, __LINE__,
  389. "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
  390. pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
  391. t->rcu_read_unlock_special.s,
  392. t->rcu_read_unlock_special.b.blocked,
  393. t->rcu_read_unlock_special.b.exp_need_qs,
  394. t->rcu_read_unlock_special.b.need_qs);
  395. local_irq_restore(flags);
  396. return;
  397. }
  398. /* Clean up if blocked during RCU read-side critical section. */
  399. if (special.b.blocked) {
  400. t->rcu_read_unlock_special.b.blocked = false;
  401. /*
  402. * Remove this task from the list it blocked on. The task
  403. * now remains queued on the rcu_node corresponding to the
  404. * CPU it first blocked on, so there is no longer any need
  405. * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
  406. */
  407. rnp = t->rcu_blocked_node;
  408. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  409. WARN_ON_ONCE(rnp != t->rcu_blocked_node);
  410. empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
  411. empty_exp = sync_rcu_preempt_exp_done(rnp);
  412. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  413. np = rcu_next_node_entry(t, rnp);
  414. list_del_init(&t->rcu_node_entry);
  415. t->rcu_blocked_node = NULL;
  416. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  417. rnp->gpnum, t->pid);
  418. if (&t->rcu_node_entry == rnp->gp_tasks)
  419. rnp->gp_tasks = np;
  420. if (&t->rcu_node_entry == rnp->exp_tasks)
  421. rnp->exp_tasks = np;
  422. if (IS_ENABLED(CONFIG_RCU_BOOST)) {
  423. if (&t->rcu_node_entry == rnp->boost_tasks)
  424. rnp->boost_tasks = np;
  425. /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
  426. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  427. }
  428. /*
  429. * If this was the last task on the current list, and if
  430. * we aren't waiting on any CPUs, report the quiescent state.
  431. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  432. * so we must take a snapshot of the expedited state.
  433. */
  434. empty_exp_now = sync_rcu_preempt_exp_done(rnp);
  435. if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
  436. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  437. rnp->gpnum,
  438. 0, rnp->qsmask,
  439. rnp->level,
  440. rnp->grplo,
  441. rnp->grphi,
  442. !!rnp->gp_tasks);
  443. rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
  444. } else {
  445. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  446. }
  447. /* Unboost if we were boosted. */
  448. if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
  449. rt_mutex_unlock(&rnp->boost_mtx);
  450. /*
  451. * If this was the last task on the expedited lists,
  452. * then we need to report up the rcu_node hierarchy.
  453. */
  454. if (!empty_exp && empty_exp_now)
  455. rcu_report_exp_rnp(rcu_state_p, rnp, true);
  456. } else {
  457. local_irq_restore(flags);
  458. }
  459. }
  460. /*
  461. * Dump detailed information for all tasks blocking the current RCU
  462. * grace period on the specified rcu_node structure.
  463. */
  464. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  465. {
  466. unsigned long flags;
  467. struct task_struct *t;
  468. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  469. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  470. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  471. return;
  472. }
  473. t = list_entry(rnp->gp_tasks->prev,
  474. struct task_struct, rcu_node_entry);
  475. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  476. sched_show_task(t);
  477. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  478. }
  479. /*
  480. * Dump detailed information for all tasks blocking the current RCU
  481. * grace period.
  482. */
  483. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  484. {
  485. struct rcu_node *rnp = rcu_get_root(rsp);
  486. rcu_print_detail_task_stall_rnp(rnp);
  487. rcu_for_each_leaf_node(rsp, rnp)
  488. rcu_print_detail_task_stall_rnp(rnp);
  489. }
  490. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  491. {
  492. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  493. rnp->level, rnp->grplo, rnp->grphi);
  494. }
  495. static void rcu_print_task_stall_end(void)
  496. {
  497. pr_cont("\n");
  498. }
  499. /*
  500. * Scan the current list of tasks blocked within RCU read-side critical
  501. * sections, printing out the tid of each.
  502. */
  503. static int rcu_print_task_stall(struct rcu_node *rnp)
  504. {
  505. struct task_struct *t;
  506. int ndetected = 0;
  507. if (!rcu_preempt_blocked_readers_cgp(rnp))
  508. return 0;
  509. rcu_print_task_stall_begin(rnp);
  510. t = list_entry(rnp->gp_tasks->prev,
  511. struct task_struct, rcu_node_entry);
  512. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  513. pr_cont(" P%d", t->pid);
  514. ndetected++;
  515. }
  516. rcu_print_task_stall_end();
  517. return ndetected;
  518. }
  519. /*
  520. * Scan the current list of tasks blocked within RCU read-side critical
  521. * sections, printing out the tid of each that is blocking the current
  522. * expedited grace period.
  523. */
  524. static int rcu_print_task_exp_stall(struct rcu_node *rnp)
  525. {
  526. struct task_struct *t;
  527. int ndetected = 0;
  528. if (!rnp->exp_tasks)
  529. return 0;
  530. t = list_entry(rnp->exp_tasks->prev,
  531. struct task_struct, rcu_node_entry);
  532. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  533. pr_cont(" P%d", t->pid);
  534. ndetected++;
  535. }
  536. return ndetected;
  537. }
  538. /*
  539. * Check that the list of blocked tasks for the newly completed grace
  540. * period is in fact empty. It is a serious bug to complete a grace
  541. * period that still has RCU readers blocked! This function must be
  542. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  543. * must be held by the caller.
  544. *
  545. * Also, if there are blocked tasks on the list, they automatically
  546. * block the newly created grace period, so set up ->gp_tasks accordingly.
  547. */
  548. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  549. {
  550. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  551. if (rcu_preempt_has_tasks(rnp))
  552. rnp->gp_tasks = rnp->blkd_tasks.next;
  553. WARN_ON_ONCE(rnp->qsmask);
  554. }
  555. /*
  556. * Check for a quiescent state from the current CPU. When a task blocks,
  557. * the task is recorded in the corresponding CPU's rcu_node structure,
  558. * which is checked elsewhere.
  559. *
  560. * Caller must disable hard irqs.
  561. */
  562. static void rcu_preempt_check_callbacks(void)
  563. {
  564. struct task_struct *t = current;
  565. if (t->rcu_read_lock_nesting == 0) {
  566. rcu_preempt_qs();
  567. return;
  568. }
  569. if (t->rcu_read_lock_nesting > 0 &&
  570. __this_cpu_read(rcu_data_p->core_needs_qs) &&
  571. __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
  572. t->rcu_read_unlock_special.b.need_qs = true;
  573. }
  574. #ifdef CONFIG_RCU_BOOST
  575. static void rcu_preempt_do_callbacks(void)
  576. {
  577. rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
  578. }
  579. #endif /* #ifdef CONFIG_RCU_BOOST */
  580. /*
  581. * Queue a preemptible-RCU callback for invocation after a grace period.
  582. */
  583. void call_rcu(struct rcu_head *head, rcu_callback_t func)
  584. {
  585. __call_rcu(head, func, rcu_state_p, -1, 0);
  586. }
  587. EXPORT_SYMBOL_GPL(call_rcu);
  588. /**
  589. * synchronize_rcu - wait until a grace period has elapsed.
  590. *
  591. * Control will return to the caller some time after a full grace
  592. * period has elapsed, in other words after all currently executing RCU
  593. * read-side critical sections have completed. Note, however, that
  594. * upon return from synchronize_rcu(), the caller might well be executing
  595. * concurrently with new RCU read-side critical sections that began while
  596. * synchronize_rcu() was waiting. RCU read-side critical sections are
  597. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  598. *
  599. * See the description of synchronize_sched() for more detailed information
  600. * on memory ordering guarantees.
  601. */
  602. void synchronize_rcu(void)
  603. {
  604. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  605. lock_is_held(&rcu_lock_map) ||
  606. lock_is_held(&rcu_sched_lock_map),
  607. "Illegal synchronize_rcu() in RCU read-side critical section");
  608. if (!rcu_scheduler_active)
  609. return;
  610. if (rcu_gp_is_expedited())
  611. synchronize_rcu_expedited();
  612. else
  613. wait_rcu_gp(call_rcu);
  614. }
  615. EXPORT_SYMBOL_GPL(synchronize_rcu);
  616. /*
  617. * Remote handler for smp_call_function_single(). If there is an
  618. * RCU read-side critical section in effect, request that the
  619. * next rcu_read_unlock() record the quiescent state up the
  620. * ->expmask fields in the rcu_node tree. Otherwise, immediately
  621. * report the quiescent state.
  622. */
  623. static void sync_rcu_exp_handler(void *info)
  624. {
  625. struct rcu_data *rdp;
  626. struct rcu_state *rsp = info;
  627. struct task_struct *t = current;
  628. /*
  629. * Within an RCU read-side critical section, request that the next
  630. * rcu_read_unlock() report. Unless this RCU read-side critical
  631. * section has already blocked, in which case it is already set
  632. * up for the expedited grace period to wait on it.
  633. */
  634. if (t->rcu_read_lock_nesting > 0 &&
  635. !t->rcu_read_unlock_special.b.blocked) {
  636. t->rcu_read_unlock_special.b.exp_need_qs = true;
  637. return;
  638. }
  639. /*
  640. * We are either exiting an RCU read-side critical section (negative
  641. * values of t->rcu_read_lock_nesting) or are not in one at all
  642. * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
  643. * read-side critical section that blocked before this expedited
  644. * grace period started. Either way, we can immediately report
  645. * the quiescent state.
  646. */
  647. rdp = this_cpu_ptr(rsp->rda);
  648. rcu_report_exp_rdp(rsp, rdp, true);
  649. }
  650. /**
  651. * synchronize_rcu_expedited - Brute-force RCU grace period
  652. *
  653. * Wait for an RCU-preempt grace period, but expedite it. The basic
  654. * idea is to IPI all non-idle non-nohz online CPUs. The IPI handler
  655. * checks whether the CPU is in an RCU-preempt critical section, and
  656. * if so, it sets a flag that causes the outermost rcu_read_unlock()
  657. * to report the quiescent state. On the other hand, if the CPU is
  658. * not in an RCU read-side critical section, the IPI handler reports
  659. * the quiescent state immediately.
  660. *
  661. * Although this is a greate improvement over previous expedited
  662. * implementations, it is still unfriendly to real-time workloads, so is
  663. * thus not recommended for any sort of common-case code. In fact, if
  664. * you are using synchronize_rcu_expedited() in a loop, please restructure
  665. * your code to batch your updates, and then Use a single synchronize_rcu()
  666. * instead.
  667. */
  668. void synchronize_rcu_expedited(void)
  669. {
  670. struct rcu_state *rsp = rcu_state_p;
  671. unsigned long s;
  672. /* If expedited grace periods are prohibited, fall back to normal. */
  673. if (rcu_gp_is_normal()) {
  674. wait_rcu_gp(call_rcu);
  675. return;
  676. }
  677. s = rcu_exp_gp_seq_snap(rsp);
  678. if (exp_funnel_lock(rsp, s))
  679. return; /* Someone else did our work for us. */
  680. /* Initialize the rcu_node tree in preparation for the wait. */
  681. sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
  682. /* Wait for ->blkd_tasks lists to drain, then wake everyone up. */
  683. rcu_exp_wait_wake(rsp, s);
  684. }
  685. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  686. /**
  687. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  688. *
  689. * Note that this primitive does not necessarily wait for an RCU grace period
  690. * to complete. For example, if there are no RCU callbacks queued anywhere
  691. * in the system, then rcu_barrier() is within its rights to return
  692. * immediately, without waiting for anything, much less an RCU grace period.
  693. */
  694. void rcu_barrier(void)
  695. {
  696. _rcu_barrier(rcu_state_p);
  697. }
  698. EXPORT_SYMBOL_GPL(rcu_barrier);
  699. /*
  700. * Initialize preemptible RCU's state structures.
  701. */
  702. static void __init __rcu_init_preempt(void)
  703. {
  704. rcu_init_one(rcu_state_p);
  705. }
  706. /*
  707. * Check for a task exiting while in a preemptible-RCU read-side
  708. * critical section, clean up if so. No need to issue warnings,
  709. * as debug_check_no_locks_held() already does this if lockdep
  710. * is enabled.
  711. */
  712. void exit_rcu(void)
  713. {
  714. struct task_struct *t = current;
  715. if (likely(list_empty(&current->rcu_node_entry)))
  716. return;
  717. t->rcu_read_lock_nesting = 1;
  718. barrier();
  719. t->rcu_read_unlock_special.b.blocked = true;
  720. __rcu_read_unlock();
  721. }
  722. #else /* #ifdef CONFIG_PREEMPT_RCU */
  723. static struct rcu_state *const rcu_state_p = &rcu_sched_state;
  724. /*
  725. * Tell them what RCU they are running.
  726. */
  727. static void __init rcu_bootup_announce(void)
  728. {
  729. pr_info("Hierarchical RCU implementation.\n");
  730. rcu_bootup_announce_oddness();
  731. }
  732. /*
  733. * Because preemptible RCU does not exist, we never have to check for
  734. * CPUs being in quiescent states.
  735. */
  736. static void rcu_preempt_note_context_switch(void)
  737. {
  738. }
  739. /*
  740. * Because preemptible RCU does not exist, there are never any preempted
  741. * RCU readers.
  742. */
  743. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  744. {
  745. return 0;
  746. }
  747. /*
  748. * Because there is no preemptible RCU, there can be no readers blocked.
  749. */
  750. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  751. {
  752. return false;
  753. }
  754. /*
  755. * Because preemptible RCU does not exist, we never have to check for
  756. * tasks blocked within RCU read-side critical sections.
  757. */
  758. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  759. {
  760. }
  761. /*
  762. * Because preemptible RCU does not exist, we never have to check for
  763. * tasks blocked within RCU read-side critical sections.
  764. */
  765. static int rcu_print_task_stall(struct rcu_node *rnp)
  766. {
  767. return 0;
  768. }
  769. /*
  770. * Because preemptible RCU does not exist, we never have to check for
  771. * tasks blocked within RCU read-side critical sections that are
  772. * blocking the current expedited grace period.
  773. */
  774. static int rcu_print_task_exp_stall(struct rcu_node *rnp)
  775. {
  776. return 0;
  777. }
  778. /*
  779. * Because there is no preemptible RCU, there can be no readers blocked,
  780. * so there is no need to check for blocked tasks. So check only for
  781. * bogus qsmask values.
  782. */
  783. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  784. {
  785. WARN_ON_ONCE(rnp->qsmask);
  786. }
  787. /*
  788. * Because preemptible RCU does not exist, it never has any callbacks
  789. * to check.
  790. */
  791. static void rcu_preempt_check_callbacks(void)
  792. {
  793. }
  794. /*
  795. * Wait for an rcu-preempt grace period, but make it happen quickly.
  796. * But because preemptible RCU does not exist, map to rcu-sched.
  797. */
  798. void synchronize_rcu_expedited(void)
  799. {
  800. synchronize_sched_expedited();
  801. }
  802. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  803. /*
  804. * Because preemptible RCU does not exist, rcu_barrier() is just
  805. * another name for rcu_barrier_sched().
  806. */
  807. void rcu_barrier(void)
  808. {
  809. rcu_barrier_sched();
  810. }
  811. EXPORT_SYMBOL_GPL(rcu_barrier);
  812. /*
  813. * Because preemptible RCU does not exist, it need not be initialized.
  814. */
  815. static void __init __rcu_init_preempt(void)
  816. {
  817. }
  818. /*
  819. * Because preemptible RCU does not exist, tasks cannot possibly exit
  820. * while in preemptible RCU read-side critical sections.
  821. */
  822. void exit_rcu(void)
  823. {
  824. }
  825. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  826. #ifdef CONFIG_RCU_BOOST
  827. #include "../locking/rtmutex_common.h"
  828. #ifdef CONFIG_RCU_TRACE
  829. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  830. {
  831. if (!rcu_preempt_has_tasks(rnp))
  832. rnp->n_balk_blkd_tasks++;
  833. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  834. rnp->n_balk_exp_gp_tasks++;
  835. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  836. rnp->n_balk_boost_tasks++;
  837. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  838. rnp->n_balk_notblocked++;
  839. else if (rnp->gp_tasks != NULL &&
  840. ULONG_CMP_LT(jiffies, rnp->boost_time))
  841. rnp->n_balk_notyet++;
  842. else
  843. rnp->n_balk_nos++;
  844. }
  845. #else /* #ifdef CONFIG_RCU_TRACE */
  846. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  847. {
  848. }
  849. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  850. static void rcu_wake_cond(struct task_struct *t, int status)
  851. {
  852. /*
  853. * If the thread is yielding, only wake it when this
  854. * is invoked from idle
  855. */
  856. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  857. wake_up_process(t);
  858. }
  859. /*
  860. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  861. * or ->boost_tasks, advancing the pointer to the next task in the
  862. * ->blkd_tasks list.
  863. *
  864. * Note that irqs must be enabled: boosting the task can block.
  865. * Returns 1 if there are more tasks needing to be boosted.
  866. */
  867. static int rcu_boost(struct rcu_node *rnp)
  868. {
  869. unsigned long flags;
  870. struct task_struct *t;
  871. struct list_head *tb;
  872. if (READ_ONCE(rnp->exp_tasks) == NULL &&
  873. READ_ONCE(rnp->boost_tasks) == NULL)
  874. return 0; /* Nothing left to boost. */
  875. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  876. /*
  877. * Recheck under the lock: all tasks in need of boosting
  878. * might exit their RCU read-side critical sections on their own.
  879. */
  880. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  881. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  882. return 0;
  883. }
  884. /*
  885. * Preferentially boost tasks blocking expedited grace periods.
  886. * This cannot starve the normal grace periods because a second
  887. * expedited grace period must boost all blocked tasks, including
  888. * those blocking the pre-existing normal grace period.
  889. */
  890. if (rnp->exp_tasks != NULL) {
  891. tb = rnp->exp_tasks;
  892. rnp->n_exp_boosts++;
  893. } else {
  894. tb = rnp->boost_tasks;
  895. rnp->n_normal_boosts++;
  896. }
  897. rnp->n_tasks_boosted++;
  898. /*
  899. * We boost task t by manufacturing an rt_mutex that appears to
  900. * be held by task t. We leave a pointer to that rt_mutex where
  901. * task t can find it, and task t will release the mutex when it
  902. * exits its outermost RCU read-side critical section. Then
  903. * simply acquiring this artificial rt_mutex will boost task
  904. * t's priority. (Thanks to tglx for suggesting this approach!)
  905. *
  906. * Note that task t must acquire rnp->lock to remove itself from
  907. * the ->blkd_tasks list, which it will do from exit() if from
  908. * nowhere else. We therefore are guaranteed that task t will
  909. * stay around at least until we drop rnp->lock. Note that
  910. * rnp->lock also resolves races between our priority boosting
  911. * and task t's exiting its outermost RCU read-side critical
  912. * section.
  913. */
  914. t = container_of(tb, struct task_struct, rcu_node_entry);
  915. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  916. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  917. /* Lock only for side effect: boosts task t's priority. */
  918. rt_mutex_lock(&rnp->boost_mtx);
  919. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  920. return READ_ONCE(rnp->exp_tasks) != NULL ||
  921. READ_ONCE(rnp->boost_tasks) != NULL;
  922. }
  923. /*
  924. * Priority-boosting kthread, one per leaf rcu_node.
  925. */
  926. static int rcu_boost_kthread(void *arg)
  927. {
  928. struct rcu_node *rnp = (struct rcu_node *)arg;
  929. int spincnt = 0;
  930. int more2boost;
  931. trace_rcu_utilization(TPS("Start boost kthread@init"));
  932. for (;;) {
  933. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  934. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  935. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  936. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  937. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  938. more2boost = rcu_boost(rnp);
  939. if (more2boost)
  940. spincnt++;
  941. else
  942. spincnt = 0;
  943. if (spincnt > 10) {
  944. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  945. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  946. schedule_timeout_interruptible(2);
  947. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  948. spincnt = 0;
  949. }
  950. }
  951. /* NOTREACHED */
  952. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  953. return 0;
  954. }
  955. /*
  956. * Check to see if it is time to start boosting RCU readers that are
  957. * blocking the current grace period, and, if so, tell the per-rcu_node
  958. * kthread to start boosting them. If there is an expedited grace
  959. * period in progress, it is always time to boost.
  960. *
  961. * The caller must hold rnp->lock, which this function releases.
  962. * The ->boost_kthread_task is immortal, so we don't need to worry
  963. * about it going away.
  964. */
  965. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  966. __releases(rnp->lock)
  967. {
  968. struct task_struct *t;
  969. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  970. rnp->n_balk_exp_gp_tasks++;
  971. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  972. return;
  973. }
  974. if (rnp->exp_tasks != NULL ||
  975. (rnp->gp_tasks != NULL &&
  976. rnp->boost_tasks == NULL &&
  977. rnp->qsmask == 0 &&
  978. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  979. if (rnp->exp_tasks == NULL)
  980. rnp->boost_tasks = rnp->gp_tasks;
  981. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  982. t = rnp->boost_kthread_task;
  983. if (t)
  984. rcu_wake_cond(t, rnp->boost_kthread_status);
  985. } else {
  986. rcu_initiate_boost_trace(rnp);
  987. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  988. }
  989. }
  990. /*
  991. * Wake up the per-CPU kthread to invoke RCU callbacks.
  992. */
  993. static void invoke_rcu_callbacks_kthread(void)
  994. {
  995. unsigned long flags;
  996. local_irq_save(flags);
  997. __this_cpu_write(rcu_cpu_has_work, 1);
  998. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  999. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1000. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1001. __this_cpu_read(rcu_cpu_kthread_status));
  1002. }
  1003. local_irq_restore(flags);
  1004. }
  1005. /*
  1006. * Is the current CPU running the RCU-callbacks kthread?
  1007. * Caller must have preemption disabled.
  1008. */
  1009. static bool rcu_is_callbacks_kthread(void)
  1010. {
  1011. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1012. }
  1013. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1014. /*
  1015. * Do priority-boost accounting for the start of a new grace period.
  1016. */
  1017. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1018. {
  1019. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1020. }
  1021. /*
  1022. * Create an RCU-boost kthread for the specified node if one does not
  1023. * already exist. We only create this kthread for preemptible RCU.
  1024. * Returns zero if all is well, a negated errno otherwise.
  1025. */
  1026. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1027. struct rcu_node *rnp)
  1028. {
  1029. int rnp_index = rnp - &rsp->node[0];
  1030. unsigned long flags;
  1031. struct sched_param sp;
  1032. struct task_struct *t;
  1033. if (rcu_state_p != rsp)
  1034. return 0;
  1035. if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
  1036. return 0;
  1037. rsp->boost = 1;
  1038. if (rnp->boost_kthread_task != NULL)
  1039. return 0;
  1040. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1041. "rcub/%d", rnp_index);
  1042. if (IS_ERR(t))
  1043. return PTR_ERR(t);
  1044. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1045. rnp->boost_kthread_task = t;
  1046. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1047. sp.sched_priority = kthread_prio;
  1048. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1049. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1050. return 0;
  1051. }
  1052. static void rcu_kthread_do_work(void)
  1053. {
  1054. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1055. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1056. rcu_preempt_do_callbacks();
  1057. }
  1058. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1059. {
  1060. struct sched_param sp;
  1061. sp.sched_priority = kthread_prio;
  1062. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1063. }
  1064. static void rcu_cpu_kthread_park(unsigned int cpu)
  1065. {
  1066. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1067. }
  1068. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1069. {
  1070. return __this_cpu_read(rcu_cpu_has_work);
  1071. }
  1072. /*
  1073. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1074. * RCU softirq used in flavors and configurations of RCU that do not
  1075. * support RCU priority boosting.
  1076. */
  1077. static void rcu_cpu_kthread(unsigned int cpu)
  1078. {
  1079. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1080. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1081. int spincnt;
  1082. for (spincnt = 0; spincnt < 10; spincnt++) {
  1083. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1084. local_bh_disable();
  1085. *statusp = RCU_KTHREAD_RUNNING;
  1086. this_cpu_inc(rcu_cpu_kthread_loops);
  1087. local_irq_disable();
  1088. work = *workp;
  1089. *workp = 0;
  1090. local_irq_enable();
  1091. if (work)
  1092. rcu_kthread_do_work();
  1093. local_bh_enable();
  1094. if (*workp == 0) {
  1095. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1096. *statusp = RCU_KTHREAD_WAITING;
  1097. return;
  1098. }
  1099. }
  1100. *statusp = RCU_KTHREAD_YIELDING;
  1101. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1102. schedule_timeout_interruptible(2);
  1103. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1104. *statusp = RCU_KTHREAD_WAITING;
  1105. }
  1106. /*
  1107. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1108. * served by the rcu_node in question. The CPU hotplug lock is still
  1109. * held, so the value of rnp->qsmaskinit will be stable.
  1110. *
  1111. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1112. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1113. * this function allows the kthread to execute on any CPU.
  1114. */
  1115. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1116. {
  1117. struct task_struct *t = rnp->boost_kthread_task;
  1118. unsigned long mask = rcu_rnp_online_cpus(rnp);
  1119. cpumask_var_t cm;
  1120. int cpu;
  1121. if (!t)
  1122. return;
  1123. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1124. return;
  1125. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1126. if ((mask & 0x1) && cpu != outgoingcpu)
  1127. cpumask_set_cpu(cpu, cm);
  1128. if (cpumask_weight(cm) == 0)
  1129. cpumask_setall(cm);
  1130. set_cpus_allowed_ptr(t, cm);
  1131. free_cpumask_var(cm);
  1132. }
  1133. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1134. .store = &rcu_cpu_kthread_task,
  1135. .thread_should_run = rcu_cpu_kthread_should_run,
  1136. .thread_fn = rcu_cpu_kthread,
  1137. .thread_comm = "rcuc/%u",
  1138. .setup = rcu_cpu_kthread_setup,
  1139. .park = rcu_cpu_kthread_park,
  1140. };
  1141. /*
  1142. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1143. */
  1144. static void __init rcu_spawn_boost_kthreads(void)
  1145. {
  1146. struct rcu_node *rnp;
  1147. int cpu;
  1148. for_each_possible_cpu(cpu)
  1149. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1150. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1151. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1152. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1153. }
  1154. static void rcu_prepare_kthreads(int cpu)
  1155. {
  1156. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1157. struct rcu_node *rnp = rdp->mynode;
  1158. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1159. if (rcu_scheduler_fully_active)
  1160. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1161. }
  1162. #else /* #ifdef CONFIG_RCU_BOOST */
  1163. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1164. __releases(rnp->lock)
  1165. {
  1166. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1167. }
  1168. static void invoke_rcu_callbacks_kthread(void)
  1169. {
  1170. WARN_ON_ONCE(1);
  1171. }
  1172. static bool rcu_is_callbacks_kthread(void)
  1173. {
  1174. return false;
  1175. }
  1176. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1177. {
  1178. }
  1179. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1180. {
  1181. }
  1182. static void __init rcu_spawn_boost_kthreads(void)
  1183. {
  1184. }
  1185. static void rcu_prepare_kthreads(int cpu)
  1186. {
  1187. }
  1188. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1189. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1190. /*
  1191. * Check to see if any future RCU-related work will need to be done
  1192. * by the current CPU, even if none need be done immediately, returning
  1193. * 1 if so. This function is part of the RCU implementation; it is -not-
  1194. * an exported member of the RCU API.
  1195. *
  1196. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1197. * any flavor of RCU.
  1198. */
  1199. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1200. {
  1201. *nextevt = KTIME_MAX;
  1202. return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
  1203. ? 0 : rcu_cpu_has_callbacks(NULL);
  1204. }
  1205. /*
  1206. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1207. * after it.
  1208. */
  1209. static void rcu_cleanup_after_idle(void)
  1210. {
  1211. }
  1212. /*
  1213. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1214. * is nothing.
  1215. */
  1216. static void rcu_prepare_for_idle(void)
  1217. {
  1218. }
  1219. /*
  1220. * Don't bother keeping a running count of the number of RCU callbacks
  1221. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1222. */
  1223. static void rcu_idle_count_callbacks_posted(void)
  1224. {
  1225. }
  1226. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1227. /*
  1228. * This code is invoked when a CPU goes idle, at which point we want
  1229. * to have the CPU do everything required for RCU so that it can enter
  1230. * the energy-efficient dyntick-idle mode. This is handled by a
  1231. * state machine implemented by rcu_prepare_for_idle() below.
  1232. *
  1233. * The following three proprocessor symbols control this state machine:
  1234. *
  1235. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1236. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1237. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1238. * benchmarkers who might otherwise be tempted to set this to a large
  1239. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1240. * system. And if you are -that- concerned about energy efficiency,
  1241. * just power the system down and be done with it!
  1242. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1243. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1244. * callbacks pending. Setting this too high can OOM your system.
  1245. *
  1246. * The values below work well in practice. If future workloads require
  1247. * adjustment, they can be converted into kernel config parameters, though
  1248. * making the state machine smarter might be a better option.
  1249. */
  1250. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1251. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1252. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1253. module_param(rcu_idle_gp_delay, int, 0644);
  1254. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1255. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1256. /*
  1257. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1258. * only if it has been awhile since the last time we did so. Afterwards,
  1259. * if there are any callbacks ready for immediate invocation, return true.
  1260. */
  1261. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1262. {
  1263. bool cbs_ready = false;
  1264. struct rcu_data *rdp;
  1265. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1266. struct rcu_node *rnp;
  1267. struct rcu_state *rsp;
  1268. /* Exit early if we advanced recently. */
  1269. if (jiffies == rdtp->last_advance_all)
  1270. return false;
  1271. rdtp->last_advance_all = jiffies;
  1272. for_each_rcu_flavor(rsp) {
  1273. rdp = this_cpu_ptr(rsp->rda);
  1274. rnp = rdp->mynode;
  1275. /*
  1276. * Don't bother checking unless a grace period has
  1277. * completed since we last checked and there are
  1278. * callbacks not yet ready to invoke.
  1279. */
  1280. if ((rdp->completed != rnp->completed ||
  1281. unlikely(READ_ONCE(rdp->gpwrap))) &&
  1282. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1283. note_gp_changes(rsp, rdp);
  1284. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1285. cbs_ready = true;
  1286. }
  1287. return cbs_ready;
  1288. }
  1289. /*
  1290. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1291. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1292. * caller to set the timeout based on whether or not there are non-lazy
  1293. * callbacks.
  1294. *
  1295. * The caller must have disabled interrupts.
  1296. */
  1297. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1298. {
  1299. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1300. unsigned long dj;
  1301. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
  1302. *nextevt = KTIME_MAX;
  1303. return 0;
  1304. }
  1305. /* Snapshot to detect later posting of non-lazy callback. */
  1306. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1307. /* If no callbacks, RCU doesn't need the CPU. */
  1308. if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
  1309. *nextevt = KTIME_MAX;
  1310. return 0;
  1311. }
  1312. /* Attempt to advance callbacks. */
  1313. if (rcu_try_advance_all_cbs()) {
  1314. /* Some ready to invoke, so initiate later invocation. */
  1315. invoke_rcu_core();
  1316. return 1;
  1317. }
  1318. rdtp->last_accelerate = jiffies;
  1319. /* Request timer delay depending on laziness, and round. */
  1320. if (!rdtp->all_lazy) {
  1321. dj = round_up(rcu_idle_gp_delay + jiffies,
  1322. rcu_idle_gp_delay) - jiffies;
  1323. } else {
  1324. dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1325. }
  1326. *nextevt = basemono + dj * TICK_NSEC;
  1327. return 0;
  1328. }
  1329. /*
  1330. * Prepare a CPU for idle from an RCU perspective. The first major task
  1331. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1332. * The second major task is to check to see if a non-lazy callback has
  1333. * arrived at a CPU that previously had only lazy callbacks. The third
  1334. * major task is to accelerate (that is, assign grace-period numbers to)
  1335. * any recently arrived callbacks.
  1336. *
  1337. * The caller must have disabled interrupts.
  1338. */
  1339. static void rcu_prepare_for_idle(void)
  1340. {
  1341. bool needwake;
  1342. struct rcu_data *rdp;
  1343. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1344. struct rcu_node *rnp;
  1345. struct rcu_state *rsp;
  1346. int tne;
  1347. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
  1348. rcu_is_nocb_cpu(smp_processor_id()))
  1349. return;
  1350. /* Handle nohz enablement switches conservatively. */
  1351. tne = READ_ONCE(tick_nohz_active);
  1352. if (tne != rdtp->tick_nohz_enabled_snap) {
  1353. if (rcu_cpu_has_callbacks(NULL))
  1354. invoke_rcu_core(); /* force nohz to see update. */
  1355. rdtp->tick_nohz_enabled_snap = tne;
  1356. return;
  1357. }
  1358. if (!tne)
  1359. return;
  1360. /*
  1361. * If a non-lazy callback arrived at a CPU having only lazy
  1362. * callbacks, invoke RCU core for the side-effect of recalculating
  1363. * idle duration on re-entry to idle.
  1364. */
  1365. if (rdtp->all_lazy &&
  1366. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1367. rdtp->all_lazy = false;
  1368. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1369. invoke_rcu_core();
  1370. return;
  1371. }
  1372. /*
  1373. * If we have not yet accelerated this jiffy, accelerate all
  1374. * callbacks on this CPU.
  1375. */
  1376. if (rdtp->last_accelerate == jiffies)
  1377. return;
  1378. rdtp->last_accelerate = jiffies;
  1379. for_each_rcu_flavor(rsp) {
  1380. rdp = this_cpu_ptr(rsp->rda);
  1381. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1382. continue;
  1383. rnp = rdp->mynode;
  1384. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  1385. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1386. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  1387. if (needwake)
  1388. rcu_gp_kthread_wake(rsp);
  1389. }
  1390. }
  1391. /*
  1392. * Clean up for exit from idle. Attempt to advance callbacks based on
  1393. * any grace periods that elapsed while the CPU was idle, and if any
  1394. * callbacks are now ready to invoke, initiate invocation.
  1395. */
  1396. static void rcu_cleanup_after_idle(void)
  1397. {
  1398. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
  1399. rcu_is_nocb_cpu(smp_processor_id()))
  1400. return;
  1401. if (rcu_try_advance_all_cbs())
  1402. invoke_rcu_core();
  1403. }
  1404. /*
  1405. * Keep a running count of the number of non-lazy callbacks posted
  1406. * on this CPU. This running counter (which is never decremented) allows
  1407. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1408. * posts a callback, even if an equal number of callbacks are invoked.
  1409. * Of course, callbacks should only be posted from within a trace event
  1410. * designed to be called from idle or from within RCU_NONIDLE().
  1411. */
  1412. static void rcu_idle_count_callbacks_posted(void)
  1413. {
  1414. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1415. }
  1416. /*
  1417. * Data for flushing lazy RCU callbacks at OOM time.
  1418. */
  1419. static atomic_t oom_callback_count;
  1420. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1421. /*
  1422. * RCU OOM callback -- decrement the outstanding count and deliver the
  1423. * wake-up if we are the last one.
  1424. */
  1425. static void rcu_oom_callback(struct rcu_head *rhp)
  1426. {
  1427. if (atomic_dec_and_test(&oom_callback_count))
  1428. wake_up(&oom_callback_wq);
  1429. }
  1430. /*
  1431. * Post an rcu_oom_notify callback on the current CPU if it has at
  1432. * least one lazy callback. This will unnecessarily post callbacks
  1433. * to CPUs that already have a non-lazy callback at the end of their
  1434. * callback list, but this is an infrequent operation, so accept some
  1435. * extra overhead to keep things simple.
  1436. */
  1437. static void rcu_oom_notify_cpu(void *unused)
  1438. {
  1439. struct rcu_state *rsp;
  1440. struct rcu_data *rdp;
  1441. for_each_rcu_flavor(rsp) {
  1442. rdp = raw_cpu_ptr(rsp->rda);
  1443. if (rdp->qlen_lazy != 0) {
  1444. atomic_inc(&oom_callback_count);
  1445. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1446. }
  1447. }
  1448. }
  1449. /*
  1450. * If low on memory, ensure that each CPU has a non-lazy callback.
  1451. * This will wake up CPUs that have only lazy callbacks, in turn
  1452. * ensuring that they free up the corresponding memory in a timely manner.
  1453. * Because an uncertain amount of memory will be freed in some uncertain
  1454. * timeframe, we do not claim to have freed anything.
  1455. */
  1456. static int rcu_oom_notify(struct notifier_block *self,
  1457. unsigned long notused, void *nfreed)
  1458. {
  1459. int cpu;
  1460. /* Wait for callbacks from earlier instance to complete. */
  1461. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1462. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1463. /*
  1464. * Prevent premature wakeup: ensure that all increments happen
  1465. * before there is a chance of the counter reaching zero.
  1466. */
  1467. atomic_set(&oom_callback_count, 1);
  1468. for_each_online_cpu(cpu) {
  1469. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1470. cond_resched_rcu_qs();
  1471. }
  1472. /* Unconditionally decrement: no need to wake ourselves up. */
  1473. atomic_dec(&oom_callback_count);
  1474. return NOTIFY_OK;
  1475. }
  1476. static struct notifier_block rcu_oom_nb = {
  1477. .notifier_call = rcu_oom_notify
  1478. };
  1479. static int __init rcu_register_oom_notifier(void)
  1480. {
  1481. register_oom_notifier(&rcu_oom_nb);
  1482. return 0;
  1483. }
  1484. early_initcall(rcu_register_oom_notifier);
  1485. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1486. #ifdef CONFIG_RCU_FAST_NO_HZ
  1487. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1488. {
  1489. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1490. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1491. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1492. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1493. ulong2long(nlpd),
  1494. rdtp->all_lazy ? 'L' : '.',
  1495. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1496. }
  1497. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1498. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1499. {
  1500. *cp = '\0';
  1501. }
  1502. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1503. /* Initiate the stall-info list. */
  1504. static void print_cpu_stall_info_begin(void)
  1505. {
  1506. pr_cont("\n");
  1507. }
  1508. /*
  1509. * Print out diagnostic information for the specified stalled CPU.
  1510. *
  1511. * If the specified CPU is aware of the current RCU grace period
  1512. * (flavor specified by rsp), then print the number of scheduling
  1513. * clock interrupts the CPU has taken during the time that it has
  1514. * been aware. Otherwise, print the number of RCU grace periods
  1515. * that this CPU is ignorant of, for example, "1" if the CPU was
  1516. * aware of the previous grace period.
  1517. *
  1518. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1519. */
  1520. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1521. {
  1522. char fast_no_hz[72];
  1523. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1524. struct rcu_dynticks *rdtp = rdp->dynticks;
  1525. char *ticks_title;
  1526. unsigned long ticks_value;
  1527. if (rsp->gpnum == rdp->gpnum) {
  1528. ticks_title = "ticks this GP";
  1529. ticks_value = rdp->ticks_this_gp;
  1530. } else {
  1531. ticks_title = "GPs behind";
  1532. ticks_value = rsp->gpnum - rdp->gpnum;
  1533. }
  1534. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1535. pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
  1536. cpu,
  1537. "O."[!!cpu_online(cpu)],
  1538. "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
  1539. "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
  1540. ticks_value, ticks_title,
  1541. atomic_read(&rdtp->dynticks) & 0xfff,
  1542. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1543. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1544. READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
  1545. fast_no_hz);
  1546. }
  1547. /* Terminate the stall-info list. */
  1548. static void print_cpu_stall_info_end(void)
  1549. {
  1550. pr_err("\t");
  1551. }
  1552. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1553. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1554. {
  1555. rdp->ticks_this_gp = 0;
  1556. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1557. }
  1558. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1559. static void increment_cpu_stall_ticks(void)
  1560. {
  1561. struct rcu_state *rsp;
  1562. for_each_rcu_flavor(rsp)
  1563. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1564. }
  1565. #ifdef CONFIG_RCU_NOCB_CPU
  1566. /*
  1567. * Offload callback processing from the boot-time-specified set of CPUs
  1568. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1569. * kthread created that pulls the callbacks from the corresponding CPU,
  1570. * waits for a grace period to elapse, and invokes the callbacks.
  1571. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1572. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1573. * has been specified, in which case each kthread actively polls its
  1574. * CPU. (Which isn't so great for energy efficiency, but which does
  1575. * reduce RCU's overhead on that CPU.)
  1576. *
  1577. * This is intended to be used in conjunction with Frederic Weisbecker's
  1578. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1579. * running CPU-bound user-mode computations.
  1580. *
  1581. * Offloading of callback processing could also in theory be used as
  1582. * an energy-efficiency measure because CPUs with no RCU callbacks
  1583. * queued are more aggressive about entering dyntick-idle mode.
  1584. */
  1585. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1586. static int __init rcu_nocb_setup(char *str)
  1587. {
  1588. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1589. have_rcu_nocb_mask = true;
  1590. cpulist_parse(str, rcu_nocb_mask);
  1591. return 1;
  1592. }
  1593. __setup("rcu_nocbs=", rcu_nocb_setup);
  1594. static int __init parse_rcu_nocb_poll(char *arg)
  1595. {
  1596. rcu_nocb_poll = 1;
  1597. return 0;
  1598. }
  1599. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1600. /*
  1601. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1602. * grace period.
  1603. */
  1604. static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
  1605. {
  1606. swake_up_all(sq);
  1607. }
  1608. /*
  1609. * Set the root rcu_node structure's ->need_future_gp field
  1610. * based on the sum of those of all rcu_node structures. This does
  1611. * double-count the root rcu_node structure's requests, but this
  1612. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1613. * having awakened during the time that the rcu_node structures
  1614. * were being updated for the end of the previous grace period.
  1615. */
  1616. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1617. {
  1618. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1619. }
  1620. static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
  1621. {
  1622. return &rnp->nocb_gp_wq[rnp->completed & 0x1];
  1623. }
  1624. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1625. {
  1626. init_swait_queue_head(&rnp->nocb_gp_wq[0]);
  1627. init_swait_queue_head(&rnp->nocb_gp_wq[1]);
  1628. }
  1629. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1630. /* Is the specified CPU a no-CBs CPU? */
  1631. bool rcu_is_nocb_cpu(int cpu)
  1632. {
  1633. if (have_rcu_nocb_mask)
  1634. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1635. return false;
  1636. }
  1637. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1638. /*
  1639. * Kick the leader kthread for this NOCB group.
  1640. */
  1641. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1642. {
  1643. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1644. if (!READ_ONCE(rdp_leader->nocb_kthread))
  1645. return;
  1646. if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1647. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1648. WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
  1649. swake_up(&rdp_leader->nocb_wq);
  1650. }
  1651. }
  1652. /*
  1653. * Does the specified CPU need an RCU callback for the specified flavor
  1654. * of rcu_barrier()?
  1655. */
  1656. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1657. {
  1658. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1659. unsigned long ret;
  1660. #ifdef CONFIG_PROVE_RCU
  1661. struct rcu_head *rhp;
  1662. #endif /* #ifdef CONFIG_PROVE_RCU */
  1663. /*
  1664. * Check count of all no-CBs callbacks awaiting invocation.
  1665. * There needs to be a barrier before this function is called,
  1666. * but associated with a prior determination that no more
  1667. * callbacks would be posted. In the worst case, the first
  1668. * barrier in _rcu_barrier() suffices (but the caller cannot
  1669. * necessarily rely on this, not a substitute for the caller
  1670. * getting the concurrency design right!). There must also be
  1671. * a barrier between the following load an posting of a callback
  1672. * (if a callback is in fact needed). This is associated with an
  1673. * atomic_inc() in the caller.
  1674. */
  1675. ret = atomic_long_read(&rdp->nocb_q_count);
  1676. #ifdef CONFIG_PROVE_RCU
  1677. rhp = READ_ONCE(rdp->nocb_head);
  1678. if (!rhp)
  1679. rhp = READ_ONCE(rdp->nocb_gp_head);
  1680. if (!rhp)
  1681. rhp = READ_ONCE(rdp->nocb_follower_head);
  1682. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1683. if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
  1684. rcu_scheduler_fully_active) {
  1685. /* RCU callback enqueued before CPU first came online??? */
  1686. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1687. cpu, rhp->func);
  1688. WARN_ON_ONCE(1);
  1689. }
  1690. #endif /* #ifdef CONFIG_PROVE_RCU */
  1691. return !!ret;
  1692. }
  1693. /*
  1694. * Enqueue the specified string of rcu_head structures onto the specified
  1695. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1696. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1697. * counts are supplied by rhcount and rhcount_lazy.
  1698. *
  1699. * If warranted, also wake up the kthread servicing this CPUs queues.
  1700. */
  1701. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1702. struct rcu_head *rhp,
  1703. struct rcu_head **rhtp,
  1704. int rhcount, int rhcount_lazy,
  1705. unsigned long flags)
  1706. {
  1707. int len;
  1708. struct rcu_head **old_rhpp;
  1709. struct task_struct *t;
  1710. /* Enqueue the callback on the nocb list and update counts. */
  1711. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1712. /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
  1713. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1714. WRITE_ONCE(*old_rhpp, rhp);
  1715. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1716. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1717. /* If we are not being polled and there is a kthread, awaken it ... */
  1718. t = READ_ONCE(rdp->nocb_kthread);
  1719. if (rcu_nocb_poll || !t) {
  1720. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1721. TPS("WakeNotPoll"));
  1722. return;
  1723. }
  1724. len = atomic_long_read(&rdp->nocb_q_count);
  1725. if (old_rhpp == &rdp->nocb_head) {
  1726. if (!irqs_disabled_flags(flags)) {
  1727. /* ... if queue was empty ... */
  1728. wake_nocb_leader(rdp, false);
  1729. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1730. TPS("WakeEmpty"));
  1731. } else {
  1732. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
  1733. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1734. TPS("WakeEmptyIsDeferred"));
  1735. }
  1736. rdp->qlen_last_fqs_check = 0;
  1737. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1738. /* ... or if many callbacks queued. */
  1739. if (!irqs_disabled_flags(flags)) {
  1740. wake_nocb_leader(rdp, true);
  1741. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1742. TPS("WakeOvf"));
  1743. } else {
  1744. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
  1745. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1746. TPS("WakeOvfIsDeferred"));
  1747. }
  1748. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1749. } else {
  1750. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1751. }
  1752. return;
  1753. }
  1754. /*
  1755. * This is a helper for __call_rcu(), which invokes this when the normal
  1756. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1757. * function returns failure back to __call_rcu(), which can complain
  1758. * appropriately.
  1759. *
  1760. * Otherwise, this function queues the callback where the corresponding
  1761. * "rcuo" kthread can find it.
  1762. */
  1763. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1764. bool lazy, unsigned long flags)
  1765. {
  1766. if (!rcu_is_nocb_cpu(rdp->cpu))
  1767. return false;
  1768. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1769. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1770. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1771. (unsigned long)rhp->func,
  1772. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1773. -atomic_long_read(&rdp->nocb_q_count));
  1774. else
  1775. trace_rcu_callback(rdp->rsp->name, rhp,
  1776. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1777. -atomic_long_read(&rdp->nocb_q_count));
  1778. /*
  1779. * If called from an extended quiescent state with interrupts
  1780. * disabled, invoke the RCU core in order to allow the idle-entry
  1781. * deferred-wakeup check to function.
  1782. */
  1783. if (irqs_disabled_flags(flags) &&
  1784. !rcu_is_watching() &&
  1785. cpu_online(smp_processor_id()))
  1786. invoke_rcu_core();
  1787. return true;
  1788. }
  1789. /*
  1790. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1791. * not a no-CBs CPU.
  1792. */
  1793. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1794. struct rcu_data *rdp,
  1795. unsigned long flags)
  1796. {
  1797. long ql = rsp->qlen;
  1798. long qll = rsp->qlen_lazy;
  1799. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1800. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1801. return false;
  1802. rsp->qlen = 0;
  1803. rsp->qlen_lazy = 0;
  1804. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1805. if (rsp->orphan_donelist != NULL) {
  1806. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1807. rsp->orphan_donetail, ql, qll, flags);
  1808. ql = qll = 0;
  1809. rsp->orphan_donelist = NULL;
  1810. rsp->orphan_donetail = &rsp->orphan_donelist;
  1811. }
  1812. if (rsp->orphan_nxtlist != NULL) {
  1813. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1814. rsp->orphan_nxttail, ql, qll, flags);
  1815. ql = qll = 0;
  1816. rsp->orphan_nxtlist = NULL;
  1817. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1818. }
  1819. return true;
  1820. }
  1821. /*
  1822. * If necessary, kick off a new grace period, and either way wait
  1823. * for a subsequent grace period to complete.
  1824. */
  1825. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1826. {
  1827. unsigned long c;
  1828. bool d;
  1829. unsigned long flags;
  1830. bool needwake;
  1831. struct rcu_node *rnp = rdp->mynode;
  1832. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1833. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1834. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1835. if (needwake)
  1836. rcu_gp_kthread_wake(rdp->rsp);
  1837. /*
  1838. * Wait for the grace period. Do so interruptibly to avoid messing
  1839. * up the load average.
  1840. */
  1841. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1842. for (;;) {
  1843. swait_event_interruptible(
  1844. rnp->nocb_gp_wq[c & 0x1],
  1845. (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
  1846. if (likely(d))
  1847. break;
  1848. WARN_ON(signal_pending(current));
  1849. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1850. }
  1851. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1852. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1853. }
  1854. /*
  1855. * Leaders come here to wait for additional callbacks to show up.
  1856. * This function does not return until callbacks appear.
  1857. */
  1858. static void nocb_leader_wait(struct rcu_data *my_rdp)
  1859. {
  1860. bool firsttime = true;
  1861. bool gotcbs;
  1862. struct rcu_data *rdp;
  1863. struct rcu_head **tail;
  1864. wait_again:
  1865. /* Wait for callbacks to appear. */
  1866. if (!rcu_nocb_poll) {
  1867. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  1868. swait_event_interruptible(my_rdp->nocb_wq,
  1869. !READ_ONCE(my_rdp->nocb_leader_sleep));
  1870. /* Memory barrier handled by smp_mb() calls below and repoll. */
  1871. } else if (firsttime) {
  1872. firsttime = false; /* Don't drown trace log with "Poll"! */
  1873. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  1874. }
  1875. /*
  1876. * Each pass through the following loop checks a follower for CBs.
  1877. * We are our own first follower. Any CBs found are moved to
  1878. * nocb_gp_head, where they await a grace period.
  1879. */
  1880. gotcbs = false;
  1881. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1882. rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
  1883. if (!rdp->nocb_gp_head)
  1884. continue; /* No CBs here, try next follower. */
  1885. /* Move callbacks to wait-for-GP list, which is empty. */
  1886. WRITE_ONCE(rdp->nocb_head, NULL);
  1887. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  1888. gotcbs = true;
  1889. }
  1890. /*
  1891. * If there were no callbacks, sleep a bit, rescan after a
  1892. * memory barrier, and go retry.
  1893. */
  1894. if (unlikely(!gotcbs)) {
  1895. if (!rcu_nocb_poll)
  1896. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  1897. "WokeEmpty");
  1898. WARN_ON(signal_pending(current));
  1899. schedule_timeout_interruptible(1);
  1900. /* Rescan in case we were a victim of memory ordering. */
  1901. my_rdp->nocb_leader_sleep = true;
  1902. smp_mb(); /* Ensure _sleep true before scan. */
  1903. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  1904. if (READ_ONCE(rdp->nocb_head)) {
  1905. /* Found CB, so short-circuit next wait. */
  1906. my_rdp->nocb_leader_sleep = false;
  1907. break;
  1908. }
  1909. goto wait_again;
  1910. }
  1911. /* Wait for one grace period. */
  1912. rcu_nocb_wait_gp(my_rdp);
  1913. /*
  1914. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  1915. * We set it now, but recheck for new callbacks while
  1916. * traversing our follower list.
  1917. */
  1918. my_rdp->nocb_leader_sleep = true;
  1919. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  1920. /* Each pass through the following loop wakes a follower, if needed. */
  1921. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1922. if (READ_ONCE(rdp->nocb_head))
  1923. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  1924. if (!rdp->nocb_gp_head)
  1925. continue; /* No CBs, so no need to wake follower. */
  1926. /* Append callbacks to follower's "done" list. */
  1927. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  1928. *tail = rdp->nocb_gp_head;
  1929. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  1930. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  1931. /*
  1932. * List was empty, wake up the follower.
  1933. * Memory barriers supplied by atomic_long_add().
  1934. */
  1935. swake_up(&rdp->nocb_wq);
  1936. }
  1937. }
  1938. /* If we (the leader) don't have CBs, go wait some more. */
  1939. if (!my_rdp->nocb_follower_head)
  1940. goto wait_again;
  1941. }
  1942. /*
  1943. * Followers come here to wait for additional callbacks to show up.
  1944. * This function does not return until callbacks appear.
  1945. */
  1946. static void nocb_follower_wait(struct rcu_data *rdp)
  1947. {
  1948. bool firsttime = true;
  1949. for (;;) {
  1950. if (!rcu_nocb_poll) {
  1951. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1952. "FollowerSleep");
  1953. swait_event_interruptible(rdp->nocb_wq,
  1954. READ_ONCE(rdp->nocb_follower_head));
  1955. } else if (firsttime) {
  1956. /* Don't drown trace log with "Poll"! */
  1957. firsttime = false;
  1958. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  1959. }
  1960. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  1961. /* ^^^ Ensure CB invocation follows _head test. */
  1962. return;
  1963. }
  1964. if (!rcu_nocb_poll)
  1965. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1966. "WokeEmpty");
  1967. WARN_ON(signal_pending(current));
  1968. schedule_timeout_interruptible(1);
  1969. }
  1970. }
  1971. /*
  1972. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  1973. * callbacks queued by the corresponding no-CBs CPU, however, there is
  1974. * an optional leader-follower relationship so that the grace-period
  1975. * kthreads don't have to do quite so many wakeups.
  1976. */
  1977. static int rcu_nocb_kthread(void *arg)
  1978. {
  1979. int c, cl;
  1980. struct rcu_head *list;
  1981. struct rcu_head *next;
  1982. struct rcu_head **tail;
  1983. struct rcu_data *rdp = arg;
  1984. /* Each pass through this loop invokes one batch of callbacks */
  1985. for (;;) {
  1986. /* Wait for callbacks. */
  1987. if (rdp->nocb_leader == rdp)
  1988. nocb_leader_wait(rdp);
  1989. else
  1990. nocb_follower_wait(rdp);
  1991. /* Pull the ready-to-invoke callbacks onto local list. */
  1992. list = READ_ONCE(rdp->nocb_follower_head);
  1993. BUG_ON(!list);
  1994. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  1995. WRITE_ONCE(rdp->nocb_follower_head, NULL);
  1996. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  1997. /* Each pass through the following loop invokes a callback. */
  1998. trace_rcu_batch_start(rdp->rsp->name,
  1999. atomic_long_read(&rdp->nocb_q_count_lazy),
  2000. atomic_long_read(&rdp->nocb_q_count), -1);
  2001. c = cl = 0;
  2002. while (list) {
  2003. next = list->next;
  2004. /* Wait for enqueuing to complete, if needed. */
  2005. while (next == NULL && &list->next != tail) {
  2006. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2007. TPS("WaitQueue"));
  2008. schedule_timeout_interruptible(1);
  2009. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2010. TPS("WokeQueue"));
  2011. next = list->next;
  2012. }
  2013. debug_rcu_head_unqueue(list);
  2014. local_bh_disable();
  2015. if (__rcu_reclaim(rdp->rsp->name, list))
  2016. cl++;
  2017. c++;
  2018. local_bh_enable();
  2019. list = next;
  2020. }
  2021. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2022. smp_mb__before_atomic(); /* _add after CB invocation. */
  2023. atomic_long_add(-c, &rdp->nocb_q_count);
  2024. atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
  2025. rdp->n_nocbs_invoked += c;
  2026. }
  2027. return 0;
  2028. }
  2029. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2030. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2031. {
  2032. return READ_ONCE(rdp->nocb_defer_wakeup);
  2033. }
  2034. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2035. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2036. {
  2037. int ndw;
  2038. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2039. return;
  2040. ndw = READ_ONCE(rdp->nocb_defer_wakeup);
  2041. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
  2042. wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
  2043. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  2044. }
  2045. void __init rcu_init_nohz(void)
  2046. {
  2047. int cpu;
  2048. bool need_rcu_nocb_mask = true;
  2049. struct rcu_state *rsp;
  2050. #ifdef CONFIG_RCU_NOCB_CPU_NONE
  2051. need_rcu_nocb_mask = false;
  2052. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  2053. #if defined(CONFIG_NO_HZ_FULL)
  2054. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  2055. need_rcu_nocb_mask = true;
  2056. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2057. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  2058. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  2059. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  2060. return;
  2061. }
  2062. have_rcu_nocb_mask = true;
  2063. }
  2064. if (!have_rcu_nocb_mask)
  2065. return;
  2066. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  2067. pr_info("\tOffload RCU callbacks from CPU 0\n");
  2068. cpumask_set_cpu(0, rcu_nocb_mask);
  2069. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  2070. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  2071. pr_info("\tOffload RCU callbacks from all CPUs\n");
  2072. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  2073. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  2074. #if defined(CONFIG_NO_HZ_FULL)
  2075. if (tick_nohz_full_running)
  2076. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2077. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2078. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2079. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2080. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2081. rcu_nocb_mask);
  2082. }
  2083. pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
  2084. cpumask_pr_args(rcu_nocb_mask));
  2085. if (rcu_nocb_poll)
  2086. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2087. for_each_rcu_flavor(rsp) {
  2088. for_each_cpu(cpu, rcu_nocb_mask)
  2089. init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
  2090. rcu_organize_nocb_kthreads(rsp);
  2091. }
  2092. }
  2093. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2094. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2095. {
  2096. rdp->nocb_tail = &rdp->nocb_head;
  2097. init_swait_queue_head(&rdp->nocb_wq);
  2098. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2099. }
  2100. /*
  2101. * If the specified CPU is a no-CBs CPU that does not already have its
  2102. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2103. * brought online out of order, this can require re-organizing the
  2104. * leader-follower relationships.
  2105. */
  2106. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2107. {
  2108. struct rcu_data *rdp;
  2109. struct rcu_data *rdp_last;
  2110. struct rcu_data *rdp_old_leader;
  2111. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2112. struct task_struct *t;
  2113. /*
  2114. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2115. * then nothing to do.
  2116. */
  2117. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2118. return;
  2119. /* If we didn't spawn the leader first, reorganize! */
  2120. rdp_old_leader = rdp_spawn->nocb_leader;
  2121. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2122. rdp_last = NULL;
  2123. rdp = rdp_old_leader;
  2124. do {
  2125. rdp->nocb_leader = rdp_spawn;
  2126. if (rdp_last && rdp != rdp_spawn)
  2127. rdp_last->nocb_next_follower = rdp;
  2128. if (rdp == rdp_spawn) {
  2129. rdp = rdp->nocb_next_follower;
  2130. } else {
  2131. rdp_last = rdp;
  2132. rdp = rdp->nocb_next_follower;
  2133. rdp_last->nocb_next_follower = NULL;
  2134. }
  2135. } while (rdp);
  2136. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2137. }
  2138. /* Spawn the kthread for this CPU and RCU flavor. */
  2139. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2140. "rcuo%c/%d", rsp->abbr, cpu);
  2141. BUG_ON(IS_ERR(t));
  2142. WRITE_ONCE(rdp_spawn->nocb_kthread, t);
  2143. }
  2144. /*
  2145. * If the specified CPU is a no-CBs CPU that does not already have its
  2146. * rcuo kthreads, spawn them.
  2147. */
  2148. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2149. {
  2150. struct rcu_state *rsp;
  2151. if (rcu_scheduler_fully_active)
  2152. for_each_rcu_flavor(rsp)
  2153. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2154. }
  2155. /*
  2156. * Once the scheduler is running, spawn rcuo kthreads for all online
  2157. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2158. * non-boot CPUs come online -- if this changes, we will need to add
  2159. * some mutual exclusion.
  2160. */
  2161. static void __init rcu_spawn_nocb_kthreads(void)
  2162. {
  2163. int cpu;
  2164. for_each_online_cpu(cpu)
  2165. rcu_spawn_all_nocb_kthreads(cpu);
  2166. }
  2167. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2168. static int rcu_nocb_leader_stride = -1;
  2169. module_param(rcu_nocb_leader_stride, int, 0444);
  2170. /*
  2171. * Initialize leader-follower relationships for all no-CBs CPU.
  2172. */
  2173. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2174. {
  2175. int cpu;
  2176. int ls = rcu_nocb_leader_stride;
  2177. int nl = 0; /* Next leader. */
  2178. struct rcu_data *rdp;
  2179. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2180. struct rcu_data *rdp_prev = NULL;
  2181. if (!have_rcu_nocb_mask)
  2182. return;
  2183. if (ls == -1) {
  2184. ls = int_sqrt(nr_cpu_ids);
  2185. rcu_nocb_leader_stride = ls;
  2186. }
  2187. /*
  2188. * Each pass through this loop sets up one rcu_data structure and
  2189. * spawns one rcu_nocb_kthread().
  2190. */
  2191. for_each_cpu(cpu, rcu_nocb_mask) {
  2192. rdp = per_cpu_ptr(rsp->rda, cpu);
  2193. if (rdp->cpu >= nl) {
  2194. /* New leader, set up for followers & next leader. */
  2195. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2196. rdp->nocb_leader = rdp;
  2197. rdp_leader = rdp;
  2198. } else {
  2199. /* Another follower, link to previous leader. */
  2200. rdp->nocb_leader = rdp_leader;
  2201. rdp_prev->nocb_next_follower = rdp;
  2202. }
  2203. rdp_prev = rdp;
  2204. }
  2205. }
  2206. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2207. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2208. {
  2209. if (!rcu_is_nocb_cpu(rdp->cpu))
  2210. return false;
  2211. /* If there are early-boot callbacks, move them to nocb lists. */
  2212. if (rdp->nxtlist) {
  2213. rdp->nocb_head = rdp->nxtlist;
  2214. rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
  2215. atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
  2216. atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
  2217. rdp->nxtlist = NULL;
  2218. rdp->qlen = 0;
  2219. rdp->qlen_lazy = 0;
  2220. }
  2221. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2222. return true;
  2223. }
  2224. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2225. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2226. {
  2227. WARN_ON_ONCE(1); /* Should be dead code. */
  2228. return false;
  2229. }
  2230. static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
  2231. {
  2232. }
  2233. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2234. {
  2235. }
  2236. static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
  2237. {
  2238. return NULL;
  2239. }
  2240. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2241. {
  2242. }
  2243. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2244. bool lazy, unsigned long flags)
  2245. {
  2246. return false;
  2247. }
  2248. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2249. struct rcu_data *rdp,
  2250. unsigned long flags)
  2251. {
  2252. return false;
  2253. }
  2254. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2255. {
  2256. }
  2257. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2258. {
  2259. return false;
  2260. }
  2261. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2262. {
  2263. }
  2264. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2265. {
  2266. }
  2267. static void __init rcu_spawn_nocb_kthreads(void)
  2268. {
  2269. }
  2270. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2271. {
  2272. return false;
  2273. }
  2274. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2275. /*
  2276. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2277. * arbitrarily long period of time with the scheduling-clock tick turned
  2278. * off. RCU will be paying attention to this CPU because it is in the
  2279. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2280. * machine because the scheduling-clock tick has been disabled. Therefore,
  2281. * if an adaptive-ticks CPU is failing to respond to the current grace
  2282. * period and has not be idle from an RCU perspective, kick it.
  2283. */
  2284. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2285. {
  2286. #ifdef CONFIG_NO_HZ_FULL
  2287. if (tick_nohz_full_cpu(cpu))
  2288. smp_send_reschedule(cpu);
  2289. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2290. }
  2291. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2292. static int full_sysidle_state; /* Current system-idle state. */
  2293. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2294. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2295. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2296. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2297. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2298. /*
  2299. * Invoked to note exit from irq or task transition to idle. Note that
  2300. * usermode execution does -not- count as idle here! After all, we want
  2301. * to detect full-system idle states, not RCU quiescent states and grace
  2302. * periods. The caller must have disabled interrupts.
  2303. */
  2304. static void rcu_sysidle_enter(int irq)
  2305. {
  2306. unsigned long j;
  2307. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2308. /* If there are no nohz_full= CPUs, no need to track this. */
  2309. if (!tick_nohz_full_enabled())
  2310. return;
  2311. /* Adjust nesting, check for fully idle. */
  2312. if (irq) {
  2313. rdtp->dynticks_idle_nesting--;
  2314. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2315. if (rdtp->dynticks_idle_nesting != 0)
  2316. return; /* Still not fully idle. */
  2317. } else {
  2318. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2319. DYNTICK_TASK_NEST_VALUE) {
  2320. rdtp->dynticks_idle_nesting = 0;
  2321. } else {
  2322. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2323. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2324. return; /* Still not fully idle. */
  2325. }
  2326. }
  2327. /* Record start of fully idle period. */
  2328. j = jiffies;
  2329. WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
  2330. smp_mb__before_atomic();
  2331. atomic_inc(&rdtp->dynticks_idle);
  2332. smp_mb__after_atomic();
  2333. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2334. }
  2335. /*
  2336. * Unconditionally force exit from full system-idle state. This is
  2337. * invoked when a normal CPU exits idle, but must be called separately
  2338. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2339. * is that the timekeeping CPU is permitted to take scheduling-clock
  2340. * interrupts while the system is in system-idle state, and of course
  2341. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2342. * interrupt from any other type of interrupt.
  2343. */
  2344. void rcu_sysidle_force_exit(void)
  2345. {
  2346. int oldstate = READ_ONCE(full_sysidle_state);
  2347. int newoldstate;
  2348. /*
  2349. * Each pass through the following loop attempts to exit full
  2350. * system-idle state. If contention proves to be a problem,
  2351. * a trylock-based contention tree could be used here.
  2352. */
  2353. while (oldstate > RCU_SYSIDLE_SHORT) {
  2354. newoldstate = cmpxchg(&full_sysidle_state,
  2355. oldstate, RCU_SYSIDLE_NOT);
  2356. if (oldstate == newoldstate &&
  2357. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2358. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2359. return; /* We cleared it, done! */
  2360. }
  2361. oldstate = newoldstate;
  2362. }
  2363. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2364. }
  2365. /*
  2366. * Invoked to note entry to irq or task transition from idle. Note that
  2367. * usermode execution does -not- count as idle here! The caller must
  2368. * have disabled interrupts.
  2369. */
  2370. static void rcu_sysidle_exit(int irq)
  2371. {
  2372. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2373. /* If there are no nohz_full= CPUs, no need to track this. */
  2374. if (!tick_nohz_full_enabled())
  2375. return;
  2376. /* Adjust nesting, check for already non-idle. */
  2377. if (irq) {
  2378. rdtp->dynticks_idle_nesting++;
  2379. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2380. if (rdtp->dynticks_idle_nesting != 1)
  2381. return; /* Already non-idle. */
  2382. } else {
  2383. /*
  2384. * Allow for irq misnesting. Yes, it really is possible
  2385. * to enter an irq handler then never leave it, and maybe
  2386. * also vice versa. Handle both possibilities.
  2387. */
  2388. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2389. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2390. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2391. return; /* Already non-idle. */
  2392. } else {
  2393. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2394. }
  2395. }
  2396. /* Record end of idle period. */
  2397. smp_mb__before_atomic();
  2398. atomic_inc(&rdtp->dynticks_idle);
  2399. smp_mb__after_atomic();
  2400. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2401. /*
  2402. * If we are the timekeeping CPU, we are permitted to be non-idle
  2403. * during a system-idle state. This must be the case, because
  2404. * the timekeeping CPU has to take scheduling-clock interrupts
  2405. * during the time that the system is transitioning to full
  2406. * system-idle state. This means that the timekeeping CPU must
  2407. * invoke rcu_sysidle_force_exit() directly if it does anything
  2408. * more than take a scheduling-clock interrupt.
  2409. */
  2410. if (smp_processor_id() == tick_do_timer_cpu)
  2411. return;
  2412. /* Update system-idle state: We are clearly no longer fully idle! */
  2413. rcu_sysidle_force_exit();
  2414. }
  2415. /*
  2416. * Check to see if the current CPU is idle. Note that usermode execution
  2417. * does not count as idle. The caller must have disabled interrupts,
  2418. * and must be running on tick_do_timer_cpu.
  2419. */
  2420. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2421. unsigned long *maxj)
  2422. {
  2423. int cur;
  2424. unsigned long j;
  2425. struct rcu_dynticks *rdtp = rdp->dynticks;
  2426. /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
  2427. if (!tick_nohz_full_enabled())
  2428. return;
  2429. /*
  2430. * If some other CPU has already reported non-idle, if this is
  2431. * not the flavor of RCU that tracks sysidle state, or if this
  2432. * is an offline or the timekeeping CPU, nothing to do.
  2433. */
  2434. if (!*isidle || rdp->rsp != rcu_state_p ||
  2435. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2436. return;
  2437. /* Verify affinity of current kthread. */
  2438. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2439. /* Pick up current idle and NMI-nesting counter and check. */
  2440. cur = atomic_read(&rdtp->dynticks_idle);
  2441. if (cur & 0x1) {
  2442. *isidle = false; /* We are not idle! */
  2443. return;
  2444. }
  2445. smp_mb(); /* Read counters before timestamps. */
  2446. /* Pick up timestamps. */
  2447. j = READ_ONCE(rdtp->dynticks_idle_jiffies);
  2448. /* If this CPU entered idle more recently, update maxj timestamp. */
  2449. if (ULONG_CMP_LT(*maxj, j))
  2450. *maxj = j;
  2451. }
  2452. /*
  2453. * Is this the flavor of RCU that is handling full-system idle?
  2454. */
  2455. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2456. {
  2457. return rsp == rcu_state_p;
  2458. }
  2459. /*
  2460. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2461. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2462. * systems more time to transition to full-idle state in order to
  2463. * avoid the cache thrashing that otherwise occur on the state variable.
  2464. * Really small systems (less than a couple of tens of CPUs) should
  2465. * instead use a single global atomically incremented counter, and later
  2466. * versions of this will automatically reconfigure themselves accordingly.
  2467. */
  2468. static unsigned long rcu_sysidle_delay(void)
  2469. {
  2470. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2471. return 0;
  2472. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2473. }
  2474. /*
  2475. * Advance the full-system-idle state. This is invoked when all of
  2476. * the non-timekeeping CPUs are idle.
  2477. */
  2478. static void rcu_sysidle(unsigned long j)
  2479. {
  2480. /* Check the current state. */
  2481. switch (READ_ONCE(full_sysidle_state)) {
  2482. case RCU_SYSIDLE_NOT:
  2483. /* First time all are idle, so note a short idle period. */
  2484. WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
  2485. break;
  2486. case RCU_SYSIDLE_SHORT:
  2487. /*
  2488. * Idle for a bit, time to advance to next state?
  2489. * cmpxchg failure means race with non-idle, let them win.
  2490. */
  2491. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2492. (void)cmpxchg(&full_sysidle_state,
  2493. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2494. break;
  2495. case RCU_SYSIDLE_LONG:
  2496. /*
  2497. * Do an additional check pass before advancing to full.
  2498. * cmpxchg failure means race with non-idle, let them win.
  2499. */
  2500. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2501. (void)cmpxchg(&full_sysidle_state,
  2502. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2503. break;
  2504. default:
  2505. break;
  2506. }
  2507. }
  2508. /*
  2509. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2510. * back to the beginning.
  2511. */
  2512. static void rcu_sysidle_cancel(void)
  2513. {
  2514. smp_mb();
  2515. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2516. WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
  2517. }
  2518. /*
  2519. * Update the sysidle state based on the results of a force-quiescent-state
  2520. * scan of the CPUs' dyntick-idle state.
  2521. */
  2522. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2523. unsigned long maxj, bool gpkt)
  2524. {
  2525. if (rsp != rcu_state_p)
  2526. return; /* Wrong flavor, ignore. */
  2527. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2528. return; /* Running state machine from timekeeping CPU. */
  2529. if (isidle)
  2530. rcu_sysidle(maxj); /* More idle! */
  2531. else
  2532. rcu_sysidle_cancel(); /* Idle is over. */
  2533. }
  2534. /*
  2535. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2536. * kthread's context.
  2537. */
  2538. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2539. unsigned long maxj)
  2540. {
  2541. /* If there are no nohz_full= CPUs, no need to track this. */
  2542. if (!tick_nohz_full_enabled())
  2543. return;
  2544. rcu_sysidle_report(rsp, isidle, maxj, true);
  2545. }
  2546. /* Callback and function for forcing an RCU grace period. */
  2547. struct rcu_sysidle_head {
  2548. struct rcu_head rh;
  2549. int inuse;
  2550. };
  2551. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2552. {
  2553. struct rcu_sysidle_head *rshp;
  2554. /*
  2555. * The following memory barrier is needed to replace the
  2556. * memory barriers that would normally be in the memory
  2557. * allocator.
  2558. */
  2559. smp_mb(); /* grace period precedes setting inuse. */
  2560. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2561. WRITE_ONCE(rshp->inuse, 0);
  2562. }
  2563. /*
  2564. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2565. * The caller must have disabled interrupts. This is not intended to be
  2566. * called unless tick_nohz_full_enabled().
  2567. */
  2568. bool rcu_sys_is_idle(void)
  2569. {
  2570. static struct rcu_sysidle_head rsh;
  2571. int rss = READ_ONCE(full_sysidle_state);
  2572. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2573. return false;
  2574. /* Handle small-system case by doing a full scan of CPUs. */
  2575. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2576. int oldrss = rss - 1;
  2577. /*
  2578. * One pass to advance to each state up to _FULL.
  2579. * Give up if any pass fails to advance the state.
  2580. */
  2581. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2582. int cpu;
  2583. bool isidle = true;
  2584. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2585. struct rcu_data *rdp;
  2586. /* Scan all the CPUs looking for nonidle CPUs. */
  2587. for_each_possible_cpu(cpu) {
  2588. rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  2589. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2590. if (!isidle)
  2591. break;
  2592. }
  2593. rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
  2594. oldrss = rss;
  2595. rss = READ_ONCE(full_sysidle_state);
  2596. }
  2597. }
  2598. /* If this is the first observation of an idle period, record it. */
  2599. if (rss == RCU_SYSIDLE_FULL) {
  2600. rss = cmpxchg(&full_sysidle_state,
  2601. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2602. return rss == RCU_SYSIDLE_FULL;
  2603. }
  2604. smp_mb(); /* ensure rss load happens before later caller actions. */
  2605. /* If already fully idle, tell the caller (in case of races). */
  2606. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2607. return true;
  2608. /*
  2609. * If we aren't there yet, and a grace period is not in flight,
  2610. * initiate a grace period. Either way, tell the caller that
  2611. * we are not there yet. We use an xchg() rather than an assignment
  2612. * to make up for the memory barriers that would otherwise be
  2613. * provided by the memory allocator.
  2614. */
  2615. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2616. !rcu_gp_in_progress(rcu_state_p) &&
  2617. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2618. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2619. return false;
  2620. }
  2621. /*
  2622. * Initialize dynticks sysidle state for CPUs coming online.
  2623. */
  2624. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2625. {
  2626. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2627. }
  2628. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2629. static void rcu_sysidle_enter(int irq)
  2630. {
  2631. }
  2632. static void rcu_sysidle_exit(int irq)
  2633. {
  2634. }
  2635. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2636. unsigned long *maxj)
  2637. {
  2638. }
  2639. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2640. {
  2641. return false;
  2642. }
  2643. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2644. unsigned long maxj)
  2645. {
  2646. }
  2647. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2648. {
  2649. }
  2650. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2651. /*
  2652. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2653. * grace-period kthread will do force_quiescent_state() processing?
  2654. * The idea is to avoid waking up RCU core processing on such a
  2655. * CPU unless the grace period has extended for too long.
  2656. *
  2657. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2658. * CONFIG_RCU_NOCB_CPU CPUs.
  2659. */
  2660. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2661. {
  2662. #ifdef CONFIG_NO_HZ_FULL
  2663. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2664. (!rcu_gp_in_progress(rsp) ||
  2665. ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
  2666. return true;
  2667. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2668. return false;
  2669. }
  2670. /*
  2671. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2672. * timekeeping CPU.
  2673. */
  2674. static void rcu_bind_gp_kthread(void)
  2675. {
  2676. int __maybe_unused cpu;
  2677. if (!tick_nohz_full_enabled())
  2678. return;
  2679. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2680. cpu = tick_do_timer_cpu;
  2681. if (cpu >= 0 && cpu < nr_cpu_ids)
  2682. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2683. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2684. housekeeping_affine(current);
  2685. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2686. }
  2687. /* Record the current task on dyntick-idle entry. */
  2688. static void rcu_dynticks_task_enter(void)
  2689. {
  2690. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2691. WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
  2692. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2693. }
  2694. /* Record no current task on dyntick-idle exit. */
  2695. static void rcu_dynticks_task_exit(void)
  2696. {
  2697. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2698. WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
  2699. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2700. }