verifier.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345
  1. /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/types.h>
  14. #include <linux/slab.h>
  15. #include <linux/bpf.h>
  16. #include <linux/filter.h>
  17. #include <net/netlink.h>
  18. #include <linux/file.h>
  19. #include <linux/vmalloc.h>
  20. /* bpf_check() is a static code analyzer that walks eBPF program
  21. * instruction by instruction and updates register/stack state.
  22. * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  23. *
  24. * The first pass is depth-first-search to check that the program is a DAG.
  25. * It rejects the following programs:
  26. * - larger than BPF_MAXINSNS insns
  27. * - if loop is present (detected via back-edge)
  28. * - unreachable insns exist (shouldn't be a forest. program = one function)
  29. * - out of bounds or malformed jumps
  30. * The second pass is all possible path descent from the 1st insn.
  31. * Since it's analyzing all pathes through the program, the length of the
  32. * analysis is limited to 32k insn, which may be hit even if total number of
  33. * insn is less then 4K, but there are too many branches that change stack/regs.
  34. * Number of 'branches to be analyzed' is limited to 1k
  35. *
  36. * On entry to each instruction, each register has a type, and the instruction
  37. * changes the types of the registers depending on instruction semantics.
  38. * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  39. * copied to R1.
  40. *
  41. * All registers are 64-bit.
  42. * R0 - return register
  43. * R1-R5 argument passing registers
  44. * R6-R9 callee saved registers
  45. * R10 - frame pointer read-only
  46. *
  47. * At the start of BPF program the register R1 contains a pointer to bpf_context
  48. * and has type PTR_TO_CTX.
  49. *
  50. * Verifier tracks arithmetic operations on pointers in case:
  51. * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  52. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  53. * 1st insn copies R10 (which has FRAME_PTR) type into R1
  54. * and 2nd arithmetic instruction is pattern matched to recognize
  55. * that it wants to construct a pointer to some element within stack.
  56. * So after 2nd insn, the register R1 has type PTR_TO_STACK
  57. * (and -20 constant is saved for further stack bounds checking).
  58. * Meaning that this reg is a pointer to stack plus known immediate constant.
  59. *
  60. * Most of the time the registers have UNKNOWN_VALUE type, which
  61. * means the register has some value, but it's not a valid pointer.
  62. * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  63. *
  64. * When verifier sees load or store instructions the type of base register
  65. * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  66. * types recognized by check_mem_access() function.
  67. *
  68. * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  69. * and the range of [ptr, ptr + map's value_size) is accessible.
  70. *
  71. * registers used to pass values to function calls are checked against
  72. * function argument constraints.
  73. *
  74. * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  75. * It means that the register type passed to this function must be
  76. * PTR_TO_STACK and it will be used inside the function as
  77. * 'pointer to map element key'
  78. *
  79. * For example the argument constraints for bpf_map_lookup_elem():
  80. * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  81. * .arg1_type = ARG_CONST_MAP_PTR,
  82. * .arg2_type = ARG_PTR_TO_MAP_KEY,
  83. *
  84. * ret_type says that this function returns 'pointer to map elem value or null'
  85. * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  86. * 2nd argument should be a pointer to stack, which will be used inside
  87. * the helper function as a pointer to map element key.
  88. *
  89. * On the kernel side the helper function looks like:
  90. * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  91. * {
  92. * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  93. * void *key = (void *) (unsigned long) r2;
  94. * void *value;
  95. *
  96. * here kernel can access 'key' and 'map' pointers safely, knowing that
  97. * [key, key + map->key_size) bytes are valid and were initialized on
  98. * the stack of eBPF program.
  99. * }
  100. *
  101. * Corresponding eBPF program may look like:
  102. * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
  103. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
  104. * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
  105. * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
  106. * here verifier looks at prototype of map_lookup_elem() and sees:
  107. * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
  108. * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
  109. *
  110. * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
  111. * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
  112. * and were initialized prior to this call.
  113. * If it's ok, then verifier allows this BPF_CALL insn and looks at
  114. * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
  115. * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
  116. * returns ether pointer to map value or NULL.
  117. *
  118. * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
  119. * insn, the register holding that pointer in the true branch changes state to
  120. * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
  121. * branch. See check_cond_jmp_op().
  122. *
  123. * After the call R0 is set to return type of the function and registers R1-R5
  124. * are set to NOT_INIT to indicate that they are no longer readable.
  125. */
  126. /* types of values stored in eBPF registers */
  127. enum bpf_reg_type {
  128. NOT_INIT = 0, /* nothing was written into register */
  129. UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
  130. PTR_TO_CTX, /* reg points to bpf_context */
  131. CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
  132. PTR_TO_MAP_VALUE, /* reg points to map element value */
  133. PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
  134. FRAME_PTR, /* reg == frame_pointer */
  135. PTR_TO_STACK, /* reg == frame_pointer + imm */
  136. CONST_IMM, /* constant integer value */
  137. };
  138. struct reg_state {
  139. enum bpf_reg_type type;
  140. union {
  141. /* valid when type == CONST_IMM | PTR_TO_STACK */
  142. int imm;
  143. /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  144. * PTR_TO_MAP_VALUE_OR_NULL
  145. */
  146. struct bpf_map *map_ptr;
  147. };
  148. };
  149. enum bpf_stack_slot_type {
  150. STACK_INVALID, /* nothing was stored in this stack slot */
  151. STACK_SPILL, /* register spilled into stack */
  152. STACK_MISC /* BPF program wrote some data into this slot */
  153. };
  154. #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
  155. /* state of the program:
  156. * type of all registers and stack info
  157. */
  158. struct verifier_state {
  159. struct reg_state regs[MAX_BPF_REG];
  160. u8 stack_slot_type[MAX_BPF_STACK];
  161. struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
  162. };
  163. /* linked list of verifier states used to prune search */
  164. struct verifier_state_list {
  165. struct verifier_state state;
  166. struct verifier_state_list *next;
  167. };
  168. /* verifier_state + insn_idx are pushed to stack when branch is encountered */
  169. struct verifier_stack_elem {
  170. /* verifer state is 'st'
  171. * before processing instruction 'insn_idx'
  172. * and after processing instruction 'prev_insn_idx'
  173. */
  174. struct verifier_state st;
  175. int insn_idx;
  176. int prev_insn_idx;
  177. struct verifier_stack_elem *next;
  178. };
  179. #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
  180. /* single container for all structs
  181. * one verifier_env per bpf_check() call
  182. */
  183. struct verifier_env {
  184. struct bpf_prog *prog; /* eBPF program being verified */
  185. struct verifier_stack_elem *head; /* stack of verifier states to be processed */
  186. int stack_size; /* number of states to be processed */
  187. struct verifier_state cur_state; /* current verifier state */
  188. struct verifier_state_list **explored_states; /* search pruning optimization */
  189. struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
  190. u32 used_map_cnt; /* number of used maps */
  191. bool allow_ptr_leaks;
  192. };
  193. /* verbose verifier prints what it's seeing
  194. * bpf_check() is called under lock, so no race to access these global vars
  195. */
  196. static u32 log_level, log_size, log_len;
  197. static char *log_buf;
  198. static DEFINE_MUTEX(bpf_verifier_lock);
  199. /* log_level controls verbosity level of eBPF verifier.
  200. * verbose() is used to dump the verification trace to the log, so the user
  201. * can figure out what's wrong with the program
  202. */
  203. static __printf(1, 2) void verbose(const char *fmt, ...)
  204. {
  205. va_list args;
  206. if (log_level == 0 || log_len >= log_size - 1)
  207. return;
  208. va_start(args, fmt);
  209. log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
  210. va_end(args);
  211. }
  212. /* string representation of 'enum bpf_reg_type' */
  213. static const char * const reg_type_str[] = {
  214. [NOT_INIT] = "?",
  215. [UNKNOWN_VALUE] = "inv",
  216. [PTR_TO_CTX] = "ctx",
  217. [CONST_PTR_TO_MAP] = "map_ptr",
  218. [PTR_TO_MAP_VALUE] = "map_value",
  219. [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
  220. [FRAME_PTR] = "fp",
  221. [PTR_TO_STACK] = "fp",
  222. [CONST_IMM] = "imm",
  223. };
  224. static void print_verifier_state(struct verifier_env *env)
  225. {
  226. enum bpf_reg_type t;
  227. int i;
  228. for (i = 0; i < MAX_BPF_REG; i++) {
  229. t = env->cur_state.regs[i].type;
  230. if (t == NOT_INIT)
  231. continue;
  232. verbose(" R%d=%s", i, reg_type_str[t]);
  233. if (t == CONST_IMM || t == PTR_TO_STACK)
  234. verbose("%d", env->cur_state.regs[i].imm);
  235. else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
  236. t == PTR_TO_MAP_VALUE_OR_NULL)
  237. verbose("(ks=%d,vs=%d)",
  238. env->cur_state.regs[i].map_ptr->key_size,
  239. env->cur_state.regs[i].map_ptr->value_size);
  240. }
  241. for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
  242. if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
  243. verbose(" fp%d=%s", -MAX_BPF_STACK + i,
  244. reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
  245. }
  246. verbose("\n");
  247. }
  248. static const char *const bpf_class_string[] = {
  249. [BPF_LD] = "ld",
  250. [BPF_LDX] = "ldx",
  251. [BPF_ST] = "st",
  252. [BPF_STX] = "stx",
  253. [BPF_ALU] = "alu",
  254. [BPF_JMP] = "jmp",
  255. [BPF_RET] = "BUG",
  256. [BPF_ALU64] = "alu64",
  257. };
  258. static const char *const bpf_alu_string[16] = {
  259. [BPF_ADD >> 4] = "+=",
  260. [BPF_SUB >> 4] = "-=",
  261. [BPF_MUL >> 4] = "*=",
  262. [BPF_DIV >> 4] = "/=",
  263. [BPF_OR >> 4] = "|=",
  264. [BPF_AND >> 4] = "&=",
  265. [BPF_LSH >> 4] = "<<=",
  266. [BPF_RSH >> 4] = ">>=",
  267. [BPF_NEG >> 4] = "neg",
  268. [BPF_MOD >> 4] = "%=",
  269. [BPF_XOR >> 4] = "^=",
  270. [BPF_MOV >> 4] = "=",
  271. [BPF_ARSH >> 4] = "s>>=",
  272. [BPF_END >> 4] = "endian",
  273. };
  274. static const char *const bpf_ldst_string[] = {
  275. [BPF_W >> 3] = "u32",
  276. [BPF_H >> 3] = "u16",
  277. [BPF_B >> 3] = "u8",
  278. [BPF_DW >> 3] = "u64",
  279. };
  280. static const char *const bpf_jmp_string[16] = {
  281. [BPF_JA >> 4] = "jmp",
  282. [BPF_JEQ >> 4] = "==",
  283. [BPF_JGT >> 4] = ">",
  284. [BPF_JGE >> 4] = ">=",
  285. [BPF_JSET >> 4] = "&",
  286. [BPF_JNE >> 4] = "!=",
  287. [BPF_JSGT >> 4] = "s>",
  288. [BPF_JSGE >> 4] = "s>=",
  289. [BPF_CALL >> 4] = "call",
  290. [BPF_EXIT >> 4] = "exit",
  291. };
  292. static void print_bpf_insn(struct bpf_insn *insn)
  293. {
  294. u8 class = BPF_CLASS(insn->code);
  295. if (class == BPF_ALU || class == BPF_ALU64) {
  296. if (BPF_SRC(insn->code) == BPF_X)
  297. verbose("(%02x) %sr%d %s %sr%d\n",
  298. insn->code, class == BPF_ALU ? "(u32) " : "",
  299. insn->dst_reg,
  300. bpf_alu_string[BPF_OP(insn->code) >> 4],
  301. class == BPF_ALU ? "(u32) " : "",
  302. insn->src_reg);
  303. else
  304. verbose("(%02x) %sr%d %s %s%d\n",
  305. insn->code, class == BPF_ALU ? "(u32) " : "",
  306. insn->dst_reg,
  307. bpf_alu_string[BPF_OP(insn->code) >> 4],
  308. class == BPF_ALU ? "(u32) " : "",
  309. insn->imm);
  310. } else if (class == BPF_STX) {
  311. if (BPF_MODE(insn->code) == BPF_MEM)
  312. verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
  313. insn->code,
  314. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  315. insn->dst_reg,
  316. insn->off, insn->src_reg);
  317. else if (BPF_MODE(insn->code) == BPF_XADD)
  318. verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
  319. insn->code,
  320. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  321. insn->dst_reg, insn->off,
  322. insn->src_reg);
  323. else
  324. verbose("BUG_%02x\n", insn->code);
  325. } else if (class == BPF_ST) {
  326. if (BPF_MODE(insn->code) != BPF_MEM) {
  327. verbose("BUG_st_%02x\n", insn->code);
  328. return;
  329. }
  330. verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
  331. insn->code,
  332. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  333. insn->dst_reg,
  334. insn->off, insn->imm);
  335. } else if (class == BPF_LDX) {
  336. if (BPF_MODE(insn->code) != BPF_MEM) {
  337. verbose("BUG_ldx_%02x\n", insn->code);
  338. return;
  339. }
  340. verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
  341. insn->code, insn->dst_reg,
  342. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  343. insn->src_reg, insn->off);
  344. } else if (class == BPF_LD) {
  345. if (BPF_MODE(insn->code) == BPF_ABS) {
  346. verbose("(%02x) r0 = *(%s *)skb[%d]\n",
  347. insn->code,
  348. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  349. insn->imm);
  350. } else if (BPF_MODE(insn->code) == BPF_IND) {
  351. verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
  352. insn->code,
  353. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  354. insn->src_reg, insn->imm);
  355. } else if (BPF_MODE(insn->code) == BPF_IMM) {
  356. verbose("(%02x) r%d = 0x%x\n",
  357. insn->code, insn->dst_reg, insn->imm);
  358. } else {
  359. verbose("BUG_ld_%02x\n", insn->code);
  360. return;
  361. }
  362. } else if (class == BPF_JMP) {
  363. u8 opcode = BPF_OP(insn->code);
  364. if (opcode == BPF_CALL) {
  365. verbose("(%02x) call %d\n", insn->code, insn->imm);
  366. } else if (insn->code == (BPF_JMP | BPF_JA)) {
  367. verbose("(%02x) goto pc%+d\n",
  368. insn->code, insn->off);
  369. } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
  370. verbose("(%02x) exit\n", insn->code);
  371. } else if (BPF_SRC(insn->code) == BPF_X) {
  372. verbose("(%02x) if r%d %s r%d goto pc%+d\n",
  373. insn->code, insn->dst_reg,
  374. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  375. insn->src_reg, insn->off);
  376. } else {
  377. verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
  378. insn->code, insn->dst_reg,
  379. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  380. insn->imm, insn->off);
  381. }
  382. } else {
  383. verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
  384. }
  385. }
  386. static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
  387. {
  388. struct verifier_stack_elem *elem;
  389. int insn_idx;
  390. if (env->head == NULL)
  391. return -1;
  392. memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
  393. insn_idx = env->head->insn_idx;
  394. if (prev_insn_idx)
  395. *prev_insn_idx = env->head->prev_insn_idx;
  396. elem = env->head->next;
  397. kfree(env->head);
  398. env->head = elem;
  399. env->stack_size--;
  400. return insn_idx;
  401. }
  402. static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
  403. int prev_insn_idx)
  404. {
  405. struct verifier_stack_elem *elem;
  406. elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
  407. if (!elem)
  408. goto err;
  409. memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
  410. elem->insn_idx = insn_idx;
  411. elem->prev_insn_idx = prev_insn_idx;
  412. elem->next = env->head;
  413. env->head = elem;
  414. env->stack_size++;
  415. if (env->stack_size > 1024) {
  416. verbose("BPF program is too complex\n");
  417. goto err;
  418. }
  419. return &elem->st;
  420. err:
  421. /* pop all elements and return */
  422. while (pop_stack(env, NULL) >= 0);
  423. return NULL;
  424. }
  425. #define CALLER_SAVED_REGS 6
  426. static const int caller_saved[CALLER_SAVED_REGS] = {
  427. BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
  428. };
  429. static void init_reg_state(struct reg_state *regs)
  430. {
  431. int i;
  432. for (i = 0; i < MAX_BPF_REG; i++) {
  433. regs[i].type = NOT_INIT;
  434. regs[i].imm = 0;
  435. regs[i].map_ptr = NULL;
  436. }
  437. /* frame pointer */
  438. regs[BPF_REG_FP].type = FRAME_PTR;
  439. /* 1st arg to a function */
  440. regs[BPF_REG_1].type = PTR_TO_CTX;
  441. }
  442. static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
  443. {
  444. BUG_ON(regno >= MAX_BPF_REG);
  445. regs[regno].type = UNKNOWN_VALUE;
  446. regs[regno].imm = 0;
  447. regs[regno].map_ptr = NULL;
  448. }
  449. enum reg_arg_type {
  450. SRC_OP, /* register is used as source operand */
  451. DST_OP, /* register is used as destination operand */
  452. DST_OP_NO_MARK /* same as above, check only, don't mark */
  453. };
  454. static int check_reg_arg(struct reg_state *regs, u32 regno,
  455. enum reg_arg_type t)
  456. {
  457. if (regno >= MAX_BPF_REG) {
  458. verbose("R%d is invalid\n", regno);
  459. return -EINVAL;
  460. }
  461. if (t == SRC_OP) {
  462. /* check whether register used as source operand can be read */
  463. if (regs[regno].type == NOT_INIT) {
  464. verbose("R%d !read_ok\n", regno);
  465. return -EACCES;
  466. }
  467. } else {
  468. /* check whether register used as dest operand can be written to */
  469. if (regno == BPF_REG_FP) {
  470. verbose("frame pointer is read only\n");
  471. return -EACCES;
  472. }
  473. if (t == DST_OP)
  474. mark_reg_unknown_value(regs, regno);
  475. }
  476. return 0;
  477. }
  478. static int bpf_size_to_bytes(int bpf_size)
  479. {
  480. if (bpf_size == BPF_W)
  481. return 4;
  482. else if (bpf_size == BPF_H)
  483. return 2;
  484. else if (bpf_size == BPF_B)
  485. return 1;
  486. else if (bpf_size == BPF_DW)
  487. return 8;
  488. else
  489. return -EINVAL;
  490. }
  491. static bool is_spillable_regtype(enum bpf_reg_type type)
  492. {
  493. switch (type) {
  494. case PTR_TO_MAP_VALUE:
  495. case PTR_TO_MAP_VALUE_OR_NULL:
  496. case PTR_TO_STACK:
  497. case PTR_TO_CTX:
  498. case FRAME_PTR:
  499. case CONST_PTR_TO_MAP:
  500. return true;
  501. default:
  502. return false;
  503. }
  504. }
  505. /* check_stack_read/write functions track spill/fill of registers,
  506. * stack boundary and alignment are checked in check_mem_access()
  507. */
  508. static int check_stack_write(struct verifier_state *state, int off, int size,
  509. int value_regno)
  510. {
  511. int i;
  512. /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
  513. * so it's aligned access and [off, off + size) are within stack limits
  514. */
  515. if (value_regno >= 0 &&
  516. is_spillable_regtype(state->regs[value_regno].type)) {
  517. /* register containing pointer is being spilled into stack */
  518. if (size != BPF_REG_SIZE) {
  519. verbose("invalid size of register spill\n");
  520. return -EACCES;
  521. }
  522. /* save register state */
  523. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  524. state->regs[value_regno];
  525. for (i = 0; i < BPF_REG_SIZE; i++)
  526. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
  527. } else {
  528. /* regular write of data into stack */
  529. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  530. (struct reg_state) {};
  531. for (i = 0; i < size; i++)
  532. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
  533. }
  534. return 0;
  535. }
  536. static int check_stack_read(struct verifier_state *state, int off, int size,
  537. int value_regno)
  538. {
  539. u8 *slot_type;
  540. int i;
  541. slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
  542. if (slot_type[0] == STACK_SPILL) {
  543. if (size != BPF_REG_SIZE) {
  544. verbose("invalid size of register spill\n");
  545. return -EACCES;
  546. }
  547. for (i = 1; i < BPF_REG_SIZE; i++) {
  548. if (slot_type[i] != STACK_SPILL) {
  549. verbose("corrupted spill memory\n");
  550. return -EACCES;
  551. }
  552. }
  553. if (value_regno >= 0)
  554. /* restore register state from stack */
  555. state->regs[value_regno] =
  556. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
  557. return 0;
  558. } else {
  559. for (i = 0; i < size; i++) {
  560. if (slot_type[i] != STACK_MISC) {
  561. verbose("invalid read from stack off %d+%d size %d\n",
  562. off, i, size);
  563. return -EACCES;
  564. }
  565. }
  566. if (value_regno >= 0)
  567. /* have read misc data from the stack */
  568. mark_reg_unknown_value(state->regs, value_regno);
  569. return 0;
  570. }
  571. }
  572. /* check read/write into map element returned by bpf_map_lookup_elem() */
  573. static int check_map_access(struct verifier_env *env, u32 regno, int off,
  574. int size)
  575. {
  576. struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
  577. if (off < 0 || off + size > map->value_size) {
  578. verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
  579. map->value_size, off, size);
  580. return -EACCES;
  581. }
  582. return 0;
  583. }
  584. /* check access to 'struct bpf_context' fields */
  585. static int check_ctx_access(struct verifier_env *env, int off, int size,
  586. enum bpf_access_type t)
  587. {
  588. if (env->prog->aux->ops->is_valid_access &&
  589. env->prog->aux->ops->is_valid_access(off, size, t))
  590. return 0;
  591. verbose("invalid bpf_context access off=%d size=%d\n", off, size);
  592. return -EACCES;
  593. }
  594. static bool is_pointer_value(struct verifier_env *env, int regno)
  595. {
  596. if (env->allow_ptr_leaks)
  597. return false;
  598. switch (env->cur_state.regs[regno].type) {
  599. case UNKNOWN_VALUE:
  600. case CONST_IMM:
  601. return false;
  602. default:
  603. return true;
  604. }
  605. }
  606. /* check whether memory at (regno + off) is accessible for t = (read | write)
  607. * if t==write, value_regno is a register which value is stored into memory
  608. * if t==read, value_regno is a register which will receive the value from memory
  609. * if t==write && value_regno==-1, some unknown value is stored into memory
  610. * if t==read && value_regno==-1, don't care what we read from memory
  611. */
  612. static int check_mem_access(struct verifier_env *env, u32 regno, int off,
  613. int bpf_size, enum bpf_access_type t,
  614. int value_regno)
  615. {
  616. struct verifier_state *state = &env->cur_state;
  617. int size, err = 0;
  618. if (state->regs[regno].type == PTR_TO_STACK)
  619. off += state->regs[regno].imm;
  620. size = bpf_size_to_bytes(bpf_size);
  621. if (size < 0)
  622. return size;
  623. if (off % size != 0) {
  624. verbose("misaligned access off %d size %d\n", off, size);
  625. return -EACCES;
  626. }
  627. if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
  628. if (t == BPF_WRITE && value_regno >= 0 &&
  629. is_pointer_value(env, value_regno)) {
  630. verbose("R%d leaks addr into map\n", value_regno);
  631. return -EACCES;
  632. }
  633. err = check_map_access(env, regno, off, size);
  634. if (!err && t == BPF_READ && value_regno >= 0)
  635. mark_reg_unknown_value(state->regs, value_regno);
  636. } else if (state->regs[regno].type == PTR_TO_CTX) {
  637. if (t == BPF_WRITE && value_regno >= 0 &&
  638. is_pointer_value(env, value_regno)) {
  639. verbose("R%d leaks addr into ctx\n", value_regno);
  640. return -EACCES;
  641. }
  642. err = check_ctx_access(env, off, size, t);
  643. if (!err && t == BPF_READ && value_regno >= 0)
  644. mark_reg_unknown_value(state->regs, value_regno);
  645. } else if (state->regs[regno].type == FRAME_PTR ||
  646. state->regs[regno].type == PTR_TO_STACK) {
  647. if (off >= 0 || off < -MAX_BPF_STACK) {
  648. verbose("invalid stack off=%d size=%d\n", off, size);
  649. return -EACCES;
  650. }
  651. if (t == BPF_WRITE) {
  652. if (!env->allow_ptr_leaks &&
  653. state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
  654. size != BPF_REG_SIZE) {
  655. verbose("attempt to corrupt spilled pointer on stack\n");
  656. return -EACCES;
  657. }
  658. err = check_stack_write(state, off, size, value_regno);
  659. } else {
  660. err = check_stack_read(state, off, size, value_regno);
  661. }
  662. } else {
  663. verbose("R%d invalid mem access '%s'\n",
  664. regno, reg_type_str[state->regs[regno].type]);
  665. return -EACCES;
  666. }
  667. return err;
  668. }
  669. static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
  670. {
  671. struct reg_state *regs = env->cur_state.regs;
  672. int err;
  673. if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
  674. insn->imm != 0) {
  675. verbose("BPF_XADD uses reserved fields\n");
  676. return -EINVAL;
  677. }
  678. /* check src1 operand */
  679. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  680. if (err)
  681. return err;
  682. /* check src2 operand */
  683. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  684. if (err)
  685. return err;
  686. /* check whether atomic_add can read the memory */
  687. err = check_mem_access(env, insn->dst_reg, insn->off,
  688. BPF_SIZE(insn->code), BPF_READ, -1);
  689. if (err)
  690. return err;
  691. /* check whether atomic_add can write into the same memory */
  692. return check_mem_access(env, insn->dst_reg, insn->off,
  693. BPF_SIZE(insn->code), BPF_WRITE, -1);
  694. }
  695. /* when register 'regno' is passed into function that will read 'access_size'
  696. * bytes from that pointer, make sure that it's within stack boundary
  697. * and all elements of stack are initialized
  698. */
  699. static int check_stack_boundary(struct verifier_env *env, int regno,
  700. int access_size, bool zero_size_allowed)
  701. {
  702. struct verifier_state *state = &env->cur_state;
  703. struct reg_state *regs = state->regs;
  704. int off, i;
  705. if (regs[regno].type != PTR_TO_STACK) {
  706. if (zero_size_allowed && access_size == 0 &&
  707. regs[regno].type == CONST_IMM &&
  708. regs[regno].imm == 0)
  709. return 0;
  710. verbose("R%d type=%s expected=%s\n", regno,
  711. reg_type_str[regs[regno].type],
  712. reg_type_str[PTR_TO_STACK]);
  713. return -EACCES;
  714. }
  715. off = regs[regno].imm;
  716. if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
  717. access_size <= 0) {
  718. verbose("invalid stack type R%d off=%d access_size=%d\n",
  719. regno, off, access_size);
  720. return -EACCES;
  721. }
  722. for (i = 0; i < access_size; i++) {
  723. if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
  724. verbose("invalid indirect read from stack off %d+%d size %d\n",
  725. off, i, access_size);
  726. return -EACCES;
  727. }
  728. }
  729. return 0;
  730. }
  731. static int check_func_arg(struct verifier_env *env, u32 regno,
  732. enum bpf_arg_type arg_type, struct bpf_map **mapp)
  733. {
  734. struct reg_state *reg = env->cur_state.regs + regno;
  735. enum bpf_reg_type expected_type;
  736. int err = 0;
  737. if (arg_type == ARG_DONTCARE)
  738. return 0;
  739. if (reg->type == NOT_INIT) {
  740. verbose("R%d !read_ok\n", regno);
  741. return -EACCES;
  742. }
  743. if (arg_type == ARG_ANYTHING) {
  744. if (is_pointer_value(env, regno)) {
  745. verbose("R%d leaks addr into helper function\n", regno);
  746. return -EACCES;
  747. }
  748. return 0;
  749. }
  750. if (arg_type == ARG_PTR_TO_MAP_KEY ||
  751. arg_type == ARG_PTR_TO_MAP_VALUE) {
  752. expected_type = PTR_TO_STACK;
  753. } else if (arg_type == ARG_CONST_STACK_SIZE ||
  754. arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
  755. expected_type = CONST_IMM;
  756. } else if (arg_type == ARG_CONST_MAP_PTR) {
  757. expected_type = CONST_PTR_TO_MAP;
  758. } else if (arg_type == ARG_PTR_TO_CTX) {
  759. expected_type = PTR_TO_CTX;
  760. } else if (arg_type == ARG_PTR_TO_STACK) {
  761. expected_type = PTR_TO_STACK;
  762. /* One exception here. In case function allows for NULL to be
  763. * passed in as argument, it's a CONST_IMM type. Final test
  764. * happens during stack boundary checking.
  765. */
  766. if (reg->type == CONST_IMM && reg->imm == 0)
  767. expected_type = CONST_IMM;
  768. } else {
  769. verbose("unsupported arg_type %d\n", arg_type);
  770. return -EFAULT;
  771. }
  772. if (reg->type != expected_type) {
  773. verbose("R%d type=%s expected=%s\n", regno,
  774. reg_type_str[reg->type], reg_type_str[expected_type]);
  775. return -EACCES;
  776. }
  777. if (arg_type == ARG_CONST_MAP_PTR) {
  778. /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
  779. *mapp = reg->map_ptr;
  780. } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
  781. /* bpf_map_xxx(..., map_ptr, ..., key) call:
  782. * check that [key, key + map->key_size) are within
  783. * stack limits and initialized
  784. */
  785. if (!*mapp) {
  786. /* in function declaration map_ptr must come before
  787. * map_key, so that it's verified and known before
  788. * we have to check map_key here. Otherwise it means
  789. * that kernel subsystem misconfigured verifier
  790. */
  791. verbose("invalid map_ptr to access map->key\n");
  792. return -EACCES;
  793. }
  794. err = check_stack_boundary(env, regno, (*mapp)->key_size,
  795. false);
  796. } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
  797. /* bpf_map_xxx(..., map_ptr, ..., value) call:
  798. * check [value, value + map->value_size) validity
  799. */
  800. if (!*mapp) {
  801. /* kernel subsystem misconfigured verifier */
  802. verbose("invalid map_ptr to access map->value\n");
  803. return -EACCES;
  804. }
  805. err = check_stack_boundary(env, regno, (*mapp)->value_size,
  806. false);
  807. } else if (arg_type == ARG_CONST_STACK_SIZE ||
  808. arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
  809. bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
  810. /* bpf_xxx(..., buf, len) call will access 'len' bytes
  811. * from stack pointer 'buf'. Check it
  812. * note: regno == len, regno - 1 == buf
  813. */
  814. if (regno == 0) {
  815. /* kernel subsystem misconfigured verifier */
  816. verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
  817. return -EACCES;
  818. }
  819. err = check_stack_boundary(env, regno - 1, reg->imm,
  820. zero_size_allowed);
  821. }
  822. return err;
  823. }
  824. static int check_map_func_compatibility(struct bpf_map *map, int func_id)
  825. {
  826. if (!map)
  827. return 0;
  828. /* We need a two way check, first is from map perspective ... */
  829. switch (map->map_type) {
  830. case BPF_MAP_TYPE_PROG_ARRAY:
  831. if (func_id != BPF_FUNC_tail_call)
  832. goto error;
  833. break;
  834. case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
  835. if (func_id != BPF_FUNC_perf_event_read &&
  836. func_id != BPF_FUNC_perf_event_output)
  837. goto error;
  838. break;
  839. case BPF_MAP_TYPE_STACK_TRACE:
  840. if (func_id != BPF_FUNC_get_stackid)
  841. goto error;
  842. break;
  843. default:
  844. break;
  845. }
  846. /* ... and second from the function itself. */
  847. switch (func_id) {
  848. case BPF_FUNC_tail_call:
  849. if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
  850. goto error;
  851. break;
  852. case BPF_FUNC_perf_event_read:
  853. case BPF_FUNC_perf_event_output:
  854. if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
  855. goto error;
  856. break;
  857. case BPF_FUNC_get_stackid:
  858. if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
  859. goto error;
  860. break;
  861. default:
  862. break;
  863. }
  864. return 0;
  865. error:
  866. verbose("cannot pass map_type %d into func %d\n",
  867. map->map_type, func_id);
  868. return -EINVAL;
  869. }
  870. static int check_call(struct verifier_env *env, int func_id)
  871. {
  872. struct verifier_state *state = &env->cur_state;
  873. const struct bpf_func_proto *fn = NULL;
  874. struct reg_state *regs = state->regs;
  875. struct bpf_map *map = NULL;
  876. struct reg_state *reg;
  877. int i, err;
  878. /* find function prototype */
  879. if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
  880. verbose("invalid func %d\n", func_id);
  881. return -EINVAL;
  882. }
  883. if (env->prog->aux->ops->get_func_proto)
  884. fn = env->prog->aux->ops->get_func_proto(func_id);
  885. if (!fn) {
  886. verbose("unknown func %d\n", func_id);
  887. return -EINVAL;
  888. }
  889. /* eBPF programs must be GPL compatible to use GPL-ed functions */
  890. if (!env->prog->gpl_compatible && fn->gpl_only) {
  891. verbose("cannot call GPL only function from proprietary program\n");
  892. return -EINVAL;
  893. }
  894. /* check args */
  895. err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
  896. if (err)
  897. return err;
  898. err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
  899. if (err)
  900. return err;
  901. err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
  902. if (err)
  903. return err;
  904. err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
  905. if (err)
  906. return err;
  907. err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
  908. if (err)
  909. return err;
  910. /* reset caller saved regs */
  911. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  912. reg = regs + caller_saved[i];
  913. reg->type = NOT_INIT;
  914. reg->imm = 0;
  915. }
  916. /* update return register */
  917. if (fn->ret_type == RET_INTEGER) {
  918. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  919. } else if (fn->ret_type == RET_VOID) {
  920. regs[BPF_REG_0].type = NOT_INIT;
  921. } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
  922. regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
  923. /* remember map_ptr, so that check_map_access()
  924. * can check 'value_size' boundary of memory access
  925. * to map element returned from bpf_map_lookup_elem()
  926. */
  927. if (map == NULL) {
  928. verbose("kernel subsystem misconfigured verifier\n");
  929. return -EINVAL;
  930. }
  931. regs[BPF_REG_0].map_ptr = map;
  932. } else {
  933. verbose("unknown return type %d of func %d\n",
  934. fn->ret_type, func_id);
  935. return -EINVAL;
  936. }
  937. err = check_map_func_compatibility(map, func_id);
  938. if (err)
  939. return err;
  940. return 0;
  941. }
  942. /* check validity of 32-bit and 64-bit arithmetic operations */
  943. static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
  944. {
  945. struct reg_state *regs = env->cur_state.regs;
  946. u8 opcode = BPF_OP(insn->code);
  947. int err;
  948. if (opcode == BPF_END || opcode == BPF_NEG) {
  949. if (opcode == BPF_NEG) {
  950. if (BPF_SRC(insn->code) != 0 ||
  951. insn->src_reg != BPF_REG_0 ||
  952. insn->off != 0 || insn->imm != 0) {
  953. verbose("BPF_NEG uses reserved fields\n");
  954. return -EINVAL;
  955. }
  956. } else {
  957. if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
  958. (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
  959. verbose("BPF_END uses reserved fields\n");
  960. return -EINVAL;
  961. }
  962. }
  963. /* check src operand */
  964. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  965. if (err)
  966. return err;
  967. if (is_pointer_value(env, insn->dst_reg)) {
  968. verbose("R%d pointer arithmetic prohibited\n",
  969. insn->dst_reg);
  970. return -EACCES;
  971. }
  972. /* check dest operand */
  973. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  974. if (err)
  975. return err;
  976. } else if (opcode == BPF_MOV) {
  977. if (BPF_SRC(insn->code) == BPF_X) {
  978. if (insn->imm != 0 || insn->off != 0) {
  979. verbose("BPF_MOV uses reserved fields\n");
  980. return -EINVAL;
  981. }
  982. /* check src operand */
  983. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  984. if (err)
  985. return err;
  986. } else {
  987. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  988. verbose("BPF_MOV uses reserved fields\n");
  989. return -EINVAL;
  990. }
  991. }
  992. /* check dest operand */
  993. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  994. if (err)
  995. return err;
  996. if (BPF_SRC(insn->code) == BPF_X) {
  997. if (BPF_CLASS(insn->code) == BPF_ALU64) {
  998. /* case: R1 = R2
  999. * copy register state to dest reg
  1000. */
  1001. regs[insn->dst_reg] = regs[insn->src_reg];
  1002. } else {
  1003. if (is_pointer_value(env, insn->src_reg)) {
  1004. verbose("R%d partial copy of pointer\n",
  1005. insn->src_reg);
  1006. return -EACCES;
  1007. }
  1008. regs[insn->dst_reg].type = UNKNOWN_VALUE;
  1009. regs[insn->dst_reg].map_ptr = NULL;
  1010. }
  1011. } else {
  1012. /* case: R = imm
  1013. * remember the value we stored into this reg
  1014. */
  1015. regs[insn->dst_reg].type = CONST_IMM;
  1016. regs[insn->dst_reg].imm = insn->imm;
  1017. }
  1018. } else if (opcode > BPF_END) {
  1019. verbose("invalid BPF_ALU opcode %x\n", opcode);
  1020. return -EINVAL;
  1021. } else { /* all other ALU ops: and, sub, xor, add, ... */
  1022. bool stack_relative = false;
  1023. if (BPF_SRC(insn->code) == BPF_X) {
  1024. if (insn->imm != 0 || insn->off != 0) {
  1025. verbose("BPF_ALU uses reserved fields\n");
  1026. return -EINVAL;
  1027. }
  1028. /* check src1 operand */
  1029. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1030. if (err)
  1031. return err;
  1032. } else {
  1033. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  1034. verbose("BPF_ALU uses reserved fields\n");
  1035. return -EINVAL;
  1036. }
  1037. }
  1038. /* check src2 operand */
  1039. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1040. if (err)
  1041. return err;
  1042. if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
  1043. BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
  1044. verbose("div by zero\n");
  1045. return -EINVAL;
  1046. }
  1047. if ((opcode == BPF_LSH || opcode == BPF_RSH ||
  1048. opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
  1049. int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
  1050. if (insn->imm < 0 || insn->imm >= size) {
  1051. verbose("invalid shift %d\n", insn->imm);
  1052. return -EINVAL;
  1053. }
  1054. }
  1055. /* pattern match 'bpf_add Rx, imm' instruction */
  1056. if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
  1057. regs[insn->dst_reg].type == FRAME_PTR &&
  1058. BPF_SRC(insn->code) == BPF_K) {
  1059. stack_relative = true;
  1060. } else if (is_pointer_value(env, insn->dst_reg)) {
  1061. verbose("R%d pointer arithmetic prohibited\n",
  1062. insn->dst_reg);
  1063. return -EACCES;
  1064. } else if (BPF_SRC(insn->code) == BPF_X &&
  1065. is_pointer_value(env, insn->src_reg)) {
  1066. verbose("R%d pointer arithmetic prohibited\n",
  1067. insn->src_reg);
  1068. return -EACCES;
  1069. }
  1070. /* check dest operand */
  1071. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1072. if (err)
  1073. return err;
  1074. if (stack_relative) {
  1075. regs[insn->dst_reg].type = PTR_TO_STACK;
  1076. regs[insn->dst_reg].imm = insn->imm;
  1077. }
  1078. }
  1079. return 0;
  1080. }
  1081. static int check_cond_jmp_op(struct verifier_env *env,
  1082. struct bpf_insn *insn, int *insn_idx)
  1083. {
  1084. struct reg_state *regs = env->cur_state.regs;
  1085. struct verifier_state *other_branch;
  1086. u8 opcode = BPF_OP(insn->code);
  1087. int err;
  1088. if (opcode > BPF_EXIT) {
  1089. verbose("invalid BPF_JMP opcode %x\n", opcode);
  1090. return -EINVAL;
  1091. }
  1092. if (BPF_SRC(insn->code) == BPF_X) {
  1093. if (insn->imm != 0) {
  1094. verbose("BPF_JMP uses reserved fields\n");
  1095. return -EINVAL;
  1096. }
  1097. /* check src1 operand */
  1098. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1099. if (err)
  1100. return err;
  1101. if (is_pointer_value(env, insn->src_reg)) {
  1102. verbose("R%d pointer comparison prohibited\n",
  1103. insn->src_reg);
  1104. return -EACCES;
  1105. }
  1106. } else {
  1107. if (insn->src_reg != BPF_REG_0) {
  1108. verbose("BPF_JMP uses reserved fields\n");
  1109. return -EINVAL;
  1110. }
  1111. }
  1112. /* check src2 operand */
  1113. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1114. if (err)
  1115. return err;
  1116. /* detect if R == 0 where R was initialized to zero earlier */
  1117. if (BPF_SRC(insn->code) == BPF_K &&
  1118. (opcode == BPF_JEQ || opcode == BPF_JNE) &&
  1119. regs[insn->dst_reg].type == CONST_IMM &&
  1120. regs[insn->dst_reg].imm == insn->imm) {
  1121. if (opcode == BPF_JEQ) {
  1122. /* if (imm == imm) goto pc+off;
  1123. * only follow the goto, ignore fall-through
  1124. */
  1125. *insn_idx += insn->off;
  1126. return 0;
  1127. } else {
  1128. /* if (imm != imm) goto pc+off;
  1129. * only follow fall-through branch, since
  1130. * that's where the program will go
  1131. */
  1132. return 0;
  1133. }
  1134. }
  1135. other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
  1136. if (!other_branch)
  1137. return -EFAULT;
  1138. /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
  1139. if (BPF_SRC(insn->code) == BPF_K &&
  1140. insn->imm == 0 && (opcode == BPF_JEQ ||
  1141. opcode == BPF_JNE) &&
  1142. regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
  1143. if (opcode == BPF_JEQ) {
  1144. /* next fallthrough insn can access memory via
  1145. * this register
  1146. */
  1147. regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1148. /* branch targer cannot access it, since reg == 0 */
  1149. other_branch->regs[insn->dst_reg].type = CONST_IMM;
  1150. other_branch->regs[insn->dst_reg].imm = 0;
  1151. } else {
  1152. other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1153. regs[insn->dst_reg].type = CONST_IMM;
  1154. regs[insn->dst_reg].imm = 0;
  1155. }
  1156. } else if (is_pointer_value(env, insn->dst_reg)) {
  1157. verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
  1158. return -EACCES;
  1159. } else if (BPF_SRC(insn->code) == BPF_K &&
  1160. (opcode == BPF_JEQ || opcode == BPF_JNE)) {
  1161. if (opcode == BPF_JEQ) {
  1162. /* detect if (R == imm) goto
  1163. * and in the target state recognize that R = imm
  1164. */
  1165. other_branch->regs[insn->dst_reg].type = CONST_IMM;
  1166. other_branch->regs[insn->dst_reg].imm = insn->imm;
  1167. } else {
  1168. /* detect if (R != imm) goto
  1169. * and in the fall-through state recognize that R = imm
  1170. */
  1171. regs[insn->dst_reg].type = CONST_IMM;
  1172. regs[insn->dst_reg].imm = insn->imm;
  1173. }
  1174. }
  1175. if (log_level)
  1176. print_verifier_state(env);
  1177. return 0;
  1178. }
  1179. /* return the map pointer stored inside BPF_LD_IMM64 instruction */
  1180. static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
  1181. {
  1182. u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
  1183. return (struct bpf_map *) (unsigned long) imm64;
  1184. }
  1185. /* verify BPF_LD_IMM64 instruction */
  1186. static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
  1187. {
  1188. struct reg_state *regs = env->cur_state.regs;
  1189. int err;
  1190. if (BPF_SIZE(insn->code) != BPF_DW) {
  1191. verbose("invalid BPF_LD_IMM insn\n");
  1192. return -EINVAL;
  1193. }
  1194. if (insn->off != 0) {
  1195. verbose("BPF_LD_IMM64 uses reserved fields\n");
  1196. return -EINVAL;
  1197. }
  1198. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1199. if (err)
  1200. return err;
  1201. if (insn->src_reg == 0)
  1202. /* generic move 64-bit immediate into a register */
  1203. return 0;
  1204. /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
  1205. BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
  1206. regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
  1207. regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
  1208. return 0;
  1209. }
  1210. static bool may_access_skb(enum bpf_prog_type type)
  1211. {
  1212. switch (type) {
  1213. case BPF_PROG_TYPE_SOCKET_FILTER:
  1214. case BPF_PROG_TYPE_SCHED_CLS:
  1215. case BPF_PROG_TYPE_SCHED_ACT:
  1216. return true;
  1217. default:
  1218. return false;
  1219. }
  1220. }
  1221. /* verify safety of LD_ABS|LD_IND instructions:
  1222. * - they can only appear in the programs where ctx == skb
  1223. * - since they are wrappers of function calls, they scratch R1-R5 registers,
  1224. * preserve R6-R9, and store return value into R0
  1225. *
  1226. * Implicit input:
  1227. * ctx == skb == R6 == CTX
  1228. *
  1229. * Explicit input:
  1230. * SRC == any register
  1231. * IMM == 32-bit immediate
  1232. *
  1233. * Output:
  1234. * R0 - 8/16/32-bit skb data converted to cpu endianness
  1235. */
  1236. static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
  1237. {
  1238. struct reg_state *regs = env->cur_state.regs;
  1239. u8 mode = BPF_MODE(insn->code);
  1240. struct reg_state *reg;
  1241. int i, err;
  1242. if (!may_access_skb(env->prog->type)) {
  1243. verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
  1244. return -EINVAL;
  1245. }
  1246. if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
  1247. BPF_SIZE(insn->code) == BPF_DW ||
  1248. (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
  1249. verbose("BPF_LD_ABS uses reserved fields\n");
  1250. return -EINVAL;
  1251. }
  1252. /* check whether implicit source operand (register R6) is readable */
  1253. err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
  1254. if (err)
  1255. return err;
  1256. if (regs[BPF_REG_6].type != PTR_TO_CTX) {
  1257. verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
  1258. return -EINVAL;
  1259. }
  1260. if (mode == BPF_IND) {
  1261. /* check explicit source operand */
  1262. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1263. if (err)
  1264. return err;
  1265. }
  1266. /* reset caller saved regs to unreadable */
  1267. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  1268. reg = regs + caller_saved[i];
  1269. reg->type = NOT_INIT;
  1270. reg->imm = 0;
  1271. }
  1272. /* mark destination R0 register as readable, since it contains
  1273. * the value fetched from the packet
  1274. */
  1275. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  1276. return 0;
  1277. }
  1278. /* non-recursive DFS pseudo code
  1279. * 1 procedure DFS-iterative(G,v):
  1280. * 2 label v as discovered
  1281. * 3 let S be a stack
  1282. * 4 S.push(v)
  1283. * 5 while S is not empty
  1284. * 6 t <- S.pop()
  1285. * 7 if t is what we're looking for:
  1286. * 8 return t
  1287. * 9 for all edges e in G.adjacentEdges(t) do
  1288. * 10 if edge e is already labelled
  1289. * 11 continue with the next edge
  1290. * 12 w <- G.adjacentVertex(t,e)
  1291. * 13 if vertex w is not discovered and not explored
  1292. * 14 label e as tree-edge
  1293. * 15 label w as discovered
  1294. * 16 S.push(w)
  1295. * 17 continue at 5
  1296. * 18 else if vertex w is discovered
  1297. * 19 label e as back-edge
  1298. * 20 else
  1299. * 21 // vertex w is explored
  1300. * 22 label e as forward- or cross-edge
  1301. * 23 label t as explored
  1302. * 24 S.pop()
  1303. *
  1304. * convention:
  1305. * 0x10 - discovered
  1306. * 0x11 - discovered and fall-through edge labelled
  1307. * 0x12 - discovered and fall-through and branch edges labelled
  1308. * 0x20 - explored
  1309. */
  1310. enum {
  1311. DISCOVERED = 0x10,
  1312. EXPLORED = 0x20,
  1313. FALLTHROUGH = 1,
  1314. BRANCH = 2,
  1315. };
  1316. #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
  1317. static int *insn_stack; /* stack of insns to process */
  1318. static int cur_stack; /* current stack index */
  1319. static int *insn_state;
  1320. /* t, w, e - match pseudo-code above:
  1321. * t - index of current instruction
  1322. * w - next instruction
  1323. * e - edge
  1324. */
  1325. static int push_insn(int t, int w, int e, struct verifier_env *env)
  1326. {
  1327. if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
  1328. return 0;
  1329. if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
  1330. return 0;
  1331. if (w < 0 || w >= env->prog->len) {
  1332. verbose("jump out of range from insn %d to %d\n", t, w);
  1333. return -EINVAL;
  1334. }
  1335. if (e == BRANCH)
  1336. /* mark branch target for state pruning */
  1337. env->explored_states[w] = STATE_LIST_MARK;
  1338. if (insn_state[w] == 0) {
  1339. /* tree-edge */
  1340. insn_state[t] = DISCOVERED | e;
  1341. insn_state[w] = DISCOVERED;
  1342. if (cur_stack >= env->prog->len)
  1343. return -E2BIG;
  1344. insn_stack[cur_stack++] = w;
  1345. return 1;
  1346. } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
  1347. verbose("back-edge from insn %d to %d\n", t, w);
  1348. return -EINVAL;
  1349. } else if (insn_state[w] == EXPLORED) {
  1350. /* forward- or cross-edge */
  1351. insn_state[t] = DISCOVERED | e;
  1352. } else {
  1353. verbose("insn state internal bug\n");
  1354. return -EFAULT;
  1355. }
  1356. return 0;
  1357. }
  1358. /* non-recursive depth-first-search to detect loops in BPF program
  1359. * loop == back-edge in directed graph
  1360. */
  1361. static int check_cfg(struct verifier_env *env)
  1362. {
  1363. struct bpf_insn *insns = env->prog->insnsi;
  1364. int insn_cnt = env->prog->len;
  1365. int ret = 0;
  1366. int i, t;
  1367. insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1368. if (!insn_state)
  1369. return -ENOMEM;
  1370. insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1371. if (!insn_stack) {
  1372. kfree(insn_state);
  1373. return -ENOMEM;
  1374. }
  1375. insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
  1376. insn_stack[0] = 0; /* 0 is the first instruction */
  1377. cur_stack = 1;
  1378. peek_stack:
  1379. if (cur_stack == 0)
  1380. goto check_state;
  1381. t = insn_stack[cur_stack - 1];
  1382. if (BPF_CLASS(insns[t].code) == BPF_JMP) {
  1383. u8 opcode = BPF_OP(insns[t].code);
  1384. if (opcode == BPF_EXIT) {
  1385. goto mark_explored;
  1386. } else if (opcode == BPF_CALL) {
  1387. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1388. if (ret == 1)
  1389. goto peek_stack;
  1390. else if (ret < 0)
  1391. goto err_free;
  1392. } else if (opcode == BPF_JA) {
  1393. if (BPF_SRC(insns[t].code) != BPF_K) {
  1394. ret = -EINVAL;
  1395. goto err_free;
  1396. }
  1397. /* unconditional jump with single edge */
  1398. ret = push_insn(t, t + insns[t].off + 1,
  1399. FALLTHROUGH, env);
  1400. if (ret == 1)
  1401. goto peek_stack;
  1402. else if (ret < 0)
  1403. goto err_free;
  1404. /* tell verifier to check for equivalent states
  1405. * after every call and jump
  1406. */
  1407. if (t + 1 < insn_cnt)
  1408. env->explored_states[t + 1] = STATE_LIST_MARK;
  1409. } else {
  1410. /* conditional jump with two edges */
  1411. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1412. if (ret == 1)
  1413. goto peek_stack;
  1414. else if (ret < 0)
  1415. goto err_free;
  1416. ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
  1417. if (ret == 1)
  1418. goto peek_stack;
  1419. else if (ret < 0)
  1420. goto err_free;
  1421. }
  1422. } else {
  1423. /* all other non-branch instructions with single
  1424. * fall-through edge
  1425. */
  1426. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1427. if (ret == 1)
  1428. goto peek_stack;
  1429. else if (ret < 0)
  1430. goto err_free;
  1431. }
  1432. mark_explored:
  1433. insn_state[t] = EXPLORED;
  1434. if (cur_stack-- <= 0) {
  1435. verbose("pop stack internal bug\n");
  1436. ret = -EFAULT;
  1437. goto err_free;
  1438. }
  1439. goto peek_stack;
  1440. check_state:
  1441. for (i = 0; i < insn_cnt; i++) {
  1442. if (insn_state[i] != EXPLORED) {
  1443. verbose("unreachable insn %d\n", i);
  1444. ret = -EINVAL;
  1445. goto err_free;
  1446. }
  1447. }
  1448. ret = 0; /* cfg looks good */
  1449. err_free:
  1450. kfree(insn_state);
  1451. kfree(insn_stack);
  1452. return ret;
  1453. }
  1454. /* compare two verifier states
  1455. *
  1456. * all states stored in state_list are known to be valid, since
  1457. * verifier reached 'bpf_exit' instruction through them
  1458. *
  1459. * this function is called when verifier exploring different branches of
  1460. * execution popped from the state stack. If it sees an old state that has
  1461. * more strict register state and more strict stack state then this execution
  1462. * branch doesn't need to be explored further, since verifier already
  1463. * concluded that more strict state leads to valid finish.
  1464. *
  1465. * Therefore two states are equivalent if register state is more conservative
  1466. * and explored stack state is more conservative than the current one.
  1467. * Example:
  1468. * explored current
  1469. * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
  1470. * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
  1471. *
  1472. * In other words if current stack state (one being explored) has more
  1473. * valid slots than old one that already passed validation, it means
  1474. * the verifier can stop exploring and conclude that current state is valid too
  1475. *
  1476. * Similarly with registers. If explored state has register type as invalid
  1477. * whereas register type in current state is meaningful, it means that
  1478. * the current state will reach 'bpf_exit' instruction safely
  1479. */
  1480. static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
  1481. {
  1482. int i;
  1483. for (i = 0; i < MAX_BPF_REG; i++) {
  1484. if (memcmp(&old->regs[i], &cur->regs[i],
  1485. sizeof(old->regs[0])) != 0) {
  1486. if (old->regs[i].type == NOT_INIT ||
  1487. (old->regs[i].type == UNKNOWN_VALUE &&
  1488. cur->regs[i].type != NOT_INIT))
  1489. continue;
  1490. return false;
  1491. }
  1492. }
  1493. for (i = 0; i < MAX_BPF_STACK; i++) {
  1494. if (old->stack_slot_type[i] == STACK_INVALID)
  1495. continue;
  1496. if (old->stack_slot_type[i] != cur->stack_slot_type[i])
  1497. /* Ex: old explored (safe) state has STACK_SPILL in
  1498. * this stack slot, but current has has STACK_MISC ->
  1499. * this verifier states are not equivalent,
  1500. * return false to continue verification of this path
  1501. */
  1502. return false;
  1503. if (i % BPF_REG_SIZE)
  1504. continue;
  1505. if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
  1506. &cur->spilled_regs[i / BPF_REG_SIZE],
  1507. sizeof(old->spilled_regs[0])))
  1508. /* when explored and current stack slot types are
  1509. * the same, check that stored pointers types
  1510. * are the same as well.
  1511. * Ex: explored safe path could have stored
  1512. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
  1513. * but current path has stored:
  1514. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
  1515. * such verifier states are not equivalent.
  1516. * return false to continue verification of this path
  1517. */
  1518. return false;
  1519. else
  1520. continue;
  1521. }
  1522. return true;
  1523. }
  1524. static int is_state_visited(struct verifier_env *env, int insn_idx)
  1525. {
  1526. struct verifier_state_list *new_sl;
  1527. struct verifier_state_list *sl;
  1528. sl = env->explored_states[insn_idx];
  1529. if (!sl)
  1530. /* this 'insn_idx' instruction wasn't marked, so we will not
  1531. * be doing state search here
  1532. */
  1533. return 0;
  1534. while (sl != STATE_LIST_MARK) {
  1535. if (states_equal(&sl->state, &env->cur_state))
  1536. /* reached equivalent register/stack state,
  1537. * prune the search
  1538. */
  1539. return 1;
  1540. sl = sl->next;
  1541. }
  1542. /* there were no equivalent states, remember current one.
  1543. * technically the current state is not proven to be safe yet,
  1544. * but it will either reach bpf_exit (which means it's safe) or
  1545. * it will be rejected. Since there are no loops, we won't be
  1546. * seeing this 'insn_idx' instruction again on the way to bpf_exit
  1547. */
  1548. new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
  1549. if (!new_sl)
  1550. return -ENOMEM;
  1551. /* add new state to the head of linked list */
  1552. memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
  1553. new_sl->next = env->explored_states[insn_idx];
  1554. env->explored_states[insn_idx] = new_sl;
  1555. return 0;
  1556. }
  1557. static int do_check(struct verifier_env *env)
  1558. {
  1559. struct verifier_state *state = &env->cur_state;
  1560. struct bpf_insn *insns = env->prog->insnsi;
  1561. struct reg_state *regs = state->regs;
  1562. int insn_cnt = env->prog->len;
  1563. int insn_idx, prev_insn_idx = 0;
  1564. int insn_processed = 0;
  1565. bool do_print_state = false;
  1566. init_reg_state(regs);
  1567. insn_idx = 0;
  1568. for (;;) {
  1569. struct bpf_insn *insn;
  1570. u8 class;
  1571. int err;
  1572. if (insn_idx >= insn_cnt) {
  1573. verbose("invalid insn idx %d insn_cnt %d\n",
  1574. insn_idx, insn_cnt);
  1575. return -EFAULT;
  1576. }
  1577. insn = &insns[insn_idx];
  1578. class = BPF_CLASS(insn->code);
  1579. if (++insn_processed > 32768) {
  1580. verbose("BPF program is too large. Proccessed %d insn\n",
  1581. insn_processed);
  1582. return -E2BIG;
  1583. }
  1584. err = is_state_visited(env, insn_idx);
  1585. if (err < 0)
  1586. return err;
  1587. if (err == 1) {
  1588. /* found equivalent state, can prune the search */
  1589. if (log_level) {
  1590. if (do_print_state)
  1591. verbose("\nfrom %d to %d: safe\n",
  1592. prev_insn_idx, insn_idx);
  1593. else
  1594. verbose("%d: safe\n", insn_idx);
  1595. }
  1596. goto process_bpf_exit;
  1597. }
  1598. if (log_level && do_print_state) {
  1599. verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
  1600. print_verifier_state(env);
  1601. do_print_state = false;
  1602. }
  1603. if (log_level) {
  1604. verbose("%d: ", insn_idx);
  1605. print_bpf_insn(insn);
  1606. }
  1607. if (class == BPF_ALU || class == BPF_ALU64) {
  1608. err = check_alu_op(env, insn);
  1609. if (err)
  1610. return err;
  1611. } else if (class == BPF_LDX) {
  1612. enum bpf_reg_type src_reg_type;
  1613. /* check for reserved fields is already done */
  1614. /* check src operand */
  1615. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1616. if (err)
  1617. return err;
  1618. err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
  1619. if (err)
  1620. return err;
  1621. src_reg_type = regs[insn->src_reg].type;
  1622. /* check that memory (src_reg + off) is readable,
  1623. * the state of dst_reg will be updated by this func
  1624. */
  1625. err = check_mem_access(env, insn->src_reg, insn->off,
  1626. BPF_SIZE(insn->code), BPF_READ,
  1627. insn->dst_reg);
  1628. if (err)
  1629. return err;
  1630. if (BPF_SIZE(insn->code) != BPF_W) {
  1631. insn_idx++;
  1632. continue;
  1633. }
  1634. if (insn->imm == 0) {
  1635. /* saw a valid insn
  1636. * dst_reg = *(u32 *)(src_reg + off)
  1637. * use reserved 'imm' field to mark this insn
  1638. */
  1639. insn->imm = src_reg_type;
  1640. } else if (src_reg_type != insn->imm &&
  1641. (src_reg_type == PTR_TO_CTX ||
  1642. insn->imm == PTR_TO_CTX)) {
  1643. /* ABuser program is trying to use the same insn
  1644. * dst_reg = *(u32*) (src_reg + off)
  1645. * with different pointer types:
  1646. * src_reg == ctx in one branch and
  1647. * src_reg == stack|map in some other branch.
  1648. * Reject it.
  1649. */
  1650. verbose("same insn cannot be used with different pointers\n");
  1651. return -EINVAL;
  1652. }
  1653. } else if (class == BPF_STX) {
  1654. enum bpf_reg_type dst_reg_type;
  1655. if (BPF_MODE(insn->code) == BPF_XADD) {
  1656. err = check_xadd(env, insn);
  1657. if (err)
  1658. return err;
  1659. insn_idx++;
  1660. continue;
  1661. }
  1662. /* check src1 operand */
  1663. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1664. if (err)
  1665. return err;
  1666. /* check src2 operand */
  1667. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1668. if (err)
  1669. return err;
  1670. dst_reg_type = regs[insn->dst_reg].type;
  1671. /* check that memory (dst_reg + off) is writeable */
  1672. err = check_mem_access(env, insn->dst_reg, insn->off,
  1673. BPF_SIZE(insn->code), BPF_WRITE,
  1674. insn->src_reg);
  1675. if (err)
  1676. return err;
  1677. if (insn->imm == 0) {
  1678. insn->imm = dst_reg_type;
  1679. } else if (dst_reg_type != insn->imm &&
  1680. (dst_reg_type == PTR_TO_CTX ||
  1681. insn->imm == PTR_TO_CTX)) {
  1682. verbose("same insn cannot be used with different pointers\n");
  1683. return -EINVAL;
  1684. }
  1685. } else if (class == BPF_ST) {
  1686. if (BPF_MODE(insn->code) != BPF_MEM ||
  1687. insn->src_reg != BPF_REG_0) {
  1688. verbose("BPF_ST uses reserved fields\n");
  1689. return -EINVAL;
  1690. }
  1691. /* check src operand */
  1692. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1693. if (err)
  1694. return err;
  1695. /* check that memory (dst_reg + off) is writeable */
  1696. err = check_mem_access(env, insn->dst_reg, insn->off,
  1697. BPF_SIZE(insn->code), BPF_WRITE,
  1698. -1);
  1699. if (err)
  1700. return err;
  1701. } else if (class == BPF_JMP) {
  1702. u8 opcode = BPF_OP(insn->code);
  1703. if (opcode == BPF_CALL) {
  1704. if (BPF_SRC(insn->code) != BPF_K ||
  1705. insn->off != 0 ||
  1706. insn->src_reg != BPF_REG_0 ||
  1707. insn->dst_reg != BPF_REG_0) {
  1708. verbose("BPF_CALL uses reserved fields\n");
  1709. return -EINVAL;
  1710. }
  1711. err = check_call(env, insn->imm);
  1712. if (err)
  1713. return err;
  1714. } else if (opcode == BPF_JA) {
  1715. if (BPF_SRC(insn->code) != BPF_K ||
  1716. insn->imm != 0 ||
  1717. insn->src_reg != BPF_REG_0 ||
  1718. insn->dst_reg != BPF_REG_0) {
  1719. verbose("BPF_JA uses reserved fields\n");
  1720. return -EINVAL;
  1721. }
  1722. insn_idx += insn->off + 1;
  1723. continue;
  1724. } else if (opcode == BPF_EXIT) {
  1725. if (BPF_SRC(insn->code) != BPF_K ||
  1726. insn->imm != 0 ||
  1727. insn->src_reg != BPF_REG_0 ||
  1728. insn->dst_reg != BPF_REG_0) {
  1729. verbose("BPF_EXIT uses reserved fields\n");
  1730. return -EINVAL;
  1731. }
  1732. /* eBPF calling convetion is such that R0 is used
  1733. * to return the value from eBPF program.
  1734. * Make sure that it's readable at this time
  1735. * of bpf_exit, which means that program wrote
  1736. * something into it earlier
  1737. */
  1738. err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
  1739. if (err)
  1740. return err;
  1741. if (is_pointer_value(env, BPF_REG_0)) {
  1742. verbose("R0 leaks addr as return value\n");
  1743. return -EACCES;
  1744. }
  1745. process_bpf_exit:
  1746. insn_idx = pop_stack(env, &prev_insn_idx);
  1747. if (insn_idx < 0) {
  1748. break;
  1749. } else {
  1750. do_print_state = true;
  1751. continue;
  1752. }
  1753. } else {
  1754. err = check_cond_jmp_op(env, insn, &insn_idx);
  1755. if (err)
  1756. return err;
  1757. }
  1758. } else if (class == BPF_LD) {
  1759. u8 mode = BPF_MODE(insn->code);
  1760. if (mode == BPF_ABS || mode == BPF_IND) {
  1761. err = check_ld_abs(env, insn);
  1762. if (err)
  1763. return err;
  1764. } else if (mode == BPF_IMM) {
  1765. err = check_ld_imm(env, insn);
  1766. if (err)
  1767. return err;
  1768. insn_idx++;
  1769. } else {
  1770. verbose("invalid BPF_LD mode\n");
  1771. return -EINVAL;
  1772. }
  1773. } else {
  1774. verbose("unknown insn class %d\n", class);
  1775. return -EINVAL;
  1776. }
  1777. insn_idx++;
  1778. }
  1779. return 0;
  1780. }
  1781. /* look for pseudo eBPF instructions that access map FDs and
  1782. * replace them with actual map pointers
  1783. */
  1784. static int replace_map_fd_with_map_ptr(struct verifier_env *env)
  1785. {
  1786. struct bpf_insn *insn = env->prog->insnsi;
  1787. int insn_cnt = env->prog->len;
  1788. int i, j;
  1789. for (i = 0; i < insn_cnt; i++, insn++) {
  1790. if (BPF_CLASS(insn->code) == BPF_LDX &&
  1791. (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
  1792. verbose("BPF_LDX uses reserved fields\n");
  1793. return -EINVAL;
  1794. }
  1795. if (BPF_CLASS(insn->code) == BPF_STX &&
  1796. ((BPF_MODE(insn->code) != BPF_MEM &&
  1797. BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
  1798. verbose("BPF_STX uses reserved fields\n");
  1799. return -EINVAL;
  1800. }
  1801. if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
  1802. struct bpf_map *map;
  1803. struct fd f;
  1804. if (i == insn_cnt - 1 || insn[1].code != 0 ||
  1805. insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
  1806. insn[1].off != 0) {
  1807. verbose("invalid bpf_ld_imm64 insn\n");
  1808. return -EINVAL;
  1809. }
  1810. if (insn->src_reg == 0)
  1811. /* valid generic load 64-bit imm */
  1812. goto next_insn;
  1813. if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
  1814. verbose("unrecognized bpf_ld_imm64 insn\n");
  1815. return -EINVAL;
  1816. }
  1817. f = fdget(insn->imm);
  1818. map = __bpf_map_get(f);
  1819. if (IS_ERR(map)) {
  1820. verbose("fd %d is not pointing to valid bpf_map\n",
  1821. insn->imm);
  1822. return PTR_ERR(map);
  1823. }
  1824. /* store map pointer inside BPF_LD_IMM64 instruction */
  1825. insn[0].imm = (u32) (unsigned long) map;
  1826. insn[1].imm = ((u64) (unsigned long) map) >> 32;
  1827. /* check whether we recorded this map already */
  1828. for (j = 0; j < env->used_map_cnt; j++)
  1829. if (env->used_maps[j] == map) {
  1830. fdput(f);
  1831. goto next_insn;
  1832. }
  1833. if (env->used_map_cnt >= MAX_USED_MAPS) {
  1834. fdput(f);
  1835. return -E2BIG;
  1836. }
  1837. /* hold the map. If the program is rejected by verifier,
  1838. * the map will be released by release_maps() or it
  1839. * will be used by the valid program until it's unloaded
  1840. * and all maps are released in free_bpf_prog_info()
  1841. */
  1842. map = bpf_map_inc(map, false);
  1843. if (IS_ERR(map)) {
  1844. fdput(f);
  1845. return PTR_ERR(map);
  1846. }
  1847. env->used_maps[env->used_map_cnt++] = map;
  1848. fdput(f);
  1849. next_insn:
  1850. insn++;
  1851. i++;
  1852. }
  1853. }
  1854. /* now all pseudo BPF_LD_IMM64 instructions load valid
  1855. * 'struct bpf_map *' into a register instead of user map_fd.
  1856. * These pointers will be used later by verifier to validate map access.
  1857. */
  1858. return 0;
  1859. }
  1860. /* drop refcnt of maps used by the rejected program */
  1861. static void release_maps(struct verifier_env *env)
  1862. {
  1863. int i;
  1864. for (i = 0; i < env->used_map_cnt; i++)
  1865. bpf_map_put(env->used_maps[i]);
  1866. }
  1867. /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
  1868. static void convert_pseudo_ld_imm64(struct verifier_env *env)
  1869. {
  1870. struct bpf_insn *insn = env->prog->insnsi;
  1871. int insn_cnt = env->prog->len;
  1872. int i;
  1873. for (i = 0; i < insn_cnt; i++, insn++)
  1874. if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
  1875. insn->src_reg = 0;
  1876. }
  1877. static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
  1878. {
  1879. struct bpf_insn *insn = prog->insnsi;
  1880. int insn_cnt = prog->len;
  1881. int i;
  1882. for (i = 0; i < insn_cnt; i++, insn++) {
  1883. if (BPF_CLASS(insn->code) != BPF_JMP ||
  1884. BPF_OP(insn->code) == BPF_CALL ||
  1885. BPF_OP(insn->code) == BPF_EXIT)
  1886. continue;
  1887. /* adjust offset of jmps if necessary */
  1888. if (i < pos && i + insn->off + 1 > pos)
  1889. insn->off += delta;
  1890. else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
  1891. insn->off -= delta;
  1892. }
  1893. }
  1894. /* convert load instructions that access fields of 'struct __sk_buff'
  1895. * into sequence of instructions that access fields of 'struct sk_buff'
  1896. */
  1897. static int convert_ctx_accesses(struct verifier_env *env)
  1898. {
  1899. struct bpf_insn *insn = env->prog->insnsi;
  1900. int insn_cnt = env->prog->len;
  1901. struct bpf_insn insn_buf[16];
  1902. struct bpf_prog *new_prog;
  1903. u32 cnt;
  1904. int i;
  1905. enum bpf_access_type type;
  1906. if (!env->prog->aux->ops->convert_ctx_access)
  1907. return 0;
  1908. for (i = 0; i < insn_cnt; i++, insn++) {
  1909. if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
  1910. type = BPF_READ;
  1911. else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
  1912. type = BPF_WRITE;
  1913. else
  1914. continue;
  1915. if (insn->imm != PTR_TO_CTX) {
  1916. /* clear internal mark */
  1917. insn->imm = 0;
  1918. continue;
  1919. }
  1920. cnt = env->prog->aux->ops->
  1921. convert_ctx_access(type, insn->dst_reg, insn->src_reg,
  1922. insn->off, insn_buf, env->prog);
  1923. if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
  1924. verbose("bpf verifier is misconfigured\n");
  1925. return -EINVAL;
  1926. }
  1927. if (cnt == 1) {
  1928. memcpy(insn, insn_buf, sizeof(*insn));
  1929. continue;
  1930. }
  1931. /* several new insns need to be inserted. Make room for them */
  1932. insn_cnt += cnt - 1;
  1933. new_prog = bpf_prog_realloc(env->prog,
  1934. bpf_prog_size(insn_cnt),
  1935. GFP_USER);
  1936. if (!new_prog)
  1937. return -ENOMEM;
  1938. new_prog->len = insn_cnt;
  1939. memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
  1940. sizeof(*insn) * (insn_cnt - i - cnt));
  1941. /* copy substitute insns in place of load instruction */
  1942. memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
  1943. /* adjust branches in the whole program */
  1944. adjust_branches(new_prog, i, cnt - 1);
  1945. /* keep walking new program and skip insns we just inserted */
  1946. env->prog = new_prog;
  1947. insn = new_prog->insnsi + i + cnt - 1;
  1948. i += cnt - 1;
  1949. }
  1950. return 0;
  1951. }
  1952. static void free_states(struct verifier_env *env)
  1953. {
  1954. struct verifier_state_list *sl, *sln;
  1955. int i;
  1956. if (!env->explored_states)
  1957. return;
  1958. for (i = 0; i < env->prog->len; i++) {
  1959. sl = env->explored_states[i];
  1960. if (sl)
  1961. while (sl != STATE_LIST_MARK) {
  1962. sln = sl->next;
  1963. kfree(sl);
  1964. sl = sln;
  1965. }
  1966. }
  1967. kfree(env->explored_states);
  1968. }
  1969. int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
  1970. {
  1971. char __user *log_ubuf = NULL;
  1972. struct verifier_env *env;
  1973. int ret = -EINVAL;
  1974. if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
  1975. return -E2BIG;
  1976. /* 'struct verifier_env' can be global, but since it's not small,
  1977. * allocate/free it every time bpf_check() is called
  1978. */
  1979. env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
  1980. if (!env)
  1981. return -ENOMEM;
  1982. env->prog = *prog;
  1983. /* grab the mutex to protect few globals used by verifier */
  1984. mutex_lock(&bpf_verifier_lock);
  1985. if (attr->log_level || attr->log_buf || attr->log_size) {
  1986. /* user requested verbose verifier output
  1987. * and supplied buffer to store the verification trace
  1988. */
  1989. log_level = attr->log_level;
  1990. log_ubuf = (char __user *) (unsigned long) attr->log_buf;
  1991. log_size = attr->log_size;
  1992. log_len = 0;
  1993. ret = -EINVAL;
  1994. /* log_* values have to be sane */
  1995. if (log_size < 128 || log_size > UINT_MAX >> 8 ||
  1996. log_level == 0 || log_ubuf == NULL)
  1997. goto free_env;
  1998. ret = -ENOMEM;
  1999. log_buf = vmalloc(log_size);
  2000. if (!log_buf)
  2001. goto free_env;
  2002. } else {
  2003. log_level = 0;
  2004. }
  2005. ret = replace_map_fd_with_map_ptr(env);
  2006. if (ret < 0)
  2007. goto skip_full_check;
  2008. env->explored_states = kcalloc(env->prog->len,
  2009. sizeof(struct verifier_state_list *),
  2010. GFP_USER);
  2011. ret = -ENOMEM;
  2012. if (!env->explored_states)
  2013. goto skip_full_check;
  2014. ret = check_cfg(env);
  2015. if (ret < 0)
  2016. goto skip_full_check;
  2017. env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
  2018. ret = do_check(env);
  2019. skip_full_check:
  2020. while (pop_stack(env, NULL) >= 0);
  2021. free_states(env);
  2022. if (ret == 0)
  2023. /* program is valid, convert *(u32*)(ctx + off) accesses */
  2024. ret = convert_ctx_accesses(env);
  2025. if (log_level && log_len >= log_size - 1) {
  2026. BUG_ON(log_len >= log_size);
  2027. /* verifier log exceeded user supplied buffer */
  2028. ret = -ENOSPC;
  2029. /* fall through to return what was recorded */
  2030. }
  2031. /* copy verifier log back to user space including trailing zero */
  2032. if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
  2033. ret = -EFAULT;
  2034. goto free_log_buf;
  2035. }
  2036. if (ret == 0 && env->used_map_cnt) {
  2037. /* if program passed verifier, update used_maps in bpf_prog_info */
  2038. env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
  2039. sizeof(env->used_maps[0]),
  2040. GFP_KERNEL);
  2041. if (!env->prog->aux->used_maps) {
  2042. ret = -ENOMEM;
  2043. goto free_log_buf;
  2044. }
  2045. memcpy(env->prog->aux->used_maps, env->used_maps,
  2046. sizeof(env->used_maps[0]) * env->used_map_cnt);
  2047. env->prog->aux->used_map_cnt = env->used_map_cnt;
  2048. /* program is valid. Convert pseudo bpf_ld_imm64 into generic
  2049. * bpf_ld_imm64 instructions
  2050. */
  2051. convert_pseudo_ld_imm64(env);
  2052. }
  2053. free_log_buf:
  2054. if (log_level)
  2055. vfree(log_buf);
  2056. free_env:
  2057. if (!env->prog->aux->used_maps)
  2058. /* if we didn't copy map pointers into bpf_prog_info, release
  2059. * them now. Otherwise free_bpf_prog_info() will release them.
  2060. */
  2061. release_maps(env);
  2062. *prog = env->prog;
  2063. kfree(env);
  2064. mutex_unlock(&bpf_verifier_lock);
  2065. return ret;
  2066. }