cpuid.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. * cpuid support routines
  4. *
  5. * derived from arch/x86/kvm/x86.c
  6. *
  7. * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * This work is licensed under the terms of the GNU GPL, version 2. See
  11. * the COPYING file in the top-level directory.
  12. *
  13. */
  14. #include <linux/kvm_host.h>
  15. #include <linux/export.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/uaccess.h>
  18. #include <linux/sched/stat.h>
  19. #include <asm/processor.h>
  20. #include <asm/user.h>
  21. #include <asm/fpu/xstate.h>
  22. #include "cpuid.h"
  23. #include "lapic.h"
  24. #include "mmu.h"
  25. #include "trace.h"
  26. #include "pmu.h"
  27. static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  28. {
  29. int feature_bit = 0;
  30. u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  31. xstate_bv &= XFEATURE_MASK_EXTEND;
  32. while (xstate_bv) {
  33. if (xstate_bv & 0x1) {
  34. u32 eax, ebx, ecx, edx, offset;
  35. cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  36. offset = compacted ? ret : ebx;
  37. ret = max(ret, offset + eax);
  38. }
  39. xstate_bv >>= 1;
  40. feature_bit++;
  41. }
  42. return ret;
  43. }
  44. bool kvm_mpx_supported(void)
  45. {
  46. return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
  47. && kvm_x86_ops->mpx_supported());
  48. }
  49. EXPORT_SYMBOL_GPL(kvm_mpx_supported);
  50. u64 kvm_supported_xcr0(void)
  51. {
  52. u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  53. if (!kvm_mpx_supported())
  54. xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
  55. return xcr0;
  56. }
  57. #define F(x) bit(X86_FEATURE_##x)
  58. /* For scattered features from cpufeatures.h; we currently expose none */
  59. #define KF(x) bit(KVM_CPUID_BIT_##x)
  60. int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  61. {
  62. struct kvm_cpuid_entry2 *best;
  63. struct kvm_lapic *apic = vcpu->arch.apic;
  64. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  65. if (!best)
  66. return 0;
  67. /* Update OSXSAVE bit */
  68. if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
  69. best->ecx &= ~F(OSXSAVE);
  70. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  71. best->ecx |= F(OSXSAVE);
  72. }
  73. best->edx &= ~F(APIC);
  74. if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
  75. best->edx |= F(APIC);
  76. if (apic) {
  77. if (best->ecx & F(TSC_DEADLINE_TIMER))
  78. apic->lapic_timer.timer_mode_mask = 3 << 17;
  79. else
  80. apic->lapic_timer.timer_mode_mask = 1 << 17;
  81. }
  82. best = kvm_find_cpuid_entry(vcpu, 7, 0);
  83. if (best) {
  84. /* Update OSPKE bit */
  85. if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
  86. best->ecx &= ~F(OSPKE);
  87. if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
  88. best->ecx |= F(OSPKE);
  89. }
  90. }
  91. best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  92. if (!best) {
  93. vcpu->arch.guest_supported_xcr0 = 0;
  94. vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  95. } else {
  96. vcpu->arch.guest_supported_xcr0 =
  97. (best->eax | ((u64)best->edx << 32)) &
  98. kvm_supported_xcr0();
  99. vcpu->arch.guest_xstate_size = best->ebx =
  100. xstate_required_size(vcpu->arch.xcr0, false);
  101. }
  102. best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
  103. if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
  104. best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
  105. /*
  106. * The existing code assumes virtual address is 48-bit or 57-bit in the
  107. * canonical address checks; exit if it is ever changed.
  108. */
  109. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  110. if (best) {
  111. int vaddr_bits = (best->eax & 0xff00) >> 8;
  112. if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  113. return -EINVAL;
  114. }
  115. /* Update physical-address width */
  116. vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
  117. kvm_mmu_reset_context(vcpu);
  118. kvm_pmu_refresh(vcpu);
  119. return 0;
  120. }
  121. static int is_efer_nx(void)
  122. {
  123. unsigned long long efer = 0;
  124. rdmsrl_safe(MSR_EFER, &efer);
  125. return efer & EFER_NX;
  126. }
  127. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  128. {
  129. int i;
  130. struct kvm_cpuid_entry2 *e, *entry;
  131. entry = NULL;
  132. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  133. e = &vcpu->arch.cpuid_entries[i];
  134. if (e->function == 0x80000001) {
  135. entry = e;
  136. break;
  137. }
  138. }
  139. if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
  140. entry->edx &= ~F(NX);
  141. printk(KERN_INFO "kvm: guest NX capability removed\n");
  142. }
  143. }
  144. int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
  145. {
  146. struct kvm_cpuid_entry2 *best;
  147. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  148. if (!best || best->eax < 0x80000008)
  149. goto not_found;
  150. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  151. if (best)
  152. return best->eax & 0xff;
  153. not_found:
  154. return 36;
  155. }
  156. EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
  157. /* when an old userspace process fills a new kernel module */
  158. int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  159. struct kvm_cpuid *cpuid,
  160. struct kvm_cpuid_entry __user *entries)
  161. {
  162. int r, i;
  163. struct kvm_cpuid_entry *cpuid_entries = NULL;
  164. r = -E2BIG;
  165. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  166. goto out;
  167. r = -ENOMEM;
  168. if (cpuid->nent) {
  169. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
  170. cpuid->nent);
  171. if (!cpuid_entries)
  172. goto out;
  173. r = -EFAULT;
  174. if (copy_from_user(cpuid_entries, entries,
  175. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  176. goto out;
  177. }
  178. for (i = 0; i < cpuid->nent; i++) {
  179. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  180. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  181. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  182. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  183. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  184. vcpu->arch.cpuid_entries[i].index = 0;
  185. vcpu->arch.cpuid_entries[i].flags = 0;
  186. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  187. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  188. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  189. }
  190. vcpu->arch.cpuid_nent = cpuid->nent;
  191. cpuid_fix_nx_cap(vcpu);
  192. kvm_apic_set_version(vcpu);
  193. kvm_x86_ops->cpuid_update(vcpu);
  194. r = kvm_update_cpuid(vcpu);
  195. out:
  196. vfree(cpuid_entries);
  197. return r;
  198. }
  199. int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  200. struct kvm_cpuid2 *cpuid,
  201. struct kvm_cpuid_entry2 __user *entries)
  202. {
  203. int r;
  204. r = -E2BIG;
  205. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  206. goto out;
  207. r = -EFAULT;
  208. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  209. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  210. goto out;
  211. vcpu->arch.cpuid_nent = cpuid->nent;
  212. kvm_apic_set_version(vcpu);
  213. kvm_x86_ops->cpuid_update(vcpu);
  214. r = kvm_update_cpuid(vcpu);
  215. out:
  216. return r;
  217. }
  218. int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  219. struct kvm_cpuid2 *cpuid,
  220. struct kvm_cpuid_entry2 __user *entries)
  221. {
  222. int r;
  223. r = -E2BIG;
  224. if (cpuid->nent < vcpu->arch.cpuid_nent)
  225. goto out;
  226. r = -EFAULT;
  227. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  228. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  229. goto out;
  230. return 0;
  231. out:
  232. cpuid->nent = vcpu->arch.cpuid_nent;
  233. return r;
  234. }
  235. static void cpuid_mask(u32 *word, int wordnum)
  236. {
  237. *word &= boot_cpu_data.x86_capability[wordnum];
  238. }
  239. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  240. u32 index)
  241. {
  242. entry->function = function;
  243. entry->index = index;
  244. cpuid_count(entry->function, entry->index,
  245. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  246. entry->flags = 0;
  247. }
  248. static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
  249. u32 func, u32 index, int *nent, int maxnent)
  250. {
  251. switch (func) {
  252. case 0:
  253. entry->eax = 1; /* only one leaf currently */
  254. ++*nent;
  255. break;
  256. case 1:
  257. entry->ecx = F(MOVBE);
  258. ++*nent;
  259. break;
  260. default:
  261. break;
  262. }
  263. entry->function = func;
  264. entry->index = index;
  265. return 0;
  266. }
  267. static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  268. u32 index, int *nent, int maxnent)
  269. {
  270. int r;
  271. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  272. #ifdef CONFIG_X86_64
  273. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  274. ? F(GBPAGES) : 0;
  275. unsigned f_lm = F(LM);
  276. #else
  277. unsigned f_gbpages = 0;
  278. unsigned f_lm = 0;
  279. #endif
  280. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  281. unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
  282. unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
  283. unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
  284. /* cpuid 1.edx */
  285. const u32 kvm_cpuid_1_edx_x86_features =
  286. F(FPU) | F(VME) | F(DE) | F(PSE) |
  287. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  288. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  289. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  290. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
  291. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  292. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  293. 0 /* HTT, TM, Reserved, PBE */;
  294. /* cpuid 0x80000001.edx */
  295. const u32 kvm_cpuid_8000_0001_edx_x86_features =
  296. F(FPU) | F(VME) | F(DE) | F(PSE) |
  297. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  298. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  299. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  300. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  301. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  302. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  303. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  304. /* cpuid 1.ecx */
  305. const u32 kvm_cpuid_1_ecx_x86_features =
  306. /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
  307. * but *not* advertised to guests via CPUID ! */
  308. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  309. 0 /* DS-CPL, VMX, SMX, EST */ |
  310. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  311. F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
  312. F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
  313. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  314. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  315. F(F16C) | F(RDRAND);
  316. /* cpuid 0x80000001.ecx */
  317. const u32 kvm_cpuid_8000_0001_ecx_x86_features =
  318. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  319. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  320. F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
  321. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  322. /* cpuid 0xC0000001.edx */
  323. const u32 kvm_cpuid_C000_0001_edx_x86_features =
  324. F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
  325. F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
  326. F(PMM) | F(PMM_EN);
  327. /* cpuid 7.0.ebx */
  328. const u32 kvm_cpuid_7_0_ebx_x86_features =
  329. F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
  330. F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
  331. F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
  332. F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
  333. F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
  334. /* cpuid 0xD.1.eax */
  335. const u32 kvm_cpuid_D_1_eax_x86_features =
  336. F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
  337. /* cpuid 7.0.ecx*/
  338. const u32 kvm_cpuid_7_0_ecx_x86_features =
  339. F(AVX512VBMI) | F(LA57) | F(PKU) |
  340. 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
  341. /* cpuid 7.0.edx*/
  342. const u32 kvm_cpuid_7_0_edx_x86_features =
  343. F(AVX512_4VNNIW) | F(AVX512_4FMAPS);
  344. /* all calls to cpuid_count() should be made on the same cpu */
  345. get_cpu();
  346. r = -E2BIG;
  347. if (*nent >= maxnent)
  348. goto out;
  349. do_cpuid_1_ent(entry, function, index);
  350. ++*nent;
  351. switch (function) {
  352. case 0:
  353. entry->eax = min(entry->eax, (u32)0xd);
  354. break;
  355. case 1:
  356. entry->edx &= kvm_cpuid_1_edx_x86_features;
  357. cpuid_mask(&entry->edx, CPUID_1_EDX);
  358. entry->ecx &= kvm_cpuid_1_ecx_x86_features;
  359. cpuid_mask(&entry->ecx, CPUID_1_ECX);
  360. /* we support x2apic emulation even if host does not support
  361. * it since we emulate x2apic in software */
  362. entry->ecx |= F(X2APIC);
  363. break;
  364. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  365. * may return different values. This forces us to get_cpu() before
  366. * issuing the first command, and also to emulate this annoying behavior
  367. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  368. case 2: {
  369. int t, times = entry->eax & 0xff;
  370. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  371. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  372. for (t = 1; t < times; ++t) {
  373. if (*nent >= maxnent)
  374. goto out;
  375. do_cpuid_1_ent(&entry[t], function, 0);
  376. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  377. ++*nent;
  378. }
  379. break;
  380. }
  381. /* function 4 has additional index. */
  382. case 4: {
  383. int i, cache_type;
  384. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  385. /* read more entries until cache_type is zero */
  386. for (i = 1; ; ++i) {
  387. if (*nent >= maxnent)
  388. goto out;
  389. cache_type = entry[i - 1].eax & 0x1f;
  390. if (!cache_type)
  391. break;
  392. do_cpuid_1_ent(&entry[i], function, i);
  393. entry[i].flags |=
  394. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  395. ++*nent;
  396. }
  397. break;
  398. }
  399. case 6: /* Thermal management */
  400. entry->eax = 0x4; /* allow ARAT */
  401. entry->ebx = 0;
  402. entry->ecx = 0;
  403. entry->edx = 0;
  404. break;
  405. case 7: {
  406. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  407. /* Mask ebx against host capability word 9 */
  408. if (index == 0) {
  409. entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
  410. cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
  411. // TSC_ADJUST is emulated
  412. entry->ebx |= F(TSC_ADJUST);
  413. entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
  414. cpuid_mask(&entry->ecx, CPUID_7_ECX);
  415. /* PKU is not yet implemented for shadow paging. */
  416. if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
  417. entry->ecx &= ~F(PKU);
  418. entry->edx &= kvm_cpuid_7_0_edx_x86_features;
  419. cpuid_mask(&entry->edx, CPUID_7_EDX);
  420. } else {
  421. entry->ebx = 0;
  422. entry->ecx = 0;
  423. entry->edx = 0;
  424. }
  425. entry->eax = 0;
  426. break;
  427. }
  428. case 9:
  429. break;
  430. case 0xa: { /* Architectural Performance Monitoring */
  431. struct x86_pmu_capability cap;
  432. union cpuid10_eax eax;
  433. union cpuid10_edx edx;
  434. perf_get_x86_pmu_capability(&cap);
  435. /*
  436. * Only support guest architectural pmu on a host
  437. * with architectural pmu.
  438. */
  439. if (!cap.version)
  440. memset(&cap, 0, sizeof(cap));
  441. eax.split.version_id = min(cap.version, 2);
  442. eax.split.num_counters = cap.num_counters_gp;
  443. eax.split.bit_width = cap.bit_width_gp;
  444. eax.split.mask_length = cap.events_mask_len;
  445. edx.split.num_counters_fixed = cap.num_counters_fixed;
  446. edx.split.bit_width_fixed = cap.bit_width_fixed;
  447. edx.split.reserved = 0;
  448. entry->eax = eax.full;
  449. entry->ebx = cap.events_mask;
  450. entry->ecx = 0;
  451. entry->edx = edx.full;
  452. break;
  453. }
  454. /* function 0xb has additional index. */
  455. case 0xb: {
  456. int i, level_type;
  457. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  458. /* read more entries until level_type is zero */
  459. for (i = 1; ; ++i) {
  460. if (*nent >= maxnent)
  461. goto out;
  462. level_type = entry[i - 1].ecx & 0xff00;
  463. if (!level_type)
  464. break;
  465. do_cpuid_1_ent(&entry[i], function, i);
  466. entry[i].flags |=
  467. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  468. ++*nent;
  469. }
  470. break;
  471. }
  472. case 0xd: {
  473. int idx, i;
  474. u64 supported = kvm_supported_xcr0();
  475. entry->eax &= supported;
  476. entry->ebx = xstate_required_size(supported, false);
  477. entry->ecx = entry->ebx;
  478. entry->edx &= supported >> 32;
  479. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  480. if (!supported)
  481. break;
  482. for (idx = 1, i = 1; idx < 64; ++idx) {
  483. u64 mask = ((u64)1 << idx);
  484. if (*nent >= maxnent)
  485. goto out;
  486. do_cpuid_1_ent(&entry[i], function, idx);
  487. if (idx == 1) {
  488. entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
  489. cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
  490. entry[i].ebx = 0;
  491. if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
  492. entry[i].ebx =
  493. xstate_required_size(supported,
  494. true);
  495. } else {
  496. if (entry[i].eax == 0 || !(supported & mask))
  497. continue;
  498. if (WARN_ON_ONCE(entry[i].ecx & 1))
  499. continue;
  500. }
  501. entry[i].ecx = 0;
  502. entry[i].edx = 0;
  503. entry[i].flags |=
  504. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  505. ++*nent;
  506. ++i;
  507. }
  508. break;
  509. }
  510. case KVM_CPUID_SIGNATURE: {
  511. static const char signature[12] = "KVMKVMKVM\0\0";
  512. const u32 *sigptr = (const u32 *)signature;
  513. entry->eax = KVM_CPUID_FEATURES;
  514. entry->ebx = sigptr[0];
  515. entry->ecx = sigptr[1];
  516. entry->edx = sigptr[2];
  517. break;
  518. }
  519. case KVM_CPUID_FEATURES:
  520. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  521. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  522. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  523. (1 << KVM_FEATURE_ASYNC_PF) |
  524. (1 << KVM_FEATURE_PV_EOI) |
  525. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
  526. (1 << KVM_FEATURE_PV_UNHALT);
  527. if (sched_info_on())
  528. entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
  529. entry->ebx = 0;
  530. entry->ecx = 0;
  531. entry->edx = 0;
  532. break;
  533. case 0x80000000:
  534. entry->eax = min(entry->eax, 0x8000001a);
  535. break;
  536. case 0x80000001:
  537. entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
  538. cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
  539. entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
  540. cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
  541. break;
  542. case 0x80000007: /* Advanced power management */
  543. /* invariant TSC is CPUID.80000007H:EDX[8] */
  544. entry->edx &= (1 << 8);
  545. /* mask against host */
  546. entry->edx &= boot_cpu_data.x86_power;
  547. entry->eax = entry->ebx = entry->ecx = 0;
  548. break;
  549. case 0x80000008: {
  550. unsigned g_phys_as = (entry->eax >> 16) & 0xff;
  551. unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
  552. unsigned phys_as = entry->eax & 0xff;
  553. if (!g_phys_as)
  554. g_phys_as = phys_as;
  555. entry->eax = g_phys_as | (virt_as << 8);
  556. entry->ebx = entry->edx = 0;
  557. break;
  558. }
  559. case 0x80000019:
  560. entry->ecx = entry->edx = 0;
  561. break;
  562. case 0x8000001a:
  563. break;
  564. case 0x8000001d:
  565. break;
  566. /*Add support for Centaur's CPUID instruction*/
  567. case 0xC0000000:
  568. /*Just support up to 0xC0000004 now*/
  569. entry->eax = min(entry->eax, 0xC0000004);
  570. break;
  571. case 0xC0000001:
  572. entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
  573. cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
  574. break;
  575. case 3: /* Processor serial number */
  576. case 5: /* MONITOR/MWAIT */
  577. case 0xC0000002:
  578. case 0xC0000003:
  579. case 0xC0000004:
  580. default:
  581. entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
  582. break;
  583. }
  584. kvm_x86_ops->set_supported_cpuid(function, entry);
  585. r = 0;
  586. out:
  587. put_cpu();
  588. return r;
  589. }
  590. static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
  591. u32 idx, int *nent, int maxnent, unsigned int type)
  592. {
  593. if (type == KVM_GET_EMULATED_CPUID)
  594. return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
  595. return __do_cpuid_ent(entry, func, idx, nent, maxnent);
  596. }
  597. #undef F
  598. struct kvm_cpuid_param {
  599. u32 func;
  600. u32 idx;
  601. bool has_leaf_count;
  602. bool (*qualifier)(const struct kvm_cpuid_param *param);
  603. };
  604. static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
  605. {
  606. return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
  607. }
  608. static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
  609. __u32 num_entries, unsigned int ioctl_type)
  610. {
  611. int i;
  612. __u32 pad[3];
  613. if (ioctl_type != KVM_GET_EMULATED_CPUID)
  614. return false;
  615. /*
  616. * We want to make sure that ->padding is being passed clean from
  617. * userspace in case we want to use it for something in the future.
  618. *
  619. * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
  620. * have to give ourselves satisfied only with the emulated side. /me
  621. * sheds a tear.
  622. */
  623. for (i = 0; i < num_entries; i++) {
  624. if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
  625. return true;
  626. if (pad[0] || pad[1] || pad[2])
  627. return true;
  628. }
  629. return false;
  630. }
  631. int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
  632. struct kvm_cpuid_entry2 __user *entries,
  633. unsigned int type)
  634. {
  635. struct kvm_cpuid_entry2 *cpuid_entries;
  636. int limit, nent = 0, r = -E2BIG, i;
  637. u32 func;
  638. static const struct kvm_cpuid_param param[] = {
  639. { .func = 0, .has_leaf_count = true },
  640. { .func = 0x80000000, .has_leaf_count = true },
  641. { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
  642. { .func = KVM_CPUID_SIGNATURE },
  643. { .func = KVM_CPUID_FEATURES },
  644. };
  645. if (cpuid->nent < 1)
  646. goto out;
  647. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  648. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  649. if (sanity_check_entries(entries, cpuid->nent, type))
  650. return -EINVAL;
  651. r = -ENOMEM;
  652. cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  653. if (!cpuid_entries)
  654. goto out;
  655. r = 0;
  656. for (i = 0; i < ARRAY_SIZE(param); i++) {
  657. const struct kvm_cpuid_param *ent = &param[i];
  658. if (ent->qualifier && !ent->qualifier(ent))
  659. continue;
  660. r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
  661. &nent, cpuid->nent, type);
  662. if (r)
  663. goto out_free;
  664. if (!ent->has_leaf_count)
  665. continue;
  666. limit = cpuid_entries[nent - 1].eax;
  667. for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
  668. r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
  669. &nent, cpuid->nent, type);
  670. if (r)
  671. goto out_free;
  672. }
  673. r = -EFAULT;
  674. if (copy_to_user(entries, cpuid_entries,
  675. nent * sizeof(struct kvm_cpuid_entry2)))
  676. goto out_free;
  677. cpuid->nent = nent;
  678. r = 0;
  679. out_free:
  680. vfree(cpuid_entries);
  681. out:
  682. return r;
  683. }
  684. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  685. {
  686. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  687. struct kvm_cpuid_entry2 *ej;
  688. int j = i;
  689. int nent = vcpu->arch.cpuid_nent;
  690. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  691. /* when no next entry is found, the current entry[i] is reselected */
  692. do {
  693. j = (j + 1) % nent;
  694. ej = &vcpu->arch.cpuid_entries[j];
  695. } while (ej->function != e->function);
  696. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  697. return j;
  698. }
  699. /* find an entry with matching function, matching index (if needed), and that
  700. * should be read next (if it's stateful) */
  701. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  702. u32 function, u32 index)
  703. {
  704. if (e->function != function)
  705. return 0;
  706. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  707. return 0;
  708. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  709. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  710. return 0;
  711. return 1;
  712. }
  713. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  714. u32 function, u32 index)
  715. {
  716. int i;
  717. struct kvm_cpuid_entry2 *best = NULL;
  718. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  719. struct kvm_cpuid_entry2 *e;
  720. e = &vcpu->arch.cpuid_entries[i];
  721. if (is_matching_cpuid_entry(e, function, index)) {
  722. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  723. move_to_next_stateful_cpuid_entry(vcpu, i);
  724. best = e;
  725. break;
  726. }
  727. }
  728. return best;
  729. }
  730. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  731. /*
  732. * If no match is found, check whether we exceed the vCPU's limit
  733. * and return the content of the highest valid _standard_ leaf instead.
  734. * This is to satisfy the CPUID specification.
  735. */
  736. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  737. u32 function, u32 index)
  738. {
  739. struct kvm_cpuid_entry2 *maxlevel;
  740. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  741. if (!maxlevel || maxlevel->eax >= function)
  742. return NULL;
  743. if (function & 0x80000000) {
  744. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  745. if (!maxlevel)
  746. return NULL;
  747. }
  748. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  749. }
  750. bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
  751. u32 *ecx, u32 *edx, bool check_limit)
  752. {
  753. u32 function = *eax, index = *ecx;
  754. struct kvm_cpuid_entry2 *best;
  755. bool entry_found = true;
  756. best = kvm_find_cpuid_entry(vcpu, function, index);
  757. if (!best) {
  758. entry_found = false;
  759. if (!check_limit)
  760. goto out;
  761. best = check_cpuid_limit(vcpu, function, index);
  762. }
  763. out:
  764. if (best) {
  765. *eax = best->eax;
  766. *ebx = best->ebx;
  767. *ecx = best->ecx;
  768. *edx = best->edx;
  769. } else
  770. *eax = *ebx = *ecx = *edx = 0;
  771. trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
  772. return entry_found;
  773. }
  774. EXPORT_SYMBOL_GPL(kvm_cpuid);
  775. int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  776. {
  777. u32 eax, ebx, ecx, edx;
  778. if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
  779. return 1;
  780. eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  781. ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  782. kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
  783. kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
  784. kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
  785. kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
  786. kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
  787. return kvm_skip_emulated_instruction(vcpu);
  788. }
  789. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);