fsl-quadspi.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /*
  2. * Freescale QuadSPI driver.
  3. *
  4. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/errno.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/sched.h>
  17. #include <linux/delay.h>
  18. #include <linux/io.h>
  19. #include <linux/clk.h>
  20. #include <linux/err.h>
  21. #include <linux/of.h>
  22. #include <linux/of_device.h>
  23. #include <linux/timer.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/completion.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/partitions.h>
  28. #include <linux/mtd/spi-nor.h>
  29. #include <linux/mutex.h>
  30. #include <linux/pm_qos.h>
  31. #include <linux/sizes.h>
  32. /* Controller needs driver to swap endian */
  33. #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0)
  34. /* Controller needs 4x internal clock */
  35. #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1)
  36. /*
  37. * TKT253890, Controller needs driver to fill txfifo till 16 byte to
  38. * trigger data transfer even though extern data will not transferred.
  39. */
  40. #define QUADSPI_QUIRK_TKT253890 (1 << 2)
  41. /* Controller cannot wake up from wait mode, TKT245618 */
  42. #define QUADSPI_QUIRK_TKT245618 (1 << 3)
  43. /* The registers */
  44. #define QUADSPI_MCR 0x00
  45. #define QUADSPI_MCR_RESERVED_SHIFT 16
  46. #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  47. #define QUADSPI_MCR_MDIS_SHIFT 14
  48. #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
  49. #define QUADSPI_MCR_CLR_TXF_SHIFT 11
  50. #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  51. #define QUADSPI_MCR_CLR_RXF_SHIFT 10
  52. #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  53. #define QUADSPI_MCR_DDR_EN_SHIFT 7
  54. #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  55. #define QUADSPI_MCR_END_CFG_SHIFT 2
  56. #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
  57. #define QUADSPI_MCR_SWRSTHD_SHIFT 1
  58. #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  59. #define QUADSPI_MCR_SWRSTSD_SHIFT 0
  60. #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  61. #define QUADSPI_IPCR 0x08
  62. #define QUADSPI_IPCR_SEQID_SHIFT 24
  63. #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  64. #define QUADSPI_BUF0CR 0x10
  65. #define QUADSPI_BUF1CR 0x14
  66. #define QUADSPI_BUF2CR 0x18
  67. #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
  68. #define QUADSPI_BUF3CR 0x1c
  69. #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
  70. #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  71. #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
  72. #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  73. #define QUADSPI_BFGENCR 0x20
  74. #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
  75. #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  76. #define QUADSPI_BFGENCR_SEQID_SHIFT 12
  77. #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  78. #define QUADSPI_BUF0IND 0x30
  79. #define QUADSPI_BUF1IND 0x34
  80. #define QUADSPI_BUF2IND 0x38
  81. #define QUADSPI_SFAR 0x100
  82. #define QUADSPI_SMPR 0x108
  83. #define QUADSPI_SMPR_DDRSMP_SHIFT 16
  84. #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  85. #define QUADSPI_SMPR_FSDLY_SHIFT 6
  86. #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  87. #define QUADSPI_SMPR_FSPHS_SHIFT 5
  88. #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  89. #define QUADSPI_SMPR_HSENA_SHIFT 0
  90. #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
  91. #define QUADSPI_RBSR 0x10c
  92. #define QUADSPI_RBSR_RDBFL_SHIFT 8
  93. #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
  94. #define QUADSPI_RBCT 0x110
  95. #define QUADSPI_RBCT_WMRK_MASK 0x1F
  96. #define QUADSPI_RBCT_RXBRD_SHIFT 8
  97. #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
  98. #define QUADSPI_TBSR 0x150
  99. #define QUADSPI_TBDR 0x154
  100. #define QUADSPI_SR 0x15c
  101. #define QUADSPI_SR_IP_ACC_SHIFT 1
  102. #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
  103. #define QUADSPI_SR_AHB_ACC_SHIFT 2
  104. #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
  105. #define QUADSPI_FR 0x160
  106. #define QUADSPI_FR_TFF_MASK 0x1
  107. #define QUADSPI_SFA1AD 0x180
  108. #define QUADSPI_SFA2AD 0x184
  109. #define QUADSPI_SFB1AD 0x188
  110. #define QUADSPI_SFB2AD 0x18c
  111. #define QUADSPI_RBDR 0x200
  112. #define QUADSPI_LUTKEY 0x300
  113. #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
  114. #define QUADSPI_LCKCR 0x304
  115. #define QUADSPI_LCKER_LOCK 0x1
  116. #define QUADSPI_LCKER_UNLOCK 0x2
  117. #define QUADSPI_RSER 0x164
  118. #define QUADSPI_RSER_TFIE (0x1 << 0)
  119. #define QUADSPI_LUT_BASE 0x310
  120. /*
  121. * The definition of the LUT register shows below:
  122. *
  123. * ---------------------------------------------------
  124. * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
  125. * ---------------------------------------------------
  126. */
  127. #define OPRND0_SHIFT 0
  128. #define PAD0_SHIFT 8
  129. #define INSTR0_SHIFT 10
  130. #define OPRND1_SHIFT 16
  131. /* Instruction set for the LUT register. */
  132. #define LUT_STOP 0
  133. #define LUT_CMD 1
  134. #define LUT_ADDR 2
  135. #define LUT_DUMMY 3
  136. #define LUT_MODE 4
  137. #define LUT_MODE2 5
  138. #define LUT_MODE4 6
  139. #define LUT_FSL_READ 7
  140. #define LUT_FSL_WRITE 8
  141. #define LUT_JMP_ON_CS 9
  142. #define LUT_ADDR_DDR 10
  143. #define LUT_MODE_DDR 11
  144. #define LUT_MODE2_DDR 12
  145. #define LUT_MODE4_DDR 13
  146. #define LUT_FSL_READ_DDR 14
  147. #define LUT_FSL_WRITE_DDR 15
  148. #define LUT_DATA_LEARN 16
  149. /*
  150. * The PAD definitions for LUT register.
  151. *
  152. * The pad stands for the lines number of IO[0:3].
  153. * For example, the Quad read need four IO lines, so you should
  154. * set LUT_PAD4 which means we use four IO lines.
  155. */
  156. #define LUT_PAD1 0
  157. #define LUT_PAD2 1
  158. #define LUT_PAD4 2
  159. /* Oprands for the LUT register. */
  160. #define ADDR24BIT 0x18
  161. #define ADDR32BIT 0x20
  162. /* Macros for constructing the LUT register. */
  163. #define LUT0(ins, pad, opr) \
  164. (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
  165. ((LUT_##ins) << INSTR0_SHIFT))
  166. #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
  167. /* other macros for LUT register. */
  168. #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
  169. #define QUADSPI_LUT_NUM 64
  170. /* SEQID -- we can have 16 seqids at most. */
  171. #define SEQID_READ 0
  172. #define SEQID_WREN 1
  173. #define SEQID_WRDI 2
  174. #define SEQID_RDSR 3
  175. #define SEQID_SE 4
  176. #define SEQID_CHIP_ERASE 5
  177. #define SEQID_PP 6
  178. #define SEQID_RDID 7
  179. #define SEQID_WRSR 8
  180. #define SEQID_RDCR 9
  181. #define SEQID_EN4B 10
  182. #define SEQID_BRWR 11
  183. #define QUADSPI_MIN_IOMAP SZ_4M
  184. enum fsl_qspi_devtype {
  185. FSL_QUADSPI_VYBRID,
  186. FSL_QUADSPI_IMX6SX,
  187. FSL_QUADSPI_IMX7D,
  188. FSL_QUADSPI_IMX6UL,
  189. FSL_QUADSPI_LS1021A,
  190. FSL_QUADSPI_LS2080A,
  191. };
  192. struct fsl_qspi_devtype_data {
  193. enum fsl_qspi_devtype devtype;
  194. int rxfifo;
  195. int txfifo;
  196. int ahb_buf_size;
  197. int driver_data;
  198. };
  199. static const struct fsl_qspi_devtype_data vybrid_data = {
  200. .devtype = FSL_QUADSPI_VYBRID,
  201. .rxfifo = 128,
  202. .txfifo = 64,
  203. .ahb_buf_size = 1024,
  204. .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
  205. };
  206. static const struct fsl_qspi_devtype_data imx6sx_data = {
  207. .devtype = FSL_QUADSPI_IMX6SX,
  208. .rxfifo = 128,
  209. .txfifo = 512,
  210. .ahb_buf_size = 1024,
  211. .driver_data = QUADSPI_QUIRK_4X_INT_CLK
  212. | QUADSPI_QUIRK_TKT245618,
  213. };
  214. static const struct fsl_qspi_devtype_data imx7d_data = {
  215. .devtype = FSL_QUADSPI_IMX7D,
  216. .rxfifo = 512,
  217. .txfifo = 512,
  218. .ahb_buf_size = 1024,
  219. .driver_data = QUADSPI_QUIRK_TKT253890
  220. | QUADSPI_QUIRK_4X_INT_CLK,
  221. };
  222. static const struct fsl_qspi_devtype_data imx6ul_data = {
  223. .devtype = FSL_QUADSPI_IMX6UL,
  224. .rxfifo = 128,
  225. .txfifo = 512,
  226. .ahb_buf_size = 1024,
  227. .driver_data = QUADSPI_QUIRK_TKT253890
  228. | QUADSPI_QUIRK_4X_INT_CLK,
  229. };
  230. static struct fsl_qspi_devtype_data ls1021a_data = {
  231. .devtype = FSL_QUADSPI_LS1021A,
  232. .rxfifo = 128,
  233. .txfifo = 64,
  234. .ahb_buf_size = 1024,
  235. .driver_data = 0,
  236. };
  237. static const struct fsl_qspi_devtype_data ls2080a_data = {
  238. .devtype = FSL_QUADSPI_LS2080A,
  239. .rxfifo = 128,
  240. .txfifo = 64,
  241. .ahb_buf_size = 1024,
  242. .driver_data = QUADSPI_QUIRK_TKT253890,
  243. };
  244. #define FSL_QSPI_MAX_CHIP 4
  245. struct fsl_qspi {
  246. struct spi_nor nor[FSL_QSPI_MAX_CHIP];
  247. void __iomem *iobase;
  248. void __iomem *ahb_addr;
  249. u32 memmap_phy;
  250. u32 memmap_offs;
  251. u32 memmap_len;
  252. struct clk *clk, *clk_en;
  253. struct device *dev;
  254. struct completion c;
  255. const struct fsl_qspi_devtype_data *devtype_data;
  256. u32 nor_size;
  257. u32 nor_num;
  258. u32 clk_rate;
  259. unsigned int chip_base_addr; /* We may support two chips. */
  260. bool has_second_chip;
  261. bool big_endian;
  262. struct mutex lock;
  263. struct pm_qos_request pm_qos_req;
  264. };
  265. static inline int needs_swap_endian(struct fsl_qspi *q)
  266. {
  267. return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
  268. }
  269. static inline int needs_4x_clock(struct fsl_qspi *q)
  270. {
  271. return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
  272. }
  273. static inline int needs_fill_txfifo(struct fsl_qspi *q)
  274. {
  275. return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
  276. }
  277. static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
  278. {
  279. return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
  280. }
  281. /*
  282. * R/W functions for big- or little-endian registers:
  283. * The qSPI controller's endian is independent of the CPU core's endian.
  284. * So far, although the CPU core is little-endian but the qSPI have two
  285. * versions for big-endian and little-endian.
  286. */
  287. static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
  288. {
  289. if (q->big_endian)
  290. iowrite32be(val, addr);
  291. else
  292. iowrite32(val, addr);
  293. }
  294. static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
  295. {
  296. if (q->big_endian)
  297. return ioread32be(addr);
  298. else
  299. return ioread32(addr);
  300. }
  301. /*
  302. * An IC bug makes us to re-arrange the 32-bit data.
  303. * The following chips, such as IMX6SLX, have fixed this bug.
  304. */
  305. static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
  306. {
  307. return needs_swap_endian(q) ? __swab32(a) : a;
  308. }
  309. static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
  310. {
  311. qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  312. qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
  313. }
  314. static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
  315. {
  316. qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  317. qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
  318. }
  319. static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
  320. {
  321. struct fsl_qspi *q = dev_id;
  322. u32 reg;
  323. /* clear interrupt */
  324. reg = qspi_readl(q, q->iobase + QUADSPI_FR);
  325. qspi_writel(q, reg, q->iobase + QUADSPI_FR);
  326. if (reg & QUADSPI_FR_TFF_MASK)
  327. complete(&q->c);
  328. dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
  329. return IRQ_HANDLED;
  330. }
  331. static void fsl_qspi_init_lut(struct fsl_qspi *q)
  332. {
  333. void __iomem *base = q->iobase;
  334. int rxfifo = q->devtype_data->rxfifo;
  335. u32 lut_base;
  336. int i;
  337. struct spi_nor *nor = &q->nor[0];
  338. u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
  339. u8 read_op = nor->read_opcode;
  340. u8 read_dm = nor->read_dummy;
  341. fsl_qspi_unlock_lut(q);
  342. /* Clear all the LUT table */
  343. for (i = 0; i < QUADSPI_LUT_NUM; i++)
  344. qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
  345. /* Read */
  346. lut_base = SEQID_READ * 4;
  347. qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen),
  348. base + QUADSPI_LUT(lut_base));
  349. qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) |
  350. LUT1(FSL_READ, PAD4, rxfifo),
  351. base + QUADSPI_LUT(lut_base + 1));
  352. /* Write enable */
  353. lut_base = SEQID_WREN * 4;
  354. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
  355. base + QUADSPI_LUT(lut_base));
  356. /* Page Program */
  357. lut_base = SEQID_PP * 4;
  358. qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) |
  359. LUT1(ADDR, PAD1, addrlen),
  360. base + QUADSPI_LUT(lut_base));
  361. qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
  362. base + QUADSPI_LUT(lut_base + 1));
  363. /* Read Status */
  364. lut_base = SEQID_RDSR * 4;
  365. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
  366. LUT1(FSL_READ, PAD1, 0x1),
  367. base + QUADSPI_LUT(lut_base));
  368. /* Erase a sector */
  369. lut_base = SEQID_SE * 4;
  370. qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) |
  371. LUT1(ADDR, PAD1, addrlen),
  372. base + QUADSPI_LUT(lut_base));
  373. /* Erase the whole chip */
  374. lut_base = SEQID_CHIP_ERASE * 4;
  375. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
  376. base + QUADSPI_LUT(lut_base));
  377. /* READ ID */
  378. lut_base = SEQID_RDID * 4;
  379. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
  380. LUT1(FSL_READ, PAD1, 0x8),
  381. base + QUADSPI_LUT(lut_base));
  382. /* Write Register */
  383. lut_base = SEQID_WRSR * 4;
  384. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
  385. LUT1(FSL_WRITE, PAD1, 0x2),
  386. base + QUADSPI_LUT(lut_base));
  387. /* Read Configuration Register */
  388. lut_base = SEQID_RDCR * 4;
  389. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
  390. LUT1(FSL_READ, PAD1, 0x1),
  391. base + QUADSPI_LUT(lut_base));
  392. /* Write disable */
  393. lut_base = SEQID_WRDI * 4;
  394. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
  395. base + QUADSPI_LUT(lut_base));
  396. /* Enter 4 Byte Mode (Micron) */
  397. lut_base = SEQID_EN4B * 4;
  398. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
  399. base + QUADSPI_LUT(lut_base));
  400. /* Enter 4 Byte Mode (Spansion) */
  401. lut_base = SEQID_BRWR * 4;
  402. qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
  403. base + QUADSPI_LUT(lut_base));
  404. fsl_qspi_lock_lut(q);
  405. }
  406. /* Get the SEQID for the command */
  407. static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
  408. {
  409. switch (cmd) {
  410. case SPINOR_OP_READ_1_1_4:
  411. return SEQID_READ;
  412. case SPINOR_OP_WREN:
  413. return SEQID_WREN;
  414. case SPINOR_OP_WRDI:
  415. return SEQID_WRDI;
  416. case SPINOR_OP_RDSR:
  417. return SEQID_RDSR;
  418. case SPINOR_OP_SE:
  419. return SEQID_SE;
  420. case SPINOR_OP_CHIP_ERASE:
  421. return SEQID_CHIP_ERASE;
  422. case SPINOR_OP_PP:
  423. return SEQID_PP;
  424. case SPINOR_OP_RDID:
  425. return SEQID_RDID;
  426. case SPINOR_OP_WRSR:
  427. return SEQID_WRSR;
  428. case SPINOR_OP_RDCR:
  429. return SEQID_RDCR;
  430. case SPINOR_OP_EN4B:
  431. return SEQID_EN4B;
  432. case SPINOR_OP_BRWR:
  433. return SEQID_BRWR;
  434. default:
  435. if (cmd == q->nor[0].erase_opcode)
  436. return SEQID_SE;
  437. dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
  438. break;
  439. }
  440. return -EINVAL;
  441. }
  442. static int
  443. fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
  444. {
  445. void __iomem *base = q->iobase;
  446. int seqid;
  447. u32 reg, reg2;
  448. int err;
  449. init_completion(&q->c);
  450. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
  451. q->chip_base_addr, addr, len, cmd);
  452. /* save the reg */
  453. reg = qspi_readl(q, base + QUADSPI_MCR);
  454. qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
  455. base + QUADSPI_SFAR);
  456. qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
  457. base + QUADSPI_RBCT);
  458. qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
  459. do {
  460. reg2 = qspi_readl(q, base + QUADSPI_SR);
  461. if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
  462. udelay(1);
  463. dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
  464. continue;
  465. }
  466. break;
  467. } while (1);
  468. /* trigger the LUT now */
  469. seqid = fsl_qspi_get_seqid(q, cmd);
  470. qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
  471. base + QUADSPI_IPCR);
  472. /* Wait for the interrupt. */
  473. if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
  474. dev_err(q->dev,
  475. "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
  476. cmd, addr, qspi_readl(q, base + QUADSPI_FR),
  477. qspi_readl(q, base + QUADSPI_SR));
  478. err = -ETIMEDOUT;
  479. } else {
  480. err = 0;
  481. }
  482. /* restore the MCR */
  483. qspi_writel(q, reg, base + QUADSPI_MCR);
  484. return err;
  485. }
  486. /* Read out the data from the QUADSPI_RBDR buffer registers. */
  487. static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
  488. {
  489. u32 tmp;
  490. int i = 0;
  491. while (len > 0) {
  492. tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
  493. tmp = fsl_qspi_endian_xchg(q, tmp);
  494. dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
  495. q->chip_base_addr, tmp);
  496. if (len >= 4) {
  497. *((u32 *)rxbuf) = tmp;
  498. rxbuf += 4;
  499. } else {
  500. memcpy(rxbuf, &tmp, len);
  501. break;
  502. }
  503. len -= 4;
  504. i++;
  505. }
  506. }
  507. /*
  508. * If we have changed the content of the flash by writing or erasing,
  509. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  510. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  511. * domain at the same time.
  512. */
  513. static inline void fsl_qspi_invalid(struct fsl_qspi *q)
  514. {
  515. u32 reg;
  516. reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
  517. reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
  518. qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
  519. /*
  520. * The minimum delay : 1 AHB + 2 SFCK clocks.
  521. * Delay 1 us is enough.
  522. */
  523. udelay(1);
  524. reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
  525. qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
  526. }
  527. static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
  528. u8 opcode, unsigned int to, u32 *txbuf,
  529. unsigned count)
  530. {
  531. int ret, i, j;
  532. u32 tmp;
  533. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
  534. q->chip_base_addr, to, count);
  535. /* clear the TX FIFO. */
  536. tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
  537. qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
  538. /* fill the TX data to the FIFO */
  539. for (j = 0, i = ((count + 3) / 4); j < i; j++) {
  540. tmp = fsl_qspi_endian_xchg(q, *txbuf);
  541. qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
  542. txbuf++;
  543. }
  544. /* fill the TXFIFO upto 16 bytes for i.MX7d */
  545. if (needs_fill_txfifo(q))
  546. for (; i < 4; i++)
  547. qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
  548. /* Trigger it */
  549. ret = fsl_qspi_runcmd(q, opcode, to, count);
  550. if (ret == 0)
  551. return count;
  552. return ret;
  553. }
  554. static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
  555. {
  556. int nor_size = q->nor_size;
  557. void __iomem *base = q->iobase;
  558. qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
  559. qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
  560. qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
  561. qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
  562. }
  563. /*
  564. * There are two different ways to read out the data from the flash:
  565. * the "IP Command Read" and the "AHB Command Read".
  566. *
  567. * The IC guy suggests we use the "AHB Command Read" which is faster
  568. * then the "IP Command Read". (What's more is that there is a bug in
  569. * the "IP Command Read" in the Vybrid.)
  570. *
  571. * After we set up the registers for the "AHB Command Read", we can use
  572. * the memcpy to read the data directly. A "missed" access to the buffer
  573. * causes the controller to clear the buffer, and use the sequence pointed
  574. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  575. */
  576. static void fsl_qspi_init_ahb_read(struct fsl_qspi *q)
  577. {
  578. void __iomem *base = q->iobase;
  579. int seqid;
  580. /* AHB configuration for access buffer 0/1/2 .*/
  581. qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
  582. qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
  583. qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
  584. /*
  585. * Set ADATSZ with the maximum AHB buffer size to improve the
  586. * read performance.
  587. */
  588. qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
  589. ((q->devtype_data->ahb_buf_size / 8)
  590. << QUADSPI_BUF3CR_ADATSZ_SHIFT),
  591. base + QUADSPI_BUF3CR);
  592. /* We only use the buffer3 */
  593. qspi_writel(q, 0, base + QUADSPI_BUF0IND);
  594. qspi_writel(q, 0, base + QUADSPI_BUF1IND);
  595. qspi_writel(q, 0, base + QUADSPI_BUF2IND);
  596. /* Set the default lut sequence for AHB Read. */
  597. seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
  598. qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
  599. q->iobase + QUADSPI_BFGENCR);
  600. }
  601. /* This function was used to prepare and enable QSPI clock */
  602. static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
  603. {
  604. int ret;
  605. ret = clk_prepare_enable(q->clk_en);
  606. if (ret)
  607. return ret;
  608. ret = clk_prepare_enable(q->clk);
  609. if (ret) {
  610. clk_disable_unprepare(q->clk_en);
  611. return ret;
  612. }
  613. if (needs_wakeup_wait_mode(q))
  614. pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
  615. return 0;
  616. }
  617. /* This function was used to disable and unprepare QSPI clock */
  618. static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
  619. {
  620. if (needs_wakeup_wait_mode(q))
  621. pm_qos_remove_request(&q->pm_qos_req);
  622. clk_disable_unprepare(q->clk);
  623. clk_disable_unprepare(q->clk_en);
  624. }
  625. /* We use this function to do some basic init for spi_nor_scan(). */
  626. static int fsl_qspi_nor_setup(struct fsl_qspi *q)
  627. {
  628. void __iomem *base = q->iobase;
  629. u32 reg;
  630. int ret;
  631. /* disable and unprepare clock to avoid glitch pass to controller */
  632. fsl_qspi_clk_disable_unprep(q);
  633. /* the default frequency, we will change it in the future. */
  634. ret = clk_set_rate(q->clk, 66000000);
  635. if (ret)
  636. return ret;
  637. ret = fsl_qspi_clk_prep_enable(q);
  638. if (ret)
  639. return ret;
  640. /* Reset the module */
  641. qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
  642. base + QUADSPI_MCR);
  643. udelay(1);
  644. /* Init the LUT table. */
  645. fsl_qspi_init_lut(q);
  646. /* Disable the module */
  647. qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
  648. base + QUADSPI_MCR);
  649. reg = qspi_readl(q, base + QUADSPI_SMPR);
  650. qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
  651. | QUADSPI_SMPR_FSPHS_MASK
  652. | QUADSPI_SMPR_HSENA_MASK
  653. | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
  654. /* Enable the module */
  655. qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
  656. base + QUADSPI_MCR);
  657. /* clear all interrupt status */
  658. qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
  659. /* enable the interrupt */
  660. qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
  661. return 0;
  662. }
  663. static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
  664. {
  665. unsigned long rate = q->clk_rate;
  666. int ret;
  667. if (needs_4x_clock(q))
  668. rate *= 4;
  669. /* disable and unprepare clock to avoid glitch pass to controller */
  670. fsl_qspi_clk_disable_unprep(q);
  671. ret = clk_set_rate(q->clk, rate);
  672. if (ret)
  673. return ret;
  674. ret = fsl_qspi_clk_prep_enable(q);
  675. if (ret)
  676. return ret;
  677. /* Init the LUT table again. */
  678. fsl_qspi_init_lut(q);
  679. /* Init for AHB read */
  680. fsl_qspi_init_ahb_read(q);
  681. return 0;
  682. }
  683. static const struct of_device_id fsl_qspi_dt_ids[] = {
  684. { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
  685. { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
  686. { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
  687. { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
  688. { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
  689. { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
  690. { /* sentinel */ }
  691. };
  692. MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
  693. static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
  694. {
  695. q->chip_base_addr = q->nor_size * (nor - q->nor);
  696. }
  697. static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  698. {
  699. int ret;
  700. struct fsl_qspi *q = nor->priv;
  701. ret = fsl_qspi_runcmd(q, opcode, 0, len);
  702. if (ret)
  703. return ret;
  704. fsl_qspi_read_data(q, len, buf);
  705. return 0;
  706. }
  707. static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  708. {
  709. struct fsl_qspi *q = nor->priv;
  710. int ret;
  711. if (!buf) {
  712. ret = fsl_qspi_runcmd(q, opcode, 0, 1);
  713. if (ret)
  714. return ret;
  715. if (opcode == SPINOR_OP_CHIP_ERASE)
  716. fsl_qspi_invalid(q);
  717. } else if (len > 0) {
  718. ret = fsl_qspi_nor_write(q, nor, opcode, 0,
  719. (u32 *)buf, len);
  720. if (ret > 0)
  721. return 0;
  722. } else {
  723. dev_err(q->dev, "invalid cmd %d\n", opcode);
  724. ret = -EINVAL;
  725. }
  726. return ret;
  727. }
  728. static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
  729. size_t len, const u_char *buf)
  730. {
  731. struct fsl_qspi *q = nor->priv;
  732. ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
  733. (u32 *)buf, len);
  734. /* invalid the data in the AHB buffer. */
  735. fsl_qspi_invalid(q);
  736. return ret;
  737. }
  738. static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
  739. size_t len, u_char *buf)
  740. {
  741. struct fsl_qspi *q = nor->priv;
  742. u8 cmd = nor->read_opcode;
  743. /* if necessary,ioremap buffer before AHB read, */
  744. if (!q->ahb_addr) {
  745. q->memmap_offs = q->chip_base_addr + from;
  746. q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
  747. q->ahb_addr = ioremap_nocache(
  748. q->memmap_phy + q->memmap_offs,
  749. q->memmap_len);
  750. if (!q->ahb_addr) {
  751. dev_err(q->dev, "ioremap failed\n");
  752. return -ENOMEM;
  753. }
  754. /* ioremap if the data requested is out of range */
  755. } else if (q->chip_base_addr + from < q->memmap_offs
  756. || q->chip_base_addr + from + len >
  757. q->memmap_offs + q->memmap_len) {
  758. iounmap(q->ahb_addr);
  759. q->memmap_offs = q->chip_base_addr + from;
  760. q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
  761. q->ahb_addr = ioremap_nocache(
  762. q->memmap_phy + q->memmap_offs,
  763. q->memmap_len);
  764. if (!q->ahb_addr) {
  765. dev_err(q->dev, "ioremap failed\n");
  766. return -ENOMEM;
  767. }
  768. }
  769. dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
  770. cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
  771. len);
  772. /* Read out the data directly from the AHB buffer.*/
  773. memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
  774. len);
  775. return len;
  776. }
  777. static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
  778. {
  779. struct fsl_qspi *q = nor->priv;
  780. int ret;
  781. dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
  782. nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
  783. ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
  784. if (ret)
  785. return ret;
  786. fsl_qspi_invalid(q);
  787. return 0;
  788. }
  789. static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  790. {
  791. struct fsl_qspi *q = nor->priv;
  792. int ret;
  793. mutex_lock(&q->lock);
  794. ret = fsl_qspi_clk_prep_enable(q);
  795. if (ret)
  796. goto err_mutex;
  797. fsl_qspi_set_base_addr(q, nor);
  798. return 0;
  799. err_mutex:
  800. mutex_unlock(&q->lock);
  801. return ret;
  802. }
  803. static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  804. {
  805. struct fsl_qspi *q = nor->priv;
  806. fsl_qspi_clk_disable_unprep(q);
  807. mutex_unlock(&q->lock);
  808. }
  809. static int fsl_qspi_probe(struct platform_device *pdev)
  810. {
  811. const struct spi_nor_hwcaps hwcaps = {
  812. .mask = SNOR_HWCAPS_READ_1_1_4 |
  813. SNOR_HWCAPS_PP,
  814. };
  815. struct device_node *np = pdev->dev.of_node;
  816. struct device *dev = &pdev->dev;
  817. struct fsl_qspi *q;
  818. struct resource *res;
  819. struct spi_nor *nor;
  820. struct mtd_info *mtd;
  821. int ret, i = 0;
  822. q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
  823. if (!q)
  824. return -ENOMEM;
  825. q->nor_num = of_get_child_count(dev->of_node);
  826. if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
  827. return -ENODEV;
  828. q->dev = dev;
  829. q->devtype_data = of_device_get_match_data(dev);
  830. if (!q->devtype_data)
  831. return -ENODEV;
  832. platform_set_drvdata(pdev, q);
  833. /* find the resources */
  834. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
  835. q->iobase = devm_ioremap_resource(dev, res);
  836. if (IS_ERR(q->iobase))
  837. return PTR_ERR(q->iobase);
  838. q->big_endian = of_property_read_bool(np, "big-endian");
  839. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  840. "QuadSPI-memory");
  841. if (!devm_request_mem_region(dev, res->start, resource_size(res),
  842. res->name)) {
  843. dev_err(dev, "can't request region for resource %pR\n", res);
  844. return -EBUSY;
  845. }
  846. q->memmap_phy = res->start;
  847. /* find the clocks */
  848. q->clk_en = devm_clk_get(dev, "qspi_en");
  849. if (IS_ERR(q->clk_en))
  850. return PTR_ERR(q->clk_en);
  851. q->clk = devm_clk_get(dev, "qspi");
  852. if (IS_ERR(q->clk))
  853. return PTR_ERR(q->clk);
  854. ret = fsl_qspi_clk_prep_enable(q);
  855. if (ret) {
  856. dev_err(dev, "can not enable the clock\n");
  857. goto clk_failed;
  858. }
  859. /* find the irq */
  860. ret = platform_get_irq(pdev, 0);
  861. if (ret < 0) {
  862. dev_err(dev, "failed to get the irq: %d\n", ret);
  863. goto irq_failed;
  864. }
  865. ret = devm_request_irq(dev, ret,
  866. fsl_qspi_irq_handler, 0, pdev->name, q);
  867. if (ret) {
  868. dev_err(dev, "failed to request irq: %d\n", ret);
  869. goto irq_failed;
  870. }
  871. ret = fsl_qspi_nor_setup(q);
  872. if (ret)
  873. goto irq_failed;
  874. if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
  875. q->has_second_chip = true;
  876. mutex_init(&q->lock);
  877. /* iterate the subnodes. */
  878. for_each_available_child_of_node(dev->of_node, np) {
  879. /* skip the holes */
  880. if (!q->has_second_chip)
  881. i *= 2;
  882. nor = &q->nor[i];
  883. mtd = &nor->mtd;
  884. nor->dev = dev;
  885. spi_nor_set_flash_node(nor, np);
  886. nor->priv = q;
  887. if (q->nor_num > 1 && !mtd->name) {
  888. int spiflash_idx;
  889. ret = of_property_read_u32(np, "reg", &spiflash_idx);
  890. if (!ret) {
  891. mtd->name = devm_kasprintf(dev, GFP_KERNEL,
  892. "%s-%d",
  893. dev_name(dev),
  894. spiflash_idx);
  895. if (!mtd->name) {
  896. ret = -ENOMEM;
  897. goto mutex_failed;
  898. }
  899. } else {
  900. dev_warn(dev, "reg property is missing\n");
  901. }
  902. }
  903. /* fill the hooks */
  904. nor->read_reg = fsl_qspi_read_reg;
  905. nor->write_reg = fsl_qspi_write_reg;
  906. nor->read = fsl_qspi_read;
  907. nor->write = fsl_qspi_write;
  908. nor->erase = fsl_qspi_erase;
  909. nor->prepare = fsl_qspi_prep;
  910. nor->unprepare = fsl_qspi_unprep;
  911. ret = of_property_read_u32(np, "spi-max-frequency",
  912. &q->clk_rate);
  913. if (ret < 0)
  914. goto mutex_failed;
  915. /* set the chip address for READID */
  916. fsl_qspi_set_base_addr(q, nor);
  917. ret = spi_nor_scan(nor, NULL, &hwcaps);
  918. if (ret)
  919. goto mutex_failed;
  920. ret = mtd_device_register(mtd, NULL, 0);
  921. if (ret)
  922. goto mutex_failed;
  923. /* Set the correct NOR size now. */
  924. if (q->nor_size == 0) {
  925. q->nor_size = mtd->size;
  926. /* Map the SPI NOR to accessiable address */
  927. fsl_qspi_set_map_addr(q);
  928. }
  929. /*
  930. * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
  931. * may writes 265 bytes per time. The write is working in the
  932. * unit of the TX FIFO, not in the unit of the SPI NOR's page
  933. * size.
  934. *
  935. * So shrink the spi_nor->page_size if it is larger then the
  936. * TX FIFO.
  937. */
  938. if (nor->page_size > q->devtype_data->txfifo)
  939. nor->page_size = q->devtype_data->txfifo;
  940. i++;
  941. }
  942. /* finish the rest init. */
  943. ret = fsl_qspi_nor_setup_last(q);
  944. if (ret)
  945. goto last_init_failed;
  946. fsl_qspi_clk_disable_unprep(q);
  947. return 0;
  948. last_init_failed:
  949. for (i = 0; i < q->nor_num; i++) {
  950. /* skip the holes */
  951. if (!q->has_second_chip)
  952. i *= 2;
  953. mtd_device_unregister(&q->nor[i].mtd);
  954. }
  955. mutex_failed:
  956. mutex_destroy(&q->lock);
  957. irq_failed:
  958. fsl_qspi_clk_disable_unprep(q);
  959. clk_failed:
  960. dev_err(dev, "Freescale QuadSPI probe failed\n");
  961. return ret;
  962. }
  963. static int fsl_qspi_remove(struct platform_device *pdev)
  964. {
  965. struct fsl_qspi *q = platform_get_drvdata(pdev);
  966. int i;
  967. for (i = 0; i < q->nor_num; i++) {
  968. /* skip the holes */
  969. if (!q->has_second_chip)
  970. i *= 2;
  971. mtd_device_unregister(&q->nor[i].mtd);
  972. }
  973. /* disable the hardware */
  974. qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
  975. qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
  976. mutex_destroy(&q->lock);
  977. if (q->ahb_addr)
  978. iounmap(q->ahb_addr);
  979. return 0;
  980. }
  981. static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
  982. {
  983. return 0;
  984. }
  985. static int fsl_qspi_resume(struct platform_device *pdev)
  986. {
  987. int ret;
  988. struct fsl_qspi *q = platform_get_drvdata(pdev);
  989. ret = fsl_qspi_clk_prep_enable(q);
  990. if (ret)
  991. return ret;
  992. fsl_qspi_nor_setup(q);
  993. fsl_qspi_set_map_addr(q);
  994. fsl_qspi_nor_setup_last(q);
  995. fsl_qspi_clk_disable_unprep(q);
  996. return 0;
  997. }
  998. static struct platform_driver fsl_qspi_driver = {
  999. .driver = {
  1000. .name = "fsl-quadspi",
  1001. .of_match_table = fsl_qspi_dt_ids,
  1002. },
  1003. .probe = fsl_qspi_probe,
  1004. .remove = fsl_qspi_remove,
  1005. .suspend = fsl_qspi_suspend,
  1006. .resume = fsl_qspi_resume,
  1007. };
  1008. module_platform_driver(fsl_qspi_driver);
  1009. MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
  1010. MODULE_AUTHOR("Freescale Semiconductor Inc.");
  1011. MODULE_LICENSE("GPL v2");