mmu_pv.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Xen mmu operations
  4. *
  5. * This file contains the various mmu fetch and update operations.
  6. * The most important job they must perform is the mapping between the
  7. * domain's pfn and the overall machine mfns.
  8. *
  9. * Xen allows guests to directly update the pagetable, in a controlled
  10. * fashion. In other words, the guest modifies the same pagetable
  11. * that the CPU actually uses, which eliminates the overhead of having
  12. * a separate shadow pagetable.
  13. *
  14. * In order to allow this, it falls on the guest domain to map its
  15. * notion of a "physical" pfn - which is just a domain-local linear
  16. * address - into a real "machine address" which the CPU's MMU can
  17. * use.
  18. *
  19. * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  20. * inserted directly into the pagetable. When creating a new
  21. * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
  22. * when reading the content back with __(pgd|pmd|pte)_val, it converts
  23. * the mfn back into a pfn.
  24. *
  25. * The other constraint is that all pages which make up a pagetable
  26. * must be mapped read-only in the guest. This prevents uncontrolled
  27. * guest updates to the pagetable. Xen strictly enforces this, and
  28. * will disallow any pagetable update which will end up mapping a
  29. * pagetable page RW, and will disallow using any writable page as a
  30. * pagetable.
  31. *
  32. * Naively, when loading %cr3 with the base of a new pagetable, Xen
  33. * would need to validate the whole pagetable before going on.
  34. * Naturally, this is quite slow. The solution is to "pin" a
  35. * pagetable, which enforces all the constraints on the pagetable even
  36. * when it is not actively in use. This menas that Xen can be assured
  37. * that it is still valid when you do load it into %cr3, and doesn't
  38. * need to revalidate it.
  39. *
  40. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  41. */
  42. #include <linux/sched/mm.h>
  43. #include <linux/highmem.h>
  44. #include <linux/debugfs.h>
  45. #include <linux/bug.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/export.h>
  48. #include <linux/init.h>
  49. #include <linux/gfp.h>
  50. #include <linux/memblock.h>
  51. #include <linux/seq_file.h>
  52. #include <linux/crash_dump.h>
  53. #ifdef CONFIG_KEXEC_CORE
  54. #include <linux/kexec.h>
  55. #endif
  56. #include <trace/events/xen.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/fixmap.h>
  60. #include <asm/mmu_context.h>
  61. #include <asm/setup.h>
  62. #include <asm/paravirt.h>
  63. #include <asm/e820/api.h>
  64. #include <asm/linkage.h>
  65. #include <asm/page.h>
  66. #include <asm/init.h>
  67. #include <asm/pat.h>
  68. #include <asm/smp.h>
  69. #include <asm/tlb.h>
  70. #include <asm/xen/hypercall.h>
  71. #include <asm/xen/hypervisor.h>
  72. #include <xen/xen.h>
  73. #include <xen/page.h>
  74. #include <xen/interface/xen.h>
  75. #include <xen/interface/hvm/hvm_op.h>
  76. #include <xen/interface/version.h>
  77. #include <xen/interface/memory.h>
  78. #include <xen/hvc-console.h>
  79. #include "multicalls.h"
  80. #include "mmu.h"
  81. #include "debugfs.h"
  82. #ifdef CONFIG_X86_32
  83. /*
  84. * Identity map, in addition to plain kernel map. This needs to be
  85. * large enough to allocate page table pages to allocate the rest.
  86. * Each page can map 2MB.
  87. */
  88. #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
  89. static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  90. #endif
  91. #ifdef CONFIG_X86_64
  92. /* l3 pud for userspace vsyscall mapping */
  93. static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  94. #endif /* CONFIG_X86_64 */
  95. /*
  96. * Protects atomic reservation decrease/increase against concurrent increases.
  97. * Also protects non-atomic updates of current_pages and balloon lists.
  98. */
  99. static DEFINE_SPINLOCK(xen_reservation_lock);
  100. /*
  101. * Note about cr3 (pagetable base) values:
  102. *
  103. * xen_cr3 contains the current logical cr3 value; it contains the
  104. * last set cr3. This may not be the current effective cr3, because
  105. * its update may be being lazily deferred. However, a vcpu looking
  106. * at its own cr3 can use this value knowing that it everything will
  107. * be self-consistent.
  108. *
  109. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  110. * hypercall to set the vcpu cr3 is complete (so it may be a little
  111. * out of date, but it will never be set early). If one vcpu is
  112. * looking at another vcpu's cr3 value, it should use this variable.
  113. */
  114. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  115. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  116. static phys_addr_t xen_pt_base, xen_pt_size __initdata;
  117. static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
  118. /*
  119. * Just beyond the highest usermode address. STACK_TOP_MAX has a
  120. * redzone above it, so round it up to a PGD boundary.
  121. */
  122. #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
  123. void make_lowmem_page_readonly(void *vaddr)
  124. {
  125. pte_t *pte, ptev;
  126. unsigned long address = (unsigned long)vaddr;
  127. unsigned int level;
  128. pte = lookup_address(address, &level);
  129. if (pte == NULL)
  130. return; /* vaddr missing */
  131. ptev = pte_wrprotect(*pte);
  132. if (HYPERVISOR_update_va_mapping(address, ptev, 0))
  133. BUG();
  134. }
  135. void make_lowmem_page_readwrite(void *vaddr)
  136. {
  137. pte_t *pte, ptev;
  138. unsigned long address = (unsigned long)vaddr;
  139. unsigned int level;
  140. pte = lookup_address(address, &level);
  141. if (pte == NULL)
  142. return; /* vaddr missing */
  143. ptev = pte_mkwrite(*pte);
  144. if (HYPERVISOR_update_va_mapping(address, ptev, 0))
  145. BUG();
  146. }
  147. /*
  148. * During early boot all page table pages are pinned, but we do not have struct
  149. * pages, so return true until struct pages are ready.
  150. */
  151. static bool xen_page_pinned(void *ptr)
  152. {
  153. if (static_branch_likely(&xen_struct_pages_ready)) {
  154. struct page *page = virt_to_page(ptr);
  155. return PagePinned(page);
  156. }
  157. return true;
  158. }
  159. static void xen_extend_mmu_update(const struct mmu_update *update)
  160. {
  161. struct multicall_space mcs;
  162. struct mmu_update *u;
  163. mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
  164. if (mcs.mc != NULL) {
  165. mcs.mc->args[1]++;
  166. } else {
  167. mcs = __xen_mc_entry(sizeof(*u));
  168. MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
  169. }
  170. u = mcs.args;
  171. *u = *update;
  172. }
  173. static void xen_extend_mmuext_op(const struct mmuext_op *op)
  174. {
  175. struct multicall_space mcs;
  176. struct mmuext_op *u;
  177. mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
  178. if (mcs.mc != NULL) {
  179. mcs.mc->args[1]++;
  180. } else {
  181. mcs = __xen_mc_entry(sizeof(*u));
  182. MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
  183. }
  184. u = mcs.args;
  185. *u = *op;
  186. }
  187. static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
  188. {
  189. struct mmu_update u;
  190. preempt_disable();
  191. xen_mc_batch();
  192. /* ptr may be ioremapped for 64-bit pagetable setup */
  193. u.ptr = arbitrary_virt_to_machine(ptr).maddr;
  194. u.val = pmd_val_ma(val);
  195. xen_extend_mmu_update(&u);
  196. xen_mc_issue(PARAVIRT_LAZY_MMU);
  197. preempt_enable();
  198. }
  199. static void xen_set_pmd(pmd_t *ptr, pmd_t val)
  200. {
  201. trace_xen_mmu_set_pmd(ptr, val);
  202. /* If page is not pinned, we can just update the entry
  203. directly */
  204. if (!xen_page_pinned(ptr)) {
  205. *ptr = val;
  206. return;
  207. }
  208. xen_set_pmd_hyper(ptr, val);
  209. }
  210. /*
  211. * Associate a virtual page frame with a given physical page frame
  212. * and protection flags for that frame.
  213. */
  214. void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
  215. {
  216. set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
  217. }
  218. static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
  219. {
  220. struct mmu_update u;
  221. if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
  222. return false;
  223. xen_mc_batch();
  224. u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
  225. u.val = pte_val_ma(pteval);
  226. xen_extend_mmu_update(&u);
  227. xen_mc_issue(PARAVIRT_LAZY_MMU);
  228. return true;
  229. }
  230. static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
  231. {
  232. if (!xen_batched_set_pte(ptep, pteval)) {
  233. /*
  234. * Could call native_set_pte() here and trap and
  235. * emulate the PTE write but with 32-bit guests this
  236. * needs two traps (one for each of the two 32-bit
  237. * words in the PTE) so do one hypercall directly
  238. * instead.
  239. */
  240. struct mmu_update u;
  241. u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
  242. u.val = pte_val_ma(pteval);
  243. HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
  244. }
  245. }
  246. static void xen_set_pte(pte_t *ptep, pte_t pteval)
  247. {
  248. trace_xen_mmu_set_pte(ptep, pteval);
  249. __xen_set_pte(ptep, pteval);
  250. }
  251. static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
  252. pte_t *ptep, pte_t pteval)
  253. {
  254. trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
  255. __xen_set_pte(ptep, pteval);
  256. }
  257. pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
  258. unsigned long addr, pte_t *ptep)
  259. {
  260. /* Just return the pte as-is. We preserve the bits on commit */
  261. trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
  262. return *ptep;
  263. }
  264. void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
  265. pte_t *ptep, pte_t pte)
  266. {
  267. struct mmu_update u;
  268. trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
  269. xen_mc_batch();
  270. u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
  271. u.val = pte_val_ma(pte);
  272. xen_extend_mmu_update(&u);
  273. xen_mc_issue(PARAVIRT_LAZY_MMU);
  274. }
  275. /* Assume pteval_t is equivalent to all the other *val_t types. */
  276. static pteval_t pte_mfn_to_pfn(pteval_t val)
  277. {
  278. if (val & _PAGE_PRESENT) {
  279. unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
  280. unsigned long pfn = mfn_to_pfn(mfn);
  281. pteval_t flags = val & PTE_FLAGS_MASK;
  282. if (unlikely(pfn == ~0))
  283. val = flags & ~_PAGE_PRESENT;
  284. else
  285. val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
  286. }
  287. return val;
  288. }
  289. static pteval_t pte_pfn_to_mfn(pteval_t val)
  290. {
  291. if (val & _PAGE_PRESENT) {
  292. unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
  293. pteval_t flags = val & PTE_FLAGS_MASK;
  294. unsigned long mfn;
  295. mfn = __pfn_to_mfn(pfn);
  296. /*
  297. * If there's no mfn for the pfn, then just create an
  298. * empty non-present pte. Unfortunately this loses
  299. * information about the original pfn, so
  300. * pte_mfn_to_pfn is asymmetric.
  301. */
  302. if (unlikely(mfn == INVALID_P2M_ENTRY)) {
  303. mfn = 0;
  304. flags = 0;
  305. } else
  306. mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
  307. val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
  308. }
  309. return val;
  310. }
  311. __visible pteval_t xen_pte_val(pte_t pte)
  312. {
  313. pteval_t pteval = pte.pte;
  314. return pte_mfn_to_pfn(pteval);
  315. }
  316. PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
  317. __visible pgdval_t xen_pgd_val(pgd_t pgd)
  318. {
  319. return pte_mfn_to_pfn(pgd.pgd);
  320. }
  321. PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
  322. __visible pte_t xen_make_pte(pteval_t pte)
  323. {
  324. pte = pte_pfn_to_mfn(pte);
  325. return native_make_pte(pte);
  326. }
  327. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
  328. __visible pgd_t xen_make_pgd(pgdval_t pgd)
  329. {
  330. pgd = pte_pfn_to_mfn(pgd);
  331. return native_make_pgd(pgd);
  332. }
  333. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
  334. __visible pmdval_t xen_pmd_val(pmd_t pmd)
  335. {
  336. return pte_mfn_to_pfn(pmd.pmd);
  337. }
  338. PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
  339. static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
  340. {
  341. struct mmu_update u;
  342. preempt_disable();
  343. xen_mc_batch();
  344. /* ptr may be ioremapped for 64-bit pagetable setup */
  345. u.ptr = arbitrary_virt_to_machine(ptr).maddr;
  346. u.val = pud_val_ma(val);
  347. xen_extend_mmu_update(&u);
  348. xen_mc_issue(PARAVIRT_LAZY_MMU);
  349. preempt_enable();
  350. }
  351. static void xen_set_pud(pud_t *ptr, pud_t val)
  352. {
  353. trace_xen_mmu_set_pud(ptr, val);
  354. /* If page is not pinned, we can just update the entry
  355. directly */
  356. if (!xen_page_pinned(ptr)) {
  357. *ptr = val;
  358. return;
  359. }
  360. xen_set_pud_hyper(ptr, val);
  361. }
  362. #ifdef CONFIG_X86_PAE
  363. static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
  364. {
  365. trace_xen_mmu_set_pte_atomic(ptep, pte);
  366. __xen_set_pte(ptep, pte);
  367. }
  368. static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  369. {
  370. trace_xen_mmu_pte_clear(mm, addr, ptep);
  371. __xen_set_pte(ptep, native_make_pte(0));
  372. }
  373. static void xen_pmd_clear(pmd_t *pmdp)
  374. {
  375. trace_xen_mmu_pmd_clear(pmdp);
  376. set_pmd(pmdp, __pmd(0));
  377. }
  378. #endif /* CONFIG_X86_PAE */
  379. __visible pmd_t xen_make_pmd(pmdval_t pmd)
  380. {
  381. pmd = pte_pfn_to_mfn(pmd);
  382. return native_make_pmd(pmd);
  383. }
  384. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
  385. #ifdef CONFIG_X86_64
  386. __visible pudval_t xen_pud_val(pud_t pud)
  387. {
  388. return pte_mfn_to_pfn(pud.pud);
  389. }
  390. PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
  391. __visible pud_t xen_make_pud(pudval_t pud)
  392. {
  393. pud = pte_pfn_to_mfn(pud);
  394. return native_make_pud(pud);
  395. }
  396. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
  397. static pgd_t *xen_get_user_pgd(pgd_t *pgd)
  398. {
  399. pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
  400. unsigned offset = pgd - pgd_page;
  401. pgd_t *user_ptr = NULL;
  402. if (offset < pgd_index(USER_LIMIT)) {
  403. struct page *page = virt_to_page(pgd_page);
  404. user_ptr = (pgd_t *)page->private;
  405. if (user_ptr)
  406. user_ptr += offset;
  407. }
  408. return user_ptr;
  409. }
  410. static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
  411. {
  412. struct mmu_update u;
  413. u.ptr = virt_to_machine(ptr).maddr;
  414. u.val = p4d_val_ma(val);
  415. xen_extend_mmu_update(&u);
  416. }
  417. /*
  418. * Raw hypercall-based set_p4d, intended for in early boot before
  419. * there's a page structure. This implies:
  420. * 1. The only existing pagetable is the kernel's
  421. * 2. It is always pinned
  422. * 3. It has no user pagetable attached to it
  423. */
  424. static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
  425. {
  426. preempt_disable();
  427. xen_mc_batch();
  428. __xen_set_p4d_hyper(ptr, val);
  429. xen_mc_issue(PARAVIRT_LAZY_MMU);
  430. preempt_enable();
  431. }
  432. static void xen_set_p4d(p4d_t *ptr, p4d_t val)
  433. {
  434. pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
  435. pgd_t pgd_val;
  436. trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
  437. /* If page is not pinned, we can just update the entry
  438. directly */
  439. if (!xen_page_pinned(ptr)) {
  440. *ptr = val;
  441. if (user_ptr) {
  442. WARN_ON(xen_page_pinned(user_ptr));
  443. pgd_val.pgd = p4d_val_ma(val);
  444. *user_ptr = pgd_val;
  445. }
  446. return;
  447. }
  448. /* If it's pinned, then we can at least batch the kernel and
  449. user updates together. */
  450. xen_mc_batch();
  451. __xen_set_p4d_hyper(ptr, val);
  452. if (user_ptr)
  453. __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
  454. xen_mc_issue(PARAVIRT_LAZY_MMU);
  455. }
  456. #if CONFIG_PGTABLE_LEVELS >= 5
  457. __visible p4dval_t xen_p4d_val(p4d_t p4d)
  458. {
  459. return pte_mfn_to_pfn(p4d.p4d);
  460. }
  461. PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
  462. __visible p4d_t xen_make_p4d(p4dval_t p4d)
  463. {
  464. p4d = pte_pfn_to_mfn(p4d);
  465. return native_make_p4d(p4d);
  466. }
  467. PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
  468. #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
  469. #endif /* CONFIG_X86_64 */
  470. static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
  471. int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
  472. bool last, unsigned long limit)
  473. {
  474. int i, nr, flush = 0;
  475. nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
  476. for (i = 0; i < nr; i++) {
  477. if (!pmd_none(pmd[i]))
  478. flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
  479. }
  480. return flush;
  481. }
  482. static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
  483. int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
  484. bool last, unsigned long limit)
  485. {
  486. int i, nr, flush = 0;
  487. nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
  488. for (i = 0; i < nr; i++) {
  489. pmd_t *pmd;
  490. if (pud_none(pud[i]))
  491. continue;
  492. pmd = pmd_offset(&pud[i], 0);
  493. if (PTRS_PER_PMD > 1)
  494. flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
  495. flush |= xen_pmd_walk(mm, pmd, func,
  496. last && i == nr - 1, limit);
  497. }
  498. return flush;
  499. }
  500. static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
  501. int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
  502. bool last, unsigned long limit)
  503. {
  504. int flush = 0;
  505. pud_t *pud;
  506. if (p4d_none(*p4d))
  507. return flush;
  508. pud = pud_offset(p4d, 0);
  509. if (PTRS_PER_PUD > 1)
  510. flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
  511. flush |= xen_pud_walk(mm, pud, func, last, limit);
  512. return flush;
  513. }
  514. /*
  515. * (Yet another) pagetable walker. This one is intended for pinning a
  516. * pagetable. This means that it walks a pagetable and calls the
  517. * callback function on each page it finds making up the page table,
  518. * at every level. It walks the entire pagetable, but it only bothers
  519. * pinning pte pages which are below limit. In the normal case this
  520. * will be STACK_TOP_MAX, but at boot we need to pin up to
  521. * FIXADDR_TOP.
  522. *
  523. * For 32-bit the important bit is that we don't pin beyond there,
  524. * because then we start getting into Xen's ptes.
  525. *
  526. * For 64-bit, we must skip the Xen hole in the middle of the address
  527. * space, just after the big x86-64 virtual hole.
  528. */
  529. static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
  530. int (*func)(struct mm_struct *mm, struct page *,
  531. enum pt_level),
  532. unsigned long limit)
  533. {
  534. int i, nr, flush = 0;
  535. unsigned hole_low, hole_high;
  536. /* The limit is the last byte to be touched */
  537. limit--;
  538. BUG_ON(limit >= FIXADDR_TOP);
  539. /*
  540. * 64-bit has a great big hole in the middle of the address
  541. * space, which contains the Xen mappings. On 32-bit these
  542. * will end up making a zero-sized hole and so is a no-op.
  543. */
  544. hole_low = pgd_index(USER_LIMIT);
  545. hole_high = pgd_index(PAGE_OFFSET);
  546. nr = pgd_index(limit) + 1;
  547. for (i = 0; i < nr; i++) {
  548. p4d_t *p4d;
  549. if (i >= hole_low && i < hole_high)
  550. continue;
  551. if (pgd_none(pgd[i]))
  552. continue;
  553. p4d = p4d_offset(&pgd[i], 0);
  554. flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
  555. }
  556. /* Do the top level last, so that the callbacks can use it as
  557. a cue to do final things like tlb flushes. */
  558. flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
  559. return flush;
  560. }
  561. static int xen_pgd_walk(struct mm_struct *mm,
  562. int (*func)(struct mm_struct *mm, struct page *,
  563. enum pt_level),
  564. unsigned long limit)
  565. {
  566. return __xen_pgd_walk(mm, mm->pgd, func, limit);
  567. }
  568. /* If we're using split pte locks, then take the page's lock and
  569. return a pointer to it. Otherwise return NULL. */
  570. static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
  571. {
  572. spinlock_t *ptl = NULL;
  573. #if USE_SPLIT_PTE_PTLOCKS
  574. ptl = ptlock_ptr(page);
  575. spin_lock_nest_lock(ptl, &mm->page_table_lock);
  576. #endif
  577. return ptl;
  578. }
  579. static void xen_pte_unlock(void *v)
  580. {
  581. spinlock_t *ptl = v;
  582. spin_unlock(ptl);
  583. }
  584. static void xen_do_pin(unsigned level, unsigned long pfn)
  585. {
  586. struct mmuext_op op;
  587. op.cmd = level;
  588. op.arg1.mfn = pfn_to_mfn(pfn);
  589. xen_extend_mmuext_op(&op);
  590. }
  591. static int xen_pin_page(struct mm_struct *mm, struct page *page,
  592. enum pt_level level)
  593. {
  594. unsigned pgfl = TestSetPagePinned(page);
  595. int flush;
  596. if (pgfl)
  597. flush = 0; /* already pinned */
  598. else if (PageHighMem(page))
  599. /* kmaps need flushing if we found an unpinned
  600. highpage */
  601. flush = 1;
  602. else {
  603. void *pt = lowmem_page_address(page);
  604. unsigned long pfn = page_to_pfn(page);
  605. struct multicall_space mcs = __xen_mc_entry(0);
  606. spinlock_t *ptl;
  607. flush = 0;
  608. /*
  609. * We need to hold the pagetable lock between the time
  610. * we make the pagetable RO and when we actually pin
  611. * it. If we don't, then other users may come in and
  612. * attempt to update the pagetable by writing it,
  613. * which will fail because the memory is RO but not
  614. * pinned, so Xen won't do the trap'n'emulate.
  615. *
  616. * If we're using split pte locks, we can't hold the
  617. * entire pagetable's worth of locks during the
  618. * traverse, because we may wrap the preempt count (8
  619. * bits). The solution is to mark RO and pin each PTE
  620. * page while holding the lock. This means the number
  621. * of locks we end up holding is never more than a
  622. * batch size (~32 entries, at present).
  623. *
  624. * If we're not using split pte locks, we needn't pin
  625. * the PTE pages independently, because we're
  626. * protected by the overall pagetable lock.
  627. */
  628. ptl = NULL;
  629. if (level == PT_PTE)
  630. ptl = xen_pte_lock(page, mm);
  631. MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
  632. pfn_pte(pfn, PAGE_KERNEL_RO),
  633. level == PT_PGD ? UVMF_TLB_FLUSH : 0);
  634. if (ptl) {
  635. xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
  636. /* Queue a deferred unlock for when this batch
  637. is completed. */
  638. xen_mc_callback(xen_pte_unlock, ptl);
  639. }
  640. }
  641. return flush;
  642. }
  643. /* This is called just after a mm has been created, but it has not
  644. been used yet. We need to make sure that its pagetable is all
  645. read-only, and can be pinned. */
  646. static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
  647. {
  648. trace_xen_mmu_pgd_pin(mm, pgd);
  649. xen_mc_batch();
  650. if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
  651. /* re-enable interrupts for flushing */
  652. xen_mc_issue(0);
  653. kmap_flush_unused();
  654. xen_mc_batch();
  655. }
  656. #ifdef CONFIG_X86_64
  657. {
  658. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  659. xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
  660. if (user_pgd) {
  661. xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
  662. xen_do_pin(MMUEXT_PIN_L4_TABLE,
  663. PFN_DOWN(__pa(user_pgd)));
  664. }
  665. }
  666. #else /* CONFIG_X86_32 */
  667. #ifdef CONFIG_X86_PAE
  668. /* Need to make sure unshared kernel PMD is pinnable */
  669. xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
  670. PT_PMD);
  671. #endif
  672. xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
  673. #endif /* CONFIG_X86_64 */
  674. xen_mc_issue(0);
  675. }
  676. static void xen_pgd_pin(struct mm_struct *mm)
  677. {
  678. __xen_pgd_pin(mm, mm->pgd);
  679. }
  680. /*
  681. * On save, we need to pin all pagetables to make sure they get their
  682. * mfns turned into pfns. Search the list for any unpinned pgds and pin
  683. * them (unpinned pgds are not currently in use, probably because the
  684. * process is under construction or destruction).
  685. *
  686. * Expected to be called in stop_machine() ("equivalent to taking
  687. * every spinlock in the system"), so the locking doesn't really
  688. * matter all that much.
  689. */
  690. void xen_mm_pin_all(void)
  691. {
  692. struct page *page;
  693. spin_lock(&pgd_lock);
  694. list_for_each_entry(page, &pgd_list, lru) {
  695. if (!PagePinned(page)) {
  696. __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
  697. SetPageSavePinned(page);
  698. }
  699. }
  700. spin_unlock(&pgd_lock);
  701. }
  702. static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
  703. enum pt_level level)
  704. {
  705. SetPagePinned(page);
  706. return 0;
  707. }
  708. /*
  709. * The init_mm pagetable is really pinned as soon as its created, but
  710. * that's before we have page structures to store the bits. So do all
  711. * the book-keeping now once struct pages for allocated pages are
  712. * initialized. This happens only after memblock_free_all() is called.
  713. */
  714. static void __init xen_after_bootmem(void)
  715. {
  716. static_branch_enable(&xen_struct_pages_ready);
  717. #ifdef CONFIG_X86_64
  718. SetPagePinned(virt_to_page(level3_user_vsyscall));
  719. #endif
  720. xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
  721. }
  722. static int xen_unpin_page(struct mm_struct *mm, struct page *page,
  723. enum pt_level level)
  724. {
  725. unsigned pgfl = TestClearPagePinned(page);
  726. if (pgfl && !PageHighMem(page)) {
  727. void *pt = lowmem_page_address(page);
  728. unsigned long pfn = page_to_pfn(page);
  729. spinlock_t *ptl = NULL;
  730. struct multicall_space mcs;
  731. /*
  732. * Do the converse to pin_page. If we're using split
  733. * pte locks, we must be holding the lock for while
  734. * the pte page is unpinned but still RO to prevent
  735. * concurrent updates from seeing it in this
  736. * partially-pinned state.
  737. */
  738. if (level == PT_PTE) {
  739. ptl = xen_pte_lock(page, mm);
  740. if (ptl)
  741. xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
  742. }
  743. mcs = __xen_mc_entry(0);
  744. MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
  745. pfn_pte(pfn, PAGE_KERNEL),
  746. level == PT_PGD ? UVMF_TLB_FLUSH : 0);
  747. if (ptl) {
  748. /* unlock when batch completed */
  749. xen_mc_callback(xen_pte_unlock, ptl);
  750. }
  751. }
  752. return 0; /* never need to flush on unpin */
  753. }
  754. /* Release a pagetables pages back as normal RW */
  755. static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
  756. {
  757. trace_xen_mmu_pgd_unpin(mm, pgd);
  758. xen_mc_batch();
  759. xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  760. #ifdef CONFIG_X86_64
  761. {
  762. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  763. if (user_pgd) {
  764. xen_do_pin(MMUEXT_UNPIN_TABLE,
  765. PFN_DOWN(__pa(user_pgd)));
  766. xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
  767. }
  768. }
  769. #endif
  770. #ifdef CONFIG_X86_PAE
  771. /* Need to make sure unshared kernel PMD is unpinned */
  772. xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
  773. PT_PMD);
  774. #endif
  775. __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
  776. xen_mc_issue(0);
  777. }
  778. static void xen_pgd_unpin(struct mm_struct *mm)
  779. {
  780. __xen_pgd_unpin(mm, mm->pgd);
  781. }
  782. /*
  783. * On resume, undo any pinning done at save, so that the rest of the
  784. * kernel doesn't see any unexpected pinned pagetables.
  785. */
  786. void xen_mm_unpin_all(void)
  787. {
  788. struct page *page;
  789. spin_lock(&pgd_lock);
  790. list_for_each_entry(page, &pgd_list, lru) {
  791. if (PageSavePinned(page)) {
  792. BUG_ON(!PagePinned(page));
  793. __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
  794. ClearPageSavePinned(page);
  795. }
  796. }
  797. spin_unlock(&pgd_lock);
  798. }
  799. static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
  800. {
  801. spin_lock(&next->page_table_lock);
  802. xen_pgd_pin(next);
  803. spin_unlock(&next->page_table_lock);
  804. }
  805. static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
  806. {
  807. spin_lock(&mm->page_table_lock);
  808. xen_pgd_pin(mm);
  809. spin_unlock(&mm->page_table_lock);
  810. }
  811. static void drop_mm_ref_this_cpu(void *info)
  812. {
  813. struct mm_struct *mm = info;
  814. if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
  815. leave_mm(smp_processor_id());
  816. /*
  817. * If this cpu still has a stale cr3 reference, then make sure
  818. * it has been flushed.
  819. */
  820. if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
  821. xen_mc_flush();
  822. }
  823. #ifdef CONFIG_SMP
  824. /*
  825. * Another cpu may still have their %cr3 pointing at the pagetable, so
  826. * we need to repoint it somewhere else before we can unpin it.
  827. */
  828. static void xen_drop_mm_ref(struct mm_struct *mm)
  829. {
  830. cpumask_var_t mask;
  831. unsigned cpu;
  832. drop_mm_ref_this_cpu(mm);
  833. /* Get the "official" set of cpus referring to our pagetable. */
  834. if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
  835. for_each_online_cpu(cpu) {
  836. if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
  837. continue;
  838. smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
  839. }
  840. return;
  841. }
  842. /*
  843. * It's possible that a vcpu may have a stale reference to our
  844. * cr3, because its in lazy mode, and it hasn't yet flushed
  845. * its set of pending hypercalls yet. In this case, we can
  846. * look at its actual current cr3 value, and force it to flush
  847. * if needed.
  848. */
  849. cpumask_clear(mask);
  850. for_each_online_cpu(cpu) {
  851. if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
  852. cpumask_set_cpu(cpu, mask);
  853. }
  854. smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
  855. free_cpumask_var(mask);
  856. }
  857. #else
  858. static void xen_drop_mm_ref(struct mm_struct *mm)
  859. {
  860. drop_mm_ref_this_cpu(mm);
  861. }
  862. #endif
  863. /*
  864. * While a process runs, Xen pins its pagetables, which means that the
  865. * hypervisor forces it to be read-only, and it controls all updates
  866. * to it. This means that all pagetable updates have to go via the
  867. * hypervisor, which is moderately expensive.
  868. *
  869. * Since we're pulling the pagetable down, we switch to use init_mm,
  870. * unpin old process pagetable and mark it all read-write, which
  871. * allows further operations on it to be simple memory accesses.
  872. *
  873. * The only subtle point is that another CPU may be still using the
  874. * pagetable because of lazy tlb flushing. This means we need need to
  875. * switch all CPUs off this pagetable before we can unpin it.
  876. */
  877. static void xen_exit_mmap(struct mm_struct *mm)
  878. {
  879. get_cpu(); /* make sure we don't move around */
  880. xen_drop_mm_ref(mm);
  881. put_cpu();
  882. spin_lock(&mm->page_table_lock);
  883. /* pgd may not be pinned in the error exit path of execve */
  884. if (xen_page_pinned(mm->pgd))
  885. xen_pgd_unpin(mm);
  886. spin_unlock(&mm->page_table_lock);
  887. }
  888. static void xen_post_allocator_init(void);
  889. static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  890. {
  891. struct mmuext_op op;
  892. op.cmd = cmd;
  893. op.arg1.mfn = pfn_to_mfn(pfn);
  894. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  895. BUG();
  896. }
  897. #ifdef CONFIG_X86_64
  898. static void __init xen_cleanhighmap(unsigned long vaddr,
  899. unsigned long vaddr_end)
  900. {
  901. unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  902. pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
  903. /* NOTE: The loop is more greedy than the cleanup_highmap variant.
  904. * We include the PMD passed in on _both_ boundaries. */
  905. for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
  906. pmd++, vaddr += PMD_SIZE) {
  907. if (pmd_none(*pmd))
  908. continue;
  909. if (vaddr < (unsigned long) _text || vaddr > kernel_end)
  910. set_pmd(pmd, __pmd(0));
  911. }
  912. /* In case we did something silly, we should crash in this function
  913. * instead of somewhere later and be confusing. */
  914. xen_mc_flush();
  915. }
  916. /*
  917. * Make a page range writeable and free it.
  918. */
  919. static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
  920. {
  921. void *vaddr = __va(paddr);
  922. void *vaddr_end = vaddr + size;
  923. for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
  924. make_lowmem_page_readwrite(vaddr);
  925. memblock_free(paddr, size);
  926. }
  927. static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
  928. {
  929. unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
  930. if (unpin)
  931. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
  932. ClearPagePinned(virt_to_page(__va(pa)));
  933. xen_free_ro_pages(pa, PAGE_SIZE);
  934. }
  935. static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
  936. {
  937. unsigned long pa;
  938. pte_t *pte_tbl;
  939. int i;
  940. if (pmd_large(*pmd)) {
  941. pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
  942. xen_free_ro_pages(pa, PMD_SIZE);
  943. return;
  944. }
  945. pte_tbl = pte_offset_kernel(pmd, 0);
  946. for (i = 0; i < PTRS_PER_PTE; i++) {
  947. if (pte_none(pte_tbl[i]))
  948. continue;
  949. pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
  950. xen_free_ro_pages(pa, PAGE_SIZE);
  951. }
  952. set_pmd(pmd, __pmd(0));
  953. xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
  954. }
  955. static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
  956. {
  957. unsigned long pa;
  958. pmd_t *pmd_tbl;
  959. int i;
  960. if (pud_large(*pud)) {
  961. pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
  962. xen_free_ro_pages(pa, PUD_SIZE);
  963. return;
  964. }
  965. pmd_tbl = pmd_offset(pud, 0);
  966. for (i = 0; i < PTRS_PER_PMD; i++) {
  967. if (pmd_none(pmd_tbl[i]))
  968. continue;
  969. xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
  970. }
  971. set_pud(pud, __pud(0));
  972. xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
  973. }
  974. static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
  975. {
  976. unsigned long pa;
  977. pud_t *pud_tbl;
  978. int i;
  979. if (p4d_large(*p4d)) {
  980. pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
  981. xen_free_ro_pages(pa, P4D_SIZE);
  982. return;
  983. }
  984. pud_tbl = pud_offset(p4d, 0);
  985. for (i = 0; i < PTRS_PER_PUD; i++) {
  986. if (pud_none(pud_tbl[i]))
  987. continue;
  988. xen_cleanmfnmap_pud(pud_tbl + i, unpin);
  989. }
  990. set_p4d(p4d, __p4d(0));
  991. xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
  992. }
  993. /*
  994. * Since it is well isolated we can (and since it is perhaps large we should)
  995. * also free the page tables mapping the initial P->M table.
  996. */
  997. static void __init xen_cleanmfnmap(unsigned long vaddr)
  998. {
  999. pgd_t *pgd;
  1000. p4d_t *p4d;
  1001. bool unpin;
  1002. unpin = (vaddr == 2 * PGDIR_SIZE);
  1003. vaddr &= PMD_MASK;
  1004. pgd = pgd_offset_k(vaddr);
  1005. p4d = p4d_offset(pgd, 0);
  1006. if (!p4d_none(*p4d))
  1007. xen_cleanmfnmap_p4d(p4d, unpin);
  1008. }
  1009. static void __init xen_pagetable_p2m_free(void)
  1010. {
  1011. unsigned long size;
  1012. unsigned long addr;
  1013. size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
  1014. /* No memory or already called. */
  1015. if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
  1016. return;
  1017. /* using __ka address and sticking INVALID_P2M_ENTRY! */
  1018. memset((void *)xen_start_info->mfn_list, 0xff, size);
  1019. addr = xen_start_info->mfn_list;
  1020. /*
  1021. * We could be in __ka space.
  1022. * We roundup to the PMD, which means that if anybody at this stage is
  1023. * using the __ka address of xen_start_info or
  1024. * xen_start_info->shared_info they are in going to crash. Fortunatly
  1025. * we have already revectored in xen_setup_kernel_pagetable.
  1026. */
  1027. size = roundup(size, PMD_SIZE);
  1028. if (addr >= __START_KERNEL_map) {
  1029. xen_cleanhighmap(addr, addr + size);
  1030. size = PAGE_ALIGN(xen_start_info->nr_pages *
  1031. sizeof(unsigned long));
  1032. memblock_free(__pa(addr), size);
  1033. } else {
  1034. xen_cleanmfnmap(addr);
  1035. }
  1036. }
  1037. static void __init xen_pagetable_cleanhighmap(void)
  1038. {
  1039. unsigned long size;
  1040. unsigned long addr;
  1041. /* At this stage, cleanup_highmap has already cleaned __ka space
  1042. * from _brk_limit way up to the max_pfn_mapped (which is the end of
  1043. * the ramdisk). We continue on, erasing PMD entries that point to page
  1044. * tables - do note that they are accessible at this stage via __va.
  1045. * As Xen is aligning the memory end to a 4MB boundary, for good
  1046. * measure we also round up to PMD_SIZE * 2 - which means that if
  1047. * anybody is using __ka address to the initial boot-stack - and try
  1048. * to use it - they are going to crash. The xen_start_info has been
  1049. * taken care of already in xen_setup_kernel_pagetable. */
  1050. addr = xen_start_info->pt_base;
  1051. size = xen_start_info->nr_pt_frames * PAGE_SIZE;
  1052. xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
  1053. xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
  1054. }
  1055. #endif
  1056. static void __init xen_pagetable_p2m_setup(void)
  1057. {
  1058. xen_vmalloc_p2m_tree();
  1059. #ifdef CONFIG_X86_64
  1060. xen_pagetable_p2m_free();
  1061. xen_pagetable_cleanhighmap();
  1062. #endif
  1063. /* And revector! Bye bye old array */
  1064. xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
  1065. }
  1066. static void __init xen_pagetable_init(void)
  1067. {
  1068. paging_init();
  1069. xen_post_allocator_init();
  1070. xen_pagetable_p2m_setup();
  1071. /* Allocate and initialize top and mid mfn levels for p2m structure */
  1072. xen_build_mfn_list_list();
  1073. /* Remap memory freed due to conflicts with E820 map */
  1074. xen_remap_memory();
  1075. xen_setup_mfn_list_list();
  1076. }
  1077. static void xen_write_cr2(unsigned long cr2)
  1078. {
  1079. this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
  1080. }
  1081. static unsigned long xen_read_cr2(void)
  1082. {
  1083. return this_cpu_read(xen_vcpu)->arch.cr2;
  1084. }
  1085. unsigned long xen_read_cr2_direct(void)
  1086. {
  1087. return this_cpu_read(xen_vcpu_info.arch.cr2);
  1088. }
  1089. static noinline void xen_flush_tlb(void)
  1090. {
  1091. struct mmuext_op *op;
  1092. struct multicall_space mcs;
  1093. preempt_disable();
  1094. mcs = xen_mc_entry(sizeof(*op));
  1095. op = mcs.args;
  1096. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  1097. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  1098. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1099. preempt_enable();
  1100. }
  1101. static void xen_flush_tlb_one_user(unsigned long addr)
  1102. {
  1103. struct mmuext_op *op;
  1104. struct multicall_space mcs;
  1105. trace_xen_mmu_flush_tlb_one_user(addr);
  1106. preempt_disable();
  1107. mcs = xen_mc_entry(sizeof(*op));
  1108. op = mcs.args;
  1109. op->cmd = MMUEXT_INVLPG_LOCAL;
  1110. op->arg1.linear_addr = addr & PAGE_MASK;
  1111. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  1112. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1113. preempt_enable();
  1114. }
  1115. static void xen_flush_tlb_others(const struct cpumask *cpus,
  1116. const struct flush_tlb_info *info)
  1117. {
  1118. struct {
  1119. struct mmuext_op op;
  1120. DECLARE_BITMAP(mask, NR_CPUS);
  1121. } *args;
  1122. struct multicall_space mcs;
  1123. const size_t mc_entry_size = sizeof(args->op) +
  1124. sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
  1125. trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
  1126. if (cpumask_empty(cpus))
  1127. return; /* nothing to do */
  1128. mcs = xen_mc_entry(mc_entry_size);
  1129. args = mcs.args;
  1130. args->op.arg2.vcpumask = to_cpumask(args->mask);
  1131. /* Remove us, and any offline CPUS. */
  1132. cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
  1133. cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
  1134. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  1135. if (info->end != TLB_FLUSH_ALL &&
  1136. (info->end - info->start) <= PAGE_SIZE) {
  1137. args->op.cmd = MMUEXT_INVLPG_MULTI;
  1138. args->op.arg1.linear_addr = info->start;
  1139. }
  1140. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  1141. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1142. }
  1143. static unsigned long xen_read_cr3(void)
  1144. {
  1145. return this_cpu_read(xen_cr3);
  1146. }
  1147. static void set_current_cr3(void *v)
  1148. {
  1149. this_cpu_write(xen_current_cr3, (unsigned long)v);
  1150. }
  1151. static void __xen_write_cr3(bool kernel, unsigned long cr3)
  1152. {
  1153. struct mmuext_op op;
  1154. unsigned long mfn;
  1155. trace_xen_mmu_write_cr3(kernel, cr3);
  1156. if (cr3)
  1157. mfn = pfn_to_mfn(PFN_DOWN(cr3));
  1158. else
  1159. mfn = 0;
  1160. WARN_ON(mfn == 0 && kernel);
  1161. op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
  1162. op.arg1.mfn = mfn;
  1163. xen_extend_mmuext_op(&op);
  1164. if (kernel) {
  1165. this_cpu_write(xen_cr3, cr3);
  1166. /* Update xen_current_cr3 once the batch has actually
  1167. been submitted. */
  1168. xen_mc_callback(set_current_cr3, (void *)cr3);
  1169. }
  1170. }
  1171. static void xen_write_cr3(unsigned long cr3)
  1172. {
  1173. BUG_ON(preemptible());
  1174. xen_mc_batch(); /* disables interrupts */
  1175. /* Update while interrupts are disabled, so its atomic with
  1176. respect to ipis */
  1177. this_cpu_write(xen_cr3, cr3);
  1178. __xen_write_cr3(true, cr3);
  1179. #ifdef CONFIG_X86_64
  1180. {
  1181. pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
  1182. if (user_pgd)
  1183. __xen_write_cr3(false, __pa(user_pgd));
  1184. else
  1185. __xen_write_cr3(false, 0);
  1186. }
  1187. #endif
  1188. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  1189. }
  1190. #ifdef CONFIG_X86_64
  1191. /*
  1192. * At the start of the day - when Xen launches a guest, it has already
  1193. * built pagetables for the guest. We diligently look over them
  1194. * in xen_setup_kernel_pagetable and graft as appropriate them in the
  1195. * init_top_pgt and its friends. Then when we are happy we load
  1196. * the new init_top_pgt - and continue on.
  1197. *
  1198. * The generic code starts (start_kernel) and 'init_mem_mapping' sets
  1199. * up the rest of the pagetables. When it has completed it loads the cr3.
  1200. * N.B. that baremetal would start at 'start_kernel' (and the early
  1201. * #PF handler would create bootstrap pagetables) - so we are running
  1202. * with the same assumptions as what to do when write_cr3 is executed
  1203. * at this point.
  1204. *
  1205. * Since there are no user-page tables at all, we have two variants
  1206. * of xen_write_cr3 - the early bootup (this one), and the late one
  1207. * (xen_write_cr3). The reason we have to do that is that in 64-bit
  1208. * the Linux kernel and user-space are both in ring 3 while the
  1209. * hypervisor is in ring 0.
  1210. */
  1211. static void __init xen_write_cr3_init(unsigned long cr3)
  1212. {
  1213. BUG_ON(preemptible());
  1214. xen_mc_batch(); /* disables interrupts */
  1215. /* Update while interrupts are disabled, so its atomic with
  1216. respect to ipis */
  1217. this_cpu_write(xen_cr3, cr3);
  1218. __xen_write_cr3(true, cr3);
  1219. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  1220. }
  1221. #endif
  1222. static int xen_pgd_alloc(struct mm_struct *mm)
  1223. {
  1224. pgd_t *pgd = mm->pgd;
  1225. int ret = 0;
  1226. BUG_ON(PagePinned(virt_to_page(pgd)));
  1227. #ifdef CONFIG_X86_64
  1228. {
  1229. struct page *page = virt_to_page(pgd);
  1230. pgd_t *user_pgd;
  1231. BUG_ON(page->private != 0);
  1232. ret = -ENOMEM;
  1233. user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  1234. page->private = (unsigned long)user_pgd;
  1235. if (user_pgd != NULL) {
  1236. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  1237. user_pgd[pgd_index(VSYSCALL_ADDR)] =
  1238. __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
  1239. #endif
  1240. ret = 0;
  1241. }
  1242. BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
  1243. }
  1244. #endif
  1245. return ret;
  1246. }
  1247. static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
  1248. {
  1249. #ifdef CONFIG_X86_64
  1250. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  1251. if (user_pgd)
  1252. free_page((unsigned long)user_pgd);
  1253. #endif
  1254. }
  1255. /*
  1256. * Init-time set_pte while constructing initial pagetables, which
  1257. * doesn't allow RO page table pages to be remapped RW.
  1258. *
  1259. * If there is no MFN for this PFN then this page is initially
  1260. * ballooned out so clear the PTE (as in decrease_reservation() in
  1261. * drivers/xen/balloon.c).
  1262. *
  1263. * Many of these PTE updates are done on unpinned and writable pages
  1264. * and doing a hypercall for these is unnecessary and expensive. At
  1265. * this point it is not possible to tell if a page is pinned or not,
  1266. * so always write the PTE directly and rely on Xen trapping and
  1267. * emulating any updates as necessary.
  1268. */
  1269. __visible pte_t xen_make_pte_init(pteval_t pte)
  1270. {
  1271. #ifdef CONFIG_X86_64
  1272. unsigned long pfn;
  1273. /*
  1274. * Pages belonging to the initial p2m list mapped outside the default
  1275. * address range must be mapped read-only. This region contains the
  1276. * page tables for mapping the p2m list, too, and page tables MUST be
  1277. * mapped read-only.
  1278. */
  1279. pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
  1280. if (xen_start_info->mfn_list < __START_KERNEL_map &&
  1281. pfn >= xen_start_info->first_p2m_pfn &&
  1282. pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
  1283. pte &= ~_PAGE_RW;
  1284. #endif
  1285. pte = pte_pfn_to_mfn(pte);
  1286. return native_make_pte(pte);
  1287. }
  1288. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
  1289. static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
  1290. {
  1291. #ifdef CONFIG_X86_32
  1292. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  1293. if (pte_mfn(pte) != INVALID_P2M_ENTRY
  1294. && pte_val_ma(*ptep) & _PAGE_PRESENT)
  1295. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  1296. pte_val_ma(pte));
  1297. #endif
  1298. __xen_set_pte(ptep, pte);
  1299. }
  1300. /* Early in boot, while setting up the initial pagetable, assume
  1301. everything is pinned. */
  1302. static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
  1303. {
  1304. #ifdef CONFIG_FLATMEM
  1305. BUG_ON(mem_map); /* should only be used early */
  1306. #endif
  1307. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  1308. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  1309. }
  1310. /* Used for pmd and pud */
  1311. static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
  1312. {
  1313. #ifdef CONFIG_FLATMEM
  1314. BUG_ON(mem_map); /* should only be used early */
  1315. #endif
  1316. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  1317. }
  1318. /* Early release_pte assumes that all pts are pinned, since there's
  1319. only init_mm and anything attached to that is pinned. */
  1320. static void __init xen_release_pte_init(unsigned long pfn)
  1321. {
  1322. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  1323. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  1324. }
  1325. static void __init xen_release_pmd_init(unsigned long pfn)
  1326. {
  1327. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  1328. }
  1329. static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  1330. {
  1331. struct multicall_space mcs;
  1332. struct mmuext_op *op;
  1333. mcs = __xen_mc_entry(sizeof(*op));
  1334. op = mcs.args;
  1335. op->cmd = cmd;
  1336. op->arg1.mfn = pfn_to_mfn(pfn);
  1337. MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
  1338. }
  1339. static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
  1340. {
  1341. struct multicall_space mcs;
  1342. unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
  1343. mcs = __xen_mc_entry(0);
  1344. MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
  1345. pfn_pte(pfn, prot), 0);
  1346. }
  1347. /* This needs to make sure the new pte page is pinned iff its being
  1348. attached to a pinned pagetable. */
  1349. static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
  1350. unsigned level)
  1351. {
  1352. bool pinned = xen_page_pinned(mm->pgd);
  1353. trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
  1354. if (pinned) {
  1355. struct page *page = pfn_to_page(pfn);
  1356. if (static_branch_likely(&xen_struct_pages_ready))
  1357. SetPagePinned(page);
  1358. if (!PageHighMem(page)) {
  1359. xen_mc_batch();
  1360. __set_pfn_prot(pfn, PAGE_KERNEL_RO);
  1361. if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
  1362. __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  1363. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1364. } else {
  1365. /* make sure there are no stray mappings of
  1366. this page */
  1367. kmap_flush_unused();
  1368. }
  1369. }
  1370. }
  1371. static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
  1372. {
  1373. xen_alloc_ptpage(mm, pfn, PT_PTE);
  1374. }
  1375. static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
  1376. {
  1377. xen_alloc_ptpage(mm, pfn, PT_PMD);
  1378. }
  1379. /* This should never happen until we're OK to use struct page */
  1380. static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
  1381. {
  1382. struct page *page = pfn_to_page(pfn);
  1383. bool pinned = PagePinned(page);
  1384. trace_xen_mmu_release_ptpage(pfn, level, pinned);
  1385. if (pinned) {
  1386. if (!PageHighMem(page)) {
  1387. xen_mc_batch();
  1388. if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
  1389. __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  1390. __set_pfn_prot(pfn, PAGE_KERNEL);
  1391. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1392. }
  1393. ClearPagePinned(page);
  1394. }
  1395. }
  1396. static void xen_release_pte(unsigned long pfn)
  1397. {
  1398. xen_release_ptpage(pfn, PT_PTE);
  1399. }
  1400. static void xen_release_pmd(unsigned long pfn)
  1401. {
  1402. xen_release_ptpage(pfn, PT_PMD);
  1403. }
  1404. #ifdef CONFIG_X86_64
  1405. static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
  1406. {
  1407. xen_alloc_ptpage(mm, pfn, PT_PUD);
  1408. }
  1409. static void xen_release_pud(unsigned long pfn)
  1410. {
  1411. xen_release_ptpage(pfn, PT_PUD);
  1412. }
  1413. #endif
  1414. void __init xen_reserve_top(void)
  1415. {
  1416. #ifdef CONFIG_X86_32
  1417. unsigned long top = HYPERVISOR_VIRT_START;
  1418. struct xen_platform_parameters pp;
  1419. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  1420. top = pp.virt_start;
  1421. reserve_top_address(-top);
  1422. #endif /* CONFIG_X86_32 */
  1423. }
  1424. /*
  1425. * Like __va(), but returns address in the kernel mapping (which is
  1426. * all we have until the physical memory mapping has been set up.
  1427. */
  1428. static void * __init __ka(phys_addr_t paddr)
  1429. {
  1430. #ifdef CONFIG_X86_64
  1431. return (void *)(paddr + __START_KERNEL_map);
  1432. #else
  1433. return __va(paddr);
  1434. #endif
  1435. }
  1436. /* Convert a machine address to physical address */
  1437. static unsigned long __init m2p(phys_addr_t maddr)
  1438. {
  1439. phys_addr_t paddr;
  1440. maddr &= XEN_PTE_MFN_MASK;
  1441. paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
  1442. return paddr;
  1443. }
  1444. /* Convert a machine address to kernel virtual */
  1445. static void * __init m2v(phys_addr_t maddr)
  1446. {
  1447. return __ka(m2p(maddr));
  1448. }
  1449. /* Set the page permissions on an identity-mapped pages */
  1450. static void __init set_page_prot_flags(void *addr, pgprot_t prot,
  1451. unsigned long flags)
  1452. {
  1453. unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
  1454. pte_t pte = pfn_pte(pfn, prot);
  1455. if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
  1456. BUG();
  1457. }
  1458. static void __init set_page_prot(void *addr, pgprot_t prot)
  1459. {
  1460. return set_page_prot_flags(addr, prot, UVMF_NONE);
  1461. }
  1462. #ifdef CONFIG_X86_32
  1463. static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
  1464. {
  1465. unsigned pmdidx, pteidx;
  1466. unsigned ident_pte;
  1467. unsigned long pfn;
  1468. level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
  1469. PAGE_SIZE);
  1470. ident_pte = 0;
  1471. pfn = 0;
  1472. for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
  1473. pte_t *pte_page;
  1474. /* Reuse or allocate a page of ptes */
  1475. if (pmd_present(pmd[pmdidx]))
  1476. pte_page = m2v(pmd[pmdidx].pmd);
  1477. else {
  1478. /* Check for free pte pages */
  1479. if (ident_pte == LEVEL1_IDENT_ENTRIES)
  1480. break;
  1481. pte_page = &level1_ident_pgt[ident_pte];
  1482. ident_pte += PTRS_PER_PTE;
  1483. pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
  1484. }
  1485. /* Install mappings */
  1486. for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
  1487. pte_t pte;
  1488. if (pfn > max_pfn_mapped)
  1489. max_pfn_mapped = pfn;
  1490. if (!pte_none(pte_page[pteidx]))
  1491. continue;
  1492. pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
  1493. pte_page[pteidx] = pte;
  1494. }
  1495. }
  1496. for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
  1497. set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
  1498. set_page_prot(pmd, PAGE_KERNEL_RO);
  1499. }
  1500. #endif
  1501. void __init xen_setup_machphys_mapping(void)
  1502. {
  1503. struct xen_machphys_mapping mapping;
  1504. if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
  1505. machine_to_phys_mapping = (unsigned long *)mapping.v_start;
  1506. machine_to_phys_nr = mapping.max_mfn + 1;
  1507. } else {
  1508. machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
  1509. }
  1510. #ifdef CONFIG_X86_32
  1511. WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
  1512. < machine_to_phys_mapping);
  1513. #endif
  1514. }
  1515. #ifdef CONFIG_X86_64
  1516. static void __init convert_pfn_mfn(void *v)
  1517. {
  1518. pte_t *pte = v;
  1519. int i;
  1520. /* All levels are converted the same way, so just treat them
  1521. as ptes. */
  1522. for (i = 0; i < PTRS_PER_PTE; i++)
  1523. pte[i] = xen_make_pte(pte[i].pte);
  1524. }
  1525. static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
  1526. unsigned long addr)
  1527. {
  1528. if (*pt_base == PFN_DOWN(__pa(addr))) {
  1529. set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
  1530. clear_page((void *)addr);
  1531. (*pt_base)++;
  1532. }
  1533. if (*pt_end == PFN_DOWN(__pa(addr))) {
  1534. set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
  1535. clear_page((void *)addr);
  1536. (*pt_end)--;
  1537. }
  1538. }
  1539. /*
  1540. * Set up the initial kernel pagetable.
  1541. *
  1542. * We can construct this by grafting the Xen provided pagetable into
  1543. * head_64.S's preconstructed pagetables. We copy the Xen L2's into
  1544. * level2_ident_pgt, and level2_kernel_pgt. This means that only the
  1545. * kernel has a physical mapping to start with - but that's enough to
  1546. * get __va working. We need to fill in the rest of the physical
  1547. * mapping once some sort of allocator has been set up.
  1548. */
  1549. void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1550. {
  1551. pud_t *l3;
  1552. pmd_t *l2;
  1553. unsigned long addr[3];
  1554. unsigned long pt_base, pt_end;
  1555. unsigned i;
  1556. /* max_pfn_mapped is the last pfn mapped in the initial memory
  1557. * mappings. Considering that on Xen after the kernel mappings we
  1558. * have the mappings of some pages that don't exist in pfn space, we
  1559. * set max_pfn_mapped to the last real pfn mapped. */
  1560. if (xen_start_info->mfn_list < __START_KERNEL_map)
  1561. max_pfn_mapped = xen_start_info->first_p2m_pfn;
  1562. else
  1563. max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
  1564. pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
  1565. pt_end = pt_base + xen_start_info->nr_pt_frames;
  1566. /* Zap identity mapping */
  1567. init_top_pgt[0] = __pgd(0);
  1568. /* Pre-constructed entries are in pfn, so convert to mfn */
  1569. /* L4[273] -> level3_ident_pgt */
  1570. /* L4[511] -> level3_kernel_pgt */
  1571. convert_pfn_mfn(init_top_pgt);
  1572. /* L3_i[0] -> level2_ident_pgt */
  1573. convert_pfn_mfn(level3_ident_pgt);
  1574. /* L3_k[510] -> level2_kernel_pgt */
  1575. /* L3_k[511] -> level2_fixmap_pgt */
  1576. convert_pfn_mfn(level3_kernel_pgt);
  1577. /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
  1578. convert_pfn_mfn(level2_fixmap_pgt);
  1579. /* We get [511][511] and have Xen's version of level2_kernel_pgt */
  1580. l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
  1581. l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
  1582. addr[0] = (unsigned long)pgd;
  1583. addr[1] = (unsigned long)l3;
  1584. addr[2] = (unsigned long)l2;
  1585. /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
  1586. * Both L4[273][0] and L4[511][510] have entries that point to the same
  1587. * L2 (PMD) tables. Meaning that if you modify it in __va space
  1588. * it will be also modified in the __ka space! (But if you just
  1589. * modify the PMD table to point to other PTE's or none, then you
  1590. * are OK - which is what cleanup_highmap does) */
  1591. copy_page(level2_ident_pgt, l2);
  1592. /* Graft it onto L4[511][510] */
  1593. copy_page(level2_kernel_pgt, l2);
  1594. /*
  1595. * Zap execute permission from the ident map. Due to the sharing of
  1596. * L1 entries we need to do this in the L2.
  1597. */
  1598. if (__supported_pte_mask & _PAGE_NX) {
  1599. for (i = 0; i < PTRS_PER_PMD; ++i) {
  1600. if (pmd_none(level2_ident_pgt[i]))
  1601. continue;
  1602. level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
  1603. }
  1604. }
  1605. /* Copy the initial P->M table mappings if necessary. */
  1606. i = pgd_index(xen_start_info->mfn_list);
  1607. if (i && i < pgd_index(__START_KERNEL_map))
  1608. init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
  1609. /* Make pagetable pieces RO */
  1610. set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
  1611. set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
  1612. set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
  1613. set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
  1614. set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
  1615. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1616. set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
  1617. for (i = 0; i < FIXMAP_PMD_NUM; i++) {
  1618. set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
  1619. PAGE_KERNEL_RO);
  1620. }
  1621. /* Pin down new L4 */
  1622. pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
  1623. PFN_DOWN(__pa_symbol(init_top_pgt)));
  1624. /* Unpin Xen-provided one */
  1625. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1626. /*
  1627. * At this stage there can be no user pgd, and no page structure to
  1628. * attach it to, so make sure we just set kernel pgd.
  1629. */
  1630. xen_mc_batch();
  1631. __xen_write_cr3(true, __pa(init_top_pgt));
  1632. xen_mc_issue(PARAVIRT_LAZY_CPU);
  1633. /* We can't that easily rip out L3 and L2, as the Xen pagetables are
  1634. * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
  1635. * the initial domain. For guests using the toolstack, they are in:
  1636. * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
  1637. * rip out the [L4] (pgd), but for guests we shave off three pages.
  1638. */
  1639. for (i = 0; i < ARRAY_SIZE(addr); i++)
  1640. check_pt_base(&pt_base, &pt_end, addr[i]);
  1641. /* Our (by three pages) smaller Xen pagetable that we are using */
  1642. xen_pt_base = PFN_PHYS(pt_base);
  1643. xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
  1644. memblock_reserve(xen_pt_base, xen_pt_size);
  1645. /* Revector the xen_start_info */
  1646. xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
  1647. }
  1648. /*
  1649. * Read a value from a physical address.
  1650. */
  1651. static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
  1652. {
  1653. unsigned long *vaddr;
  1654. unsigned long val;
  1655. vaddr = early_memremap_ro(addr, sizeof(val));
  1656. val = *vaddr;
  1657. early_memunmap(vaddr, sizeof(val));
  1658. return val;
  1659. }
  1660. /*
  1661. * Translate a virtual address to a physical one without relying on mapped
  1662. * page tables. Don't rely on big pages being aligned in (guest) physical
  1663. * space!
  1664. */
  1665. static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
  1666. {
  1667. phys_addr_t pa;
  1668. pgd_t pgd;
  1669. pud_t pud;
  1670. pmd_t pmd;
  1671. pte_t pte;
  1672. pa = read_cr3_pa();
  1673. pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
  1674. sizeof(pgd)));
  1675. if (!pgd_present(pgd))
  1676. return 0;
  1677. pa = pgd_val(pgd) & PTE_PFN_MASK;
  1678. pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
  1679. sizeof(pud)));
  1680. if (!pud_present(pud))
  1681. return 0;
  1682. pa = pud_val(pud) & PTE_PFN_MASK;
  1683. if (pud_large(pud))
  1684. return pa + (vaddr & ~PUD_MASK);
  1685. pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
  1686. sizeof(pmd)));
  1687. if (!pmd_present(pmd))
  1688. return 0;
  1689. pa = pmd_val(pmd) & PTE_PFN_MASK;
  1690. if (pmd_large(pmd))
  1691. return pa + (vaddr & ~PMD_MASK);
  1692. pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
  1693. sizeof(pte)));
  1694. if (!pte_present(pte))
  1695. return 0;
  1696. pa = pte_pfn(pte) << PAGE_SHIFT;
  1697. return pa | (vaddr & ~PAGE_MASK);
  1698. }
  1699. /*
  1700. * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
  1701. * this area.
  1702. */
  1703. void __init xen_relocate_p2m(void)
  1704. {
  1705. phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
  1706. unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
  1707. int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
  1708. pte_t *pt;
  1709. pmd_t *pmd;
  1710. pud_t *pud;
  1711. pgd_t *pgd;
  1712. unsigned long *new_p2m;
  1713. size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
  1714. n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
  1715. n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
  1716. n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
  1717. n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
  1718. n_frames = n_pte + n_pt + n_pmd + n_pud;
  1719. new_area = xen_find_free_area(PFN_PHYS(n_frames));
  1720. if (!new_area) {
  1721. xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
  1722. BUG();
  1723. }
  1724. /*
  1725. * Setup the page tables for addressing the new p2m list.
  1726. * We have asked the hypervisor to map the p2m list at the user address
  1727. * PUD_SIZE. It may have done so, or it may have used a kernel space
  1728. * address depending on the Xen version.
  1729. * To avoid any possible virtual address collision, just use
  1730. * 2 * PUD_SIZE for the new area.
  1731. */
  1732. pud_phys = new_area;
  1733. pmd_phys = pud_phys + PFN_PHYS(n_pud);
  1734. pt_phys = pmd_phys + PFN_PHYS(n_pmd);
  1735. p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
  1736. pgd = __va(read_cr3_pa());
  1737. new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
  1738. for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
  1739. pud = early_memremap(pud_phys, PAGE_SIZE);
  1740. clear_page(pud);
  1741. for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
  1742. idx_pmd++) {
  1743. pmd = early_memremap(pmd_phys, PAGE_SIZE);
  1744. clear_page(pmd);
  1745. for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
  1746. idx_pt++) {
  1747. pt = early_memremap(pt_phys, PAGE_SIZE);
  1748. clear_page(pt);
  1749. for (idx_pte = 0;
  1750. idx_pte < min(n_pte, PTRS_PER_PTE);
  1751. idx_pte++) {
  1752. set_pte(pt + idx_pte,
  1753. pfn_pte(p2m_pfn, PAGE_KERNEL));
  1754. p2m_pfn++;
  1755. }
  1756. n_pte -= PTRS_PER_PTE;
  1757. early_memunmap(pt, PAGE_SIZE);
  1758. make_lowmem_page_readonly(__va(pt_phys));
  1759. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
  1760. PFN_DOWN(pt_phys));
  1761. set_pmd(pmd + idx_pt,
  1762. __pmd(_PAGE_TABLE | pt_phys));
  1763. pt_phys += PAGE_SIZE;
  1764. }
  1765. n_pt -= PTRS_PER_PMD;
  1766. early_memunmap(pmd, PAGE_SIZE);
  1767. make_lowmem_page_readonly(__va(pmd_phys));
  1768. pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
  1769. PFN_DOWN(pmd_phys));
  1770. set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
  1771. pmd_phys += PAGE_SIZE;
  1772. }
  1773. n_pmd -= PTRS_PER_PUD;
  1774. early_memunmap(pud, PAGE_SIZE);
  1775. make_lowmem_page_readonly(__va(pud_phys));
  1776. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
  1777. set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
  1778. pud_phys += PAGE_SIZE;
  1779. }
  1780. /* Now copy the old p2m info to the new area. */
  1781. memcpy(new_p2m, xen_p2m_addr, size);
  1782. xen_p2m_addr = new_p2m;
  1783. /* Release the old p2m list and set new list info. */
  1784. p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
  1785. BUG_ON(!p2m_pfn);
  1786. p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
  1787. if (xen_start_info->mfn_list < __START_KERNEL_map) {
  1788. pfn = xen_start_info->first_p2m_pfn;
  1789. pfn_end = xen_start_info->first_p2m_pfn +
  1790. xen_start_info->nr_p2m_frames;
  1791. set_pgd(pgd + 1, __pgd(0));
  1792. } else {
  1793. pfn = p2m_pfn;
  1794. pfn_end = p2m_pfn_end;
  1795. }
  1796. memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
  1797. while (pfn < pfn_end) {
  1798. if (pfn == p2m_pfn) {
  1799. pfn = p2m_pfn_end;
  1800. continue;
  1801. }
  1802. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  1803. pfn++;
  1804. }
  1805. xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
  1806. xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
  1807. xen_start_info->nr_p2m_frames = n_frames;
  1808. }
  1809. #else /* !CONFIG_X86_64 */
  1810. static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
  1811. static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
  1812. RESERVE_BRK(fixup_kernel_pmd, PAGE_SIZE);
  1813. RESERVE_BRK(fixup_kernel_pte, PAGE_SIZE);
  1814. static void __init xen_write_cr3_init(unsigned long cr3)
  1815. {
  1816. unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
  1817. BUG_ON(read_cr3_pa() != __pa(initial_page_table));
  1818. BUG_ON(cr3 != __pa(swapper_pg_dir));
  1819. /*
  1820. * We are switching to swapper_pg_dir for the first time (from
  1821. * initial_page_table) and therefore need to mark that page
  1822. * read-only and then pin it.
  1823. *
  1824. * Xen disallows sharing of kernel PMDs for PAE
  1825. * guests. Therefore we must copy the kernel PMD from
  1826. * initial_page_table into a new kernel PMD to be used in
  1827. * swapper_pg_dir.
  1828. */
  1829. swapper_kernel_pmd =
  1830. extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
  1831. copy_page(swapper_kernel_pmd, initial_kernel_pmd);
  1832. swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
  1833. __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
  1834. set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
  1835. set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
  1836. xen_write_cr3(cr3);
  1837. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
  1838. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
  1839. PFN_DOWN(__pa(initial_page_table)));
  1840. set_page_prot(initial_page_table, PAGE_KERNEL);
  1841. set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
  1842. pv_ops.mmu.write_cr3 = &xen_write_cr3;
  1843. }
  1844. /*
  1845. * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
  1846. * not the first page table in the page table pool.
  1847. * Iterate through the initial page tables to find the real page table base.
  1848. */
  1849. static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
  1850. {
  1851. phys_addr_t pt_base, paddr;
  1852. unsigned pmdidx;
  1853. pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
  1854. for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
  1855. if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
  1856. paddr = m2p(pmd[pmdidx].pmd);
  1857. pt_base = min(pt_base, paddr);
  1858. }
  1859. return pt_base;
  1860. }
  1861. void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1862. {
  1863. pmd_t *kernel_pmd;
  1864. kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
  1865. xen_pt_base = xen_find_pt_base(kernel_pmd);
  1866. xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
  1867. initial_kernel_pmd =
  1868. extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
  1869. max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
  1870. copy_page(initial_kernel_pmd, kernel_pmd);
  1871. xen_map_identity_early(initial_kernel_pmd, max_pfn);
  1872. copy_page(initial_page_table, pgd);
  1873. initial_page_table[KERNEL_PGD_BOUNDARY] =
  1874. __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
  1875. set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
  1876. set_page_prot(initial_page_table, PAGE_KERNEL_RO);
  1877. set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
  1878. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1879. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
  1880. PFN_DOWN(__pa(initial_page_table)));
  1881. xen_write_cr3(__pa(initial_page_table));
  1882. memblock_reserve(xen_pt_base, xen_pt_size);
  1883. }
  1884. #endif /* CONFIG_X86_64 */
  1885. void __init xen_reserve_special_pages(void)
  1886. {
  1887. phys_addr_t paddr;
  1888. memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
  1889. if (xen_start_info->store_mfn) {
  1890. paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
  1891. memblock_reserve(paddr, PAGE_SIZE);
  1892. }
  1893. if (!xen_initial_domain()) {
  1894. paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
  1895. memblock_reserve(paddr, PAGE_SIZE);
  1896. }
  1897. }
  1898. void __init xen_pt_check_e820(void)
  1899. {
  1900. if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
  1901. xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
  1902. BUG();
  1903. }
  1904. }
  1905. static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
  1906. static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
  1907. {
  1908. pte_t pte;
  1909. phys >>= PAGE_SHIFT;
  1910. switch (idx) {
  1911. case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
  1912. #ifdef CONFIG_X86_32
  1913. case FIX_WP_TEST:
  1914. # ifdef CONFIG_HIGHMEM
  1915. case FIX_KMAP_BEGIN ... FIX_KMAP_END:
  1916. # endif
  1917. #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
  1918. case VSYSCALL_PAGE:
  1919. #endif
  1920. case FIX_TEXT_POKE0:
  1921. case FIX_TEXT_POKE1:
  1922. /* All local page mappings */
  1923. pte = pfn_pte(phys, prot);
  1924. break;
  1925. #ifdef CONFIG_X86_LOCAL_APIC
  1926. case FIX_APIC_BASE: /* maps dummy local APIC */
  1927. pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
  1928. break;
  1929. #endif
  1930. #ifdef CONFIG_X86_IO_APIC
  1931. case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
  1932. /*
  1933. * We just don't map the IO APIC - all access is via
  1934. * hypercalls. Keep the address in the pte for reference.
  1935. */
  1936. pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
  1937. break;
  1938. #endif
  1939. case FIX_PARAVIRT_BOOTMAP:
  1940. /* This is an MFN, but it isn't an IO mapping from the
  1941. IO domain */
  1942. pte = mfn_pte(phys, prot);
  1943. break;
  1944. default:
  1945. /* By default, set_fixmap is used for hardware mappings */
  1946. pte = mfn_pte(phys, prot);
  1947. break;
  1948. }
  1949. __native_set_fixmap(idx, pte);
  1950. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  1951. /* Replicate changes to map the vsyscall page into the user
  1952. pagetable vsyscall mapping. */
  1953. if (idx == VSYSCALL_PAGE) {
  1954. unsigned long vaddr = __fix_to_virt(idx);
  1955. set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
  1956. }
  1957. #endif
  1958. }
  1959. static void __init xen_post_allocator_init(void)
  1960. {
  1961. pv_ops.mmu.set_pte = xen_set_pte;
  1962. pv_ops.mmu.set_pmd = xen_set_pmd;
  1963. pv_ops.mmu.set_pud = xen_set_pud;
  1964. #ifdef CONFIG_X86_64
  1965. pv_ops.mmu.set_p4d = xen_set_p4d;
  1966. #endif
  1967. /* This will work as long as patching hasn't happened yet
  1968. (which it hasn't) */
  1969. pv_ops.mmu.alloc_pte = xen_alloc_pte;
  1970. pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
  1971. pv_ops.mmu.release_pte = xen_release_pte;
  1972. pv_ops.mmu.release_pmd = xen_release_pmd;
  1973. #ifdef CONFIG_X86_64
  1974. pv_ops.mmu.alloc_pud = xen_alloc_pud;
  1975. pv_ops.mmu.release_pud = xen_release_pud;
  1976. #endif
  1977. pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
  1978. #ifdef CONFIG_X86_64
  1979. pv_ops.mmu.write_cr3 = &xen_write_cr3;
  1980. #endif
  1981. }
  1982. static void xen_leave_lazy_mmu(void)
  1983. {
  1984. preempt_disable();
  1985. xen_mc_flush();
  1986. paravirt_leave_lazy_mmu();
  1987. preempt_enable();
  1988. }
  1989. static const struct pv_mmu_ops xen_mmu_ops __initconst = {
  1990. .read_cr2 = xen_read_cr2,
  1991. .write_cr2 = xen_write_cr2,
  1992. .read_cr3 = xen_read_cr3,
  1993. .write_cr3 = xen_write_cr3_init,
  1994. .flush_tlb_user = xen_flush_tlb,
  1995. .flush_tlb_kernel = xen_flush_tlb,
  1996. .flush_tlb_one_user = xen_flush_tlb_one_user,
  1997. .flush_tlb_others = xen_flush_tlb_others,
  1998. .tlb_remove_table = tlb_remove_table,
  1999. .pgd_alloc = xen_pgd_alloc,
  2000. .pgd_free = xen_pgd_free,
  2001. .alloc_pte = xen_alloc_pte_init,
  2002. .release_pte = xen_release_pte_init,
  2003. .alloc_pmd = xen_alloc_pmd_init,
  2004. .release_pmd = xen_release_pmd_init,
  2005. .set_pte = xen_set_pte_init,
  2006. .set_pte_at = xen_set_pte_at,
  2007. .set_pmd = xen_set_pmd_hyper,
  2008. .ptep_modify_prot_start = __ptep_modify_prot_start,
  2009. .ptep_modify_prot_commit = __ptep_modify_prot_commit,
  2010. .pte_val = PV_CALLEE_SAVE(xen_pte_val),
  2011. .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
  2012. .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
  2013. .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
  2014. #ifdef CONFIG_X86_PAE
  2015. .set_pte_atomic = xen_set_pte_atomic,
  2016. .pte_clear = xen_pte_clear,
  2017. .pmd_clear = xen_pmd_clear,
  2018. #endif /* CONFIG_X86_PAE */
  2019. .set_pud = xen_set_pud_hyper,
  2020. .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
  2021. .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
  2022. #ifdef CONFIG_X86_64
  2023. .pud_val = PV_CALLEE_SAVE(xen_pud_val),
  2024. .make_pud = PV_CALLEE_SAVE(xen_make_pud),
  2025. .set_p4d = xen_set_p4d_hyper,
  2026. .alloc_pud = xen_alloc_pmd_init,
  2027. .release_pud = xen_release_pmd_init,
  2028. #if CONFIG_PGTABLE_LEVELS >= 5
  2029. .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
  2030. .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
  2031. #endif
  2032. #endif /* CONFIG_X86_64 */
  2033. .activate_mm = xen_activate_mm,
  2034. .dup_mmap = xen_dup_mmap,
  2035. .exit_mmap = xen_exit_mmap,
  2036. .lazy_mode = {
  2037. .enter = paravirt_enter_lazy_mmu,
  2038. .leave = xen_leave_lazy_mmu,
  2039. .flush = paravirt_flush_lazy_mmu,
  2040. },
  2041. .set_fixmap = xen_set_fixmap,
  2042. };
  2043. void __init xen_init_mmu_ops(void)
  2044. {
  2045. x86_init.paging.pagetable_init = xen_pagetable_init;
  2046. x86_init.hyper.init_after_bootmem = xen_after_bootmem;
  2047. pv_ops.mmu = xen_mmu_ops;
  2048. memset(dummy_mapping, 0xff, PAGE_SIZE);
  2049. }
  2050. /* Protected by xen_reservation_lock. */
  2051. #define MAX_CONTIG_ORDER 9 /* 2MB */
  2052. static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
  2053. #define VOID_PTE (mfn_pte(0, __pgprot(0)))
  2054. static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
  2055. unsigned long *in_frames,
  2056. unsigned long *out_frames)
  2057. {
  2058. int i;
  2059. struct multicall_space mcs;
  2060. xen_mc_batch();
  2061. for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
  2062. mcs = __xen_mc_entry(0);
  2063. if (in_frames)
  2064. in_frames[i] = virt_to_mfn(vaddr);
  2065. MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
  2066. __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
  2067. if (out_frames)
  2068. out_frames[i] = virt_to_pfn(vaddr);
  2069. }
  2070. xen_mc_issue(0);
  2071. }
  2072. /*
  2073. * Update the pfn-to-mfn mappings for a virtual address range, either to
  2074. * point to an array of mfns, or contiguously from a single starting
  2075. * mfn.
  2076. */
  2077. static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
  2078. unsigned long *mfns,
  2079. unsigned long first_mfn)
  2080. {
  2081. unsigned i, limit;
  2082. unsigned long mfn;
  2083. xen_mc_batch();
  2084. limit = 1u << order;
  2085. for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
  2086. struct multicall_space mcs;
  2087. unsigned flags;
  2088. mcs = __xen_mc_entry(0);
  2089. if (mfns)
  2090. mfn = mfns[i];
  2091. else
  2092. mfn = first_mfn + i;
  2093. if (i < (limit - 1))
  2094. flags = 0;
  2095. else {
  2096. if (order == 0)
  2097. flags = UVMF_INVLPG | UVMF_ALL;
  2098. else
  2099. flags = UVMF_TLB_FLUSH | UVMF_ALL;
  2100. }
  2101. MULTI_update_va_mapping(mcs.mc, vaddr,
  2102. mfn_pte(mfn, PAGE_KERNEL), flags);
  2103. set_phys_to_machine(virt_to_pfn(vaddr), mfn);
  2104. }
  2105. xen_mc_issue(0);
  2106. }
  2107. /*
  2108. * Perform the hypercall to exchange a region of our pfns to point to
  2109. * memory with the required contiguous alignment. Takes the pfns as
  2110. * input, and populates mfns as output.
  2111. *
  2112. * Returns a success code indicating whether the hypervisor was able to
  2113. * satisfy the request or not.
  2114. */
  2115. static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
  2116. unsigned long *pfns_in,
  2117. unsigned long extents_out,
  2118. unsigned int order_out,
  2119. unsigned long *mfns_out,
  2120. unsigned int address_bits)
  2121. {
  2122. long rc;
  2123. int success;
  2124. struct xen_memory_exchange exchange = {
  2125. .in = {
  2126. .nr_extents = extents_in,
  2127. .extent_order = order_in,
  2128. .extent_start = pfns_in,
  2129. .domid = DOMID_SELF
  2130. },
  2131. .out = {
  2132. .nr_extents = extents_out,
  2133. .extent_order = order_out,
  2134. .extent_start = mfns_out,
  2135. .address_bits = address_bits,
  2136. .domid = DOMID_SELF
  2137. }
  2138. };
  2139. BUG_ON(extents_in << order_in != extents_out << order_out);
  2140. rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
  2141. success = (exchange.nr_exchanged == extents_in);
  2142. BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
  2143. BUG_ON(success && (rc != 0));
  2144. return success;
  2145. }
  2146. int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
  2147. unsigned int address_bits,
  2148. dma_addr_t *dma_handle)
  2149. {
  2150. unsigned long *in_frames = discontig_frames, out_frame;
  2151. unsigned long flags;
  2152. int success;
  2153. unsigned long vstart = (unsigned long)phys_to_virt(pstart);
  2154. /*
  2155. * Currently an auto-translated guest will not perform I/O, nor will
  2156. * it require PAE page directories below 4GB. Therefore any calls to
  2157. * this function are redundant and can be ignored.
  2158. */
  2159. if (unlikely(order > MAX_CONTIG_ORDER))
  2160. return -ENOMEM;
  2161. memset((void *) vstart, 0, PAGE_SIZE << order);
  2162. spin_lock_irqsave(&xen_reservation_lock, flags);
  2163. /* 1. Zap current PTEs, remembering MFNs. */
  2164. xen_zap_pfn_range(vstart, order, in_frames, NULL);
  2165. /* 2. Get a new contiguous memory extent. */
  2166. out_frame = virt_to_pfn(vstart);
  2167. success = xen_exchange_memory(1UL << order, 0, in_frames,
  2168. 1, order, &out_frame,
  2169. address_bits);
  2170. /* 3. Map the new extent in place of old pages. */
  2171. if (success)
  2172. xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
  2173. else
  2174. xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
  2175. spin_unlock_irqrestore(&xen_reservation_lock, flags);
  2176. *dma_handle = virt_to_machine(vstart).maddr;
  2177. return success ? 0 : -ENOMEM;
  2178. }
  2179. EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
  2180. void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
  2181. {
  2182. unsigned long *out_frames = discontig_frames, in_frame;
  2183. unsigned long flags;
  2184. int success;
  2185. unsigned long vstart;
  2186. if (unlikely(order > MAX_CONTIG_ORDER))
  2187. return;
  2188. vstart = (unsigned long)phys_to_virt(pstart);
  2189. memset((void *) vstart, 0, PAGE_SIZE << order);
  2190. spin_lock_irqsave(&xen_reservation_lock, flags);
  2191. /* 1. Find start MFN of contiguous extent. */
  2192. in_frame = virt_to_mfn(vstart);
  2193. /* 2. Zap current PTEs. */
  2194. xen_zap_pfn_range(vstart, order, NULL, out_frames);
  2195. /* 3. Do the exchange for non-contiguous MFNs. */
  2196. success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
  2197. 0, out_frames, 0);
  2198. /* 4. Map new pages in place of old pages. */
  2199. if (success)
  2200. xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
  2201. else
  2202. xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
  2203. spin_unlock_irqrestore(&xen_reservation_lock, flags);
  2204. }
  2205. EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
  2206. static noinline void xen_flush_tlb_all(void)
  2207. {
  2208. struct mmuext_op *op;
  2209. struct multicall_space mcs;
  2210. preempt_disable();
  2211. mcs = xen_mc_entry(sizeof(*op));
  2212. op = mcs.args;
  2213. op->cmd = MMUEXT_TLB_FLUSH_ALL;
  2214. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  2215. xen_mc_issue(PARAVIRT_LAZY_MMU);
  2216. preempt_enable();
  2217. }
  2218. #define REMAP_BATCH_SIZE 16
  2219. struct remap_data {
  2220. xen_pfn_t *pfn;
  2221. bool contiguous;
  2222. bool no_translate;
  2223. pgprot_t prot;
  2224. struct mmu_update *mmu_update;
  2225. };
  2226. static int remap_area_pfn_pte_fn(pte_t *ptep, pgtable_t token,
  2227. unsigned long addr, void *data)
  2228. {
  2229. struct remap_data *rmd = data;
  2230. pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
  2231. /*
  2232. * If we have a contiguous range, just update the pfn itself,
  2233. * else update pointer to be "next pfn".
  2234. */
  2235. if (rmd->contiguous)
  2236. (*rmd->pfn)++;
  2237. else
  2238. rmd->pfn++;
  2239. rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
  2240. rmd->mmu_update->ptr |= rmd->no_translate ?
  2241. MMU_PT_UPDATE_NO_TRANSLATE :
  2242. MMU_NORMAL_PT_UPDATE;
  2243. rmd->mmu_update->val = pte_val_ma(pte);
  2244. rmd->mmu_update++;
  2245. return 0;
  2246. }
  2247. int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
  2248. xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
  2249. unsigned int domid, bool no_translate, struct page **pages)
  2250. {
  2251. int err = 0;
  2252. struct remap_data rmd;
  2253. struct mmu_update mmu_update[REMAP_BATCH_SIZE];
  2254. unsigned long range;
  2255. int mapped = 0;
  2256. BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
  2257. rmd.pfn = pfn;
  2258. rmd.prot = prot;
  2259. /*
  2260. * We use the err_ptr to indicate if there we are doing a contiguous
  2261. * mapping or a discontigious mapping.
  2262. */
  2263. rmd.contiguous = !err_ptr;
  2264. rmd.no_translate = no_translate;
  2265. while (nr) {
  2266. int index = 0;
  2267. int done = 0;
  2268. int batch = min(REMAP_BATCH_SIZE, nr);
  2269. int batch_left = batch;
  2270. range = (unsigned long)batch << PAGE_SHIFT;
  2271. rmd.mmu_update = mmu_update;
  2272. err = apply_to_page_range(vma->vm_mm, addr, range,
  2273. remap_area_pfn_pte_fn, &rmd);
  2274. if (err)
  2275. goto out;
  2276. /*
  2277. * We record the error for each page that gives an error, but
  2278. * continue mapping until the whole set is done
  2279. */
  2280. do {
  2281. int i;
  2282. err = HYPERVISOR_mmu_update(&mmu_update[index],
  2283. batch_left, &done, domid);
  2284. /*
  2285. * @err_ptr may be the same buffer as @gfn, so
  2286. * only clear it after each chunk of @gfn is
  2287. * used.
  2288. */
  2289. if (err_ptr) {
  2290. for (i = index; i < index + done; i++)
  2291. err_ptr[i] = 0;
  2292. }
  2293. if (err < 0) {
  2294. if (!err_ptr)
  2295. goto out;
  2296. err_ptr[i] = err;
  2297. done++; /* Skip failed frame. */
  2298. } else
  2299. mapped += done;
  2300. batch_left -= done;
  2301. index += done;
  2302. } while (batch_left);
  2303. nr -= batch;
  2304. addr += range;
  2305. if (err_ptr)
  2306. err_ptr += batch;
  2307. cond_resched();
  2308. }
  2309. out:
  2310. xen_flush_tlb_all();
  2311. return err < 0 ? err : mapped;
  2312. }
  2313. EXPORT_SYMBOL_GPL(xen_remap_pfn);
  2314. #ifdef CONFIG_KEXEC_CORE
  2315. phys_addr_t paddr_vmcoreinfo_note(void)
  2316. {
  2317. if (xen_pv_domain())
  2318. return virt_to_machine(vmcoreinfo_note).maddr;
  2319. else
  2320. return __pa(vmcoreinfo_note);
  2321. }
  2322. #endif /* CONFIG_KEXEC_CORE */