sdma_v3_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  218. {
  219. int i;
  220. for (i = 0; i < adev->sdma.num_instances; i++) {
  221. release_firmware(adev->sdma.instance[i].fw);
  222. adev->sdma.instance[i].fw = NULL;
  223. }
  224. }
  225. /**
  226. * sdma_v3_0_init_microcode - load ucode images from disk
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Use the firmware interface to load the ucode images into
  231. * the driver (not loaded into hw).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  235. {
  236. const char *chip_name;
  237. char fw_name[30];
  238. int err = 0, i;
  239. struct amdgpu_firmware_info *info = NULL;
  240. const struct common_firmware_header *header = NULL;
  241. const struct sdma_firmware_header_v1_0 *hdr;
  242. DRM_DEBUG("\n");
  243. switch (adev->asic_type) {
  244. case CHIP_TONGA:
  245. chip_name = "tonga";
  246. break;
  247. case CHIP_FIJI:
  248. chip_name = "fiji";
  249. break;
  250. case CHIP_POLARIS11:
  251. chip_name = "polaris11";
  252. break;
  253. case CHIP_POLARIS10:
  254. chip_name = "polaris10";
  255. break;
  256. case CHIP_CARRIZO:
  257. chip_name = "carrizo";
  258. break;
  259. case CHIP_STONEY:
  260. chip_name = "stoney";
  261. break;
  262. default: BUG();
  263. }
  264. for (i = 0; i < adev->sdma.num_instances; i++) {
  265. if (i == 0)
  266. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  267. else
  268. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  269. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  270. if (err)
  271. goto out;
  272. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  273. if (err)
  274. goto out;
  275. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  276. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  277. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  278. if (adev->sdma.instance[i].feature_version >= 20)
  279. adev->sdma.instance[i].burst_nop = true;
  280. if (adev->firmware.smu_load) {
  281. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  282. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  283. info->fw = adev->sdma.instance[i].fw;
  284. header = (const struct common_firmware_header *)info->fw->data;
  285. adev->firmware.fw_size +=
  286. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  287. }
  288. }
  289. out:
  290. if (err) {
  291. printk(KERN_ERR
  292. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  293. fw_name);
  294. for (i = 0; i < adev->sdma.num_instances; i++) {
  295. release_firmware(adev->sdma.instance[i].fw);
  296. adev->sdma.instance[i].fw = NULL;
  297. }
  298. }
  299. return err;
  300. }
  301. /**
  302. * sdma_v3_0_ring_get_rptr - get the current read pointer
  303. *
  304. * @ring: amdgpu ring pointer
  305. *
  306. * Get the current rptr from the hardware (VI+).
  307. */
  308. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  309. {
  310. u32 rptr;
  311. /* XXX check if swapping is necessary on BE */
  312. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  313. return rptr;
  314. }
  315. /**
  316. * sdma_v3_0_ring_get_wptr - get the current write pointer
  317. *
  318. * @ring: amdgpu ring pointer
  319. *
  320. * Get the current wptr from the hardware (VI+).
  321. */
  322. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  323. {
  324. struct amdgpu_device *adev = ring->adev;
  325. u32 wptr;
  326. if (ring->use_doorbell) {
  327. /* XXX check if swapping is necessary on BE */
  328. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  329. } else {
  330. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  331. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  332. }
  333. return wptr;
  334. }
  335. /**
  336. * sdma_v3_0_ring_set_wptr - commit the write pointer
  337. *
  338. * @ring: amdgpu ring pointer
  339. *
  340. * Write the wptr back to the hardware (VI+).
  341. */
  342. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  343. {
  344. struct amdgpu_device *adev = ring->adev;
  345. if (ring->use_doorbell) {
  346. /* XXX check if swapping is necessary on BE */
  347. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  348. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  349. } else {
  350. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  351. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  352. }
  353. }
  354. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  355. {
  356. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  357. int i;
  358. for (i = 0; i < count; i++)
  359. if (sdma && sdma->burst_nop && (i == 0))
  360. amdgpu_ring_write(ring, ring->nop |
  361. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  362. else
  363. amdgpu_ring_write(ring, ring->nop);
  364. }
  365. /**
  366. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  367. *
  368. * @ring: amdgpu ring pointer
  369. * @ib: IB object to schedule
  370. *
  371. * Schedule an IB in the DMA ring (VI).
  372. */
  373. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  374. struct amdgpu_ib *ib,
  375. unsigned vm_id, bool ctx_switch)
  376. {
  377. u32 vmid = vm_id & 0xf;
  378. /* IB packet must end on a 8 DW boundary */
  379. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  380. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  381. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  382. /* base must be 32 byte aligned */
  383. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  384. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  385. amdgpu_ring_write(ring, ib->length_dw);
  386. amdgpu_ring_write(ring, 0);
  387. amdgpu_ring_write(ring, 0);
  388. }
  389. /**
  390. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  391. *
  392. * @ring: amdgpu ring pointer
  393. *
  394. * Emit an hdp flush packet on the requested DMA ring.
  395. */
  396. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  397. {
  398. u32 ref_and_mask = 0;
  399. if (ring == &ring->adev->sdma.instance[0].ring)
  400. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  401. else
  402. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  403. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  404. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  405. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  406. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  407. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  408. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  409. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  410. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  411. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  412. }
  413. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  414. {
  415. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  416. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  417. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  418. amdgpu_ring_write(ring, 1);
  419. }
  420. /**
  421. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  422. *
  423. * @ring: amdgpu ring pointer
  424. * @fence: amdgpu fence object
  425. *
  426. * Add a DMA fence packet to the ring to write
  427. * the fence seq number and DMA trap packet to generate
  428. * an interrupt if needed (VI).
  429. */
  430. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  431. unsigned flags)
  432. {
  433. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  434. /* write the fence */
  435. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  436. amdgpu_ring_write(ring, lower_32_bits(addr));
  437. amdgpu_ring_write(ring, upper_32_bits(addr));
  438. amdgpu_ring_write(ring, lower_32_bits(seq));
  439. /* optionally write high bits as well */
  440. if (write64bit) {
  441. addr += 4;
  442. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  443. amdgpu_ring_write(ring, lower_32_bits(addr));
  444. amdgpu_ring_write(ring, upper_32_bits(addr));
  445. amdgpu_ring_write(ring, upper_32_bits(seq));
  446. }
  447. /* generate an interrupt */
  448. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  449. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  450. }
  451. /**
  452. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  453. *
  454. * @adev: amdgpu_device pointer
  455. *
  456. * Stop the gfx async dma ring buffers (VI).
  457. */
  458. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  459. {
  460. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  461. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  462. u32 rb_cntl, ib_cntl;
  463. int i;
  464. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  465. (adev->mman.buffer_funcs_ring == sdma1))
  466. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  467. for (i = 0; i < adev->sdma.num_instances; i++) {
  468. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  469. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  470. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  471. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  472. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  473. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  474. }
  475. sdma0->ready = false;
  476. sdma1->ready = false;
  477. }
  478. /**
  479. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  480. *
  481. * @adev: amdgpu_device pointer
  482. *
  483. * Stop the compute async dma queues (VI).
  484. */
  485. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  486. {
  487. /* XXX todo */
  488. }
  489. /**
  490. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  491. *
  492. * @adev: amdgpu_device pointer
  493. * @enable: enable/disable the DMA MEs context switch.
  494. *
  495. * Halt or unhalt the async dma engines context switch (VI).
  496. */
  497. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  498. {
  499. u32 f32_cntl;
  500. int i;
  501. for (i = 0; i < adev->sdma.num_instances; i++) {
  502. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  503. if (enable)
  504. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  505. AUTO_CTXSW_ENABLE, 1);
  506. else
  507. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  508. AUTO_CTXSW_ENABLE, 0);
  509. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  510. }
  511. }
  512. /**
  513. * sdma_v3_0_enable - stop the async dma engines
  514. *
  515. * @adev: amdgpu_device pointer
  516. * @enable: enable/disable the DMA MEs.
  517. *
  518. * Halt or unhalt the async dma engines (VI).
  519. */
  520. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  521. {
  522. u32 f32_cntl;
  523. int i;
  524. if (!enable) {
  525. sdma_v3_0_gfx_stop(adev);
  526. sdma_v3_0_rlc_stop(adev);
  527. }
  528. for (i = 0; i < adev->sdma.num_instances; i++) {
  529. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  530. if (enable)
  531. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  532. else
  533. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  534. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  535. }
  536. }
  537. /**
  538. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  539. *
  540. * @adev: amdgpu_device pointer
  541. *
  542. * Set up the gfx DMA ring buffers and enable them (VI).
  543. * Returns 0 for success, error for failure.
  544. */
  545. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  546. {
  547. struct amdgpu_ring *ring;
  548. u32 rb_cntl, ib_cntl;
  549. u32 rb_bufsz;
  550. u32 wb_offset;
  551. u32 doorbell;
  552. int i, j, r;
  553. for (i = 0; i < adev->sdma.num_instances; i++) {
  554. ring = &adev->sdma.instance[i].ring;
  555. wb_offset = (ring->rptr_offs * 4);
  556. mutex_lock(&adev->srbm_mutex);
  557. for (j = 0; j < 16; j++) {
  558. vi_srbm_select(adev, 0, 0, 0, j);
  559. /* SDMA GFX */
  560. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  561. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  562. }
  563. vi_srbm_select(adev, 0, 0, 0, 0);
  564. mutex_unlock(&adev->srbm_mutex);
  565. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  566. adev->gfx.config.gb_addr_config & 0x70);
  567. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  568. /* Set ring buffer size in dwords */
  569. rb_bufsz = order_base_2(ring->ring_size / 4);
  570. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  571. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  572. #ifdef __BIG_ENDIAN
  573. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  574. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  575. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  576. #endif
  577. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  578. /* Initialize the ring buffer's read and write pointers */
  579. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  580. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  581. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  582. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  583. /* set the wb address whether it's enabled or not */
  584. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  585. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  586. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  587. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  588. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  589. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  590. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  591. ring->wptr = 0;
  592. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  593. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  594. if (ring->use_doorbell) {
  595. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  596. OFFSET, ring->doorbell_index);
  597. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  598. } else {
  599. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  600. }
  601. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  602. /* enable DMA RB */
  603. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  604. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  605. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  606. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  607. #ifdef __BIG_ENDIAN
  608. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  609. #endif
  610. /* enable DMA IBs */
  611. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  612. ring->ready = true;
  613. }
  614. /* unhalt the MEs */
  615. sdma_v3_0_enable(adev, true);
  616. /* enable sdma ring preemption */
  617. sdma_v3_0_ctx_switch_enable(adev, true);
  618. for (i = 0; i < adev->sdma.num_instances; i++) {
  619. ring = &adev->sdma.instance[i].ring;
  620. r = amdgpu_ring_test_ring(ring);
  621. if (r) {
  622. ring->ready = false;
  623. return r;
  624. }
  625. if (adev->mman.buffer_funcs_ring == ring)
  626. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  627. }
  628. return 0;
  629. }
  630. /**
  631. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  632. *
  633. * @adev: amdgpu_device pointer
  634. *
  635. * Set up the compute DMA queues and enable them (VI).
  636. * Returns 0 for success, error for failure.
  637. */
  638. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  639. {
  640. /* XXX todo */
  641. return 0;
  642. }
  643. /**
  644. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  645. *
  646. * @adev: amdgpu_device pointer
  647. *
  648. * Loads the sDMA0/1 ucode.
  649. * Returns 0 for success, -EINVAL if the ucode is not available.
  650. */
  651. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  652. {
  653. const struct sdma_firmware_header_v1_0 *hdr;
  654. const __le32 *fw_data;
  655. u32 fw_size;
  656. int i, j;
  657. /* halt the MEs */
  658. sdma_v3_0_enable(adev, false);
  659. for (i = 0; i < adev->sdma.num_instances; i++) {
  660. if (!adev->sdma.instance[i].fw)
  661. return -EINVAL;
  662. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  663. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  664. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  665. fw_data = (const __le32 *)
  666. (adev->sdma.instance[i].fw->data +
  667. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  668. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  669. for (j = 0; j < fw_size; j++)
  670. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  671. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  672. }
  673. return 0;
  674. }
  675. /**
  676. * sdma_v3_0_start - setup and start the async dma engines
  677. *
  678. * @adev: amdgpu_device pointer
  679. *
  680. * Set up the DMA engines and enable them (VI).
  681. * Returns 0 for success, error for failure.
  682. */
  683. static int sdma_v3_0_start(struct amdgpu_device *adev)
  684. {
  685. int r, i;
  686. if (!adev->pp_enabled) {
  687. if (!adev->firmware.smu_load) {
  688. r = sdma_v3_0_load_microcode(adev);
  689. if (r)
  690. return r;
  691. } else {
  692. for (i = 0; i < adev->sdma.num_instances; i++) {
  693. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  694. (i == 0) ?
  695. AMDGPU_UCODE_ID_SDMA0 :
  696. AMDGPU_UCODE_ID_SDMA1);
  697. if (r)
  698. return -EINVAL;
  699. }
  700. }
  701. }
  702. /* disble sdma engine before programing it */
  703. sdma_v3_0_ctx_switch_enable(adev, false);
  704. sdma_v3_0_enable(adev, false);
  705. /* start the gfx rings and rlc compute queues */
  706. r = sdma_v3_0_gfx_resume(adev);
  707. if (r)
  708. return r;
  709. r = sdma_v3_0_rlc_resume(adev);
  710. if (r)
  711. return r;
  712. return 0;
  713. }
  714. /**
  715. * sdma_v3_0_ring_test_ring - simple async dma engine test
  716. *
  717. * @ring: amdgpu_ring structure holding ring information
  718. *
  719. * Test the DMA engine by writing using it to write an
  720. * value to memory. (VI).
  721. * Returns 0 for success, error for failure.
  722. */
  723. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  724. {
  725. struct amdgpu_device *adev = ring->adev;
  726. unsigned i;
  727. unsigned index;
  728. int r;
  729. u32 tmp;
  730. u64 gpu_addr;
  731. r = amdgpu_wb_get(adev, &index);
  732. if (r) {
  733. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  734. return r;
  735. }
  736. gpu_addr = adev->wb.gpu_addr + (index * 4);
  737. tmp = 0xCAFEDEAD;
  738. adev->wb.wb[index] = cpu_to_le32(tmp);
  739. r = amdgpu_ring_alloc(ring, 5);
  740. if (r) {
  741. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  742. amdgpu_wb_free(adev, index);
  743. return r;
  744. }
  745. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  746. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  747. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  748. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  749. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  750. amdgpu_ring_write(ring, 0xDEADBEEF);
  751. amdgpu_ring_commit(ring);
  752. for (i = 0; i < adev->usec_timeout; i++) {
  753. tmp = le32_to_cpu(adev->wb.wb[index]);
  754. if (tmp == 0xDEADBEEF)
  755. break;
  756. DRM_UDELAY(1);
  757. }
  758. if (i < adev->usec_timeout) {
  759. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  760. } else {
  761. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  762. ring->idx, tmp);
  763. r = -EINVAL;
  764. }
  765. amdgpu_wb_free(adev, index);
  766. return r;
  767. }
  768. /**
  769. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  770. *
  771. * @ring: amdgpu_ring structure holding ring information
  772. *
  773. * Test a simple IB in the DMA ring (VI).
  774. * Returns 0 on success, error on failure.
  775. */
  776. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  777. {
  778. struct amdgpu_device *adev = ring->adev;
  779. struct amdgpu_ib ib;
  780. struct fence *f = NULL;
  781. unsigned index;
  782. u32 tmp = 0;
  783. u64 gpu_addr;
  784. long r;
  785. r = amdgpu_wb_get(adev, &index);
  786. if (r) {
  787. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  788. return r;
  789. }
  790. gpu_addr = adev->wb.gpu_addr + (index * 4);
  791. tmp = 0xCAFEDEAD;
  792. adev->wb.wb[index] = cpu_to_le32(tmp);
  793. memset(&ib, 0, sizeof(ib));
  794. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  795. if (r) {
  796. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  797. goto err0;
  798. }
  799. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  800. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  801. ib.ptr[1] = lower_32_bits(gpu_addr);
  802. ib.ptr[2] = upper_32_bits(gpu_addr);
  803. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  804. ib.ptr[4] = 0xDEADBEEF;
  805. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  806. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  807. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  808. ib.length_dw = 8;
  809. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  810. if (r)
  811. goto err1;
  812. r = fence_wait_timeout(f, false, timeout);
  813. if (r == 0) {
  814. DRM_ERROR("amdgpu: IB test timed out\n");
  815. r = -ETIMEDOUT;
  816. goto err1;
  817. } else if (r < 0) {
  818. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  819. goto err1;
  820. }
  821. tmp = le32_to_cpu(adev->wb.wb[index]);
  822. if (tmp == 0xDEADBEEF) {
  823. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  824. r = 0;
  825. } else {
  826. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  827. r = -EINVAL;
  828. }
  829. err1:
  830. amdgpu_ib_free(adev, &ib, NULL);
  831. fence_put(f);
  832. err0:
  833. amdgpu_wb_free(adev, index);
  834. return r;
  835. }
  836. /**
  837. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  838. *
  839. * @ib: indirect buffer to fill with commands
  840. * @pe: addr of the page entry
  841. * @src: src addr to copy from
  842. * @count: number of page entries to update
  843. *
  844. * Update PTEs by copying them from the GART using sDMA (CIK).
  845. */
  846. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  847. uint64_t pe, uint64_t src,
  848. unsigned count)
  849. {
  850. unsigned bytes = count * 8;
  851. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  852. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  853. ib->ptr[ib->length_dw++] = bytes;
  854. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  855. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  856. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  857. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  858. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  859. }
  860. /**
  861. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  862. *
  863. * @ib: indirect buffer to fill with commands
  864. * @pe: addr of the page entry
  865. * @value: dst addr to write into pe
  866. * @count: number of page entries to update
  867. * @incr: increase next addr by incr bytes
  868. *
  869. * Update PTEs by writing them manually using sDMA (CIK).
  870. */
  871. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  872. uint64_t value, unsigned count,
  873. uint32_t incr)
  874. {
  875. unsigned ndw = count * 2;
  876. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  877. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  878. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  879. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  880. ib->ptr[ib->length_dw++] = ndw;
  881. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  882. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  883. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  884. value += incr;
  885. }
  886. }
  887. /**
  888. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  889. *
  890. * @ib: indirect buffer to fill with commands
  891. * @pe: addr of the page entry
  892. * @addr: dst addr to write into pe
  893. * @count: number of page entries to update
  894. * @incr: increase next addr by incr bytes
  895. * @flags: access flags
  896. *
  897. * Update the page tables using sDMA (CIK).
  898. */
  899. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  900. uint64_t addr, unsigned count,
  901. uint32_t incr, uint32_t flags)
  902. {
  903. /* for physically contiguous pages (vram) */
  904. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  905. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  906. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  907. ib->ptr[ib->length_dw++] = flags; /* mask */
  908. ib->ptr[ib->length_dw++] = 0;
  909. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  910. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  911. ib->ptr[ib->length_dw++] = incr; /* increment size */
  912. ib->ptr[ib->length_dw++] = 0;
  913. ib->ptr[ib->length_dw++] = count; /* number of entries */
  914. }
  915. /**
  916. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  917. *
  918. * @ib: indirect buffer to fill with padding
  919. *
  920. */
  921. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  922. {
  923. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  924. u32 pad_count;
  925. int i;
  926. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  927. for (i = 0; i < pad_count; i++)
  928. if (sdma && sdma->burst_nop && (i == 0))
  929. ib->ptr[ib->length_dw++] =
  930. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  931. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  932. else
  933. ib->ptr[ib->length_dw++] =
  934. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  935. }
  936. /**
  937. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  938. *
  939. * @ring: amdgpu_ring pointer
  940. *
  941. * Make sure all previous operations are completed (CIK).
  942. */
  943. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  944. {
  945. uint32_t seq = ring->fence_drv.sync_seq;
  946. uint64_t addr = ring->fence_drv.gpu_addr;
  947. /* wait for idle */
  948. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  949. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  950. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  951. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  952. amdgpu_ring_write(ring, addr & 0xfffffffc);
  953. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  954. amdgpu_ring_write(ring, seq); /* reference */
  955. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  956. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  957. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  958. }
  959. /**
  960. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  961. *
  962. * @ring: amdgpu_ring pointer
  963. * @vm: amdgpu_vm pointer
  964. *
  965. * Update the page table base and flush the VM TLB
  966. * using sDMA (VI).
  967. */
  968. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  969. unsigned vm_id, uint64_t pd_addr)
  970. {
  971. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  972. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  973. if (vm_id < 8) {
  974. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  975. } else {
  976. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  977. }
  978. amdgpu_ring_write(ring, pd_addr >> 12);
  979. /* flush TLB */
  980. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  981. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  982. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  983. amdgpu_ring_write(ring, 1 << vm_id);
  984. /* wait for flush */
  985. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  986. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  987. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  988. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  989. amdgpu_ring_write(ring, 0);
  990. amdgpu_ring_write(ring, 0); /* reference */
  991. amdgpu_ring_write(ring, 0); /* mask */
  992. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  993. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  994. }
  995. static unsigned sdma_v3_0_ring_get_emit_ib_size(struct amdgpu_ring *ring)
  996. {
  997. return
  998. 7 + 6; /* sdma_v3_0_ring_emit_ib */
  999. }
  1000. static unsigned sdma_v3_0_ring_get_dma_frame_size(struct amdgpu_ring *ring)
  1001. {
  1002. return
  1003. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1004. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1005. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1006. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1007. 10 + 10 + 10; /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1008. }
  1009. static int sdma_v3_0_early_init(void *handle)
  1010. {
  1011. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1012. switch (adev->asic_type) {
  1013. case CHIP_STONEY:
  1014. adev->sdma.num_instances = 1;
  1015. break;
  1016. default:
  1017. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1018. break;
  1019. }
  1020. sdma_v3_0_set_ring_funcs(adev);
  1021. sdma_v3_0_set_buffer_funcs(adev);
  1022. sdma_v3_0_set_vm_pte_funcs(adev);
  1023. sdma_v3_0_set_irq_funcs(adev);
  1024. return 0;
  1025. }
  1026. static int sdma_v3_0_sw_init(void *handle)
  1027. {
  1028. struct amdgpu_ring *ring;
  1029. int r, i;
  1030. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1031. /* SDMA trap event */
  1032. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1033. if (r)
  1034. return r;
  1035. /* SDMA Privileged inst */
  1036. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1037. if (r)
  1038. return r;
  1039. /* SDMA Privileged inst */
  1040. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1041. if (r)
  1042. return r;
  1043. r = sdma_v3_0_init_microcode(adev);
  1044. if (r) {
  1045. DRM_ERROR("Failed to load sdma firmware!\n");
  1046. return r;
  1047. }
  1048. for (i = 0; i < adev->sdma.num_instances; i++) {
  1049. ring = &adev->sdma.instance[i].ring;
  1050. ring->ring_obj = NULL;
  1051. ring->use_doorbell = true;
  1052. ring->doorbell_index = (i == 0) ?
  1053. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1054. sprintf(ring->name, "sdma%d", i);
  1055. r = amdgpu_ring_init(adev, ring, 1024,
  1056. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1057. &adev->sdma.trap_irq,
  1058. (i == 0) ?
  1059. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1060. AMDGPU_RING_TYPE_SDMA);
  1061. if (r)
  1062. return r;
  1063. }
  1064. return r;
  1065. }
  1066. static int sdma_v3_0_sw_fini(void *handle)
  1067. {
  1068. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1069. int i;
  1070. for (i = 0; i < adev->sdma.num_instances; i++)
  1071. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1072. sdma_v3_0_free_microcode(adev);
  1073. return 0;
  1074. }
  1075. static int sdma_v3_0_hw_init(void *handle)
  1076. {
  1077. int r;
  1078. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1079. sdma_v3_0_init_golden_registers(adev);
  1080. r = sdma_v3_0_start(adev);
  1081. if (r)
  1082. return r;
  1083. return r;
  1084. }
  1085. static int sdma_v3_0_hw_fini(void *handle)
  1086. {
  1087. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1088. sdma_v3_0_ctx_switch_enable(adev, false);
  1089. sdma_v3_0_enable(adev, false);
  1090. return 0;
  1091. }
  1092. static int sdma_v3_0_suspend(void *handle)
  1093. {
  1094. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1095. return sdma_v3_0_hw_fini(adev);
  1096. }
  1097. static int sdma_v3_0_resume(void *handle)
  1098. {
  1099. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1100. return sdma_v3_0_hw_init(adev);
  1101. }
  1102. static bool sdma_v3_0_is_idle(void *handle)
  1103. {
  1104. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1105. u32 tmp = RREG32(mmSRBM_STATUS2);
  1106. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1107. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1108. return false;
  1109. return true;
  1110. }
  1111. static int sdma_v3_0_wait_for_idle(void *handle)
  1112. {
  1113. unsigned i;
  1114. u32 tmp;
  1115. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1116. for (i = 0; i < adev->usec_timeout; i++) {
  1117. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1118. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1119. if (!tmp)
  1120. return 0;
  1121. udelay(1);
  1122. }
  1123. return -ETIMEDOUT;
  1124. }
  1125. static int sdma_v3_0_check_soft_reset(void *handle)
  1126. {
  1127. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1128. u32 srbm_soft_reset = 0;
  1129. u32 tmp = RREG32(mmSRBM_STATUS2);
  1130. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1131. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1132. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1133. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1134. }
  1135. if (srbm_soft_reset) {
  1136. adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang = true;
  1137. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1138. } else {
  1139. adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang = false;
  1140. adev->sdma.srbm_soft_reset = 0;
  1141. }
  1142. return 0;
  1143. }
  1144. static int sdma_v3_0_pre_soft_reset(void *handle)
  1145. {
  1146. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1147. u32 srbm_soft_reset = 0;
  1148. if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang)
  1149. return 0;
  1150. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1151. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1152. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1153. sdma_v3_0_ctx_switch_enable(adev, false);
  1154. sdma_v3_0_enable(adev, false);
  1155. }
  1156. return 0;
  1157. }
  1158. static int sdma_v3_0_post_soft_reset(void *handle)
  1159. {
  1160. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1161. u32 srbm_soft_reset = 0;
  1162. if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang)
  1163. return 0;
  1164. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1165. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1166. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1167. sdma_v3_0_gfx_resume(adev);
  1168. sdma_v3_0_rlc_resume(adev);
  1169. }
  1170. return 0;
  1171. }
  1172. static int sdma_v3_0_soft_reset(void *handle)
  1173. {
  1174. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1175. u32 srbm_soft_reset = 0;
  1176. u32 tmp;
  1177. if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang)
  1178. return 0;
  1179. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1180. if (srbm_soft_reset) {
  1181. tmp = RREG32(mmSRBM_SOFT_RESET);
  1182. tmp |= srbm_soft_reset;
  1183. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1184. WREG32(mmSRBM_SOFT_RESET, tmp);
  1185. tmp = RREG32(mmSRBM_SOFT_RESET);
  1186. udelay(50);
  1187. tmp &= ~srbm_soft_reset;
  1188. WREG32(mmSRBM_SOFT_RESET, tmp);
  1189. tmp = RREG32(mmSRBM_SOFT_RESET);
  1190. /* Wait a little for things to settle down */
  1191. udelay(50);
  1192. }
  1193. return 0;
  1194. }
  1195. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1196. struct amdgpu_irq_src *source,
  1197. unsigned type,
  1198. enum amdgpu_interrupt_state state)
  1199. {
  1200. u32 sdma_cntl;
  1201. switch (type) {
  1202. case AMDGPU_SDMA_IRQ_TRAP0:
  1203. switch (state) {
  1204. case AMDGPU_IRQ_STATE_DISABLE:
  1205. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1206. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1207. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1208. break;
  1209. case AMDGPU_IRQ_STATE_ENABLE:
  1210. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1211. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1212. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1213. break;
  1214. default:
  1215. break;
  1216. }
  1217. break;
  1218. case AMDGPU_SDMA_IRQ_TRAP1:
  1219. switch (state) {
  1220. case AMDGPU_IRQ_STATE_DISABLE:
  1221. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1222. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1223. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1224. break;
  1225. case AMDGPU_IRQ_STATE_ENABLE:
  1226. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1227. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1228. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1229. break;
  1230. default:
  1231. break;
  1232. }
  1233. break;
  1234. default:
  1235. break;
  1236. }
  1237. return 0;
  1238. }
  1239. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1240. struct amdgpu_irq_src *source,
  1241. struct amdgpu_iv_entry *entry)
  1242. {
  1243. u8 instance_id, queue_id;
  1244. instance_id = (entry->ring_id & 0x3) >> 0;
  1245. queue_id = (entry->ring_id & 0xc) >> 2;
  1246. DRM_DEBUG("IH: SDMA trap\n");
  1247. switch (instance_id) {
  1248. case 0:
  1249. switch (queue_id) {
  1250. case 0:
  1251. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1252. break;
  1253. case 1:
  1254. /* XXX compute */
  1255. break;
  1256. case 2:
  1257. /* XXX compute */
  1258. break;
  1259. }
  1260. break;
  1261. case 1:
  1262. switch (queue_id) {
  1263. case 0:
  1264. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1265. break;
  1266. case 1:
  1267. /* XXX compute */
  1268. break;
  1269. case 2:
  1270. /* XXX compute */
  1271. break;
  1272. }
  1273. break;
  1274. }
  1275. return 0;
  1276. }
  1277. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1278. struct amdgpu_irq_src *source,
  1279. struct amdgpu_iv_entry *entry)
  1280. {
  1281. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1282. schedule_work(&adev->reset_work);
  1283. return 0;
  1284. }
  1285. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1286. struct amdgpu_device *adev,
  1287. bool enable)
  1288. {
  1289. uint32_t temp, data;
  1290. int i;
  1291. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1292. for (i = 0; i < adev->sdma.num_instances; i++) {
  1293. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1294. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1295. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1296. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1299. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1302. if (data != temp)
  1303. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1304. }
  1305. } else {
  1306. for (i = 0; i < adev->sdma.num_instances; i++) {
  1307. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1308. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1309. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1310. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1311. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1312. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1313. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1314. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1315. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1316. if (data != temp)
  1317. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1318. }
  1319. }
  1320. }
  1321. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1322. struct amdgpu_device *adev,
  1323. bool enable)
  1324. {
  1325. uint32_t temp, data;
  1326. int i;
  1327. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1328. for (i = 0; i < adev->sdma.num_instances; i++) {
  1329. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1330. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1331. if (temp != data)
  1332. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1333. }
  1334. } else {
  1335. for (i = 0; i < adev->sdma.num_instances; i++) {
  1336. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1337. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1338. if (temp != data)
  1339. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1340. }
  1341. }
  1342. }
  1343. static int sdma_v3_0_set_clockgating_state(void *handle,
  1344. enum amd_clockgating_state state)
  1345. {
  1346. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1347. switch (adev->asic_type) {
  1348. case CHIP_FIJI:
  1349. case CHIP_CARRIZO:
  1350. case CHIP_STONEY:
  1351. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1352. state == AMD_CG_STATE_GATE ? true : false);
  1353. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1354. state == AMD_CG_STATE_GATE ? true : false);
  1355. break;
  1356. default:
  1357. break;
  1358. }
  1359. return 0;
  1360. }
  1361. static int sdma_v3_0_set_powergating_state(void *handle,
  1362. enum amd_powergating_state state)
  1363. {
  1364. return 0;
  1365. }
  1366. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1367. .name = "sdma_v3_0",
  1368. .early_init = sdma_v3_0_early_init,
  1369. .late_init = NULL,
  1370. .sw_init = sdma_v3_0_sw_init,
  1371. .sw_fini = sdma_v3_0_sw_fini,
  1372. .hw_init = sdma_v3_0_hw_init,
  1373. .hw_fini = sdma_v3_0_hw_fini,
  1374. .suspend = sdma_v3_0_suspend,
  1375. .resume = sdma_v3_0_resume,
  1376. .is_idle = sdma_v3_0_is_idle,
  1377. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1378. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1379. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1380. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1381. .soft_reset = sdma_v3_0_soft_reset,
  1382. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1383. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1384. };
  1385. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1386. .get_rptr = sdma_v3_0_ring_get_rptr,
  1387. .get_wptr = sdma_v3_0_ring_get_wptr,
  1388. .set_wptr = sdma_v3_0_ring_set_wptr,
  1389. .parse_cs = NULL,
  1390. .emit_ib = sdma_v3_0_ring_emit_ib,
  1391. .emit_fence = sdma_v3_0_ring_emit_fence,
  1392. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1393. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1394. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1395. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1396. .test_ring = sdma_v3_0_ring_test_ring,
  1397. .test_ib = sdma_v3_0_ring_test_ib,
  1398. .insert_nop = sdma_v3_0_ring_insert_nop,
  1399. .pad_ib = sdma_v3_0_ring_pad_ib,
  1400. .get_emit_ib_size = sdma_v3_0_ring_get_emit_ib_size,
  1401. .get_dma_frame_size = sdma_v3_0_ring_get_dma_frame_size,
  1402. };
  1403. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1404. {
  1405. int i;
  1406. for (i = 0; i < adev->sdma.num_instances; i++)
  1407. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1408. }
  1409. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1410. .set = sdma_v3_0_set_trap_irq_state,
  1411. .process = sdma_v3_0_process_trap_irq,
  1412. };
  1413. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1414. .process = sdma_v3_0_process_illegal_inst_irq,
  1415. };
  1416. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1417. {
  1418. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1419. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1420. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1421. }
  1422. /**
  1423. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1424. *
  1425. * @ring: amdgpu_ring structure holding ring information
  1426. * @src_offset: src GPU address
  1427. * @dst_offset: dst GPU address
  1428. * @byte_count: number of bytes to xfer
  1429. *
  1430. * Copy GPU buffers using the DMA engine (VI).
  1431. * Used by the amdgpu ttm implementation to move pages if
  1432. * registered as the asic copy callback.
  1433. */
  1434. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1435. uint64_t src_offset,
  1436. uint64_t dst_offset,
  1437. uint32_t byte_count)
  1438. {
  1439. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1440. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1441. ib->ptr[ib->length_dw++] = byte_count;
  1442. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1443. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1444. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1445. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1446. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1447. }
  1448. /**
  1449. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1450. *
  1451. * @ring: amdgpu_ring structure holding ring information
  1452. * @src_data: value to write to buffer
  1453. * @dst_offset: dst GPU address
  1454. * @byte_count: number of bytes to xfer
  1455. *
  1456. * Fill GPU buffers using the DMA engine (VI).
  1457. */
  1458. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1459. uint32_t src_data,
  1460. uint64_t dst_offset,
  1461. uint32_t byte_count)
  1462. {
  1463. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1464. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1465. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1466. ib->ptr[ib->length_dw++] = src_data;
  1467. ib->ptr[ib->length_dw++] = byte_count;
  1468. }
  1469. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1470. .copy_max_bytes = 0x1fffff,
  1471. .copy_num_dw = 7,
  1472. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1473. .fill_max_bytes = 0x1fffff,
  1474. .fill_num_dw = 5,
  1475. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1476. };
  1477. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1478. {
  1479. if (adev->mman.buffer_funcs == NULL) {
  1480. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1481. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1482. }
  1483. }
  1484. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1485. .copy_pte = sdma_v3_0_vm_copy_pte,
  1486. .write_pte = sdma_v3_0_vm_write_pte,
  1487. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1488. };
  1489. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1490. {
  1491. unsigned i;
  1492. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1493. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1494. for (i = 0; i < adev->sdma.num_instances; i++)
  1495. adev->vm_manager.vm_pte_rings[i] =
  1496. &adev->sdma.instance[i].ring;
  1497. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1498. }
  1499. }