node.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  26. {
  27. struct f2fs_nm_info *nm_i = NM_I(sbi);
  28. struct sysinfo val;
  29. unsigned long mem_size = 0;
  30. bool res = false;
  31. si_meminfo(&val);
  32. /* give 25%, 25%, 50% memory for each components respectively */
  33. if (type == FREE_NIDS) {
  34. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
  35. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  36. } else if (type == NAT_ENTRIES) {
  37. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
  38. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  39. } else if (type == DIRTY_DENTS) {
  40. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  41. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
  42. }
  43. return res;
  44. }
  45. static void clear_node_page_dirty(struct page *page)
  46. {
  47. struct address_space *mapping = page->mapping;
  48. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  49. unsigned int long flags;
  50. if (PageDirty(page)) {
  51. spin_lock_irqsave(&mapping->tree_lock, flags);
  52. radix_tree_tag_clear(&mapping->page_tree,
  53. page_index(page),
  54. PAGECACHE_TAG_DIRTY);
  55. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  56. clear_page_dirty_for_io(page);
  57. dec_page_count(sbi, F2FS_DIRTY_NODES);
  58. }
  59. ClearPageUptodate(page);
  60. }
  61. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  62. {
  63. pgoff_t index = current_nat_addr(sbi, nid);
  64. return get_meta_page(sbi, index);
  65. }
  66. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  67. {
  68. struct page *src_page;
  69. struct page *dst_page;
  70. pgoff_t src_off;
  71. pgoff_t dst_off;
  72. void *src_addr;
  73. void *dst_addr;
  74. struct f2fs_nm_info *nm_i = NM_I(sbi);
  75. src_off = current_nat_addr(sbi, nid);
  76. dst_off = next_nat_addr(sbi, src_off);
  77. /* get current nat block page with lock */
  78. src_page = get_meta_page(sbi, src_off);
  79. /* Dirty src_page means that it is already the new target NAT page. */
  80. if (PageDirty(src_page))
  81. return src_page;
  82. dst_page = grab_meta_page(sbi, dst_off);
  83. src_addr = page_address(src_page);
  84. dst_addr = page_address(dst_page);
  85. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  86. set_page_dirty(dst_page);
  87. f2fs_put_page(src_page, 1);
  88. set_to_next_nat(nm_i, nid);
  89. return dst_page;
  90. }
  91. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  92. {
  93. return radix_tree_lookup(&nm_i->nat_root, n);
  94. }
  95. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  96. nid_t start, unsigned int nr, struct nat_entry **ep)
  97. {
  98. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  99. }
  100. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  101. {
  102. list_del(&e->list);
  103. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  104. nm_i->nat_cnt--;
  105. kmem_cache_free(nat_entry_slab, e);
  106. }
  107. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  108. {
  109. struct f2fs_nm_info *nm_i = NM_I(sbi);
  110. struct nat_entry *e;
  111. int is_cp = 1;
  112. read_lock(&nm_i->nat_tree_lock);
  113. e = __lookup_nat_cache(nm_i, nid);
  114. if (e && !e->checkpointed)
  115. is_cp = 0;
  116. read_unlock(&nm_i->nat_tree_lock);
  117. return is_cp;
  118. }
  119. bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
  120. {
  121. struct f2fs_nm_info *nm_i = NM_I(sbi);
  122. struct nat_entry *e;
  123. bool fsync_done = false;
  124. read_lock(&nm_i->nat_tree_lock);
  125. e = __lookup_nat_cache(nm_i, nid);
  126. if (e)
  127. fsync_done = e->fsync_done;
  128. read_unlock(&nm_i->nat_tree_lock);
  129. return fsync_done;
  130. }
  131. void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
  132. {
  133. struct f2fs_nm_info *nm_i = NM_I(sbi);
  134. struct nat_entry *e;
  135. write_lock(&nm_i->nat_tree_lock);
  136. e = __lookup_nat_cache(nm_i, nid);
  137. if (e)
  138. e->fsync_done = false;
  139. write_unlock(&nm_i->nat_tree_lock);
  140. }
  141. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  142. {
  143. struct nat_entry *new;
  144. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  145. if (!new)
  146. return NULL;
  147. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  148. kmem_cache_free(nat_entry_slab, new);
  149. return NULL;
  150. }
  151. memset(new, 0, sizeof(struct nat_entry));
  152. nat_set_nid(new, nid);
  153. new->checkpointed = true;
  154. list_add_tail(&new->list, &nm_i->nat_entries);
  155. nm_i->nat_cnt++;
  156. return new;
  157. }
  158. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  159. struct f2fs_nat_entry *ne)
  160. {
  161. struct nat_entry *e;
  162. retry:
  163. write_lock(&nm_i->nat_tree_lock);
  164. e = __lookup_nat_cache(nm_i, nid);
  165. if (!e) {
  166. e = grab_nat_entry(nm_i, nid);
  167. if (!e) {
  168. write_unlock(&nm_i->nat_tree_lock);
  169. goto retry;
  170. }
  171. node_info_from_raw_nat(&e->ni, ne);
  172. }
  173. write_unlock(&nm_i->nat_tree_lock);
  174. }
  175. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  176. block_t new_blkaddr, bool fsync_done)
  177. {
  178. struct f2fs_nm_info *nm_i = NM_I(sbi);
  179. struct nat_entry *e;
  180. retry:
  181. write_lock(&nm_i->nat_tree_lock);
  182. e = __lookup_nat_cache(nm_i, ni->nid);
  183. if (!e) {
  184. e = grab_nat_entry(nm_i, ni->nid);
  185. if (!e) {
  186. write_unlock(&nm_i->nat_tree_lock);
  187. goto retry;
  188. }
  189. e->ni = *ni;
  190. f2fs_bug_on(ni->blk_addr == NEW_ADDR);
  191. } else if (new_blkaddr == NEW_ADDR) {
  192. /*
  193. * when nid is reallocated,
  194. * previous nat entry can be remained in nat cache.
  195. * So, reinitialize it with new information.
  196. */
  197. e->ni = *ni;
  198. f2fs_bug_on(ni->blk_addr != NULL_ADDR);
  199. }
  200. /* sanity check */
  201. f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
  202. f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
  203. new_blkaddr == NULL_ADDR);
  204. f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
  205. new_blkaddr == NEW_ADDR);
  206. f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
  207. nat_get_blkaddr(e) != NULL_ADDR &&
  208. new_blkaddr == NEW_ADDR);
  209. /* increament version no as node is removed */
  210. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  211. unsigned char version = nat_get_version(e);
  212. nat_set_version(e, inc_node_version(version));
  213. }
  214. /* change address */
  215. nat_set_blkaddr(e, new_blkaddr);
  216. __set_nat_cache_dirty(nm_i, e);
  217. /* update fsync_mark if its inode nat entry is still alive */
  218. e = __lookup_nat_cache(nm_i, ni->ino);
  219. if (e)
  220. e->fsync_done = fsync_done;
  221. write_unlock(&nm_i->nat_tree_lock);
  222. }
  223. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  224. {
  225. struct f2fs_nm_info *nm_i = NM_I(sbi);
  226. if (available_free_memory(sbi, NAT_ENTRIES))
  227. return 0;
  228. write_lock(&nm_i->nat_tree_lock);
  229. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  230. struct nat_entry *ne;
  231. ne = list_first_entry(&nm_i->nat_entries,
  232. struct nat_entry, list);
  233. __del_from_nat_cache(nm_i, ne);
  234. nr_shrink--;
  235. }
  236. write_unlock(&nm_i->nat_tree_lock);
  237. return nr_shrink;
  238. }
  239. /*
  240. * This function returns always success
  241. */
  242. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  243. {
  244. struct f2fs_nm_info *nm_i = NM_I(sbi);
  245. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  246. struct f2fs_summary_block *sum = curseg->sum_blk;
  247. nid_t start_nid = START_NID(nid);
  248. struct f2fs_nat_block *nat_blk;
  249. struct page *page = NULL;
  250. struct f2fs_nat_entry ne;
  251. struct nat_entry *e;
  252. int i;
  253. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  254. ni->nid = nid;
  255. /* Check nat cache */
  256. read_lock(&nm_i->nat_tree_lock);
  257. e = __lookup_nat_cache(nm_i, nid);
  258. if (e) {
  259. ni->ino = nat_get_ino(e);
  260. ni->blk_addr = nat_get_blkaddr(e);
  261. ni->version = nat_get_version(e);
  262. }
  263. read_unlock(&nm_i->nat_tree_lock);
  264. if (e)
  265. return;
  266. /* Check current segment summary */
  267. mutex_lock(&curseg->curseg_mutex);
  268. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  269. if (i >= 0) {
  270. ne = nat_in_journal(sum, i);
  271. node_info_from_raw_nat(ni, &ne);
  272. }
  273. mutex_unlock(&curseg->curseg_mutex);
  274. if (i >= 0)
  275. goto cache;
  276. /* Fill node_info from nat page */
  277. page = get_current_nat_page(sbi, start_nid);
  278. nat_blk = (struct f2fs_nat_block *)page_address(page);
  279. ne = nat_blk->entries[nid - start_nid];
  280. node_info_from_raw_nat(ni, &ne);
  281. f2fs_put_page(page, 1);
  282. cache:
  283. /* cache nat entry */
  284. cache_nat_entry(NM_I(sbi), nid, &ne);
  285. }
  286. /*
  287. * The maximum depth is four.
  288. * Offset[0] will have raw inode offset.
  289. */
  290. static int get_node_path(struct f2fs_inode_info *fi, long block,
  291. int offset[4], unsigned int noffset[4])
  292. {
  293. const long direct_index = ADDRS_PER_INODE(fi);
  294. const long direct_blks = ADDRS_PER_BLOCK;
  295. const long dptrs_per_blk = NIDS_PER_BLOCK;
  296. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  297. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  298. int n = 0;
  299. int level = 0;
  300. noffset[0] = 0;
  301. if (block < direct_index) {
  302. offset[n] = block;
  303. goto got;
  304. }
  305. block -= direct_index;
  306. if (block < direct_blks) {
  307. offset[n++] = NODE_DIR1_BLOCK;
  308. noffset[n] = 1;
  309. offset[n] = block;
  310. level = 1;
  311. goto got;
  312. }
  313. block -= direct_blks;
  314. if (block < direct_blks) {
  315. offset[n++] = NODE_DIR2_BLOCK;
  316. noffset[n] = 2;
  317. offset[n] = block;
  318. level = 1;
  319. goto got;
  320. }
  321. block -= direct_blks;
  322. if (block < indirect_blks) {
  323. offset[n++] = NODE_IND1_BLOCK;
  324. noffset[n] = 3;
  325. offset[n++] = block / direct_blks;
  326. noffset[n] = 4 + offset[n - 1];
  327. offset[n] = block % direct_blks;
  328. level = 2;
  329. goto got;
  330. }
  331. block -= indirect_blks;
  332. if (block < indirect_blks) {
  333. offset[n++] = NODE_IND2_BLOCK;
  334. noffset[n] = 4 + dptrs_per_blk;
  335. offset[n++] = block / direct_blks;
  336. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  337. offset[n] = block % direct_blks;
  338. level = 2;
  339. goto got;
  340. }
  341. block -= indirect_blks;
  342. if (block < dindirect_blks) {
  343. offset[n++] = NODE_DIND_BLOCK;
  344. noffset[n] = 5 + (dptrs_per_blk * 2);
  345. offset[n++] = block / indirect_blks;
  346. noffset[n] = 6 + (dptrs_per_blk * 2) +
  347. offset[n - 1] * (dptrs_per_blk + 1);
  348. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  349. noffset[n] = 7 + (dptrs_per_blk * 2) +
  350. offset[n - 2] * (dptrs_per_blk + 1) +
  351. offset[n - 1];
  352. offset[n] = block % direct_blks;
  353. level = 3;
  354. goto got;
  355. } else {
  356. BUG();
  357. }
  358. got:
  359. return level;
  360. }
  361. /*
  362. * Caller should call f2fs_put_dnode(dn).
  363. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  364. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  365. * In the case of RDONLY_NODE, we don't need to care about mutex.
  366. */
  367. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  368. {
  369. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  370. struct page *npage[4];
  371. struct page *parent;
  372. int offset[4];
  373. unsigned int noffset[4];
  374. nid_t nids[4];
  375. int level, i;
  376. int err = 0;
  377. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  378. nids[0] = dn->inode->i_ino;
  379. npage[0] = dn->inode_page;
  380. if (!npage[0]) {
  381. npage[0] = get_node_page(sbi, nids[0]);
  382. if (IS_ERR(npage[0]))
  383. return PTR_ERR(npage[0]);
  384. }
  385. parent = npage[0];
  386. if (level != 0)
  387. nids[1] = get_nid(parent, offset[0], true);
  388. dn->inode_page = npage[0];
  389. dn->inode_page_locked = true;
  390. /* get indirect or direct nodes */
  391. for (i = 1; i <= level; i++) {
  392. bool done = false;
  393. if (!nids[i] && mode == ALLOC_NODE) {
  394. /* alloc new node */
  395. if (!alloc_nid(sbi, &(nids[i]))) {
  396. err = -ENOSPC;
  397. goto release_pages;
  398. }
  399. dn->nid = nids[i];
  400. npage[i] = new_node_page(dn, noffset[i], NULL);
  401. if (IS_ERR(npage[i])) {
  402. alloc_nid_failed(sbi, nids[i]);
  403. err = PTR_ERR(npage[i]);
  404. goto release_pages;
  405. }
  406. set_nid(parent, offset[i - 1], nids[i], i == 1);
  407. alloc_nid_done(sbi, nids[i]);
  408. done = true;
  409. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  410. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  411. if (IS_ERR(npage[i])) {
  412. err = PTR_ERR(npage[i]);
  413. goto release_pages;
  414. }
  415. done = true;
  416. }
  417. if (i == 1) {
  418. dn->inode_page_locked = false;
  419. unlock_page(parent);
  420. } else {
  421. f2fs_put_page(parent, 1);
  422. }
  423. if (!done) {
  424. npage[i] = get_node_page(sbi, nids[i]);
  425. if (IS_ERR(npage[i])) {
  426. err = PTR_ERR(npage[i]);
  427. f2fs_put_page(npage[0], 0);
  428. goto release_out;
  429. }
  430. }
  431. if (i < level) {
  432. parent = npage[i];
  433. nids[i + 1] = get_nid(parent, offset[i], false);
  434. }
  435. }
  436. dn->nid = nids[level];
  437. dn->ofs_in_node = offset[level];
  438. dn->node_page = npage[level];
  439. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  440. return 0;
  441. release_pages:
  442. f2fs_put_page(parent, 1);
  443. if (i > 1)
  444. f2fs_put_page(npage[0], 0);
  445. release_out:
  446. dn->inode_page = NULL;
  447. dn->node_page = NULL;
  448. return err;
  449. }
  450. static void truncate_node(struct dnode_of_data *dn)
  451. {
  452. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  453. struct node_info ni;
  454. get_node_info(sbi, dn->nid, &ni);
  455. if (dn->inode->i_blocks == 0) {
  456. f2fs_bug_on(ni.blk_addr != NULL_ADDR);
  457. goto invalidate;
  458. }
  459. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  460. /* Deallocate node address */
  461. invalidate_blocks(sbi, ni.blk_addr);
  462. dec_valid_node_count(sbi, dn->inode);
  463. set_node_addr(sbi, &ni, NULL_ADDR, false);
  464. if (dn->nid == dn->inode->i_ino) {
  465. remove_orphan_inode(sbi, dn->nid);
  466. dec_valid_inode_count(sbi);
  467. } else {
  468. sync_inode_page(dn);
  469. }
  470. invalidate:
  471. clear_node_page_dirty(dn->node_page);
  472. F2FS_SET_SB_DIRT(sbi);
  473. f2fs_put_page(dn->node_page, 1);
  474. invalidate_mapping_pages(NODE_MAPPING(sbi),
  475. dn->node_page->index, dn->node_page->index);
  476. dn->node_page = NULL;
  477. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  478. }
  479. static int truncate_dnode(struct dnode_of_data *dn)
  480. {
  481. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  482. struct page *page;
  483. if (dn->nid == 0)
  484. return 1;
  485. /* get direct node */
  486. page = get_node_page(sbi, dn->nid);
  487. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  488. return 1;
  489. else if (IS_ERR(page))
  490. return PTR_ERR(page);
  491. /* Make dnode_of_data for parameter */
  492. dn->node_page = page;
  493. dn->ofs_in_node = 0;
  494. truncate_data_blocks(dn);
  495. truncate_node(dn);
  496. return 1;
  497. }
  498. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  499. int ofs, int depth)
  500. {
  501. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  502. struct dnode_of_data rdn = *dn;
  503. struct page *page;
  504. struct f2fs_node *rn;
  505. nid_t child_nid;
  506. unsigned int child_nofs;
  507. int freed = 0;
  508. int i, ret;
  509. if (dn->nid == 0)
  510. return NIDS_PER_BLOCK + 1;
  511. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  512. page = get_node_page(sbi, dn->nid);
  513. if (IS_ERR(page)) {
  514. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  515. return PTR_ERR(page);
  516. }
  517. rn = F2FS_NODE(page);
  518. if (depth < 3) {
  519. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  520. child_nid = le32_to_cpu(rn->in.nid[i]);
  521. if (child_nid == 0)
  522. continue;
  523. rdn.nid = child_nid;
  524. ret = truncate_dnode(&rdn);
  525. if (ret < 0)
  526. goto out_err;
  527. set_nid(page, i, 0, false);
  528. }
  529. } else {
  530. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  531. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  532. child_nid = le32_to_cpu(rn->in.nid[i]);
  533. if (child_nid == 0) {
  534. child_nofs += NIDS_PER_BLOCK + 1;
  535. continue;
  536. }
  537. rdn.nid = child_nid;
  538. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  539. if (ret == (NIDS_PER_BLOCK + 1)) {
  540. set_nid(page, i, 0, false);
  541. child_nofs += ret;
  542. } else if (ret < 0 && ret != -ENOENT) {
  543. goto out_err;
  544. }
  545. }
  546. freed = child_nofs;
  547. }
  548. if (!ofs) {
  549. /* remove current indirect node */
  550. dn->node_page = page;
  551. truncate_node(dn);
  552. freed++;
  553. } else {
  554. f2fs_put_page(page, 1);
  555. }
  556. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  557. return freed;
  558. out_err:
  559. f2fs_put_page(page, 1);
  560. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  561. return ret;
  562. }
  563. static int truncate_partial_nodes(struct dnode_of_data *dn,
  564. struct f2fs_inode *ri, int *offset, int depth)
  565. {
  566. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  567. struct page *pages[2];
  568. nid_t nid[3];
  569. nid_t child_nid;
  570. int err = 0;
  571. int i;
  572. int idx = depth - 2;
  573. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  574. if (!nid[0])
  575. return 0;
  576. /* get indirect nodes in the path */
  577. for (i = 0; i < idx + 1; i++) {
  578. /* refernece count'll be increased */
  579. pages[i] = get_node_page(sbi, nid[i]);
  580. if (IS_ERR(pages[i])) {
  581. err = PTR_ERR(pages[i]);
  582. idx = i - 1;
  583. goto fail;
  584. }
  585. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  586. }
  587. /* free direct nodes linked to a partial indirect node */
  588. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  589. child_nid = get_nid(pages[idx], i, false);
  590. if (!child_nid)
  591. continue;
  592. dn->nid = child_nid;
  593. err = truncate_dnode(dn);
  594. if (err < 0)
  595. goto fail;
  596. set_nid(pages[idx], i, 0, false);
  597. }
  598. if (offset[idx + 1] == 0) {
  599. dn->node_page = pages[idx];
  600. dn->nid = nid[idx];
  601. truncate_node(dn);
  602. } else {
  603. f2fs_put_page(pages[idx], 1);
  604. }
  605. offset[idx]++;
  606. offset[idx + 1] = 0;
  607. idx--;
  608. fail:
  609. for (i = idx; i >= 0; i--)
  610. f2fs_put_page(pages[i], 1);
  611. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  612. return err;
  613. }
  614. /*
  615. * All the block addresses of data and nodes should be nullified.
  616. */
  617. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  618. {
  619. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  620. int err = 0, cont = 1;
  621. int level, offset[4], noffset[4];
  622. unsigned int nofs = 0;
  623. struct f2fs_inode *ri;
  624. struct dnode_of_data dn;
  625. struct page *page;
  626. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  627. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  628. restart:
  629. page = get_node_page(sbi, inode->i_ino);
  630. if (IS_ERR(page)) {
  631. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  632. return PTR_ERR(page);
  633. }
  634. set_new_dnode(&dn, inode, page, NULL, 0);
  635. unlock_page(page);
  636. ri = F2FS_INODE(page);
  637. switch (level) {
  638. case 0:
  639. case 1:
  640. nofs = noffset[1];
  641. break;
  642. case 2:
  643. nofs = noffset[1];
  644. if (!offset[level - 1])
  645. goto skip_partial;
  646. err = truncate_partial_nodes(&dn, ri, offset, level);
  647. if (err < 0 && err != -ENOENT)
  648. goto fail;
  649. nofs += 1 + NIDS_PER_BLOCK;
  650. break;
  651. case 3:
  652. nofs = 5 + 2 * NIDS_PER_BLOCK;
  653. if (!offset[level - 1])
  654. goto skip_partial;
  655. err = truncate_partial_nodes(&dn, ri, offset, level);
  656. if (err < 0 && err != -ENOENT)
  657. goto fail;
  658. break;
  659. default:
  660. BUG();
  661. }
  662. skip_partial:
  663. while (cont) {
  664. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  665. switch (offset[0]) {
  666. case NODE_DIR1_BLOCK:
  667. case NODE_DIR2_BLOCK:
  668. err = truncate_dnode(&dn);
  669. break;
  670. case NODE_IND1_BLOCK:
  671. case NODE_IND2_BLOCK:
  672. err = truncate_nodes(&dn, nofs, offset[1], 2);
  673. break;
  674. case NODE_DIND_BLOCK:
  675. err = truncate_nodes(&dn, nofs, offset[1], 3);
  676. cont = 0;
  677. break;
  678. default:
  679. BUG();
  680. }
  681. if (err < 0 && err != -ENOENT)
  682. goto fail;
  683. if (offset[1] == 0 &&
  684. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  685. lock_page(page);
  686. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  687. f2fs_put_page(page, 1);
  688. goto restart;
  689. }
  690. f2fs_wait_on_page_writeback(page, NODE);
  691. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  692. set_page_dirty(page);
  693. unlock_page(page);
  694. }
  695. offset[1] = 0;
  696. offset[0]++;
  697. nofs += err;
  698. }
  699. fail:
  700. f2fs_put_page(page, 0);
  701. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  702. return err > 0 ? 0 : err;
  703. }
  704. int truncate_xattr_node(struct inode *inode, struct page *page)
  705. {
  706. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  707. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  708. struct dnode_of_data dn;
  709. struct page *npage;
  710. if (!nid)
  711. return 0;
  712. npage = get_node_page(sbi, nid);
  713. if (IS_ERR(npage))
  714. return PTR_ERR(npage);
  715. F2FS_I(inode)->i_xattr_nid = 0;
  716. /* need to do checkpoint during fsync */
  717. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  718. set_new_dnode(&dn, inode, page, npage, nid);
  719. if (page)
  720. dn.inode_page_locked = true;
  721. truncate_node(&dn);
  722. return 0;
  723. }
  724. /*
  725. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  726. * f2fs_unlock_op().
  727. */
  728. void remove_inode_page(struct inode *inode)
  729. {
  730. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  731. struct page *page;
  732. nid_t ino = inode->i_ino;
  733. struct dnode_of_data dn;
  734. page = get_node_page(sbi, ino);
  735. if (IS_ERR(page))
  736. return;
  737. if (truncate_xattr_node(inode, page)) {
  738. f2fs_put_page(page, 1);
  739. return;
  740. }
  741. /* 0 is possible, after f2fs_new_inode() is failed */
  742. f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
  743. set_new_dnode(&dn, inode, page, page, ino);
  744. truncate_node(&dn);
  745. }
  746. struct page *new_inode_page(struct inode *inode, const struct qstr *name)
  747. {
  748. struct dnode_of_data dn;
  749. /* allocate inode page for new inode */
  750. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  751. /* caller should f2fs_put_page(page, 1); */
  752. return new_node_page(&dn, 0, NULL);
  753. }
  754. struct page *new_node_page(struct dnode_of_data *dn,
  755. unsigned int ofs, struct page *ipage)
  756. {
  757. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  758. struct node_info old_ni, new_ni;
  759. struct page *page;
  760. int err;
  761. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  762. return ERR_PTR(-EPERM);
  763. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  764. if (!page)
  765. return ERR_PTR(-ENOMEM);
  766. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  767. err = -ENOSPC;
  768. goto fail;
  769. }
  770. get_node_info(sbi, dn->nid, &old_ni);
  771. /* Reinitialize old_ni with new node page */
  772. f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
  773. new_ni = old_ni;
  774. new_ni.ino = dn->inode->i_ino;
  775. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  776. f2fs_wait_on_page_writeback(page, NODE);
  777. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  778. set_cold_node(dn->inode, page);
  779. SetPageUptodate(page);
  780. set_page_dirty(page);
  781. if (f2fs_has_xattr_block(ofs))
  782. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  783. dn->node_page = page;
  784. if (ipage)
  785. update_inode(dn->inode, ipage);
  786. else
  787. sync_inode_page(dn);
  788. if (ofs == 0)
  789. inc_valid_inode_count(sbi);
  790. return page;
  791. fail:
  792. clear_node_page_dirty(page);
  793. f2fs_put_page(page, 1);
  794. return ERR_PTR(err);
  795. }
  796. /*
  797. * Caller should do after getting the following values.
  798. * 0: f2fs_put_page(page, 0)
  799. * LOCKED_PAGE: f2fs_put_page(page, 1)
  800. * error: nothing
  801. */
  802. static int read_node_page(struct page *page, int rw)
  803. {
  804. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  805. struct node_info ni;
  806. get_node_info(sbi, page->index, &ni);
  807. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  808. f2fs_put_page(page, 1);
  809. return -ENOENT;
  810. }
  811. if (PageUptodate(page))
  812. return LOCKED_PAGE;
  813. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  814. }
  815. /*
  816. * Readahead a node page
  817. */
  818. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  819. {
  820. struct page *apage;
  821. int err;
  822. apage = find_get_page(NODE_MAPPING(sbi), nid);
  823. if (apage && PageUptodate(apage)) {
  824. f2fs_put_page(apage, 0);
  825. return;
  826. }
  827. f2fs_put_page(apage, 0);
  828. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  829. if (!apage)
  830. return;
  831. err = read_node_page(apage, READA);
  832. if (err == 0)
  833. f2fs_put_page(apage, 0);
  834. else if (err == LOCKED_PAGE)
  835. f2fs_put_page(apage, 1);
  836. }
  837. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  838. {
  839. struct page *page;
  840. int err;
  841. repeat:
  842. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  843. if (!page)
  844. return ERR_PTR(-ENOMEM);
  845. err = read_node_page(page, READ_SYNC);
  846. if (err < 0)
  847. return ERR_PTR(err);
  848. else if (err == LOCKED_PAGE)
  849. goto got_it;
  850. lock_page(page);
  851. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  852. f2fs_put_page(page, 1);
  853. return ERR_PTR(-EIO);
  854. }
  855. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  856. f2fs_put_page(page, 1);
  857. goto repeat;
  858. }
  859. got_it:
  860. return page;
  861. }
  862. /*
  863. * Return a locked page for the desired node page.
  864. * And, readahead MAX_RA_NODE number of node pages.
  865. */
  866. struct page *get_node_page_ra(struct page *parent, int start)
  867. {
  868. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  869. struct blk_plug plug;
  870. struct page *page;
  871. int err, i, end;
  872. nid_t nid;
  873. /* First, try getting the desired direct node. */
  874. nid = get_nid(parent, start, false);
  875. if (!nid)
  876. return ERR_PTR(-ENOENT);
  877. repeat:
  878. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  879. if (!page)
  880. return ERR_PTR(-ENOMEM);
  881. err = read_node_page(page, READ_SYNC);
  882. if (err < 0)
  883. return ERR_PTR(err);
  884. else if (err == LOCKED_PAGE)
  885. goto page_hit;
  886. blk_start_plug(&plug);
  887. /* Then, try readahead for siblings of the desired node */
  888. end = start + MAX_RA_NODE;
  889. end = min(end, NIDS_PER_BLOCK);
  890. for (i = start + 1; i < end; i++) {
  891. nid = get_nid(parent, i, false);
  892. if (!nid)
  893. continue;
  894. ra_node_page(sbi, nid);
  895. }
  896. blk_finish_plug(&plug);
  897. lock_page(page);
  898. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  899. f2fs_put_page(page, 1);
  900. goto repeat;
  901. }
  902. page_hit:
  903. if (unlikely(!PageUptodate(page))) {
  904. f2fs_put_page(page, 1);
  905. return ERR_PTR(-EIO);
  906. }
  907. return page;
  908. }
  909. void sync_inode_page(struct dnode_of_data *dn)
  910. {
  911. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  912. update_inode(dn->inode, dn->node_page);
  913. } else if (dn->inode_page) {
  914. if (!dn->inode_page_locked)
  915. lock_page(dn->inode_page);
  916. update_inode(dn->inode, dn->inode_page);
  917. if (!dn->inode_page_locked)
  918. unlock_page(dn->inode_page);
  919. } else {
  920. update_inode_page(dn->inode);
  921. }
  922. }
  923. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  924. struct writeback_control *wbc)
  925. {
  926. pgoff_t index, end;
  927. struct pagevec pvec;
  928. int step = ino ? 2 : 0;
  929. int nwritten = 0, wrote = 0;
  930. pagevec_init(&pvec, 0);
  931. next_step:
  932. index = 0;
  933. end = LONG_MAX;
  934. while (index <= end) {
  935. int i, nr_pages;
  936. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  937. PAGECACHE_TAG_DIRTY,
  938. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  939. if (nr_pages == 0)
  940. break;
  941. for (i = 0; i < nr_pages; i++) {
  942. struct page *page = pvec.pages[i];
  943. /*
  944. * flushing sequence with step:
  945. * 0. indirect nodes
  946. * 1. dentry dnodes
  947. * 2. file dnodes
  948. */
  949. if (step == 0 && IS_DNODE(page))
  950. continue;
  951. if (step == 1 && (!IS_DNODE(page) ||
  952. is_cold_node(page)))
  953. continue;
  954. if (step == 2 && (!IS_DNODE(page) ||
  955. !is_cold_node(page)))
  956. continue;
  957. /*
  958. * If an fsync mode,
  959. * we should not skip writing node pages.
  960. */
  961. if (ino && ino_of_node(page) == ino)
  962. lock_page(page);
  963. else if (!trylock_page(page))
  964. continue;
  965. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  966. continue_unlock:
  967. unlock_page(page);
  968. continue;
  969. }
  970. if (ino && ino_of_node(page) != ino)
  971. goto continue_unlock;
  972. if (!PageDirty(page)) {
  973. /* someone wrote it for us */
  974. goto continue_unlock;
  975. }
  976. if (!clear_page_dirty_for_io(page))
  977. goto continue_unlock;
  978. /* called by fsync() */
  979. if (ino && IS_DNODE(page)) {
  980. int mark = !is_checkpointed_node(sbi, ino);
  981. set_fsync_mark(page, 1);
  982. if (IS_INODE(page))
  983. set_dentry_mark(page, mark);
  984. nwritten++;
  985. } else {
  986. set_fsync_mark(page, 0);
  987. set_dentry_mark(page, 0);
  988. }
  989. NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
  990. wrote++;
  991. if (--wbc->nr_to_write == 0)
  992. break;
  993. }
  994. pagevec_release(&pvec);
  995. cond_resched();
  996. if (wbc->nr_to_write == 0) {
  997. step = 2;
  998. break;
  999. }
  1000. }
  1001. if (step < 2) {
  1002. step++;
  1003. goto next_step;
  1004. }
  1005. if (wrote)
  1006. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1007. return nwritten;
  1008. }
  1009. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1010. {
  1011. pgoff_t index = 0, end = LONG_MAX;
  1012. struct pagevec pvec;
  1013. int ret2 = 0, ret = 0;
  1014. pagevec_init(&pvec, 0);
  1015. while (index <= end) {
  1016. int i, nr_pages;
  1017. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1018. PAGECACHE_TAG_WRITEBACK,
  1019. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1020. if (nr_pages == 0)
  1021. break;
  1022. for (i = 0; i < nr_pages; i++) {
  1023. struct page *page = pvec.pages[i];
  1024. /* until radix tree lookup accepts end_index */
  1025. if (unlikely(page->index > end))
  1026. continue;
  1027. if (ino && ino_of_node(page) == ino) {
  1028. f2fs_wait_on_page_writeback(page, NODE);
  1029. if (TestClearPageError(page))
  1030. ret = -EIO;
  1031. }
  1032. }
  1033. pagevec_release(&pvec);
  1034. cond_resched();
  1035. }
  1036. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1037. ret2 = -ENOSPC;
  1038. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1039. ret2 = -EIO;
  1040. if (!ret)
  1041. ret = ret2;
  1042. return ret;
  1043. }
  1044. static int f2fs_write_node_page(struct page *page,
  1045. struct writeback_control *wbc)
  1046. {
  1047. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  1048. nid_t nid;
  1049. block_t new_addr;
  1050. struct node_info ni;
  1051. struct f2fs_io_info fio = {
  1052. .type = NODE,
  1053. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1054. };
  1055. trace_f2fs_writepage(page, NODE);
  1056. if (unlikely(sbi->por_doing))
  1057. goto redirty_out;
  1058. f2fs_wait_on_page_writeback(page, NODE);
  1059. /* get old block addr of this node page */
  1060. nid = nid_of_node(page);
  1061. f2fs_bug_on(page->index != nid);
  1062. get_node_info(sbi, nid, &ni);
  1063. /* This page is already truncated */
  1064. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1065. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1066. unlock_page(page);
  1067. return 0;
  1068. }
  1069. if (wbc->for_reclaim)
  1070. goto redirty_out;
  1071. mutex_lock(&sbi->node_write);
  1072. set_page_writeback(page);
  1073. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1074. set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
  1075. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1076. mutex_unlock(&sbi->node_write);
  1077. unlock_page(page);
  1078. return 0;
  1079. redirty_out:
  1080. redirty_page_for_writepage(wbc, page);
  1081. return AOP_WRITEPAGE_ACTIVATE;
  1082. }
  1083. static int f2fs_write_node_pages(struct address_space *mapping,
  1084. struct writeback_control *wbc)
  1085. {
  1086. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1087. long diff;
  1088. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1089. /* balancing f2fs's metadata in background */
  1090. f2fs_balance_fs_bg(sbi);
  1091. /* collect a number of dirty node pages and write together */
  1092. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1093. goto skip_write;
  1094. diff = nr_pages_to_write(sbi, NODE, wbc);
  1095. wbc->sync_mode = WB_SYNC_NONE;
  1096. sync_node_pages(sbi, 0, wbc);
  1097. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1098. return 0;
  1099. skip_write:
  1100. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1101. return 0;
  1102. }
  1103. static int f2fs_set_node_page_dirty(struct page *page)
  1104. {
  1105. struct address_space *mapping = page->mapping;
  1106. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1107. trace_f2fs_set_page_dirty(page, NODE);
  1108. SetPageUptodate(page);
  1109. if (!PageDirty(page)) {
  1110. __set_page_dirty_nobuffers(page);
  1111. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1112. SetPagePrivate(page);
  1113. return 1;
  1114. }
  1115. return 0;
  1116. }
  1117. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1118. unsigned int length)
  1119. {
  1120. struct inode *inode = page->mapping->host;
  1121. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1122. if (PageDirty(page))
  1123. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1124. ClearPagePrivate(page);
  1125. }
  1126. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1127. {
  1128. ClearPagePrivate(page);
  1129. return 1;
  1130. }
  1131. /*
  1132. * Structure of the f2fs node operations
  1133. */
  1134. const struct address_space_operations f2fs_node_aops = {
  1135. .writepage = f2fs_write_node_page,
  1136. .writepages = f2fs_write_node_pages,
  1137. .set_page_dirty = f2fs_set_node_page_dirty,
  1138. .invalidatepage = f2fs_invalidate_node_page,
  1139. .releasepage = f2fs_release_node_page,
  1140. };
  1141. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1142. nid_t n)
  1143. {
  1144. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1145. }
  1146. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1147. struct free_nid *i)
  1148. {
  1149. list_del(&i->list);
  1150. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1151. }
  1152. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1153. {
  1154. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1155. struct free_nid *i;
  1156. struct nat_entry *ne;
  1157. bool allocated = false;
  1158. if (!available_free_memory(sbi, FREE_NIDS))
  1159. return -1;
  1160. /* 0 nid should not be used */
  1161. if (unlikely(nid == 0))
  1162. return 0;
  1163. if (build) {
  1164. /* do not add allocated nids */
  1165. read_lock(&nm_i->nat_tree_lock);
  1166. ne = __lookup_nat_cache(nm_i, nid);
  1167. if (ne &&
  1168. (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
  1169. allocated = true;
  1170. read_unlock(&nm_i->nat_tree_lock);
  1171. if (allocated)
  1172. return 0;
  1173. }
  1174. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1175. i->nid = nid;
  1176. i->state = NID_NEW;
  1177. spin_lock(&nm_i->free_nid_list_lock);
  1178. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1179. spin_unlock(&nm_i->free_nid_list_lock);
  1180. kmem_cache_free(free_nid_slab, i);
  1181. return 0;
  1182. }
  1183. list_add_tail(&i->list, &nm_i->free_nid_list);
  1184. nm_i->fcnt++;
  1185. spin_unlock(&nm_i->free_nid_list_lock);
  1186. return 1;
  1187. }
  1188. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1189. {
  1190. struct free_nid *i;
  1191. bool need_free = false;
  1192. spin_lock(&nm_i->free_nid_list_lock);
  1193. i = __lookup_free_nid_list(nm_i, nid);
  1194. if (i && i->state == NID_NEW) {
  1195. __del_from_free_nid_list(nm_i, i);
  1196. nm_i->fcnt--;
  1197. need_free = true;
  1198. }
  1199. spin_unlock(&nm_i->free_nid_list_lock);
  1200. if (need_free)
  1201. kmem_cache_free(free_nid_slab, i);
  1202. }
  1203. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1204. struct page *nat_page, nid_t start_nid)
  1205. {
  1206. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1207. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1208. block_t blk_addr;
  1209. int i;
  1210. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1211. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1212. if (unlikely(start_nid >= nm_i->max_nid))
  1213. break;
  1214. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1215. f2fs_bug_on(blk_addr == NEW_ADDR);
  1216. if (blk_addr == NULL_ADDR) {
  1217. if (add_free_nid(sbi, start_nid, true) < 0)
  1218. break;
  1219. }
  1220. }
  1221. }
  1222. static void build_free_nids(struct f2fs_sb_info *sbi)
  1223. {
  1224. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1225. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1226. struct f2fs_summary_block *sum = curseg->sum_blk;
  1227. int i = 0;
  1228. nid_t nid = nm_i->next_scan_nid;
  1229. /* Enough entries */
  1230. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1231. return;
  1232. /* readahead nat pages to be scanned */
  1233. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1234. while (1) {
  1235. struct page *page = get_current_nat_page(sbi, nid);
  1236. scan_nat_page(sbi, page, nid);
  1237. f2fs_put_page(page, 1);
  1238. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1239. if (unlikely(nid >= nm_i->max_nid))
  1240. nid = 0;
  1241. if (i++ == FREE_NID_PAGES)
  1242. break;
  1243. }
  1244. /* go to the next free nat pages to find free nids abundantly */
  1245. nm_i->next_scan_nid = nid;
  1246. /* find free nids from current sum_pages */
  1247. mutex_lock(&curseg->curseg_mutex);
  1248. for (i = 0; i < nats_in_cursum(sum); i++) {
  1249. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1250. nid = le32_to_cpu(nid_in_journal(sum, i));
  1251. if (addr == NULL_ADDR)
  1252. add_free_nid(sbi, nid, true);
  1253. else
  1254. remove_free_nid(nm_i, nid);
  1255. }
  1256. mutex_unlock(&curseg->curseg_mutex);
  1257. }
  1258. /*
  1259. * If this function returns success, caller can obtain a new nid
  1260. * from second parameter of this function.
  1261. * The returned nid could be used ino as well as nid when inode is created.
  1262. */
  1263. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1264. {
  1265. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1266. struct free_nid *i = NULL;
  1267. retry:
  1268. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1269. return false;
  1270. spin_lock(&nm_i->free_nid_list_lock);
  1271. /* We should not use stale free nids created by build_free_nids */
  1272. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1273. f2fs_bug_on(list_empty(&nm_i->free_nid_list));
  1274. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1275. if (i->state == NID_NEW)
  1276. break;
  1277. f2fs_bug_on(i->state != NID_NEW);
  1278. *nid = i->nid;
  1279. i->state = NID_ALLOC;
  1280. nm_i->fcnt--;
  1281. spin_unlock(&nm_i->free_nid_list_lock);
  1282. return true;
  1283. }
  1284. spin_unlock(&nm_i->free_nid_list_lock);
  1285. /* Let's scan nat pages and its caches to get free nids */
  1286. mutex_lock(&nm_i->build_lock);
  1287. build_free_nids(sbi);
  1288. mutex_unlock(&nm_i->build_lock);
  1289. goto retry;
  1290. }
  1291. /*
  1292. * alloc_nid() should be called prior to this function.
  1293. */
  1294. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1295. {
  1296. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1297. struct free_nid *i;
  1298. spin_lock(&nm_i->free_nid_list_lock);
  1299. i = __lookup_free_nid_list(nm_i, nid);
  1300. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1301. __del_from_free_nid_list(nm_i, i);
  1302. spin_unlock(&nm_i->free_nid_list_lock);
  1303. kmem_cache_free(free_nid_slab, i);
  1304. }
  1305. /*
  1306. * alloc_nid() should be called prior to this function.
  1307. */
  1308. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1309. {
  1310. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1311. struct free_nid *i;
  1312. bool need_free = false;
  1313. if (!nid)
  1314. return;
  1315. spin_lock(&nm_i->free_nid_list_lock);
  1316. i = __lookup_free_nid_list(nm_i, nid);
  1317. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1318. if (!available_free_memory(sbi, FREE_NIDS)) {
  1319. __del_from_free_nid_list(nm_i, i);
  1320. need_free = true;
  1321. } else {
  1322. i->state = NID_NEW;
  1323. nm_i->fcnt++;
  1324. }
  1325. spin_unlock(&nm_i->free_nid_list_lock);
  1326. if (need_free)
  1327. kmem_cache_free(free_nid_slab, i);
  1328. }
  1329. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1330. struct f2fs_summary *sum, struct node_info *ni,
  1331. block_t new_blkaddr)
  1332. {
  1333. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1334. set_node_addr(sbi, ni, new_blkaddr, false);
  1335. clear_node_page_dirty(page);
  1336. }
  1337. static void recover_inline_xattr(struct inode *inode, struct page *page)
  1338. {
  1339. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1340. void *src_addr, *dst_addr;
  1341. size_t inline_size;
  1342. struct page *ipage;
  1343. struct f2fs_inode *ri;
  1344. if (!f2fs_has_inline_xattr(inode))
  1345. return;
  1346. if (!IS_INODE(page))
  1347. return;
  1348. ri = F2FS_INODE(page);
  1349. if (!(ri->i_inline & F2FS_INLINE_XATTR))
  1350. return;
  1351. ipage = get_node_page(sbi, inode->i_ino);
  1352. f2fs_bug_on(IS_ERR(ipage));
  1353. dst_addr = inline_xattr_addr(ipage);
  1354. src_addr = inline_xattr_addr(page);
  1355. inline_size = inline_xattr_size(inode);
  1356. f2fs_wait_on_page_writeback(ipage, NODE);
  1357. memcpy(dst_addr, src_addr, inline_size);
  1358. update_inode(inode, ipage);
  1359. f2fs_put_page(ipage, 1);
  1360. }
  1361. bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1362. {
  1363. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1364. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1365. nid_t new_xnid = nid_of_node(page);
  1366. struct node_info ni;
  1367. recover_inline_xattr(inode, page);
  1368. if (!f2fs_has_xattr_block(ofs_of_node(page)))
  1369. return false;
  1370. /* 1: invalidate the previous xattr nid */
  1371. if (!prev_xnid)
  1372. goto recover_xnid;
  1373. /* Deallocate node address */
  1374. get_node_info(sbi, prev_xnid, &ni);
  1375. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  1376. invalidate_blocks(sbi, ni.blk_addr);
  1377. dec_valid_node_count(sbi, inode);
  1378. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1379. recover_xnid:
  1380. /* 2: allocate new xattr nid */
  1381. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1382. f2fs_bug_on(1);
  1383. remove_free_nid(NM_I(sbi), new_xnid);
  1384. get_node_info(sbi, new_xnid, &ni);
  1385. ni.ino = inode->i_ino;
  1386. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1387. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1388. /* 3: update xattr blkaddr */
  1389. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1390. set_node_addr(sbi, &ni, blkaddr, false);
  1391. update_inode_page(inode);
  1392. return true;
  1393. }
  1394. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1395. {
  1396. struct f2fs_inode *src, *dst;
  1397. nid_t ino = ino_of_node(page);
  1398. struct node_info old_ni, new_ni;
  1399. struct page *ipage;
  1400. get_node_info(sbi, ino, &old_ni);
  1401. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1402. return -EINVAL;
  1403. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1404. if (!ipage)
  1405. return -ENOMEM;
  1406. /* Should not use this inode from free nid list */
  1407. remove_free_nid(NM_I(sbi), ino);
  1408. SetPageUptodate(ipage);
  1409. fill_node_footer(ipage, ino, ino, 0, true);
  1410. src = F2FS_INODE(page);
  1411. dst = F2FS_INODE(ipage);
  1412. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1413. dst->i_size = 0;
  1414. dst->i_blocks = cpu_to_le64(1);
  1415. dst->i_links = cpu_to_le32(1);
  1416. dst->i_xattr_nid = 0;
  1417. new_ni = old_ni;
  1418. new_ni.ino = ino;
  1419. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1420. WARN_ON(1);
  1421. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1422. inc_valid_inode_count(sbi);
  1423. f2fs_put_page(ipage, 1);
  1424. return 0;
  1425. }
  1426. /*
  1427. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1428. * these pre-readed pages are alloced in bd_inode's mapping tree.
  1429. */
  1430. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
  1431. int start, int nrpages)
  1432. {
  1433. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1434. struct address_space *mapping = inode->i_mapping;
  1435. int i, page_idx = start;
  1436. struct f2fs_io_info fio = {
  1437. .type = META,
  1438. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1439. };
  1440. for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
  1441. /* alloc page in bd_inode for reading node summary info */
  1442. pages[i] = grab_cache_page(mapping, page_idx);
  1443. if (!pages[i])
  1444. break;
  1445. f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
  1446. }
  1447. f2fs_submit_merged_bio(sbi, META, READ);
  1448. return i;
  1449. }
  1450. int restore_node_summary(struct f2fs_sb_info *sbi,
  1451. unsigned int segno, struct f2fs_summary_block *sum)
  1452. {
  1453. struct f2fs_node *rn;
  1454. struct f2fs_summary *sum_entry;
  1455. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1456. block_t addr;
  1457. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  1458. struct page *pages[bio_blocks];
  1459. int i, idx, last_offset, nrpages, err = 0;
  1460. /* scan the node segment */
  1461. last_offset = sbi->blocks_per_seg;
  1462. addr = START_BLOCK(sbi, segno);
  1463. sum_entry = &sum->entries[0];
  1464. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1465. nrpages = min(last_offset - i, bio_blocks);
  1466. /* read ahead node pages */
  1467. nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
  1468. if (!nrpages)
  1469. return -ENOMEM;
  1470. for (idx = 0; idx < nrpages; idx++) {
  1471. if (err)
  1472. goto skip;
  1473. lock_page(pages[idx]);
  1474. if (unlikely(!PageUptodate(pages[idx]))) {
  1475. err = -EIO;
  1476. } else {
  1477. rn = F2FS_NODE(pages[idx]);
  1478. sum_entry->nid = rn->footer.nid;
  1479. sum_entry->version = 0;
  1480. sum_entry->ofs_in_node = 0;
  1481. sum_entry++;
  1482. }
  1483. unlock_page(pages[idx]);
  1484. skip:
  1485. page_cache_release(pages[idx]);
  1486. }
  1487. invalidate_mapping_pages(inode->i_mapping, addr,
  1488. addr + nrpages);
  1489. }
  1490. return err;
  1491. }
  1492. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1493. {
  1494. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1495. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1496. struct f2fs_summary_block *sum = curseg->sum_blk;
  1497. int i;
  1498. mutex_lock(&curseg->curseg_mutex);
  1499. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1500. mutex_unlock(&curseg->curseg_mutex);
  1501. return false;
  1502. }
  1503. for (i = 0; i < nats_in_cursum(sum); i++) {
  1504. struct nat_entry *ne;
  1505. struct f2fs_nat_entry raw_ne;
  1506. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1507. raw_ne = nat_in_journal(sum, i);
  1508. retry:
  1509. write_lock(&nm_i->nat_tree_lock);
  1510. ne = __lookup_nat_cache(nm_i, nid);
  1511. if (ne) {
  1512. __set_nat_cache_dirty(nm_i, ne);
  1513. write_unlock(&nm_i->nat_tree_lock);
  1514. continue;
  1515. }
  1516. ne = grab_nat_entry(nm_i, nid);
  1517. if (!ne) {
  1518. write_unlock(&nm_i->nat_tree_lock);
  1519. goto retry;
  1520. }
  1521. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1522. __set_nat_cache_dirty(nm_i, ne);
  1523. write_unlock(&nm_i->nat_tree_lock);
  1524. }
  1525. update_nats_in_cursum(sum, -i);
  1526. mutex_unlock(&curseg->curseg_mutex);
  1527. return true;
  1528. }
  1529. /*
  1530. * This function is called during the checkpointing process.
  1531. */
  1532. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1533. {
  1534. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1535. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1536. struct f2fs_summary_block *sum = curseg->sum_blk;
  1537. struct nat_entry *ne, *cur;
  1538. struct page *page = NULL;
  1539. struct f2fs_nat_block *nat_blk = NULL;
  1540. nid_t start_nid = 0, end_nid = 0;
  1541. bool flushed;
  1542. flushed = flush_nats_in_journal(sbi);
  1543. if (!flushed)
  1544. mutex_lock(&curseg->curseg_mutex);
  1545. /* 1) flush dirty nat caches */
  1546. list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
  1547. nid_t nid;
  1548. struct f2fs_nat_entry raw_ne;
  1549. int offset = -1;
  1550. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1551. continue;
  1552. nid = nat_get_nid(ne);
  1553. if (flushed)
  1554. goto to_nat_page;
  1555. /* if there is room for nat enries in curseg->sumpage */
  1556. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1557. if (offset >= 0) {
  1558. raw_ne = nat_in_journal(sum, offset);
  1559. goto flush_now;
  1560. }
  1561. to_nat_page:
  1562. if (!page || (start_nid > nid || nid > end_nid)) {
  1563. if (page) {
  1564. f2fs_put_page(page, 1);
  1565. page = NULL;
  1566. }
  1567. start_nid = START_NID(nid);
  1568. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1569. /*
  1570. * get nat block with dirty flag, increased reference
  1571. * count, mapped and lock
  1572. */
  1573. page = get_next_nat_page(sbi, start_nid);
  1574. nat_blk = page_address(page);
  1575. }
  1576. f2fs_bug_on(!nat_blk);
  1577. raw_ne = nat_blk->entries[nid - start_nid];
  1578. flush_now:
  1579. raw_nat_from_node_info(&raw_ne, &ne->ni);
  1580. if (offset < 0) {
  1581. nat_blk->entries[nid - start_nid] = raw_ne;
  1582. } else {
  1583. nat_in_journal(sum, offset) = raw_ne;
  1584. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1585. }
  1586. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1587. add_free_nid(sbi, nid, false) <= 0) {
  1588. write_lock(&nm_i->nat_tree_lock);
  1589. __del_from_nat_cache(nm_i, ne);
  1590. write_unlock(&nm_i->nat_tree_lock);
  1591. } else {
  1592. write_lock(&nm_i->nat_tree_lock);
  1593. __clear_nat_cache_dirty(nm_i, ne);
  1594. write_unlock(&nm_i->nat_tree_lock);
  1595. }
  1596. }
  1597. if (!flushed)
  1598. mutex_unlock(&curseg->curseg_mutex);
  1599. f2fs_put_page(page, 1);
  1600. }
  1601. static int init_node_manager(struct f2fs_sb_info *sbi)
  1602. {
  1603. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1604. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1605. unsigned char *version_bitmap;
  1606. unsigned int nat_segs, nat_blocks;
  1607. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1608. /* segment_count_nat includes pair segment so divide to 2. */
  1609. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1610. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1611. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1612. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1613. nm_i->available_nids = nm_i->max_nid - 3;
  1614. nm_i->fcnt = 0;
  1615. nm_i->nat_cnt = 0;
  1616. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1617. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1618. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1619. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1620. INIT_LIST_HEAD(&nm_i->nat_entries);
  1621. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1622. mutex_init(&nm_i->build_lock);
  1623. spin_lock_init(&nm_i->free_nid_list_lock);
  1624. rwlock_init(&nm_i->nat_tree_lock);
  1625. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1626. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1627. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1628. if (!version_bitmap)
  1629. return -EFAULT;
  1630. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1631. GFP_KERNEL);
  1632. if (!nm_i->nat_bitmap)
  1633. return -ENOMEM;
  1634. return 0;
  1635. }
  1636. int build_node_manager(struct f2fs_sb_info *sbi)
  1637. {
  1638. int err;
  1639. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1640. if (!sbi->nm_info)
  1641. return -ENOMEM;
  1642. err = init_node_manager(sbi);
  1643. if (err)
  1644. return err;
  1645. build_free_nids(sbi);
  1646. return 0;
  1647. }
  1648. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1649. {
  1650. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1651. struct free_nid *i, *next_i;
  1652. struct nat_entry *natvec[NATVEC_SIZE];
  1653. nid_t nid = 0;
  1654. unsigned int found;
  1655. if (!nm_i)
  1656. return;
  1657. /* destroy free nid list */
  1658. spin_lock(&nm_i->free_nid_list_lock);
  1659. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1660. f2fs_bug_on(i->state == NID_ALLOC);
  1661. __del_from_free_nid_list(nm_i, i);
  1662. nm_i->fcnt--;
  1663. spin_unlock(&nm_i->free_nid_list_lock);
  1664. kmem_cache_free(free_nid_slab, i);
  1665. spin_lock(&nm_i->free_nid_list_lock);
  1666. }
  1667. f2fs_bug_on(nm_i->fcnt);
  1668. spin_unlock(&nm_i->free_nid_list_lock);
  1669. /* destroy nat cache */
  1670. write_lock(&nm_i->nat_tree_lock);
  1671. while ((found = __gang_lookup_nat_cache(nm_i,
  1672. nid, NATVEC_SIZE, natvec))) {
  1673. unsigned idx;
  1674. nid = nat_get_nid(natvec[found - 1]) + 1;
  1675. for (idx = 0; idx < found; idx++)
  1676. __del_from_nat_cache(nm_i, natvec[idx]);
  1677. }
  1678. f2fs_bug_on(nm_i->nat_cnt);
  1679. write_unlock(&nm_i->nat_tree_lock);
  1680. kfree(nm_i->nat_bitmap);
  1681. sbi->nm_info = NULL;
  1682. kfree(nm_i);
  1683. }
  1684. int __init create_node_manager_caches(void)
  1685. {
  1686. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1687. sizeof(struct nat_entry));
  1688. if (!nat_entry_slab)
  1689. return -ENOMEM;
  1690. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1691. sizeof(struct free_nid));
  1692. if (!free_nid_slab) {
  1693. kmem_cache_destroy(nat_entry_slab);
  1694. return -ENOMEM;
  1695. }
  1696. return 0;
  1697. }
  1698. void destroy_node_manager_caches(void)
  1699. {
  1700. kmem_cache_destroy(free_nid_slab);
  1701. kmem_cache_destroy(nat_entry_slab);
  1702. }