udp.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <asm/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/inetdevice.h>
  92. #include <linux/in.h>
  93. #include <linux/errno.h>
  94. #include <linux/timer.h>
  95. #include <linux/mm.h>
  96. #include <linux/inet.h>
  97. #include <linux/netdevice.h>
  98. #include <linux/slab.h>
  99. #include <net/tcp_states.h>
  100. #include <linux/skbuff.h>
  101. #include <linux/proc_fs.h>
  102. #include <linux/seq_file.h>
  103. #include <net/net_namespace.h>
  104. #include <net/icmp.h>
  105. #include <net/inet_hashtables.h>
  106. #include <net/route.h>
  107. #include <net/checksum.h>
  108. #include <net/xfrm.h>
  109. #include <trace/events/udp.h>
  110. #include <linux/static_key.h>
  111. #include <trace/events/skb.h>
  112. #include <net/busy_poll.h>
  113. #include "udp_impl.h"
  114. struct udp_table udp_table __read_mostly;
  115. EXPORT_SYMBOL(udp_table);
  116. long sysctl_udp_mem[3] __read_mostly;
  117. EXPORT_SYMBOL(sysctl_udp_mem);
  118. int sysctl_udp_rmem_min __read_mostly;
  119. EXPORT_SYMBOL(sysctl_udp_rmem_min);
  120. int sysctl_udp_wmem_min __read_mostly;
  121. EXPORT_SYMBOL(sysctl_udp_wmem_min);
  122. atomic_long_t udp_memory_allocated;
  123. EXPORT_SYMBOL(udp_memory_allocated);
  124. #define MAX_UDP_PORTS 65536
  125. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  126. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  127. const struct udp_hslot *hslot,
  128. unsigned long *bitmap,
  129. struct sock *sk,
  130. int (*saddr_comp)(const struct sock *sk1,
  131. const struct sock *sk2),
  132. unsigned int log)
  133. {
  134. struct sock *sk2;
  135. struct hlist_nulls_node *node;
  136. kuid_t uid = sock_i_uid(sk);
  137. sk_nulls_for_each(sk2, node, &hslot->head) {
  138. if (net_eq(sock_net(sk2), net) &&
  139. sk2 != sk &&
  140. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  141. (!sk2->sk_reuse || !sk->sk_reuse) &&
  142. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  143. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  144. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  145. !uid_eq(uid, sock_i_uid(sk2))) &&
  146. saddr_comp(sk, sk2)) {
  147. if (!bitmap)
  148. return 1;
  149. __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
  150. }
  151. }
  152. return 0;
  153. }
  154. /*
  155. * Note: we still hold spinlock of primary hash chain, so no other writer
  156. * can insert/delete a socket with local_port == num
  157. */
  158. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  159. struct udp_hslot *hslot2,
  160. struct sock *sk,
  161. int (*saddr_comp)(const struct sock *sk1,
  162. const struct sock *sk2))
  163. {
  164. struct sock *sk2;
  165. struct hlist_nulls_node *node;
  166. kuid_t uid = sock_i_uid(sk);
  167. int res = 0;
  168. spin_lock(&hslot2->lock);
  169. udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
  170. if (net_eq(sock_net(sk2), net) &&
  171. sk2 != sk &&
  172. (udp_sk(sk2)->udp_port_hash == num) &&
  173. (!sk2->sk_reuse || !sk->sk_reuse) &&
  174. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  175. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  176. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  177. !uid_eq(uid, sock_i_uid(sk2))) &&
  178. saddr_comp(sk, sk2)) {
  179. res = 1;
  180. break;
  181. }
  182. }
  183. spin_unlock(&hslot2->lock);
  184. return res;
  185. }
  186. /**
  187. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  188. *
  189. * @sk: socket struct in question
  190. * @snum: port number to look up
  191. * @saddr_comp: AF-dependent comparison of bound local IP addresses
  192. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  193. * with NULL address
  194. */
  195. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  196. int (*saddr_comp)(const struct sock *sk1,
  197. const struct sock *sk2),
  198. unsigned int hash2_nulladdr)
  199. {
  200. struct udp_hslot *hslot, *hslot2;
  201. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  202. int error = 1;
  203. struct net *net = sock_net(sk);
  204. if (!snum) {
  205. int low, high, remaining;
  206. unsigned int rand;
  207. unsigned short first, last;
  208. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  209. inet_get_local_port_range(net, &low, &high);
  210. remaining = (high - low) + 1;
  211. rand = prandom_u32();
  212. first = reciprocal_scale(rand, remaining) + low;
  213. /*
  214. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  215. */
  216. rand = (rand | 1) * (udptable->mask + 1);
  217. last = first + udptable->mask + 1;
  218. do {
  219. hslot = udp_hashslot(udptable, net, first);
  220. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  221. spin_lock_bh(&hslot->lock);
  222. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  223. saddr_comp, udptable->log);
  224. snum = first;
  225. /*
  226. * Iterate on all possible values of snum for this hash.
  227. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  228. * give us randomization and full range coverage.
  229. */
  230. do {
  231. if (low <= snum && snum <= high &&
  232. !test_bit(snum >> udptable->log, bitmap) &&
  233. !inet_is_local_reserved_port(net, snum))
  234. goto found;
  235. snum += rand;
  236. } while (snum != first);
  237. spin_unlock_bh(&hslot->lock);
  238. } while (++first != last);
  239. goto fail;
  240. } else {
  241. hslot = udp_hashslot(udptable, net, snum);
  242. spin_lock_bh(&hslot->lock);
  243. if (hslot->count > 10) {
  244. int exist;
  245. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  246. slot2 &= udptable->mask;
  247. hash2_nulladdr &= udptable->mask;
  248. hslot2 = udp_hashslot2(udptable, slot2);
  249. if (hslot->count < hslot2->count)
  250. goto scan_primary_hash;
  251. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  252. sk, saddr_comp);
  253. if (!exist && (hash2_nulladdr != slot2)) {
  254. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  255. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  256. sk, saddr_comp);
  257. }
  258. if (exist)
  259. goto fail_unlock;
  260. else
  261. goto found;
  262. }
  263. scan_primary_hash:
  264. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
  265. saddr_comp, 0))
  266. goto fail_unlock;
  267. }
  268. found:
  269. inet_sk(sk)->inet_num = snum;
  270. udp_sk(sk)->udp_port_hash = snum;
  271. udp_sk(sk)->udp_portaddr_hash ^= snum;
  272. if (sk_unhashed(sk)) {
  273. sk_nulls_add_node_rcu(sk, &hslot->head);
  274. hslot->count++;
  275. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  276. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  277. spin_lock(&hslot2->lock);
  278. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  279. &hslot2->head);
  280. hslot2->count++;
  281. spin_unlock(&hslot2->lock);
  282. }
  283. error = 0;
  284. fail_unlock:
  285. spin_unlock_bh(&hslot->lock);
  286. fail:
  287. return error;
  288. }
  289. EXPORT_SYMBOL(udp_lib_get_port);
  290. static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
  291. {
  292. struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
  293. return (!ipv6_only_sock(sk2) &&
  294. (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
  295. inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
  296. }
  297. static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
  298. unsigned int port)
  299. {
  300. return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
  301. }
  302. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  303. {
  304. unsigned int hash2_nulladdr =
  305. udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  306. unsigned int hash2_partial =
  307. udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  308. /* precompute partial secondary hash */
  309. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  310. return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
  311. }
  312. static inline int compute_score(struct sock *sk, struct net *net,
  313. __be32 saddr, unsigned short hnum, __be16 sport,
  314. __be32 daddr, __be16 dport, int dif)
  315. {
  316. int score;
  317. struct inet_sock *inet;
  318. if (!net_eq(sock_net(sk), net) ||
  319. udp_sk(sk)->udp_port_hash != hnum ||
  320. ipv6_only_sock(sk))
  321. return -1;
  322. score = (sk->sk_family == PF_INET) ? 2 : 1;
  323. inet = inet_sk(sk);
  324. if (inet->inet_rcv_saddr) {
  325. if (inet->inet_rcv_saddr != daddr)
  326. return -1;
  327. score += 4;
  328. }
  329. if (inet->inet_daddr) {
  330. if (inet->inet_daddr != saddr)
  331. return -1;
  332. score += 4;
  333. }
  334. if (inet->inet_dport) {
  335. if (inet->inet_dport != sport)
  336. return -1;
  337. score += 4;
  338. }
  339. if (sk->sk_bound_dev_if) {
  340. if (sk->sk_bound_dev_if != dif)
  341. return -1;
  342. score += 4;
  343. }
  344. if (sk->sk_incoming_cpu == raw_smp_processor_id())
  345. score++;
  346. return score;
  347. }
  348. /*
  349. * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
  350. */
  351. static inline int compute_score2(struct sock *sk, struct net *net,
  352. __be32 saddr, __be16 sport,
  353. __be32 daddr, unsigned int hnum, int dif)
  354. {
  355. int score;
  356. struct inet_sock *inet;
  357. if (!net_eq(sock_net(sk), net) ||
  358. ipv6_only_sock(sk))
  359. return -1;
  360. inet = inet_sk(sk);
  361. if (inet->inet_rcv_saddr != daddr ||
  362. inet->inet_num != hnum)
  363. return -1;
  364. score = (sk->sk_family == PF_INET) ? 2 : 1;
  365. if (inet->inet_daddr) {
  366. if (inet->inet_daddr != saddr)
  367. return -1;
  368. score += 4;
  369. }
  370. if (inet->inet_dport) {
  371. if (inet->inet_dport != sport)
  372. return -1;
  373. score += 4;
  374. }
  375. if (sk->sk_bound_dev_if) {
  376. if (sk->sk_bound_dev_if != dif)
  377. return -1;
  378. score += 4;
  379. }
  380. if (sk->sk_incoming_cpu == raw_smp_processor_id())
  381. score++;
  382. return score;
  383. }
  384. static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
  385. const __u16 lport, const __be32 faddr,
  386. const __be16 fport)
  387. {
  388. static u32 udp_ehash_secret __read_mostly;
  389. net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
  390. return __inet_ehashfn(laddr, lport, faddr, fport,
  391. udp_ehash_secret + net_hash_mix(net));
  392. }
  393. /* called with read_rcu_lock() */
  394. static struct sock *udp4_lib_lookup2(struct net *net,
  395. __be32 saddr, __be16 sport,
  396. __be32 daddr, unsigned int hnum, int dif,
  397. struct udp_hslot *hslot2, unsigned int slot2)
  398. {
  399. struct sock *sk, *result;
  400. struct hlist_nulls_node *node;
  401. int score, badness, matches = 0, reuseport = 0;
  402. u32 hash = 0;
  403. begin:
  404. result = NULL;
  405. badness = 0;
  406. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  407. score = compute_score2(sk, net, saddr, sport,
  408. daddr, hnum, dif);
  409. if (score > badness) {
  410. result = sk;
  411. badness = score;
  412. reuseport = sk->sk_reuseport;
  413. if (reuseport) {
  414. hash = udp_ehashfn(net, daddr, hnum,
  415. saddr, sport);
  416. matches = 1;
  417. }
  418. } else if (score == badness && reuseport) {
  419. matches++;
  420. if (reciprocal_scale(hash, matches) == 0)
  421. result = sk;
  422. hash = next_pseudo_random32(hash);
  423. }
  424. }
  425. /*
  426. * if the nulls value we got at the end of this lookup is
  427. * not the expected one, we must restart lookup.
  428. * We probably met an item that was moved to another chain.
  429. */
  430. if (get_nulls_value(node) != slot2)
  431. goto begin;
  432. if (result) {
  433. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  434. result = NULL;
  435. else if (unlikely(compute_score2(result, net, saddr, sport,
  436. daddr, hnum, dif) < badness)) {
  437. sock_put(result);
  438. goto begin;
  439. }
  440. }
  441. return result;
  442. }
  443. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  444. * harder than this. -DaveM
  445. */
  446. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  447. __be16 sport, __be32 daddr, __be16 dport,
  448. int dif, struct udp_table *udptable)
  449. {
  450. struct sock *sk, *result;
  451. struct hlist_nulls_node *node;
  452. unsigned short hnum = ntohs(dport);
  453. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  454. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  455. int score, badness, matches = 0, reuseport = 0;
  456. u32 hash = 0;
  457. rcu_read_lock();
  458. if (hslot->count > 10) {
  459. hash2 = udp4_portaddr_hash(net, daddr, hnum);
  460. slot2 = hash2 & udptable->mask;
  461. hslot2 = &udptable->hash2[slot2];
  462. if (hslot->count < hslot2->count)
  463. goto begin;
  464. result = udp4_lib_lookup2(net, saddr, sport,
  465. daddr, hnum, dif,
  466. hslot2, slot2);
  467. if (!result) {
  468. hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  469. slot2 = hash2 & udptable->mask;
  470. hslot2 = &udptable->hash2[slot2];
  471. if (hslot->count < hslot2->count)
  472. goto begin;
  473. result = udp4_lib_lookup2(net, saddr, sport,
  474. htonl(INADDR_ANY), hnum, dif,
  475. hslot2, slot2);
  476. }
  477. rcu_read_unlock();
  478. return result;
  479. }
  480. begin:
  481. result = NULL;
  482. badness = 0;
  483. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  484. score = compute_score(sk, net, saddr, hnum, sport,
  485. daddr, dport, dif);
  486. if (score > badness) {
  487. result = sk;
  488. badness = score;
  489. reuseport = sk->sk_reuseport;
  490. if (reuseport) {
  491. hash = udp_ehashfn(net, daddr, hnum,
  492. saddr, sport);
  493. matches = 1;
  494. }
  495. } else if (score == badness && reuseport) {
  496. matches++;
  497. if (reciprocal_scale(hash, matches) == 0)
  498. result = sk;
  499. hash = next_pseudo_random32(hash);
  500. }
  501. }
  502. /*
  503. * if the nulls value we got at the end of this lookup is
  504. * not the expected one, we must restart lookup.
  505. * We probably met an item that was moved to another chain.
  506. */
  507. if (get_nulls_value(node) != slot)
  508. goto begin;
  509. if (result) {
  510. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  511. result = NULL;
  512. else if (unlikely(compute_score(result, net, saddr, hnum, sport,
  513. daddr, dport, dif) < badness)) {
  514. sock_put(result);
  515. goto begin;
  516. }
  517. }
  518. rcu_read_unlock();
  519. return result;
  520. }
  521. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  522. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  523. __be16 sport, __be16 dport,
  524. struct udp_table *udptable)
  525. {
  526. const struct iphdr *iph = ip_hdr(skb);
  527. return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
  528. iph->daddr, dport, inet_iif(skb),
  529. udptable);
  530. }
  531. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  532. __be32 daddr, __be16 dport, int dif)
  533. {
  534. return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
  535. }
  536. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  537. static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
  538. __be16 loc_port, __be32 loc_addr,
  539. __be16 rmt_port, __be32 rmt_addr,
  540. int dif, unsigned short hnum)
  541. {
  542. struct inet_sock *inet = inet_sk(sk);
  543. if (!net_eq(sock_net(sk), net) ||
  544. udp_sk(sk)->udp_port_hash != hnum ||
  545. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  546. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  547. (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
  548. ipv6_only_sock(sk) ||
  549. (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
  550. return false;
  551. if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
  552. return false;
  553. return true;
  554. }
  555. /*
  556. * This routine is called by the ICMP module when it gets some
  557. * sort of error condition. If err < 0 then the socket should
  558. * be closed and the error returned to the user. If err > 0
  559. * it's just the icmp type << 8 | icmp code.
  560. * Header points to the ip header of the error packet. We move
  561. * on past this. Then (as it used to claim before adjustment)
  562. * header points to the first 8 bytes of the udp header. We need
  563. * to find the appropriate port.
  564. */
  565. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  566. {
  567. struct inet_sock *inet;
  568. const struct iphdr *iph = (const struct iphdr *)skb->data;
  569. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  570. const int type = icmp_hdr(skb)->type;
  571. const int code = icmp_hdr(skb)->code;
  572. struct sock *sk;
  573. int harderr;
  574. int err;
  575. struct net *net = dev_net(skb->dev);
  576. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  577. iph->saddr, uh->source, skb->dev->ifindex, udptable);
  578. if (!sk) {
  579. ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
  580. return; /* No socket for error */
  581. }
  582. err = 0;
  583. harderr = 0;
  584. inet = inet_sk(sk);
  585. switch (type) {
  586. default:
  587. case ICMP_TIME_EXCEEDED:
  588. err = EHOSTUNREACH;
  589. break;
  590. case ICMP_SOURCE_QUENCH:
  591. goto out;
  592. case ICMP_PARAMETERPROB:
  593. err = EPROTO;
  594. harderr = 1;
  595. break;
  596. case ICMP_DEST_UNREACH:
  597. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  598. ipv4_sk_update_pmtu(skb, sk, info);
  599. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  600. err = EMSGSIZE;
  601. harderr = 1;
  602. break;
  603. }
  604. goto out;
  605. }
  606. err = EHOSTUNREACH;
  607. if (code <= NR_ICMP_UNREACH) {
  608. harderr = icmp_err_convert[code].fatal;
  609. err = icmp_err_convert[code].errno;
  610. }
  611. break;
  612. case ICMP_REDIRECT:
  613. ipv4_sk_redirect(skb, sk);
  614. goto out;
  615. }
  616. /*
  617. * RFC1122: OK. Passes ICMP errors back to application, as per
  618. * 4.1.3.3.
  619. */
  620. if (!inet->recverr) {
  621. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  622. goto out;
  623. } else
  624. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  625. sk->sk_err = err;
  626. sk->sk_error_report(sk);
  627. out:
  628. sock_put(sk);
  629. }
  630. void udp_err(struct sk_buff *skb, u32 info)
  631. {
  632. __udp4_lib_err(skb, info, &udp_table);
  633. }
  634. /*
  635. * Throw away all pending data and cancel the corking. Socket is locked.
  636. */
  637. void udp_flush_pending_frames(struct sock *sk)
  638. {
  639. struct udp_sock *up = udp_sk(sk);
  640. if (up->pending) {
  641. up->len = 0;
  642. up->pending = 0;
  643. ip_flush_pending_frames(sk);
  644. }
  645. }
  646. EXPORT_SYMBOL(udp_flush_pending_frames);
  647. /**
  648. * udp4_hwcsum - handle outgoing HW checksumming
  649. * @skb: sk_buff containing the filled-in UDP header
  650. * (checksum field must be zeroed out)
  651. * @src: source IP address
  652. * @dst: destination IP address
  653. */
  654. void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  655. {
  656. struct udphdr *uh = udp_hdr(skb);
  657. int offset = skb_transport_offset(skb);
  658. int len = skb->len - offset;
  659. int hlen = len;
  660. __wsum csum = 0;
  661. if (!skb_has_frag_list(skb)) {
  662. /*
  663. * Only one fragment on the socket.
  664. */
  665. skb->csum_start = skb_transport_header(skb) - skb->head;
  666. skb->csum_offset = offsetof(struct udphdr, check);
  667. uh->check = ~csum_tcpudp_magic(src, dst, len,
  668. IPPROTO_UDP, 0);
  669. } else {
  670. struct sk_buff *frags;
  671. /*
  672. * HW-checksum won't work as there are two or more
  673. * fragments on the socket so that all csums of sk_buffs
  674. * should be together
  675. */
  676. skb_walk_frags(skb, frags) {
  677. csum = csum_add(csum, frags->csum);
  678. hlen -= frags->len;
  679. }
  680. csum = skb_checksum(skb, offset, hlen, csum);
  681. skb->ip_summed = CHECKSUM_NONE;
  682. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  683. if (uh->check == 0)
  684. uh->check = CSUM_MANGLED_0;
  685. }
  686. }
  687. EXPORT_SYMBOL_GPL(udp4_hwcsum);
  688. /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
  689. * for the simple case like when setting the checksum for a UDP tunnel.
  690. */
  691. void udp_set_csum(bool nocheck, struct sk_buff *skb,
  692. __be32 saddr, __be32 daddr, int len)
  693. {
  694. struct udphdr *uh = udp_hdr(skb);
  695. if (nocheck)
  696. uh->check = 0;
  697. else if (skb_is_gso(skb))
  698. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  699. else if (skb_dst(skb) && skb_dst(skb)->dev &&
  700. (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
  701. BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
  702. skb->ip_summed = CHECKSUM_PARTIAL;
  703. skb->csum_start = skb_transport_header(skb) - skb->head;
  704. skb->csum_offset = offsetof(struct udphdr, check);
  705. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  706. } else {
  707. __wsum csum;
  708. BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
  709. uh->check = 0;
  710. csum = skb_checksum(skb, 0, len, 0);
  711. uh->check = udp_v4_check(len, saddr, daddr, csum);
  712. if (uh->check == 0)
  713. uh->check = CSUM_MANGLED_0;
  714. skb->ip_summed = CHECKSUM_UNNECESSARY;
  715. }
  716. }
  717. EXPORT_SYMBOL(udp_set_csum);
  718. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  719. {
  720. struct sock *sk = skb->sk;
  721. struct inet_sock *inet = inet_sk(sk);
  722. struct udphdr *uh;
  723. int err = 0;
  724. int is_udplite = IS_UDPLITE(sk);
  725. int offset = skb_transport_offset(skb);
  726. int len = skb->len - offset;
  727. __wsum csum = 0;
  728. /*
  729. * Create a UDP header
  730. */
  731. uh = udp_hdr(skb);
  732. uh->source = inet->inet_sport;
  733. uh->dest = fl4->fl4_dport;
  734. uh->len = htons(len);
  735. uh->check = 0;
  736. if (is_udplite) /* UDP-Lite */
  737. csum = udplite_csum(skb);
  738. else if (sk->sk_no_check_tx) { /* UDP csum disabled */
  739. skb->ip_summed = CHECKSUM_NONE;
  740. goto send;
  741. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  742. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  743. goto send;
  744. } else
  745. csum = udp_csum(skb);
  746. /* add protocol-dependent pseudo-header */
  747. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  748. sk->sk_protocol, csum);
  749. if (uh->check == 0)
  750. uh->check = CSUM_MANGLED_0;
  751. send:
  752. err = ip_send_skb(sock_net(sk), skb);
  753. if (err) {
  754. if (err == -ENOBUFS && !inet->recverr) {
  755. UDP_INC_STATS_USER(sock_net(sk),
  756. UDP_MIB_SNDBUFERRORS, is_udplite);
  757. err = 0;
  758. }
  759. } else
  760. UDP_INC_STATS_USER(sock_net(sk),
  761. UDP_MIB_OUTDATAGRAMS, is_udplite);
  762. return err;
  763. }
  764. /*
  765. * Push out all pending data as one UDP datagram. Socket is locked.
  766. */
  767. int udp_push_pending_frames(struct sock *sk)
  768. {
  769. struct udp_sock *up = udp_sk(sk);
  770. struct inet_sock *inet = inet_sk(sk);
  771. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  772. struct sk_buff *skb;
  773. int err = 0;
  774. skb = ip_finish_skb(sk, fl4);
  775. if (!skb)
  776. goto out;
  777. err = udp_send_skb(skb, fl4);
  778. out:
  779. up->len = 0;
  780. up->pending = 0;
  781. return err;
  782. }
  783. EXPORT_SYMBOL(udp_push_pending_frames);
  784. int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
  785. {
  786. struct inet_sock *inet = inet_sk(sk);
  787. struct udp_sock *up = udp_sk(sk);
  788. struct flowi4 fl4_stack;
  789. struct flowi4 *fl4;
  790. int ulen = len;
  791. struct ipcm_cookie ipc;
  792. struct rtable *rt = NULL;
  793. int free = 0;
  794. int connected = 0;
  795. __be32 daddr, faddr, saddr;
  796. __be16 dport;
  797. u8 tos;
  798. int err, is_udplite = IS_UDPLITE(sk);
  799. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  800. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  801. struct sk_buff *skb;
  802. struct ip_options_data opt_copy;
  803. if (len > 0xFFFF)
  804. return -EMSGSIZE;
  805. /*
  806. * Check the flags.
  807. */
  808. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  809. return -EOPNOTSUPP;
  810. ipc.opt = NULL;
  811. ipc.tx_flags = 0;
  812. ipc.ttl = 0;
  813. ipc.tos = -1;
  814. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  815. fl4 = &inet->cork.fl.u.ip4;
  816. if (up->pending) {
  817. /*
  818. * There are pending frames.
  819. * The socket lock must be held while it's corked.
  820. */
  821. lock_sock(sk);
  822. if (likely(up->pending)) {
  823. if (unlikely(up->pending != AF_INET)) {
  824. release_sock(sk);
  825. return -EINVAL;
  826. }
  827. goto do_append_data;
  828. }
  829. release_sock(sk);
  830. }
  831. ulen += sizeof(struct udphdr);
  832. /*
  833. * Get and verify the address.
  834. */
  835. if (msg->msg_name) {
  836. DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
  837. if (msg->msg_namelen < sizeof(*usin))
  838. return -EINVAL;
  839. if (usin->sin_family != AF_INET) {
  840. if (usin->sin_family != AF_UNSPEC)
  841. return -EAFNOSUPPORT;
  842. }
  843. daddr = usin->sin_addr.s_addr;
  844. dport = usin->sin_port;
  845. if (dport == 0)
  846. return -EINVAL;
  847. } else {
  848. if (sk->sk_state != TCP_ESTABLISHED)
  849. return -EDESTADDRREQ;
  850. daddr = inet->inet_daddr;
  851. dport = inet->inet_dport;
  852. /* Open fast path for connected socket.
  853. Route will not be used, if at least one option is set.
  854. */
  855. connected = 1;
  856. }
  857. ipc.addr = inet->inet_saddr;
  858. ipc.oif = sk->sk_bound_dev_if;
  859. sock_tx_timestamp(sk, &ipc.tx_flags);
  860. if (msg->msg_controllen) {
  861. err = ip_cmsg_send(sock_net(sk), msg, &ipc,
  862. sk->sk_family == AF_INET6);
  863. if (err)
  864. return err;
  865. if (ipc.opt)
  866. free = 1;
  867. connected = 0;
  868. }
  869. if (!ipc.opt) {
  870. struct ip_options_rcu *inet_opt;
  871. rcu_read_lock();
  872. inet_opt = rcu_dereference(inet->inet_opt);
  873. if (inet_opt) {
  874. memcpy(&opt_copy, inet_opt,
  875. sizeof(*inet_opt) + inet_opt->opt.optlen);
  876. ipc.opt = &opt_copy.opt;
  877. }
  878. rcu_read_unlock();
  879. }
  880. saddr = ipc.addr;
  881. ipc.addr = faddr = daddr;
  882. if (ipc.opt && ipc.opt->opt.srr) {
  883. if (!daddr)
  884. return -EINVAL;
  885. faddr = ipc.opt->opt.faddr;
  886. connected = 0;
  887. }
  888. tos = get_rttos(&ipc, inet);
  889. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  890. (msg->msg_flags & MSG_DONTROUTE) ||
  891. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  892. tos |= RTO_ONLINK;
  893. connected = 0;
  894. }
  895. if (ipv4_is_multicast(daddr)) {
  896. if (!ipc.oif)
  897. ipc.oif = inet->mc_index;
  898. if (!saddr)
  899. saddr = inet->mc_addr;
  900. connected = 0;
  901. } else if (!ipc.oif)
  902. ipc.oif = inet->uc_index;
  903. if (connected)
  904. rt = (struct rtable *)sk_dst_check(sk, 0);
  905. if (!rt) {
  906. struct net *net = sock_net(sk);
  907. __u8 flow_flags = inet_sk_flowi_flags(sk);
  908. fl4 = &fl4_stack;
  909. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  910. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  911. flow_flags,
  912. faddr, saddr, dport, inet->inet_sport);
  913. if (!saddr && ipc.oif) {
  914. err = l3mdev_get_saddr(net, ipc.oif, fl4);
  915. if (err < 0)
  916. goto out;
  917. }
  918. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  919. rt = ip_route_output_flow(net, fl4, sk);
  920. if (IS_ERR(rt)) {
  921. err = PTR_ERR(rt);
  922. rt = NULL;
  923. if (err == -ENETUNREACH)
  924. IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
  925. goto out;
  926. }
  927. err = -EACCES;
  928. if ((rt->rt_flags & RTCF_BROADCAST) &&
  929. !sock_flag(sk, SOCK_BROADCAST))
  930. goto out;
  931. if (connected)
  932. sk_dst_set(sk, dst_clone(&rt->dst));
  933. }
  934. if (msg->msg_flags&MSG_CONFIRM)
  935. goto do_confirm;
  936. back_from_confirm:
  937. saddr = fl4->saddr;
  938. if (!ipc.addr)
  939. daddr = ipc.addr = fl4->daddr;
  940. /* Lockless fast path for the non-corking case. */
  941. if (!corkreq) {
  942. skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
  943. sizeof(struct udphdr), &ipc, &rt,
  944. msg->msg_flags);
  945. err = PTR_ERR(skb);
  946. if (!IS_ERR_OR_NULL(skb))
  947. err = udp_send_skb(skb, fl4);
  948. goto out;
  949. }
  950. lock_sock(sk);
  951. if (unlikely(up->pending)) {
  952. /* The socket is already corked while preparing it. */
  953. /* ... which is an evident application bug. --ANK */
  954. release_sock(sk);
  955. net_dbg_ratelimited("cork app bug 2\n");
  956. err = -EINVAL;
  957. goto out;
  958. }
  959. /*
  960. * Now cork the socket to pend data.
  961. */
  962. fl4 = &inet->cork.fl.u.ip4;
  963. fl4->daddr = daddr;
  964. fl4->saddr = saddr;
  965. fl4->fl4_dport = dport;
  966. fl4->fl4_sport = inet->inet_sport;
  967. up->pending = AF_INET;
  968. do_append_data:
  969. up->len += ulen;
  970. err = ip_append_data(sk, fl4, getfrag, msg, ulen,
  971. sizeof(struct udphdr), &ipc, &rt,
  972. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  973. if (err)
  974. udp_flush_pending_frames(sk);
  975. else if (!corkreq)
  976. err = udp_push_pending_frames(sk);
  977. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  978. up->pending = 0;
  979. release_sock(sk);
  980. out:
  981. ip_rt_put(rt);
  982. if (free)
  983. kfree(ipc.opt);
  984. if (!err)
  985. return len;
  986. /*
  987. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  988. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  989. * we don't have a good statistic (IpOutDiscards but it can be too many
  990. * things). We could add another new stat but at least for now that
  991. * seems like overkill.
  992. */
  993. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  994. UDP_INC_STATS_USER(sock_net(sk),
  995. UDP_MIB_SNDBUFERRORS, is_udplite);
  996. }
  997. return err;
  998. do_confirm:
  999. dst_confirm(&rt->dst);
  1000. if (!(msg->msg_flags&MSG_PROBE) || len)
  1001. goto back_from_confirm;
  1002. err = 0;
  1003. goto out;
  1004. }
  1005. EXPORT_SYMBOL(udp_sendmsg);
  1006. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  1007. size_t size, int flags)
  1008. {
  1009. struct inet_sock *inet = inet_sk(sk);
  1010. struct udp_sock *up = udp_sk(sk);
  1011. int ret;
  1012. if (flags & MSG_SENDPAGE_NOTLAST)
  1013. flags |= MSG_MORE;
  1014. if (!up->pending) {
  1015. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  1016. /* Call udp_sendmsg to specify destination address which
  1017. * sendpage interface can't pass.
  1018. * This will succeed only when the socket is connected.
  1019. */
  1020. ret = udp_sendmsg(sk, &msg, 0);
  1021. if (ret < 0)
  1022. return ret;
  1023. }
  1024. lock_sock(sk);
  1025. if (unlikely(!up->pending)) {
  1026. release_sock(sk);
  1027. net_dbg_ratelimited("udp cork app bug 3\n");
  1028. return -EINVAL;
  1029. }
  1030. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  1031. page, offset, size, flags);
  1032. if (ret == -EOPNOTSUPP) {
  1033. release_sock(sk);
  1034. return sock_no_sendpage(sk->sk_socket, page, offset,
  1035. size, flags);
  1036. }
  1037. if (ret < 0) {
  1038. udp_flush_pending_frames(sk);
  1039. goto out;
  1040. }
  1041. up->len += size;
  1042. if (!(up->corkflag || (flags&MSG_MORE)))
  1043. ret = udp_push_pending_frames(sk);
  1044. if (!ret)
  1045. ret = size;
  1046. out:
  1047. release_sock(sk);
  1048. return ret;
  1049. }
  1050. /**
  1051. * first_packet_length - return length of first packet in receive queue
  1052. * @sk: socket
  1053. *
  1054. * Drops all bad checksum frames, until a valid one is found.
  1055. * Returns the length of found skb, or 0 if none is found.
  1056. */
  1057. static unsigned int first_packet_length(struct sock *sk)
  1058. {
  1059. struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
  1060. struct sk_buff *skb;
  1061. unsigned int res;
  1062. __skb_queue_head_init(&list_kill);
  1063. spin_lock_bh(&rcvq->lock);
  1064. while ((skb = skb_peek(rcvq)) != NULL &&
  1065. udp_lib_checksum_complete(skb)) {
  1066. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
  1067. IS_UDPLITE(sk));
  1068. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1069. IS_UDPLITE(sk));
  1070. atomic_inc(&sk->sk_drops);
  1071. __skb_unlink(skb, rcvq);
  1072. __skb_queue_tail(&list_kill, skb);
  1073. }
  1074. res = skb ? skb->len : 0;
  1075. spin_unlock_bh(&rcvq->lock);
  1076. if (!skb_queue_empty(&list_kill)) {
  1077. bool slow = lock_sock_fast(sk);
  1078. __skb_queue_purge(&list_kill);
  1079. sk_mem_reclaim_partial(sk);
  1080. unlock_sock_fast(sk, slow);
  1081. }
  1082. return res;
  1083. }
  1084. /*
  1085. * IOCTL requests applicable to the UDP protocol
  1086. */
  1087. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1088. {
  1089. switch (cmd) {
  1090. case SIOCOUTQ:
  1091. {
  1092. int amount = sk_wmem_alloc_get(sk);
  1093. return put_user(amount, (int __user *)arg);
  1094. }
  1095. case SIOCINQ:
  1096. {
  1097. unsigned int amount = first_packet_length(sk);
  1098. if (amount)
  1099. /*
  1100. * We will only return the amount
  1101. * of this packet since that is all
  1102. * that will be read.
  1103. */
  1104. amount -= sizeof(struct udphdr);
  1105. return put_user(amount, (int __user *)arg);
  1106. }
  1107. default:
  1108. return -ENOIOCTLCMD;
  1109. }
  1110. return 0;
  1111. }
  1112. EXPORT_SYMBOL(udp_ioctl);
  1113. /*
  1114. * This should be easy, if there is something there we
  1115. * return it, otherwise we block.
  1116. */
  1117. int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
  1118. int flags, int *addr_len)
  1119. {
  1120. struct inet_sock *inet = inet_sk(sk);
  1121. DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
  1122. struct sk_buff *skb;
  1123. unsigned int ulen, copied;
  1124. int peeked, off = 0;
  1125. int err;
  1126. int is_udplite = IS_UDPLITE(sk);
  1127. bool slow;
  1128. if (flags & MSG_ERRQUEUE)
  1129. return ip_recv_error(sk, msg, len, addr_len);
  1130. try_again:
  1131. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  1132. &peeked, &off, &err);
  1133. if (!skb)
  1134. goto out;
  1135. ulen = skb->len - sizeof(struct udphdr);
  1136. copied = len;
  1137. if (copied > ulen)
  1138. copied = ulen;
  1139. else if (copied < ulen)
  1140. msg->msg_flags |= MSG_TRUNC;
  1141. /*
  1142. * If checksum is needed at all, try to do it while copying the
  1143. * data. If the data is truncated, or if we only want a partial
  1144. * coverage checksum (UDP-Lite), do it before the copy.
  1145. */
  1146. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  1147. if (udp_lib_checksum_complete(skb))
  1148. goto csum_copy_err;
  1149. }
  1150. if (skb_csum_unnecessary(skb))
  1151. err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
  1152. msg, copied);
  1153. else {
  1154. err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
  1155. msg);
  1156. if (err == -EINVAL)
  1157. goto csum_copy_err;
  1158. }
  1159. if (unlikely(err)) {
  1160. trace_kfree_skb(skb, udp_recvmsg);
  1161. if (!peeked) {
  1162. atomic_inc(&sk->sk_drops);
  1163. UDP_INC_STATS_USER(sock_net(sk),
  1164. UDP_MIB_INERRORS, is_udplite);
  1165. }
  1166. goto out_free;
  1167. }
  1168. if (!peeked)
  1169. UDP_INC_STATS_USER(sock_net(sk),
  1170. UDP_MIB_INDATAGRAMS, is_udplite);
  1171. sock_recv_ts_and_drops(msg, sk, skb);
  1172. /* Copy the address. */
  1173. if (sin) {
  1174. sin->sin_family = AF_INET;
  1175. sin->sin_port = udp_hdr(skb)->source;
  1176. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1177. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1178. *addr_len = sizeof(*sin);
  1179. }
  1180. if (inet->cmsg_flags)
  1181. ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
  1182. err = copied;
  1183. if (flags & MSG_TRUNC)
  1184. err = ulen;
  1185. out_free:
  1186. skb_free_datagram_locked(sk, skb);
  1187. out:
  1188. return err;
  1189. csum_copy_err:
  1190. slow = lock_sock_fast(sk);
  1191. if (!skb_kill_datagram(sk, skb, flags)) {
  1192. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1193. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1194. }
  1195. unlock_sock_fast(sk, slow);
  1196. /* starting over for a new packet, but check if we need to yield */
  1197. cond_resched();
  1198. msg->msg_flags &= ~MSG_TRUNC;
  1199. goto try_again;
  1200. }
  1201. int udp_disconnect(struct sock *sk, int flags)
  1202. {
  1203. struct inet_sock *inet = inet_sk(sk);
  1204. /*
  1205. * 1003.1g - break association.
  1206. */
  1207. sk->sk_state = TCP_CLOSE;
  1208. inet->inet_daddr = 0;
  1209. inet->inet_dport = 0;
  1210. sock_rps_reset_rxhash(sk);
  1211. sk->sk_bound_dev_if = 0;
  1212. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1213. inet_reset_saddr(sk);
  1214. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1215. sk->sk_prot->unhash(sk);
  1216. inet->inet_sport = 0;
  1217. }
  1218. sk_dst_reset(sk);
  1219. return 0;
  1220. }
  1221. EXPORT_SYMBOL(udp_disconnect);
  1222. void udp_lib_unhash(struct sock *sk)
  1223. {
  1224. if (sk_hashed(sk)) {
  1225. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1226. struct udp_hslot *hslot, *hslot2;
  1227. hslot = udp_hashslot(udptable, sock_net(sk),
  1228. udp_sk(sk)->udp_port_hash);
  1229. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1230. spin_lock_bh(&hslot->lock);
  1231. if (sk_nulls_del_node_init_rcu(sk)) {
  1232. hslot->count--;
  1233. inet_sk(sk)->inet_num = 0;
  1234. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1235. spin_lock(&hslot2->lock);
  1236. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1237. hslot2->count--;
  1238. spin_unlock(&hslot2->lock);
  1239. }
  1240. spin_unlock_bh(&hslot->lock);
  1241. }
  1242. }
  1243. EXPORT_SYMBOL(udp_lib_unhash);
  1244. /*
  1245. * inet_rcv_saddr was changed, we must rehash secondary hash
  1246. */
  1247. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1248. {
  1249. if (sk_hashed(sk)) {
  1250. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1251. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1252. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1253. nhslot2 = udp_hashslot2(udptable, newhash);
  1254. udp_sk(sk)->udp_portaddr_hash = newhash;
  1255. if (hslot2 != nhslot2) {
  1256. hslot = udp_hashslot(udptable, sock_net(sk),
  1257. udp_sk(sk)->udp_port_hash);
  1258. /* we must lock primary chain too */
  1259. spin_lock_bh(&hslot->lock);
  1260. spin_lock(&hslot2->lock);
  1261. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1262. hslot2->count--;
  1263. spin_unlock(&hslot2->lock);
  1264. spin_lock(&nhslot2->lock);
  1265. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1266. &nhslot2->head);
  1267. nhslot2->count++;
  1268. spin_unlock(&nhslot2->lock);
  1269. spin_unlock_bh(&hslot->lock);
  1270. }
  1271. }
  1272. }
  1273. EXPORT_SYMBOL(udp_lib_rehash);
  1274. static void udp_v4_rehash(struct sock *sk)
  1275. {
  1276. u16 new_hash = udp4_portaddr_hash(sock_net(sk),
  1277. inet_sk(sk)->inet_rcv_saddr,
  1278. inet_sk(sk)->inet_num);
  1279. udp_lib_rehash(sk, new_hash);
  1280. }
  1281. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1282. {
  1283. int rc;
  1284. if (inet_sk(sk)->inet_daddr) {
  1285. sock_rps_save_rxhash(sk, skb);
  1286. sk_mark_napi_id(sk, skb);
  1287. sk_incoming_cpu_update(sk);
  1288. }
  1289. rc = sock_queue_rcv_skb(sk, skb);
  1290. if (rc < 0) {
  1291. int is_udplite = IS_UDPLITE(sk);
  1292. /* Note that an ENOMEM error is charged twice */
  1293. if (rc == -ENOMEM)
  1294. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1295. is_udplite);
  1296. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1297. kfree_skb(skb);
  1298. trace_udp_fail_queue_rcv_skb(rc, sk);
  1299. return -1;
  1300. }
  1301. return 0;
  1302. }
  1303. static struct static_key udp_encap_needed __read_mostly;
  1304. void udp_encap_enable(void)
  1305. {
  1306. if (!static_key_enabled(&udp_encap_needed))
  1307. static_key_slow_inc(&udp_encap_needed);
  1308. }
  1309. EXPORT_SYMBOL(udp_encap_enable);
  1310. /* returns:
  1311. * -1: error
  1312. * 0: success
  1313. * >0: "udp encap" protocol resubmission
  1314. *
  1315. * Note that in the success and error cases, the skb is assumed to
  1316. * have either been requeued or freed.
  1317. */
  1318. int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1319. {
  1320. struct udp_sock *up = udp_sk(sk);
  1321. int rc;
  1322. int is_udplite = IS_UDPLITE(sk);
  1323. /*
  1324. * Charge it to the socket, dropping if the queue is full.
  1325. */
  1326. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1327. goto drop;
  1328. nf_reset(skb);
  1329. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1330. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1331. /*
  1332. * This is an encapsulation socket so pass the skb to
  1333. * the socket's udp_encap_rcv() hook. Otherwise, just
  1334. * fall through and pass this up the UDP socket.
  1335. * up->encap_rcv() returns the following value:
  1336. * =0 if skb was successfully passed to the encap
  1337. * handler or was discarded by it.
  1338. * >0 if skb should be passed on to UDP.
  1339. * <0 if skb should be resubmitted as proto -N
  1340. */
  1341. /* if we're overly short, let UDP handle it */
  1342. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  1343. if (skb->len > sizeof(struct udphdr) && encap_rcv) {
  1344. int ret;
  1345. /* Verify checksum before giving to encap */
  1346. if (udp_lib_checksum_complete(skb))
  1347. goto csum_error;
  1348. ret = encap_rcv(sk, skb);
  1349. if (ret <= 0) {
  1350. UDP_INC_STATS_BH(sock_net(sk),
  1351. UDP_MIB_INDATAGRAMS,
  1352. is_udplite);
  1353. return -ret;
  1354. }
  1355. }
  1356. /* FALLTHROUGH -- it's a UDP Packet */
  1357. }
  1358. /*
  1359. * UDP-Lite specific tests, ignored on UDP sockets
  1360. */
  1361. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1362. /*
  1363. * MIB statistics other than incrementing the error count are
  1364. * disabled for the following two types of errors: these depend
  1365. * on the application settings, not on the functioning of the
  1366. * protocol stack as such.
  1367. *
  1368. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1369. * way ... to ... at least let the receiving application block
  1370. * delivery of packets with coverage values less than a value
  1371. * provided by the application."
  1372. */
  1373. if (up->pcrlen == 0) { /* full coverage was set */
  1374. net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
  1375. UDP_SKB_CB(skb)->cscov, skb->len);
  1376. goto drop;
  1377. }
  1378. /* The next case involves violating the min. coverage requested
  1379. * by the receiver. This is subtle: if receiver wants x and x is
  1380. * greater than the buffersize/MTU then receiver will complain
  1381. * that it wants x while sender emits packets of smaller size y.
  1382. * Therefore the above ...()->partial_cov statement is essential.
  1383. */
  1384. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1385. net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
  1386. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1387. goto drop;
  1388. }
  1389. }
  1390. if (rcu_access_pointer(sk->sk_filter) &&
  1391. udp_lib_checksum_complete(skb))
  1392. goto csum_error;
  1393. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  1394. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1395. is_udplite);
  1396. goto drop;
  1397. }
  1398. rc = 0;
  1399. ipv4_pktinfo_prepare(sk, skb);
  1400. bh_lock_sock(sk);
  1401. if (!sock_owned_by_user(sk))
  1402. rc = __udp_queue_rcv_skb(sk, skb);
  1403. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  1404. bh_unlock_sock(sk);
  1405. goto drop;
  1406. }
  1407. bh_unlock_sock(sk);
  1408. return rc;
  1409. csum_error:
  1410. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1411. drop:
  1412. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1413. atomic_inc(&sk->sk_drops);
  1414. kfree_skb(skb);
  1415. return -1;
  1416. }
  1417. static void flush_stack(struct sock **stack, unsigned int count,
  1418. struct sk_buff *skb, unsigned int final)
  1419. {
  1420. unsigned int i;
  1421. struct sk_buff *skb1 = NULL;
  1422. struct sock *sk;
  1423. for (i = 0; i < count; i++) {
  1424. sk = stack[i];
  1425. if (likely(!skb1))
  1426. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  1427. if (!skb1) {
  1428. atomic_inc(&sk->sk_drops);
  1429. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1430. IS_UDPLITE(sk));
  1431. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1432. IS_UDPLITE(sk));
  1433. }
  1434. if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
  1435. skb1 = NULL;
  1436. sock_put(sk);
  1437. }
  1438. if (unlikely(skb1))
  1439. kfree_skb(skb1);
  1440. }
  1441. /* For TCP sockets, sk_rx_dst is protected by socket lock
  1442. * For UDP, we use xchg() to guard against concurrent changes.
  1443. */
  1444. static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
  1445. {
  1446. struct dst_entry *old;
  1447. dst_hold(dst);
  1448. old = xchg(&sk->sk_rx_dst, dst);
  1449. dst_release(old);
  1450. }
  1451. /*
  1452. * Multicasts and broadcasts go to each listener.
  1453. *
  1454. * Note: called only from the BH handler context.
  1455. */
  1456. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1457. struct udphdr *uh,
  1458. __be32 saddr, __be32 daddr,
  1459. struct udp_table *udptable,
  1460. int proto)
  1461. {
  1462. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  1463. struct hlist_nulls_node *node;
  1464. unsigned short hnum = ntohs(uh->dest);
  1465. struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
  1466. int dif = skb->dev->ifindex;
  1467. unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
  1468. unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
  1469. bool inner_flushed = false;
  1470. if (use_hash2) {
  1471. hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
  1472. udp_table.mask;
  1473. hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
  1474. start_lookup:
  1475. hslot = &udp_table.hash2[hash2];
  1476. offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
  1477. }
  1478. spin_lock(&hslot->lock);
  1479. sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
  1480. if (__udp_is_mcast_sock(net, sk,
  1481. uh->dest, daddr,
  1482. uh->source, saddr,
  1483. dif, hnum)) {
  1484. if (unlikely(count == ARRAY_SIZE(stack))) {
  1485. flush_stack(stack, count, skb, ~0);
  1486. inner_flushed = true;
  1487. count = 0;
  1488. }
  1489. stack[count++] = sk;
  1490. sock_hold(sk);
  1491. }
  1492. }
  1493. spin_unlock(&hslot->lock);
  1494. /* Also lookup *:port if we are using hash2 and haven't done so yet. */
  1495. if (use_hash2 && hash2 != hash2_any) {
  1496. hash2 = hash2_any;
  1497. goto start_lookup;
  1498. }
  1499. /*
  1500. * do the slow work with no lock held
  1501. */
  1502. if (count) {
  1503. flush_stack(stack, count, skb, count - 1);
  1504. } else {
  1505. if (!inner_flushed)
  1506. UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
  1507. proto == IPPROTO_UDPLITE);
  1508. consume_skb(skb);
  1509. }
  1510. return 0;
  1511. }
  1512. /* Initialize UDP checksum. If exited with zero value (success),
  1513. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1514. * Otherwise, csum completion requires chacksumming packet body,
  1515. * including udp header and folding it to skb->csum.
  1516. */
  1517. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1518. int proto)
  1519. {
  1520. int err;
  1521. UDP_SKB_CB(skb)->partial_cov = 0;
  1522. UDP_SKB_CB(skb)->cscov = skb->len;
  1523. if (proto == IPPROTO_UDPLITE) {
  1524. err = udplite_checksum_init(skb, uh);
  1525. if (err)
  1526. return err;
  1527. }
  1528. return skb_checksum_init_zero_check(skb, proto, uh->check,
  1529. inet_compute_pseudo);
  1530. }
  1531. /*
  1532. * All we need to do is get the socket, and then do a checksum.
  1533. */
  1534. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1535. int proto)
  1536. {
  1537. struct sock *sk;
  1538. struct udphdr *uh;
  1539. unsigned short ulen;
  1540. struct rtable *rt = skb_rtable(skb);
  1541. __be32 saddr, daddr;
  1542. struct net *net = dev_net(skb->dev);
  1543. /*
  1544. * Validate the packet.
  1545. */
  1546. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1547. goto drop; /* No space for header. */
  1548. uh = udp_hdr(skb);
  1549. ulen = ntohs(uh->len);
  1550. saddr = ip_hdr(skb)->saddr;
  1551. daddr = ip_hdr(skb)->daddr;
  1552. if (ulen > skb->len)
  1553. goto short_packet;
  1554. if (proto == IPPROTO_UDP) {
  1555. /* UDP validates ulen. */
  1556. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1557. goto short_packet;
  1558. uh = udp_hdr(skb);
  1559. }
  1560. if (udp4_csum_init(skb, uh, proto))
  1561. goto csum_error;
  1562. sk = skb_steal_sock(skb);
  1563. if (sk) {
  1564. struct dst_entry *dst = skb_dst(skb);
  1565. int ret;
  1566. if (unlikely(sk->sk_rx_dst != dst))
  1567. udp_sk_rx_dst_set(sk, dst);
  1568. ret = udp_queue_rcv_skb(sk, skb);
  1569. sock_put(sk);
  1570. /* a return value > 0 means to resubmit the input, but
  1571. * it wants the return to be -protocol, or 0
  1572. */
  1573. if (ret > 0)
  1574. return -ret;
  1575. return 0;
  1576. }
  1577. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1578. return __udp4_lib_mcast_deliver(net, skb, uh,
  1579. saddr, daddr, udptable, proto);
  1580. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1581. if (sk) {
  1582. int ret;
  1583. if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
  1584. skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
  1585. inet_compute_pseudo);
  1586. ret = udp_queue_rcv_skb(sk, skb);
  1587. sock_put(sk);
  1588. /* a return value > 0 means to resubmit the input, but
  1589. * it wants the return to be -protocol, or 0
  1590. */
  1591. if (ret > 0)
  1592. return -ret;
  1593. return 0;
  1594. }
  1595. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1596. goto drop;
  1597. nf_reset(skb);
  1598. /* No socket. Drop packet silently, if checksum is wrong */
  1599. if (udp_lib_checksum_complete(skb))
  1600. goto csum_error;
  1601. UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1602. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1603. /*
  1604. * Hmm. We got an UDP packet to a port to which we
  1605. * don't wanna listen. Ignore it.
  1606. */
  1607. kfree_skb(skb);
  1608. return 0;
  1609. short_packet:
  1610. net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1611. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1612. &saddr, ntohs(uh->source),
  1613. ulen, skb->len,
  1614. &daddr, ntohs(uh->dest));
  1615. goto drop;
  1616. csum_error:
  1617. /*
  1618. * RFC1122: OK. Discards the bad packet silently (as far as
  1619. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1620. */
  1621. net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1622. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1623. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1624. ulen);
  1625. UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  1626. drop:
  1627. UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1628. kfree_skb(skb);
  1629. return 0;
  1630. }
  1631. /* We can only early demux multicast if there is a single matching socket.
  1632. * If more than one socket found returns NULL
  1633. */
  1634. static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
  1635. __be16 loc_port, __be32 loc_addr,
  1636. __be16 rmt_port, __be32 rmt_addr,
  1637. int dif)
  1638. {
  1639. struct sock *sk, *result;
  1640. struct hlist_nulls_node *node;
  1641. unsigned short hnum = ntohs(loc_port);
  1642. unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
  1643. struct udp_hslot *hslot = &udp_table.hash[slot];
  1644. /* Do not bother scanning a too big list */
  1645. if (hslot->count > 10)
  1646. return NULL;
  1647. rcu_read_lock();
  1648. begin:
  1649. count = 0;
  1650. result = NULL;
  1651. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  1652. if (__udp_is_mcast_sock(net, sk,
  1653. loc_port, loc_addr,
  1654. rmt_port, rmt_addr,
  1655. dif, hnum)) {
  1656. result = sk;
  1657. ++count;
  1658. }
  1659. }
  1660. /*
  1661. * if the nulls value we got at the end of this lookup is
  1662. * not the expected one, we must restart lookup.
  1663. * We probably met an item that was moved to another chain.
  1664. */
  1665. if (get_nulls_value(node) != slot)
  1666. goto begin;
  1667. if (result) {
  1668. if (count != 1 ||
  1669. unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1670. result = NULL;
  1671. else if (unlikely(!__udp_is_mcast_sock(net, result,
  1672. loc_port, loc_addr,
  1673. rmt_port, rmt_addr,
  1674. dif, hnum))) {
  1675. sock_put(result);
  1676. result = NULL;
  1677. }
  1678. }
  1679. rcu_read_unlock();
  1680. return result;
  1681. }
  1682. /* For unicast we should only early demux connected sockets or we can
  1683. * break forwarding setups. The chains here can be long so only check
  1684. * if the first socket is an exact match and if not move on.
  1685. */
  1686. static struct sock *__udp4_lib_demux_lookup(struct net *net,
  1687. __be16 loc_port, __be32 loc_addr,
  1688. __be16 rmt_port, __be32 rmt_addr,
  1689. int dif)
  1690. {
  1691. struct sock *sk, *result;
  1692. struct hlist_nulls_node *node;
  1693. unsigned short hnum = ntohs(loc_port);
  1694. unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
  1695. unsigned int slot2 = hash2 & udp_table.mask;
  1696. struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
  1697. INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
  1698. const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
  1699. rcu_read_lock();
  1700. result = NULL;
  1701. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  1702. if (INET_MATCH(sk, net, acookie,
  1703. rmt_addr, loc_addr, ports, dif))
  1704. result = sk;
  1705. /* Only check first socket in chain */
  1706. break;
  1707. }
  1708. if (result) {
  1709. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1710. result = NULL;
  1711. else if (unlikely(!INET_MATCH(sk, net, acookie,
  1712. rmt_addr, loc_addr,
  1713. ports, dif))) {
  1714. sock_put(result);
  1715. result = NULL;
  1716. }
  1717. }
  1718. rcu_read_unlock();
  1719. return result;
  1720. }
  1721. void udp_v4_early_demux(struct sk_buff *skb)
  1722. {
  1723. struct net *net = dev_net(skb->dev);
  1724. const struct iphdr *iph;
  1725. const struct udphdr *uh;
  1726. struct sock *sk;
  1727. struct dst_entry *dst;
  1728. int dif = skb->dev->ifindex;
  1729. int ours;
  1730. /* validate the packet */
  1731. if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
  1732. return;
  1733. iph = ip_hdr(skb);
  1734. uh = udp_hdr(skb);
  1735. if (skb->pkt_type == PACKET_BROADCAST ||
  1736. skb->pkt_type == PACKET_MULTICAST) {
  1737. struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
  1738. if (!in_dev)
  1739. return;
  1740. ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
  1741. iph->protocol);
  1742. if (!ours)
  1743. return;
  1744. sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
  1745. uh->source, iph->saddr, dif);
  1746. } else if (skb->pkt_type == PACKET_HOST) {
  1747. sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
  1748. uh->source, iph->saddr, dif);
  1749. } else {
  1750. return;
  1751. }
  1752. if (!sk)
  1753. return;
  1754. skb->sk = sk;
  1755. skb->destructor = sock_efree;
  1756. dst = READ_ONCE(sk->sk_rx_dst);
  1757. if (dst)
  1758. dst = dst_check(dst, 0);
  1759. if (dst) {
  1760. /* DST_NOCACHE can not be used without taking a reference */
  1761. if (dst->flags & DST_NOCACHE) {
  1762. if (likely(atomic_inc_not_zero(&dst->__refcnt)))
  1763. skb_dst_set(skb, dst);
  1764. } else {
  1765. skb_dst_set_noref(skb, dst);
  1766. }
  1767. }
  1768. }
  1769. int udp_rcv(struct sk_buff *skb)
  1770. {
  1771. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1772. }
  1773. void udp_destroy_sock(struct sock *sk)
  1774. {
  1775. struct udp_sock *up = udp_sk(sk);
  1776. bool slow = lock_sock_fast(sk);
  1777. udp_flush_pending_frames(sk);
  1778. unlock_sock_fast(sk, slow);
  1779. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1780. void (*encap_destroy)(struct sock *sk);
  1781. encap_destroy = ACCESS_ONCE(up->encap_destroy);
  1782. if (encap_destroy)
  1783. encap_destroy(sk);
  1784. }
  1785. }
  1786. /*
  1787. * Socket option code for UDP
  1788. */
  1789. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  1790. char __user *optval, unsigned int optlen,
  1791. int (*push_pending_frames)(struct sock *))
  1792. {
  1793. struct udp_sock *up = udp_sk(sk);
  1794. int val, valbool;
  1795. int err = 0;
  1796. int is_udplite = IS_UDPLITE(sk);
  1797. if (optlen < sizeof(int))
  1798. return -EINVAL;
  1799. if (get_user(val, (int __user *)optval))
  1800. return -EFAULT;
  1801. valbool = val ? 1 : 0;
  1802. switch (optname) {
  1803. case UDP_CORK:
  1804. if (val != 0) {
  1805. up->corkflag = 1;
  1806. } else {
  1807. up->corkflag = 0;
  1808. lock_sock(sk);
  1809. push_pending_frames(sk);
  1810. release_sock(sk);
  1811. }
  1812. break;
  1813. case UDP_ENCAP:
  1814. switch (val) {
  1815. case 0:
  1816. case UDP_ENCAP_ESPINUDP:
  1817. case UDP_ENCAP_ESPINUDP_NON_IKE:
  1818. up->encap_rcv = xfrm4_udp_encap_rcv;
  1819. /* FALLTHROUGH */
  1820. case UDP_ENCAP_L2TPINUDP:
  1821. up->encap_type = val;
  1822. udp_encap_enable();
  1823. break;
  1824. default:
  1825. err = -ENOPROTOOPT;
  1826. break;
  1827. }
  1828. break;
  1829. case UDP_NO_CHECK6_TX:
  1830. up->no_check6_tx = valbool;
  1831. break;
  1832. case UDP_NO_CHECK6_RX:
  1833. up->no_check6_rx = valbool;
  1834. break;
  1835. /*
  1836. * UDP-Lite's partial checksum coverage (RFC 3828).
  1837. */
  1838. /* The sender sets actual checksum coverage length via this option.
  1839. * The case coverage > packet length is handled by send module. */
  1840. case UDPLITE_SEND_CSCOV:
  1841. if (!is_udplite) /* Disable the option on UDP sockets */
  1842. return -ENOPROTOOPT;
  1843. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  1844. val = 8;
  1845. else if (val > USHRT_MAX)
  1846. val = USHRT_MAX;
  1847. up->pcslen = val;
  1848. up->pcflag |= UDPLITE_SEND_CC;
  1849. break;
  1850. /* The receiver specifies a minimum checksum coverage value. To make
  1851. * sense, this should be set to at least 8 (as done below). If zero is
  1852. * used, this again means full checksum coverage. */
  1853. case UDPLITE_RECV_CSCOV:
  1854. if (!is_udplite) /* Disable the option on UDP sockets */
  1855. return -ENOPROTOOPT;
  1856. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  1857. val = 8;
  1858. else if (val > USHRT_MAX)
  1859. val = USHRT_MAX;
  1860. up->pcrlen = val;
  1861. up->pcflag |= UDPLITE_RECV_CC;
  1862. break;
  1863. default:
  1864. err = -ENOPROTOOPT;
  1865. break;
  1866. }
  1867. return err;
  1868. }
  1869. EXPORT_SYMBOL(udp_lib_setsockopt);
  1870. int udp_setsockopt(struct sock *sk, int level, int optname,
  1871. char __user *optval, unsigned int optlen)
  1872. {
  1873. if (level == SOL_UDP || level == SOL_UDPLITE)
  1874. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1875. udp_push_pending_frames);
  1876. return ip_setsockopt(sk, level, optname, optval, optlen);
  1877. }
  1878. #ifdef CONFIG_COMPAT
  1879. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  1880. char __user *optval, unsigned int optlen)
  1881. {
  1882. if (level == SOL_UDP || level == SOL_UDPLITE)
  1883. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1884. udp_push_pending_frames);
  1885. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  1886. }
  1887. #endif
  1888. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  1889. char __user *optval, int __user *optlen)
  1890. {
  1891. struct udp_sock *up = udp_sk(sk);
  1892. int val, len;
  1893. if (get_user(len, optlen))
  1894. return -EFAULT;
  1895. len = min_t(unsigned int, len, sizeof(int));
  1896. if (len < 0)
  1897. return -EINVAL;
  1898. switch (optname) {
  1899. case UDP_CORK:
  1900. val = up->corkflag;
  1901. break;
  1902. case UDP_ENCAP:
  1903. val = up->encap_type;
  1904. break;
  1905. case UDP_NO_CHECK6_TX:
  1906. val = up->no_check6_tx;
  1907. break;
  1908. case UDP_NO_CHECK6_RX:
  1909. val = up->no_check6_rx;
  1910. break;
  1911. /* The following two cannot be changed on UDP sockets, the return is
  1912. * always 0 (which corresponds to the full checksum coverage of UDP). */
  1913. case UDPLITE_SEND_CSCOV:
  1914. val = up->pcslen;
  1915. break;
  1916. case UDPLITE_RECV_CSCOV:
  1917. val = up->pcrlen;
  1918. break;
  1919. default:
  1920. return -ENOPROTOOPT;
  1921. }
  1922. if (put_user(len, optlen))
  1923. return -EFAULT;
  1924. if (copy_to_user(optval, &val, len))
  1925. return -EFAULT;
  1926. return 0;
  1927. }
  1928. EXPORT_SYMBOL(udp_lib_getsockopt);
  1929. int udp_getsockopt(struct sock *sk, int level, int optname,
  1930. char __user *optval, int __user *optlen)
  1931. {
  1932. if (level == SOL_UDP || level == SOL_UDPLITE)
  1933. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1934. return ip_getsockopt(sk, level, optname, optval, optlen);
  1935. }
  1936. #ifdef CONFIG_COMPAT
  1937. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  1938. char __user *optval, int __user *optlen)
  1939. {
  1940. if (level == SOL_UDP || level == SOL_UDPLITE)
  1941. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1942. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  1943. }
  1944. #endif
  1945. /**
  1946. * udp_poll - wait for a UDP event.
  1947. * @file - file struct
  1948. * @sock - socket
  1949. * @wait - poll table
  1950. *
  1951. * This is same as datagram poll, except for the special case of
  1952. * blocking sockets. If application is using a blocking fd
  1953. * and a packet with checksum error is in the queue;
  1954. * then it could get return from select indicating data available
  1955. * but then block when reading it. Add special case code
  1956. * to work around these arguably broken applications.
  1957. */
  1958. unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  1959. {
  1960. unsigned int mask = datagram_poll(file, sock, wait);
  1961. struct sock *sk = sock->sk;
  1962. sock_rps_record_flow(sk);
  1963. /* Check for false positives due to checksum errors */
  1964. if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  1965. !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
  1966. mask &= ~(POLLIN | POLLRDNORM);
  1967. return mask;
  1968. }
  1969. EXPORT_SYMBOL(udp_poll);
  1970. struct proto udp_prot = {
  1971. .name = "UDP",
  1972. .owner = THIS_MODULE,
  1973. .close = udp_lib_close,
  1974. .connect = ip4_datagram_connect,
  1975. .disconnect = udp_disconnect,
  1976. .ioctl = udp_ioctl,
  1977. .destroy = udp_destroy_sock,
  1978. .setsockopt = udp_setsockopt,
  1979. .getsockopt = udp_getsockopt,
  1980. .sendmsg = udp_sendmsg,
  1981. .recvmsg = udp_recvmsg,
  1982. .sendpage = udp_sendpage,
  1983. .backlog_rcv = __udp_queue_rcv_skb,
  1984. .release_cb = ip4_datagram_release_cb,
  1985. .hash = udp_lib_hash,
  1986. .unhash = udp_lib_unhash,
  1987. .rehash = udp_v4_rehash,
  1988. .get_port = udp_v4_get_port,
  1989. .memory_allocated = &udp_memory_allocated,
  1990. .sysctl_mem = sysctl_udp_mem,
  1991. .sysctl_wmem = &sysctl_udp_wmem_min,
  1992. .sysctl_rmem = &sysctl_udp_rmem_min,
  1993. .obj_size = sizeof(struct udp_sock),
  1994. .slab_flags = SLAB_DESTROY_BY_RCU,
  1995. .h.udp_table = &udp_table,
  1996. #ifdef CONFIG_COMPAT
  1997. .compat_setsockopt = compat_udp_setsockopt,
  1998. .compat_getsockopt = compat_udp_getsockopt,
  1999. #endif
  2000. .clear_sk = sk_prot_clear_portaddr_nulls,
  2001. };
  2002. EXPORT_SYMBOL(udp_prot);
  2003. /* ------------------------------------------------------------------------ */
  2004. #ifdef CONFIG_PROC_FS
  2005. static struct sock *udp_get_first(struct seq_file *seq, int start)
  2006. {
  2007. struct sock *sk;
  2008. struct udp_iter_state *state = seq->private;
  2009. struct net *net = seq_file_net(seq);
  2010. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  2011. ++state->bucket) {
  2012. struct hlist_nulls_node *node;
  2013. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  2014. if (hlist_nulls_empty(&hslot->head))
  2015. continue;
  2016. spin_lock_bh(&hslot->lock);
  2017. sk_nulls_for_each(sk, node, &hslot->head) {
  2018. if (!net_eq(sock_net(sk), net))
  2019. continue;
  2020. if (sk->sk_family == state->family)
  2021. goto found;
  2022. }
  2023. spin_unlock_bh(&hslot->lock);
  2024. }
  2025. sk = NULL;
  2026. found:
  2027. return sk;
  2028. }
  2029. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  2030. {
  2031. struct udp_iter_state *state = seq->private;
  2032. struct net *net = seq_file_net(seq);
  2033. do {
  2034. sk = sk_nulls_next(sk);
  2035. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  2036. if (!sk) {
  2037. if (state->bucket <= state->udp_table->mask)
  2038. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2039. return udp_get_first(seq, state->bucket + 1);
  2040. }
  2041. return sk;
  2042. }
  2043. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  2044. {
  2045. struct sock *sk = udp_get_first(seq, 0);
  2046. if (sk)
  2047. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  2048. --pos;
  2049. return pos ? NULL : sk;
  2050. }
  2051. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  2052. {
  2053. struct udp_iter_state *state = seq->private;
  2054. state->bucket = MAX_UDP_PORTS;
  2055. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  2056. }
  2057. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2058. {
  2059. struct sock *sk;
  2060. if (v == SEQ_START_TOKEN)
  2061. sk = udp_get_idx(seq, 0);
  2062. else
  2063. sk = udp_get_next(seq, v);
  2064. ++*pos;
  2065. return sk;
  2066. }
  2067. static void udp_seq_stop(struct seq_file *seq, void *v)
  2068. {
  2069. struct udp_iter_state *state = seq->private;
  2070. if (state->bucket <= state->udp_table->mask)
  2071. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2072. }
  2073. int udp_seq_open(struct inode *inode, struct file *file)
  2074. {
  2075. struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
  2076. struct udp_iter_state *s;
  2077. int err;
  2078. err = seq_open_net(inode, file, &afinfo->seq_ops,
  2079. sizeof(struct udp_iter_state));
  2080. if (err < 0)
  2081. return err;
  2082. s = ((struct seq_file *)file->private_data)->private;
  2083. s->family = afinfo->family;
  2084. s->udp_table = afinfo->udp_table;
  2085. return err;
  2086. }
  2087. EXPORT_SYMBOL(udp_seq_open);
  2088. /* ------------------------------------------------------------------------ */
  2089. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  2090. {
  2091. struct proc_dir_entry *p;
  2092. int rc = 0;
  2093. afinfo->seq_ops.start = udp_seq_start;
  2094. afinfo->seq_ops.next = udp_seq_next;
  2095. afinfo->seq_ops.stop = udp_seq_stop;
  2096. p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
  2097. afinfo->seq_fops, afinfo);
  2098. if (!p)
  2099. rc = -ENOMEM;
  2100. return rc;
  2101. }
  2102. EXPORT_SYMBOL(udp_proc_register);
  2103. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  2104. {
  2105. remove_proc_entry(afinfo->name, net->proc_net);
  2106. }
  2107. EXPORT_SYMBOL(udp_proc_unregister);
  2108. /* ------------------------------------------------------------------------ */
  2109. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  2110. int bucket)
  2111. {
  2112. struct inet_sock *inet = inet_sk(sp);
  2113. __be32 dest = inet->inet_daddr;
  2114. __be32 src = inet->inet_rcv_saddr;
  2115. __u16 destp = ntohs(inet->inet_dport);
  2116. __u16 srcp = ntohs(inet->inet_sport);
  2117. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  2118. " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
  2119. bucket, src, srcp, dest, destp, sp->sk_state,
  2120. sk_wmem_alloc_get(sp),
  2121. sk_rmem_alloc_get(sp),
  2122. 0, 0L, 0,
  2123. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  2124. 0, sock_i_ino(sp),
  2125. atomic_read(&sp->sk_refcnt), sp,
  2126. atomic_read(&sp->sk_drops));
  2127. }
  2128. int udp4_seq_show(struct seq_file *seq, void *v)
  2129. {
  2130. seq_setwidth(seq, 127);
  2131. if (v == SEQ_START_TOKEN)
  2132. seq_puts(seq, " sl local_address rem_address st tx_queue "
  2133. "rx_queue tr tm->when retrnsmt uid timeout "
  2134. "inode ref pointer drops");
  2135. else {
  2136. struct udp_iter_state *state = seq->private;
  2137. udp4_format_sock(v, seq, state->bucket);
  2138. }
  2139. seq_pad(seq, '\n');
  2140. return 0;
  2141. }
  2142. static const struct file_operations udp_afinfo_seq_fops = {
  2143. .owner = THIS_MODULE,
  2144. .open = udp_seq_open,
  2145. .read = seq_read,
  2146. .llseek = seq_lseek,
  2147. .release = seq_release_net
  2148. };
  2149. /* ------------------------------------------------------------------------ */
  2150. static struct udp_seq_afinfo udp4_seq_afinfo = {
  2151. .name = "udp",
  2152. .family = AF_INET,
  2153. .udp_table = &udp_table,
  2154. .seq_fops = &udp_afinfo_seq_fops,
  2155. .seq_ops = {
  2156. .show = udp4_seq_show,
  2157. },
  2158. };
  2159. static int __net_init udp4_proc_init_net(struct net *net)
  2160. {
  2161. return udp_proc_register(net, &udp4_seq_afinfo);
  2162. }
  2163. static void __net_exit udp4_proc_exit_net(struct net *net)
  2164. {
  2165. udp_proc_unregister(net, &udp4_seq_afinfo);
  2166. }
  2167. static struct pernet_operations udp4_net_ops = {
  2168. .init = udp4_proc_init_net,
  2169. .exit = udp4_proc_exit_net,
  2170. };
  2171. int __init udp4_proc_init(void)
  2172. {
  2173. return register_pernet_subsys(&udp4_net_ops);
  2174. }
  2175. void udp4_proc_exit(void)
  2176. {
  2177. unregister_pernet_subsys(&udp4_net_ops);
  2178. }
  2179. #endif /* CONFIG_PROC_FS */
  2180. static __initdata unsigned long uhash_entries;
  2181. static int __init set_uhash_entries(char *str)
  2182. {
  2183. ssize_t ret;
  2184. if (!str)
  2185. return 0;
  2186. ret = kstrtoul(str, 0, &uhash_entries);
  2187. if (ret)
  2188. return 0;
  2189. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  2190. uhash_entries = UDP_HTABLE_SIZE_MIN;
  2191. return 1;
  2192. }
  2193. __setup("uhash_entries=", set_uhash_entries);
  2194. void __init udp_table_init(struct udp_table *table, const char *name)
  2195. {
  2196. unsigned int i;
  2197. table->hash = alloc_large_system_hash(name,
  2198. 2 * sizeof(struct udp_hslot),
  2199. uhash_entries,
  2200. 21, /* one slot per 2 MB */
  2201. 0,
  2202. &table->log,
  2203. &table->mask,
  2204. UDP_HTABLE_SIZE_MIN,
  2205. 64 * 1024);
  2206. table->hash2 = table->hash + (table->mask + 1);
  2207. for (i = 0; i <= table->mask; i++) {
  2208. INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
  2209. table->hash[i].count = 0;
  2210. spin_lock_init(&table->hash[i].lock);
  2211. }
  2212. for (i = 0; i <= table->mask; i++) {
  2213. INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
  2214. table->hash2[i].count = 0;
  2215. spin_lock_init(&table->hash2[i].lock);
  2216. }
  2217. }
  2218. u32 udp_flow_hashrnd(void)
  2219. {
  2220. static u32 hashrnd __read_mostly;
  2221. net_get_random_once(&hashrnd, sizeof(hashrnd));
  2222. return hashrnd;
  2223. }
  2224. EXPORT_SYMBOL(udp_flow_hashrnd);
  2225. void __init udp_init(void)
  2226. {
  2227. unsigned long limit;
  2228. udp_table_init(&udp_table, "UDP");
  2229. limit = nr_free_buffer_pages() / 8;
  2230. limit = max(limit, 128UL);
  2231. sysctl_udp_mem[0] = limit / 4 * 3;
  2232. sysctl_udp_mem[1] = limit;
  2233. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  2234. sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  2235. sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  2236. }