vmx.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <asm/io.h>
  24. #include "segment_descriptor.h"
  25. #define MSR_IA32_FEATURE_CONTROL 0x03a
  26. MODULE_AUTHOR("Qumranet");
  27. MODULE_LICENSE("GPL");
  28. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  29. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  30. #ifdef __x86_64__
  31. #define HOST_IS_64 1
  32. #else
  33. #define HOST_IS_64 0
  34. #endif
  35. static struct vmcs_descriptor {
  36. int size;
  37. int order;
  38. u32 revision_id;
  39. } vmcs_descriptor;
  40. #define VMX_SEGMENT_FIELD(seg) \
  41. [VCPU_SREG_##seg] = { \
  42. .selector = GUEST_##seg##_SELECTOR, \
  43. .base = GUEST_##seg##_BASE, \
  44. .limit = GUEST_##seg##_LIMIT, \
  45. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  46. }
  47. static struct kvm_vmx_segment_field {
  48. unsigned selector;
  49. unsigned base;
  50. unsigned limit;
  51. unsigned ar_bytes;
  52. } kvm_vmx_segment_fields[] = {
  53. VMX_SEGMENT_FIELD(CS),
  54. VMX_SEGMENT_FIELD(DS),
  55. VMX_SEGMENT_FIELD(ES),
  56. VMX_SEGMENT_FIELD(FS),
  57. VMX_SEGMENT_FIELD(GS),
  58. VMX_SEGMENT_FIELD(SS),
  59. VMX_SEGMENT_FIELD(TR),
  60. VMX_SEGMENT_FIELD(LDTR),
  61. };
  62. static const u32 vmx_msr_index[] = {
  63. #ifdef __x86_64__
  64. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  65. #endif
  66. MSR_EFER, MSR_K6_STAR,
  67. };
  68. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  69. struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr);
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static void vmcs_clear(struct vmcs *vmcs)
  82. {
  83. u64 phys_addr = __pa(vmcs);
  84. u8 error;
  85. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  86. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  87. : "cc", "memory");
  88. if (error)
  89. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  90. vmcs, phys_addr);
  91. }
  92. static void __vcpu_clear(void *arg)
  93. {
  94. struct kvm_vcpu *vcpu = arg;
  95. int cpu = smp_processor_id();
  96. if (vcpu->cpu == cpu)
  97. vmcs_clear(vcpu->vmcs);
  98. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  99. per_cpu(current_vmcs, cpu) = NULL;
  100. }
  101. static unsigned long vmcs_readl(unsigned long field)
  102. {
  103. unsigned long value;
  104. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  105. : "=a"(value) : "d"(field) : "cc");
  106. return value;
  107. }
  108. static u16 vmcs_read16(unsigned long field)
  109. {
  110. return vmcs_readl(field);
  111. }
  112. static u32 vmcs_read32(unsigned long field)
  113. {
  114. return vmcs_readl(field);
  115. }
  116. static u64 vmcs_read64(unsigned long field)
  117. {
  118. #ifdef __x86_64__
  119. return vmcs_readl(field);
  120. #else
  121. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  122. #endif
  123. }
  124. static void vmcs_writel(unsigned long field, unsigned long value)
  125. {
  126. u8 error;
  127. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  128. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  129. if (error)
  130. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  131. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  132. }
  133. static void vmcs_write16(unsigned long field, u16 value)
  134. {
  135. vmcs_writel(field, value);
  136. }
  137. static void vmcs_write32(unsigned long field, u32 value)
  138. {
  139. vmcs_writel(field, value);
  140. }
  141. static void vmcs_write64(unsigned long field, u64 value)
  142. {
  143. #ifdef __x86_64__
  144. vmcs_writel(field, value);
  145. #else
  146. vmcs_writel(field, value);
  147. asm volatile ("");
  148. vmcs_writel(field+1, value >> 32);
  149. #endif
  150. }
  151. /*
  152. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  153. * vcpu mutex is already taken.
  154. */
  155. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  156. {
  157. u64 phys_addr = __pa(vcpu->vmcs);
  158. int cpu;
  159. cpu = get_cpu();
  160. if (vcpu->cpu != cpu) {
  161. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  162. vcpu->launched = 0;
  163. }
  164. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  165. u8 error;
  166. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  167. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  168. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  169. : "cc");
  170. if (error)
  171. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  172. vcpu->vmcs, phys_addr);
  173. }
  174. if (vcpu->cpu != cpu) {
  175. struct descriptor_table dt;
  176. unsigned long sysenter_esp;
  177. vcpu->cpu = cpu;
  178. /*
  179. * Linux uses per-cpu TSS and GDT, so set these when switching
  180. * processors.
  181. */
  182. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  183. get_gdt(&dt);
  184. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  185. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  186. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  187. }
  188. return vcpu;
  189. }
  190. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  191. {
  192. put_cpu();
  193. }
  194. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  195. {
  196. return vmcs_readl(GUEST_RFLAGS);
  197. }
  198. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  199. {
  200. vmcs_writel(GUEST_RFLAGS, rflags);
  201. }
  202. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  203. {
  204. unsigned long rip;
  205. u32 interruptibility;
  206. rip = vmcs_readl(GUEST_RIP);
  207. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  208. vmcs_writel(GUEST_RIP, rip);
  209. /*
  210. * We emulated an instruction, so temporary interrupt blocking
  211. * should be removed, if set.
  212. */
  213. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  214. if (interruptibility & 3)
  215. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  216. interruptibility & ~3);
  217. }
  218. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  219. {
  220. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  221. vmcs_readl(GUEST_RIP));
  222. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  223. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  224. GP_VECTOR |
  225. INTR_TYPE_EXCEPTION |
  226. INTR_INFO_DELIEVER_CODE_MASK |
  227. INTR_INFO_VALID_MASK);
  228. }
  229. /*
  230. * reads and returns guest's timestamp counter "register"
  231. * guest_tsc = host_tsc + tsc_offset -- 21.3
  232. */
  233. static u64 guest_read_tsc(void)
  234. {
  235. u64 host_tsc, tsc_offset;
  236. rdtscll(host_tsc);
  237. tsc_offset = vmcs_read64(TSC_OFFSET);
  238. return host_tsc + tsc_offset;
  239. }
  240. /*
  241. * writes 'guest_tsc' into guest's timestamp counter "register"
  242. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  243. */
  244. static void guest_write_tsc(u64 guest_tsc)
  245. {
  246. u64 host_tsc;
  247. rdtscll(host_tsc);
  248. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  249. }
  250. static void reload_tss(void)
  251. {
  252. #ifndef __x86_64__
  253. /*
  254. * VT restores TR but not its size. Useless.
  255. */
  256. struct descriptor_table gdt;
  257. struct segment_descriptor *descs;
  258. get_gdt(&gdt);
  259. descs = (void *)gdt.base;
  260. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  261. load_TR_desc();
  262. #endif
  263. }
  264. /*
  265. * Reads an msr value (of 'msr_index') into 'pdata'.
  266. * Returns 0 on success, non-0 otherwise.
  267. * Assumes vcpu_load() was already called.
  268. */
  269. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  270. {
  271. u64 data;
  272. struct vmx_msr_entry *msr;
  273. if (!pdata) {
  274. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  275. return -EINVAL;
  276. }
  277. switch (msr_index) {
  278. #ifdef __x86_64__
  279. case MSR_FS_BASE:
  280. data = vmcs_readl(GUEST_FS_BASE);
  281. break;
  282. case MSR_GS_BASE:
  283. data = vmcs_readl(GUEST_GS_BASE);
  284. break;
  285. case MSR_EFER:
  286. data = vcpu->shadow_efer;
  287. break;
  288. #endif
  289. case MSR_IA32_TIME_STAMP_COUNTER:
  290. data = guest_read_tsc();
  291. break;
  292. case MSR_IA32_SYSENTER_CS:
  293. data = vmcs_read32(GUEST_SYSENTER_CS);
  294. break;
  295. case MSR_IA32_SYSENTER_EIP:
  296. data = vmcs_read32(GUEST_SYSENTER_EIP);
  297. break;
  298. case MSR_IA32_SYSENTER_ESP:
  299. data = vmcs_read32(GUEST_SYSENTER_ESP);
  300. break;
  301. case MSR_IA32_MC0_CTL:
  302. case MSR_IA32_MCG_STATUS:
  303. case MSR_IA32_MCG_CAP:
  304. case MSR_IA32_MC0_MISC:
  305. case MSR_IA32_MC0_MISC+4:
  306. case MSR_IA32_MC0_MISC+8:
  307. case MSR_IA32_MC0_MISC+12:
  308. case MSR_IA32_MC0_MISC+16:
  309. case MSR_IA32_UCODE_REV:
  310. /* MTRR registers */
  311. case 0xfe:
  312. case 0x200 ... 0x2ff:
  313. data = 0;
  314. break;
  315. case MSR_IA32_APICBASE:
  316. data = vcpu->apic_base;
  317. break;
  318. default:
  319. msr = find_msr_entry(vcpu, msr_index);
  320. if (!msr) {
  321. printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
  322. return 1;
  323. }
  324. data = msr->data;
  325. break;
  326. }
  327. *pdata = data;
  328. return 0;
  329. }
  330. /*
  331. * Writes msr value into into the appropriate "register".
  332. * Returns 0 on success, non-0 otherwise.
  333. * Assumes vcpu_load() was already called.
  334. */
  335. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  336. {
  337. struct vmx_msr_entry *msr;
  338. switch (msr_index) {
  339. #ifdef __x86_64__
  340. case MSR_FS_BASE:
  341. vmcs_writel(GUEST_FS_BASE, data);
  342. break;
  343. case MSR_GS_BASE:
  344. vmcs_writel(GUEST_GS_BASE, data);
  345. break;
  346. #endif
  347. case MSR_IA32_SYSENTER_CS:
  348. vmcs_write32(GUEST_SYSENTER_CS, data);
  349. break;
  350. case MSR_IA32_SYSENTER_EIP:
  351. vmcs_write32(GUEST_SYSENTER_EIP, data);
  352. break;
  353. case MSR_IA32_SYSENTER_ESP:
  354. vmcs_write32(GUEST_SYSENTER_ESP, data);
  355. break;
  356. #ifdef __x86_64
  357. case MSR_EFER:
  358. set_efer(vcpu, data);
  359. break;
  360. case MSR_IA32_MC0_STATUS:
  361. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
  362. , __FUNCTION__, data);
  363. break;
  364. #endif
  365. case MSR_IA32_TIME_STAMP_COUNTER: {
  366. guest_write_tsc(data);
  367. break;
  368. }
  369. case MSR_IA32_UCODE_REV:
  370. case MSR_IA32_UCODE_WRITE:
  371. case 0x200 ... 0x2ff: /* MTRRs */
  372. break;
  373. case MSR_IA32_APICBASE:
  374. vcpu->apic_base = data;
  375. break;
  376. default:
  377. msr = find_msr_entry(vcpu, msr_index);
  378. if (!msr) {
  379. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
  380. return 1;
  381. }
  382. msr->data = data;
  383. break;
  384. }
  385. return 0;
  386. }
  387. /*
  388. * Sync the rsp and rip registers into the vcpu structure. This allows
  389. * registers to be accessed by indexing vcpu->regs.
  390. */
  391. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  392. {
  393. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  394. vcpu->rip = vmcs_readl(GUEST_RIP);
  395. }
  396. /*
  397. * Syncs rsp and rip back into the vmcs. Should be called after possible
  398. * modification.
  399. */
  400. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  401. {
  402. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  403. vmcs_writel(GUEST_RIP, vcpu->rip);
  404. }
  405. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  406. {
  407. unsigned long dr7 = 0x400;
  408. u32 exception_bitmap;
  409. int old_singlestep;
  410. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  411. old_singlestep = vcpu->guest_debug.singlestep;
  412. vcpu->guest_debug.enabled = dbg->enabled;
  413. if (vcpu->guest_debug.enabled) {
  414. int i;
  415. dr7 |= 0x200; /* exact */
  416. for (i = 0; i < 4; ++i) {
  417. if (!dbg->breakpoints[i].enabled)
  418. continue;
  419. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  420. dr7 |= 2 << (i*2); /* global enable */
  421. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  422. }
  423. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  424. vcpu->guest_debug.singlestep = dbg->singlestep;
  425. } else {
  426. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  427. vcpu->guest_debug.singlestep = 0;
  428. }
  429. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  430. unsigned long flags;
  431. flags = vmcs_readl(GUEST_RFLAGS);
  432. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  433. vmcs_writel(GUEST_RFLAGS, flags);
  434. }
  435. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  436. vmcs_writel(GUEST_DR7, dr7);
  437. return 0;
  438. }
  439. static __init int cpu_has_kvm_support(void)
  440. {
  441. unsigned long ecx = cpuid_ecx(1);
  442. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  443. }
  444. static __init int vmx_disabled_by_bios(void)
  445. {
  446. u64 msr;
  447. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  448. return (msr & 5) == 1; /* locked but not enabled */
  449. }
  450. static __init void hardware_enable(void *garbage)
  451. {
  452. int cpu = raw_smp_processor_id();
  453. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  454. u64 old;
  455. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  456. if ((old & 5) == 0)
  457. /* enable and lock */
  458. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  459. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  460. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  461. : "memory", "cc");
  462. }
  463. static void hardware_disable(void *garbage)
  464. {
  465. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  466. }
  467. static __init void setup_vmcs_descriptor(void)
  468. {
  469. u32 vmx_msr_low, vmx_msr_high;
  470. rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
  471. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  472. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  473. vmcs_descriptor.revision_id = vmx_msr_low;
  474. };
  475. static struct vmcs *alloc_vmcs_cpu(int cpu)
  476. {
  477. int node = cpu_to_node(cpu);
  478. struct page *pages;
  479. struct vmcs *vmcs;
  480. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  481. if (!pages)
  482. return NULL;
  483. vmcs = page_address(pages);
  484. memset(vmcs, 0, vmcs_descriptor.size);
  485. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  486. return vmcs;
  487. }
  488. static struct vmcs *alloc_vmcs(void)
  489. {
  490. return alloc_vmcs_cpu(smp_processor_id());
  491. }
  492. static void free_vmcs(struct vmcs *vmcs)
  493. {
  494. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  495. }
  496. static __exit void free_kvm_area(void)
  497. {
  498. int cpu;
  499. for_each_online_cpu(cpu)
  500. free_vmcs(per_cpu(vmxarea, cpu));
  501. }
  502. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  503. static __init int alloc_kvm_area(void)
  504. {
  505. int cpu;
  506. for_each_online_cpu(cpu) {
  507. struct vmcs *vmcs;
  508. vmcs = alloc_vmcs_cpu(cpu);
  509. if (!vmcs) {
  510. free_kvm_area();
  511. return -ENOMEM;
  512. }
  513. per_cpu(vmxarea, cpu) = vmcs;
  514. }
  515. return 0;
  516. }
  517. static __init int hardware_setup(void)
  518. {
  519. setup_vmcs_descriptor();
  520. return alloc_kvm_area();
  521. }
  522. static __exit void hardware_unsetup(void)
  523. {
  524. free_kvm_area();
  525. }
  526. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  527. {
  528. if (vcpu->rmode.active)
  529. vmcs_write32(EXCEPTION_BITMAP, ~0);
  530. else
  531. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  532. }
  533. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  534. {
  535. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  536. if (vmcs_readl(sf->base) == save->base) {
  537. vmcs_write16(sf->selector, save->selector);
  538. vmcs_writel(sf->base, save->base);
  539. vmcs_write32(sf->limit, save->limit);
  540. vmcs_write32(sf->ar_bytes, save->ar);
  541. } else {
  542. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  543. << AR_DPL_SHIFT;
  544. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  545. }
  546. }
  547. static void enter_pmode(struct kvm_vcpu *vcpu)
  548. {
  549. unsigned long flags;
  550. vcpu->rmode.active = 0;
  551. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  552. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  553. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  554. flags = vmcs_readl(GUEST_RFLAGS);
  555. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  556. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  557. vmcs_writel(GUEST_RFLAGS, flags);
  558. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  559. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  560. update_exception_bitmap(vcpu);
  561. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  562. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  563. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  564. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  565. vmcs_write16(GUEST_SS_SELECTOR, 0);
  566. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  567. vmcs_write16(GUEST_CS_SELECTOR,
  568. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  569. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  570. }
  571. static int rmode_tss_base(struct kvm* kvm)
  572. {
  573. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  574. return base_gfn << PAGE_SHIFT;
  575. }
  576. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  577. {
  578. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  579. save->selector = vmcs_read16(sf->selector);
  580. save->base = vmcs_readl(sf->base);
  581. save->limit = vmcs_read32(sf->limit);
  582. save->ar = vmcs_read32(sf->ar_bytes);
  583. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  584. vmcs_write32(sf->limit, 0xffff);
  585. vmcs_write32(sf->ar_bytes, 0xf3);
  586. }
  587. static void enter_rmode(struct kvm_vcpu *vcpu)
  588. {
  589. unsigned long flags;
  590. vcpu->rmode.active = 1;
  591. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  592. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  593. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  594. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  595. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  596. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  597. flags = vmcs_readl(GUEST_RFLAGS);
  598. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  599. flags |= IOPL_MASK | X86_EFLAGS_VM;
  600. vmcs_writel(GUEST_RFLAGS, flags);
  601. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  602. update_exception_bitmap(vcpu);
  603. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  604. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  605. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  606. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  607. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  608. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  609. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  610. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  611. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  612. }
  613. #ifdef __x86_64__
  614. static void enter_lmode(struct kvm_vcpu *vcpu)
  615. {
  616. u32 guest_tr_ar;
  617. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  618. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  619. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  620. __FUNCTION__);
  621. vmcs_write32(GUEST_TR_AR_BYTES,
  622. (guest_tr_ar & ~AR_TYPE_MASK)
  623. | AR_TYPE_BUSY_64_TSS);
  624. }
  625. vcpu->shadow_efer |= EFER_LMA;
  626. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  627. vmcs_write32(VM_ENTRY_CONTROLS,
  628. vmcs_read32(VM_ENTRY_CONTROLS)
  629. | VM_ENTRY_CONTROLS_IA32E_MASK);
  630. }
  631. static void exit_lmode(struct kvm_vcpu *vcpu)
  632. {
  633. vcpu->shadow_efer &= ~EFER_LMA;
  634. vmcs_write32(VM_ENTRY_CONTROLS,
  635. vmcs_read32(VM_ENTRY_CONTROLS)
  636. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  637. }
  638. #endif
  639. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  640. {
  641. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  642. enter_pmode(vcpu);
  643. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  644. enter_rmode(vcpu);
  645. #ifdef __x86_64__
  646. if (vcpu->shadow_efer & EFER_LME) {
  647. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  648. enter_lmode(vcpu);
  649. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  650. exit_lmode(vcpu);
  651. }
  652. #endif
  653. vmcs_writel(CR0_READ_SHADOW, cr0);
  654. vmcs_writel(GUEST_CR0,
  655. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  656. vcpu->cr0 = cr0;
  657. }
  658. /*
  659. * Used when restoring the VM to avoid corrupting segment registers
  660. */
  661. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  662. {
  663. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  664. update_exception_bitmap(vcpu);
  665. vmcs_writel(CR0_READ_SHADOW, cr0);
  666. vmcs_writel(GUEST_CR0,
  667. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  668. vcpu->cr0 = cr0;
  669. }
  670. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  671. {
  672. vmcs_writel(GUEST_CR3, cr3);
  673. }
  674. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  675. {
  676. vmcs_writel(CR4_READ_SHADOW, cr4);
  677. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  678. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  679. vcpu->cr4 = cr4;
  680. }
  681. #ifdef __x86_64__
  682. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  683. {
  684. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  685. vcpu->shadow_efer = efer;
  686. if (efer & EFER_LMA) {
  687. vmcs_write32(VM_ENTRY_CONTROLS,
  688. vmcs_read32(VM_ENTRY_CONTROLS) |
  689. VM_ENTRY_CONTROLS_IA32E_MASK);
  690. msr->data = efer;
  691. } else {
  692. vmcs_write32(VM_ENTRY_CONTROLS,
  693. vmcs_read32(VM_ENTRY_CONTROLS) &
  694. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  695. msr->data = efer & ~EFER_LME;
  696. }
  697. }
  698. #endif
  699. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  700. {
  701. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  702. return vmcs_readl(sf->base);
  703. }
  704. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  705. struct kvm_segment *var, int seg)
  706. {
  707. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  708. u32 ar;
  709. var->base = vmcs_readl(sf->base);
  710. var->limit = vmcs_read32(sf->limit);
  711. var->selector = vmcs_read16(sf->selector);
  712. ar = vmcs_read32(sf->ar_bytes);
  713. if (ar & AR_UNUSABLE_MASK)
  714. ar = 0;
  715. var->type = ar & 15;
  716. var->s = (ar >> 4) & 1;
  717. var->dpl = (ar >> 5) & 3;
  718. var->present = (ar >> 7) & 1;
  719. var->avl = (ar >> 12) & 1;
  720. var->l = (ar >> 13) & 1;
  721. var->db = (ar >> 14) & 1;
  722. var->g = (ar >> 15) & 1;
  723. var->unusable = (ar >> 16) & 1;
  724. }
  725. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  726. struct kvm_segment *var, int seg)
  727. {
  728. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  729. u32 ar;
  730. vmcs_writel(sf->base, var->base);
  731. vmcs_write32(sf->limit, var->limit);
  732. vmcs_write16(sf->selector, var->selector);
  733. if (var->unusable)
  734. ar = 1 << 16;
  735. else {
  736. ar = var->type & 15;
  737. ar |= (var->s & 1) << 4;
  738. ar |= (var->dpl & 3) << 5;
  739. ar |= (var->present & 1) << 7;
  740. ar |= (var->avl & 1) << 12;
  741. ar |= (var->l & 1) << 13;
  742. ar |= (var->db & 1) << 14;
  743. ar |= (var->g & 1) << 15;
  744. }
  745. vmcs_write32(sf->ar_bytes, ar);
  746. }
  747. static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
  748. {
  749. return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
  750. }
  751. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  752. {
  753. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  754. *db = (ar >> 14) & 1;
  755. *l = (ar >> 13) & 1;
  756. }
  757. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  758. {
  759. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  760. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  761. }
  762. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  763. {
  764. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  765. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  766. }
  767. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  768. {
  769. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  770. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  771. }
  772. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  773. {
  774. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  775. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  776. }
  777. static int init_rmode_tss(struct kvm* kvm)
  778. {
  779. struct page *p1, *p2, *p3;
  780. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  781. char *page;
  782. p1 = _gfn_to_page(kvm, fn++);
  783. p2 = _gfn_to_page(kvm, fn++);
  784. p3 = _gfn_to_page(kvm, fn);
  785. if (!p1 || !p2 || !p3) {
  786. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  787. return 0;
  788. }
  789. page = kmap_atomic(p1, KM_USER0);
  790. memset(page, 0, PAGE_SIZE);
  791. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  792. kunmap_atomic(page, KM_USER0);
  793. page = kmap_atomic(p2, KM_USER0);
  794. memset(page, 0, PAGE_SIZE);
  795. kunmap_atomic(page, KM_USER0);
  796. page = kmap_atomic(p3, KM_USER0);
  797. memset(page, 0, PAGE_SIZE);
  798. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  799. kunmap_atomic(page, KM_USER0);
  800. return 1;
  801. }
  802. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  803. {
  804. u32 msr_high, msr_low;
  805. rdmsr(msr, msr_low, msr_high);
  806. val &= msr_high;
  807. val |= msr_low;
  808. vmcs_write32(vmcs_field, val);
  809. }
  810. static void seg_setup(int seg)
  811. {
  812. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  813. vmcs_write16(sf->selector, 0);
  814. vmcs_writel(sf->base, 0);
  815. vmcs_write32(sf->limit, 0xffff);
  816. vmcs_write32(sf->ar_bytes, 0x93);
  817. }
  818. /*
  819. * Sets up the vmcs for emulated real mode.
  820. */
  821. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  822. {
  823. u32 host_sysenter_cs;
  824. u32 junk;
  825. unsigned long a;
  826. struct descriptor_table dt;
  827. int i;
  828. int ret = 0;
  829. int nr_good_msrs;
  830. extern asmlinkage void kvm_vmx_return(void);
  831. if (!init_rmode_tss(vcpu->kvm)) {
  832. ret = -ENOMEM;
  833. goto out;
  834. }
  835. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  836. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  837. vcpu->cr8 = 0;
  838. vcpu->apic_base = 0xfee00000 |
  839. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  840. MSR_IA32_APICBASE_ENABLE;
  841. fx_init(vcpu);
  842. /*
  843. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  844. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  845. */
  846. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  847. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  848. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  849. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  850. seg_setup(VCPU_SREG_DS);
  851. seg_setup(VCPU_SREG_ES);
  852. seg_setup(VCPU_SREG_FS);
  853. seg_setup(VCPU_SREG_GS);
  854. seg_setup(VCPU_SREG_SS);
  855. vmcs_write16(GUEST_TR_SELECTOR, 0);
  856. vmcs_writel(GUEST_TR_BASE, 0);
  857. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  858. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  859. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  860. vmcs_writel(GUEST_LDTR_BASE, 0);
  861. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  862. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  863. vmcs_write32(GUEST_SYSENTER_CS, 0);
  864. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  865. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  866. vmcs_writel(GUEST_RFLAGS, 0x02);
  867. vmcs_writel(GUEST_RIP, 0xfff0);
  868. vmcs_writel(GUEST_RSP, 0);
  869. vmcs_writel(GUEST_CR3, 0);
  870. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  871. vmcs_writel(GUEST_DR7, 0x400);
  872. vmcs_writel(GUEST_GDTR_BASE, 0);
  873. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  874. vmcs_writel(GUEST_IDTR_BASE, 0);
  875. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  876. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  877. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  878. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  879. /* I/O */
  880. vmcs_write64(IO_BITMAP_A, 0);
  881. vmcs_write64(IO_BITMAP_B, 0);
  882. guest_write_tsc(0);
  883. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  884. /* Special registers */
  885. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  886. /* Control */
  887. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
  888. PIN_BASED_VM_EXEC_CONTROL,
  889. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  890. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  891. );
  892. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
  893. CPU_BASED_VM_EXEC_CONTROL,
  894. CPU_BASED_HLT_EXITING /* 20.6.2 */
  895. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  896. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  897. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  898. | CPU_BASED_INVDPG_EXITING
  899. | CPU_BASED_MOV_DR_EXITING
  900. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  901. );
  902. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  903. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  904. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  905. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  906. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  907. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  908. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  909. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  910. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  911. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  912. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  913. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  914. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  915. #ifdef __x86_64__
  916. rdmsrl(MSR_FS_BASE, a);
  917. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  918. rdmsrl(MSR_GS_BASE, a);
  919. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  920. #else
  921. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  922. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  923. #endif
  924. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  925. get_idt(&dt);
  926. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  927. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  928. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  929. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  930. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  931. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  932. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  933. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  934. ret = -ENOMEM;
  935. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  936. if (!vcpu->guest_msrs)
  937. goto out;
  938. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  939. if (!vcpu->host_msrs)
  940. goto out_free_guest_msrs;
  941. for (i = 0; i < NR_VMX_MSR; ++i) {
  942. u32 index = vmx_msr_index[i];
  943. u32 data_low, data_high;
  944. u64 data;
  945. int j = vcpu->nmsrs;
  946. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  947. continue;
  948. data = data_low | ((u64)data_high << 32);
  949. vcpu->host_msrs[j].index = index;
  950. vcpu->host_msrs[j].reserved = 0;
  951. vcpu->host_msrs[j].data = data;
  952. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  953. ++vcpu->nmsrs;
  954. }
  955. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  956. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  957. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  958. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  959. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  960. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  961. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  962. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  963. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
  964. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  965. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  966. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  967. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  968. /* 22.2.1, 20.8.1 */
  969. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
  970. VM_ENTRY_CONTROLS, 0);
  971. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  972. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  973. vmcs_writel(TPR_THRESHOLD, 0);
  974. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  975. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  976. vcpu->cr0 = 0x60000010;
  977. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  978. vmx_set_cr4(vcpu, 0);
  979. #ifdef __x86_64__
  980. vmx_set_efer(vcpu, 0);
  981. #endif
  982. return 0;
  983. out_free_guest_msrs:
  984. kfree(vcpu->guest_msrs);
  985. out:
  986. return ret;
  987. }
  988. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  989. {
  990. u16 ent[2];
  991. u16 cs;
  992. u16 ip;
  993. unsigned long flags;
  994. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  995. u16 sp = vmcs_readl(GUEST_RSP);
  996. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  997. if (sp > ss_limit || sp - 6 > sp) {
  998. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  999. __FUNCTION__,
  1000. vmcs_readl(GUEST_RSP),
  1001. vmcs_readl(GUEST_SS_BASE),
  1002. vmcs_read32(GUEST_SS_LIMIT));
  1003. return;
  1004. }
  1005. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1006. sizeof(ent)) {
  1007. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1008. return;
  1009. }
  1010. flags = vmcs_readl(GUEST_RFLAGS);
  1011. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1012. ip = vmcs_readl(GUEST_RIP);
  1013. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1014. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1015. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1016. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1017. return;
  1018. }
  1019. vmcs_writel(GUEST_RFLAGS, flags &
  1020. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1021. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1022. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1023. vmcs_writel(GUEST_RIP, ent[0]);
  1024. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1025. }
  1026. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1027. {
  1028. int word_index = __ffs(vcpu->irq_summary);
  1029. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1030. int irq = word_index * BITS_PER_LONG + bit_index;
  1031. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1032. if (!vcpu->irq_pending[word_index])
  1033. clear_bit(word_index, &vcpu->irq_summary);
  1034. if (vcpu->rmode.active) {
  1035. inject_rmode_irq(vcpu, irq);
  1036. return;
  1037. }
  1038. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1039. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1040. }
  1041. static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
  1042. {
  1043. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
  1044. && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
  1045. /*
  1046. * Interrupts enabled, and not blocked by sti or mov ss. Good.
  1047. */
  1048. kvm_do_inject_irq(vcpu);
  1049. else
  1050. /*
  1051. * Interrupts blocked. Wait for unblock.
  1052. */
  1053. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1054. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1055. | CPU_BASED_VIRTUAL_INTR_PENDING);
  1056. }
  1057. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1058. {
  1059. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1060. set_debugreg(dbg->bp[0], 0);
  1061. set_debugreg(dbg->bp[1], 1);
  1062. set_debugreg(dbg->bp[2], 2);
  1063. set_debugreg(dbg->bp[3], 3);
  1064. if (dbg->singlestep) {
  1065. unsigned long flags;
  1066. flags = vmcs_readl(GUEST_RFLAGS);
  1067. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1068. vmcs_writel(GUEST_RFLAGS, flags);
  1069. }
  1070. }
  1071. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1072. int vec, u32 err_code)
  1073. {
  1074. if (!vcpu->rmode.active)
  1075. return 0;
  1076. if (vec == GP_VECTOR && err_code == 0)
  1077. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1078. return 1;
  1079. return 0;
  1080. }
  1081. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1082. {
  1083. u32 intr_info, error_code;
  1084. unsigned long cr2, rip;
  1085. u32 vect_info;
  1086. enum emulation_result er;
  1087. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1088. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1089. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1090. !is_page_fault(intr_info)) {
  1091. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1092. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1093. }
  1094. if (is_external_interrupt(vect_info)) {
  1095. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1096. set_bit(irq, vcpu->irq_pending);
  1097. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1098. }
  1099. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1100. asm ("int $2");
  1101. return 1;
  1102. }
  1103. error_code = 0;
  1104. rip = vmcs_readl(GUEST_RIP);
  1105. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1106. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1107. if (is_page_fault(intr_info)) {
  1108. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1109. spin_lock(&vcpu->kvm->lock);
  1110. if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
  1111. spin_unlock(&vcpu->kvm->lock);
  1112. return 1;
  1113. }
  1114. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1115. spin_unlock(&vcpu->kvm->lock);
  1116. switch (er) {
  1117. case EMULATE_DONE:
  1118. return 1;
  1119. case EMULATE_DO_MMIO:
  1120. ++kvm_stat.mmio_exits;
  1121. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1122. return 0;
  1123. case EMULATE_FAIL:
  1124. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1125. break;
  1126. default:
  1127. BUG();
  1128. }
  1129. }
  1130. if (vcpu->rmode.active &&
  1131. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1132. error_code))
  1133. return 1;
  1134. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1135. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1136. return 0;
  1137. }
  1138. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1139. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1140. kvm_run->ex.error_code = error_code;
  1141. return 0;
  1142. }
  1143. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1144. struct kvm_run *kvm_run)
  1145. {
  1146. ++kvm_stat.irq_exits;
  1147. return 1;
  1148. }
  1149. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1150. {
  1151. u64 inst;
  1152. gva_t rip;
  1153. int countr_size;
  1154. int i, n;
  1155. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1156. countr_size = 2;
  1157. } else {
  1158. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1159. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1160. (cs_ar & AR_DB_MASK) ? 4: 2;
  1161. }
  1162. rip = vmcs_readl(GUEST_RIP);
  1163. if (countr_size != 8)
  1164. rip += vmcs_readl(GUEST_CS_BASE);
  1165. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1166. for (i = 0; i < n; i++) {
  1167. switch (((u8*)&inst)[i]) {
  1168. case 0xf0:
  1169. case 0xf2:
  1170. case 0xf3:
  1171. case 0x2e:
  1172. case 0x36:
  1173. case 0x3e:
  1174. case 0x26:
  1175. case 0x64:
  1176. case 0x65:
  1177. case 0x66:
  1178. break;
  1179. case 0x67:
  1180. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1181. default:
  1182. goto done;
  1183. }
  1184. }
  1185. return 0;
  1186. done:
  1187. countr_size *= 8;
  1188. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1189. return 1;
  1190. }
  1191. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1192. {
  1193. u64 exit_qualification;
  1194. ++kvm_stat.io_exits;
  1195. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1196. kvm_run->exit_reason = KVM_EXIT_IO;
  1197. if (exit_qualification & 8)
  1198. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1199. else
  1200. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1201. kvm_run->io.size = (exit_qualification & 7) + 1;
  1202. kvm_run->io.string = (exit_qualification & 16) != 0;
  1203. kvm_run->io.string_down
  1204. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1205. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1206. kvm_run->io.port = exit_qualification >> 16;
  1207. if (kvm_run->io.string) {
  1208. if (!get_io_count(vcpu, &kvm_run->io.count))
  1209. return 1;
  1210. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1211. } else
  1212. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1213. return 0;
  1214. }
  1215. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1216. {
  1217. u64 address = vmcs_read64(EXIT_QUALIFICATION);
  1218. int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1219. spin_lock(&vcpu->kvm->lock);
  1220. vcpu->mmu.inval_page(vcpu, address);
  1221. spin_unlock(&vcpu->kvm->lock);
  1222. vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
  1223. return 1;
  1224. }
  1225. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1226. {
  1227. u64 exit_qualification;
  1228. int cr;
  1229. int reg;
  1230. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1231. cr = exit_qualification & 15;
  1232. reg = (exit_qualification >> 8) & 15;
  1233. switch ((exit_qualification >> 4) & 3) {
  1234. case 0: /* mov to cr */
  1235. switch (cr) {
  1236. case 0:
  1237. vcpu_load_rsp_rip(vcpu);
  1238. set_cr0(vcpu, vcpu->regs[reg]);
  1239. skip_emulated_instruction(vcpu);
  1240. return 1;
  1241. case 3:
  1242. vcpu_load_rsp_rip(vcpu);
  1243. set_cr3(vcpu, vcpu->regs[reg]);
  1244. skip_emulated_instruction(vcpu);
  1245. return 1;
  1246. case 4:
  1247. vcpu_load_rsp_rip(vcpu);
  1248. set_cr4(vcpu, vcpu->regs[reg]);
  1249. skip_emulated_instruction(vcpu);
  1250. return 1;
  1251. case 8:
  1252. vcpu_load_rsp_rip(vcpu);
  1253. set_cr8(vcpu, vcpu->regs[reg]);
  1254. skip_emulated_instruction(vcpu);
  1255. return 1;
  1256. };
  1257. break;
  1258. case 1: /*mov from cr*/
  1259. switch (cr) {
  1260. case 3:
  1261. vcpu_load_rsp_rip(vcpu);
  1262. vcpu->regs[reg] = vcpu->cr3;
  1263. vcpu_put_rsp_rip(vcpu);
  1264. skip_emulated_instruction(vcpu);
  1265. return 1;
  1266. case 8:
  1267. printk(KERN_DEBUG "handle_cr: read CR8 "
  1268. "cpu erratum AA15\n");
  1269. vcpu_load_rsp_rip(vcpu);
  1270. vcpu->regs[reg] = vcpu->cr8;
  1271. vcpu_put_rsp_rip(vcpu);
  1272. skip_emulated_instruction(vcpu);
  1273. return 1;
  1274. }
  1275. break;
  1276. case 3: /* lmsw */
  1277. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1278. skip_emulated_instruction(vcpu);
  1279. return 1;
  1280. default:
  1281. break;
  1282. }
  1283. kvm_run->exit_reason = 0;
  1284. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1285. (int)(exit_qualification >> 4) & 3, cr);
  1286. return 0;
  1287. }
  1288. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1289. {
  1290. u64 exit_qualification;
  1291. unsigned long val;
  1292. int dr, reg;
  1293. /*
  1294. * FIXME: this code assumes the host is debugging the guest.
  1295. * need to deal with guest debugging itself too.
  1296. */
  1297. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1298. dr = exit_qualification & 7;
  1299. reg = (exit_qualification >> 8) & 15;
  1300. vcpu_load_rsp_rip(vcpu);
  1301. if (exit_qualification & 16) {
  1302. /* mov from dr */
  1303. switch (dr) {
  1304. case 6:
  1305. val = 0xffff0ff0;
  1306. break;
  1307. case 7:
  1308. val = 0x400;
  1309. break;
  1310. default:
  1311. val = 0;
  1312. }
  1313. vcpu->regs[reg] = val;
  1314. } else {
  1315. /* mov to dr */
  1316. }
  1317. vcpu_put_rsp_rip(vcpu);
  1318. skip_emulated_instruction(vcpu);
  1319. return 1;
  1320. }
  1321. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1322. {
  1323. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1324. return 0;
  1325. }
  1326. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1327. {
  1328. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1329. u64 data;
  1330. if (vmx_get_msr(vcpu, ecx, &data)) {
  1331. vmx_inject_gp(vcpu, 0);
  1332. return 1;
  1333. }
  1334. /* FIXME: handling of bits 32:63 of rax, rdx */
  1335. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1336. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1337. skip_emulated_instruction(vcpu);
  1338. return 1;
  1339. }
  1340. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1341. {
  1342. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1343. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1344. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1345. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1346. vmx_inject_gp(vcpu, 0);
  1347. return 1;
  1348. }
  1349. skip_emulated_instruction(vcpu);
  1350. return 1;
  1351. }
  1352. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1353. struct kvm_run *kvm_run)
  1354. {
  1355. /* Turn off interrupt window reporting. */
  1356. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1357. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1358. & ~CPU_BASED_VIRTUAL_INTR_PENDING);
  1359. return 1;
  1360. }
  1361. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1362. {
  1363. skip_emulated_instruction(vcpu);
  1364. if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
  1365. return 1;
  1366. kvm_run->exit_reason = KVM_EXIT_HLT;
  1367. return 0;
  1368. }
  1369. /*
  1370. * The exit handlers return 1 if the exit was handled fully and guest execution
  1371. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1372. * to be done to userspace and return 0.
  1373. */
  1374. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1375. struct kvm_run *kvm_run) = {
  1376. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1377. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1378. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1379. [EXIT_REASON_INVLPG] = handle_invlpg,
  1380. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1381. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1382. [EXIT_REASON_CPUID] = handle_cpuid,
  1383. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1384. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1385. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1386. [EXIT_REASON_HLT] = handle_halt,
  1387. };
  1388. static const int kvm_vmx_max_exit_handlers =
  1389. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1390. /*
  1391. * The guest has exited. See if we can fix it or if we need userspace
  1392. * assistance.
  1393. */
  1394. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1395. {
  1396. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1397. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1398. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1399. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1400. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1401. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1402. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1403. if (exit_reason < kvm_vmx_max_exit_handlers
  1404. && kvm_vmx_exit_handlers[exit_reason])
  1405. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1406. else {
  1407. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1408. kvm_run->hw.hardware_exit_reason = exit_reason;
  1409. }
  1410. return 0;
  1411. }
  1412. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1413. {
  1414. u8 fail;
  1415. u16 fs_sel, gs_sel, ldt_sel;
  1416. int fs_gs_ldt_reload_needed;
  1417. again:
  1418. /*
  1419. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1420. * allow segment selectors with cpl > 0 or ti == 1.
  1421. */
  1422. fs_sel = read_fs();
  1423. gs_sel = read_gs();
  1424. ldt_sel = read_ldt();
  1425. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1426. if (!fs_gs_ldt_reload_needed) {
  1427. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1428. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1429. } else {
  1430. vmcs_write16(HOST_FS_SELECTOR, 0);
  1431. vmcs_write16(HOST_GS_SELECTOR, 0);
  1432. }
  1433. #ifdef __x86_64__
  1434. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1435. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1436. #else
  1437. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1438. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1439. #endif
  1440. if (vcpu->irq_summary &&
  1441. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1442. kvm_try_inject_irq(vcpu);
  1443. if (vcpu->guest_debug.enabled)
  1444. kvm_guest_debug_pre(vcpu);
  1445. fx_save(vcpu->host_fx_image);
  1446. fx_restore(vcpu->guest_fx_image);
  1447. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1448. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1449. asm (
  1450. /* Store host registers */
  1451. "pushf \n\t"
  1452. #ifdef __x86_64__
  1453. "push %%rax; push %%rbx; push %%rdx;"
  1454. "push %%rsi; push %%rdi; push %%rbp;"
  1455. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1456. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1457. "push %%rcx \n\t"
  1458. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1459. #else
  1460. "pusha; push %%ecx \n\t"
  1461. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1462. #endif
  1463. /* Check if vmlaunch of vmresume is needed */
  1464. "cmp $0, %1 \n\t"
  1465. /* Load guest registers. Don't clobber flags. */
  1466. #ifdef __x86_64__
  1467. "mov %c[cr2](%3), %%rax \n\t"
  1468. "mov %%rax, %%cr2 \n\t"
  1469. "mov %c[rax](%3), %%rax \n\t"
  1470. "mov %c[rbx](%3), %%rbx \n\t"
  1471. "mov %c[rdx](%3), %%rdx \n\t"
  1472. "mov %c[rsi](%3), %%rsi \n\t"
  1473. "mov %c[rdi](%3), %%rdi \n\t"
  1474. "mov %c[rbp](%3), %%rbp \n\t"
  1475. "mov %c[r8](%3), %%r8 \n\t"
  1476. "mov %c[r9](%3), %%r9 \n\t"
  1477. "mov %c[r10](%3), %%r10 \n\t"
  1478. "mov %c[r11](%3), %%r11 \n\t"
  1479. "mov %c[r12](%3), %%r12 \n\t"
  1480. "mov %c[r13](%3), %%r13 \n\t"
  1481. "mov %c[r14](%3), %%r14 \n\t"
  1482. "mov %c[r15](%3), %%r15 \n\t"
  1483. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1484. #else
  1485. "mov %c[cr2](%3), %%eax \n\t"
  1486. "mov %%eax, %%cr2 \n\t"
  1487. "mov %c[rax](%3), %%eax \n\t"
  1488. "mov %c[rbx](%3), %%ebx \n\t"
  1489. "mov %c[rdx](%3), %%edx \n\t"
  1490. "mov %c[rsi](%3), %%esi \n\t"
  1491. "mov %c[rdi](%3), %%edi \n\t"
  1492. "mov %c[rbp](%3), %%ebp \n\t"
  1493. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1494. #endif
  1495. /* Enter guest mode */
  1496. "jne launched \n\t"
  1497. ASM_VMX_VMLAUNCH "\n\t"
  1498. "jmp kvm_vmx_return \n\t"
  1499. "launched: " ASM_VMX_VMRESUME "\n\t"
  1500. ".globl kvm_vmx_return \n\t"
  1501. "kvm_vmx_return: "
  1502. /* Save guest registers, load host registers, keep flags */
  1503. #ifdef __x86_64__
  1504. "xchg %3, 0(%%rsp) \n\t"
  1505. "mov %%rax, %c[rax](%3) \n\t"
  1506. "mov %%rbx, %c[rbx](%3) \n\t"
  1507. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1508. "mov %%rdx, %c[rdx](%3) \n\t"
  1509. "mov %%rsi, %c[rsi](%3) \n\t"
  1510. "mov %%rdi, %c[rdi](%3) \n\t"
  1511. "mov %%rbp, %c[rbp](%3) \n\t"
  1512. "mov %%r8, %c[r8](%3) \n\t"
  1513. "mov %%r9, %c[r9](%3) \n\t"
  1514. "mov %%r10, %c[r10](%3) \n\t"
  1515. "mov %%r11, %c[r11](%3) \n\t"
  1516. "mov %%r12, %c[r12](%3) \n\t"
  1517. "mov %%r13, %c[r13](%3) \n\t"
  1518. "mov %%r14, %c[r14](%3) \n\t"
  1519. "mov %%r15, %c[r15](%3) \n\t"
  1520. "mov %%cr2, %%rax \n\t"
  1521. "mov %%rax, %c[cr2](%3) \n\t"
  1522. "mov 0(%%rsp), %3 \n\t"
  1523. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1524. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1525. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1526. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1527. #else
  1528. "xchg %3, 0(%%esp) \n\t"
  1529. "mov %%eax, %c[rax](%3) \n\t"
  1530. "mov %%ebx, %c[rbx](%3) \n\t"
  1531. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1532. "mov %%edx, %c[rdx](%3) \n\t"
  1533. "mov %%esi, %c[rsi](%3) \n\t"
  1534. "mov %%edi, %c[rdi](%3) \n\t"
  1535. "mov %%ebp, %c[rbp](%3) \n\t"
  1536. "mov %%cr2, %%eax \n\t"
  1537. "mov %%eax, %c[cr2](%3) \n\t"
  1538. "mov 0(%%esp), %3 \n\t"
  1539. "pop %%ecx; popa \n\t"
  1540. #endif
  1541. "setbe %0 \n\t"
  1542. "popf \n\t"
  1543. : "=g" (fail)
  1544. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1545. "c"(vcpu),
  1546. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1547. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1548. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1549. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1550. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1551. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1552. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1553. #ifdef __x86_64__
  1554. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1555. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1556. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1557. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1558. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1559. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1560. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1561. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1562. #endif
  1563. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1564. : "cc", "memory" );
  1565. ++kvm_stat.exits;
  1566. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1567. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1568. fx_save(vcpu->guest_fx_image);
  1569. fx_restore(vcpu->host_fx_image);
  1570. #ifndef __x86_64__
  1571. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1572. #endif
  1573. kvm_run->exit_type = 0;
  1574. if (fail) {
  1575. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1576. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1577. } else {
  1578. if (fs_gs_ldt_reload_needed) {
  1579. load_ldt(ldt_sel);
  1580. load_fs(fs_sel);
  1581. /*
  1582. * If we have to reload gs, we must take care to
  1583. * preserve our gs base.
  1584. */
  1585. local_irq_disable();
  1586. load_gs(gs_sel);
  1587. #ifdef __x86_64__
  1588. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1589. #endif
  1590. local_irq_enable();
  1591. reload_tss();
  1592. }
  1593. vcpu->launched = 1;
  1594. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1595. if (kvm_handle_exit(kvm_run, vcpu)) {
  1596. /* Give scheduler a change to reschedule. */
  1597. if (signal_pending(current)) {
  1598. ++kvm_stat.signal_exits;
  1599. return -EINTR;
  1600. }
  1601. kvm_resched(vcpu);
  1602. goto again;
  1603. }
  1604. }
  1605. return 0;
  1606. }
  1607. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1608. {
  1609. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1610. }
  1611. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1612. unsigned long addr,
  1613. u32 err_code)
  1614. {
  1615. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1616. ++kvm_stat.pf_guest;
  1617. if (is_page_fault(vect_info)) {
  1618. printk(KERN_DEBUG "inject_page_fault: "
  1619. "double fault 0x%lx @ 0x%lx\n",
  1620. addr, vmcs_readl(GUEST_RIP));
  1621. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1622. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1623. DF_VECTOR |
  1624. INTR_TYPE_EXCEPTION |
  1625. INTR_INFO_DELIEVER_CODE_MASK |
  1626. INTR_INFO_VALID_MASK);
  1627. return;
  1628. }
  1629. vcpu->cr2 = addr;
  1630. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1631. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1632. PF_VECTOR |
  1633. INTR_TYPE_EXCEPTION |
  1634. INTR_INFO_DELIEVER_CODE_MASK |
  1635. INTR_INFO_VALID_MASK);
  1636. }
  1637. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1638. {
  1639. if (vcpu->vmcs) {
  1640. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1641. free_vmcs(vcpu->vmcs);
  1642. vcpu->vmcs = NULL;
  1643. }
  1644. }
  1645. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1646. {
  1647. vmx_free_vmcs(vcpu);
  1648. }
  1649. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1650. {
  1651. struct vmcs *vmcs;
  1652. vmcs = alloc_vmcs();
  1653. if (!vmcs)
  1654. return -ENOMEM;
  1655. vmcs_clear(vmcs);
  1656. vcpu->vmcs = vmcs;
  1657. vcpu->launched = 0;
  1658. return 0;
  1659. }
  1660. static struct kvm_arch_ops vmx_arch_ops = {
  1661. .cpu_has_kvm_support = cpu_has_kvm_support,
  1662. .disabled_by_bios = vmx_disabled_by_bios,
  1663. .hardware_setup = hardware_setup,
  1664. .hardware_unsetup = hardware_unsetup,
  1665. .hardware_enable = hardware_enable,
  1666. .hardware_disable = hardware_disable,
  1667. .vcpu_create = vmx_create_vcpu,
  1668. .vcpu_free = vmx_free_vcpu,
  1669. .vcpu_load = vmx_vcpu_load,
  1670. .vcpu_put = vmx_vcpu_put,
  1671. .set_guest_debug = set_guest_debug,
  1672. .get_msr = vmx_get_msr,
  1673. .set_msr = vmx_set_msr,
  1674. .get_segment_base = vmx_get_segment_base,
  1675. .get_segment = vmx_get_segment,
  1676. .set_segment = vmx_set_segment,
  1677. .is_long_mode = vmx_is_long_mode,
  1678. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1679. .set_cr0 = vmx_set_cr0,
  1680. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1681. .set_cr3 = vmx_set_cr3,
  1682. .set_cr4 = vmx_set_cr4,
  1683. #ifdef __x86_64__
  1684. .set_efer = vmx_set_efer,
  1685. #endif
  1686. .get_idt = vmx_get_idt,
  1687. .set_idt = vmx_set_idt,
  1688. .get_gdt = vmx_get_gdt,
  1689. .set_gdt = vmx_set_gdt,
  1690. .cache_regs = vcpu_load_rsp_rip,
  1691. .decache_regs = vcpu_put_rsp_rip,
  1692. .get_rflags = vmx_get_rflags,
  1693. .set_rflags = vmx_set_rflags,
  1694. .tlb_flush = vmx_flush_tlb,
  1695. .inject_page_fault = vmx_inject_page_fault,
  1696. .inject_gp = vmx_inject_gp,
  1697. .run = vmx_vcpu_run,
  1698. .skip_emulated_instruction = skip_emulated_instruction,
  1699. .vcpu_setup = vmx_vcpu_setup,
  1700. };
  1701. static int __init vmx_init(void)
  1702. {
  1703. kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1704. return 0;
  1705. }
  1706. static void __exit vmx_exit(void)
  1707. {
  1708. kvm_exit_arch();
  1709. }
  1710. module_init(vmx_init)
  1711. module_exit(vmx_exit)